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Abstract

The contraction requirement in the Banach contraction principle requires
that a function be continuous. Numerous authors circumvent this obliga-
tion and attenuate the hypotheses using metric spaces equipped with a partial
order. This work presents many tripled fixed point theorems for functions ex-
hibiting mixed monotone features in cone metric spaces, which are broader
than partially ordered metric spaces.

1 Introduction and preliminaries

Fixed point theorems are indeed foundational in ensuring the existence and unique-
ness of solutions to many problems across scientific disciplines. Researchers have
been expanding these theorems by considering metric spaces with partial orders,
which allow a relaxation of contraction conditions. The work by Ran and Reur-
ing [27] pioneered this approach, particularly for applications in matrix equations.
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Building on this, Nieto and Lopez [23] demonstrated the existence of unique fixed
points for order- preserving contractions, adding novel findings in partially ordered
metric spaces. Later, they broadened their results by examining order-reversing and
non-monotone operators [22]. Lakshmikantham and Bhaskar [9] further advanced
the field by introducing the concept of mixed monotone properties and coupled
fixed points, which expanded the scope and application of fixed point theorems.
They extended the scope of fixed point problems by utilizing mixed monotone
operators, which led to further generalizations in ordered metric spaces and cone
metric spaces [1, 3, 5, 7, 8, 10–12, 17, 20, 29–31]. Cevik and Altun contributed to
this progress by presenting vector metric spaces, where the distance function is de-
fined in a Riesz space and satisfies standard metric conditions. Also, they applied
the BCP within this newly established framework [16]. This approach has spurred
additional research, with numerous studies expanding fixed point results in vector
metric spaces [4, 15, 24–26, 28]. Recent work has also extended previous findings
through applications in vector metric spaces, reflecting the broad and evolving ap-
plicability of fixed point theory in diverse mathematical spaces [14, 22, 23].

In this paper, we introduce several tripled fixed point theorems within the
framework of ordered cone metric spaces, specifically targeting functions that ex-
hibit the mixed monotone property. Our work aims to generalize existing results
in this area, providing a broader understanding of fixed point theory. To illustrate
the applicability and effectiveness of our findings, we include some examples that
demonstrate the utility of these theorems in practical scenarios. Through these
contributions, we hope to enhance the existing literature on fixed point theorems
and their applications in ordered metric spaces. Let E be a real Banach Space. A
subset P of E is called a cone if

1. P is closed, non-empty and P ̸= 0,

2. a, b ∈ R a, b ≥ 0 and i, h ∈ P imply ai+ bh ∈ P ,

3. P ∩ (−P ) = 0.

Given a cone P ⊂ E we define the partial ordering ≤ with respect to P by
i ≤ h if and only if h − i ∈ P . We write i < h to denote that i ≤ h but i ̸= h,
while i ≪ h will stand for h− i ∈ intP (interior of P ).

Consider a partially ordered set P . It is considered lattice for every pair el-
ements in P has both a supremum and an infimum. The absolute of an element
a ∈ P is given by |a| = a ∨ (−a) where ∨ represents the supremum. Addition-
ally, if for every nonempty subset of P that is bounded above possesses supremum,
then P is called Dedekind (σ−)complete. Here an ↓ a indicates a is infimum of
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{an : n ∈ N} and (an) is order-preserving. If P is both ordered vector space
and lattice, it is referred to as a Riesz space or vector lattice. Now, consider P
as a Riesz space. P is called Archimedean Riesz space if 1

n ↓ 0 holds for every
a ∈ P+. A sequence (an) in P is called order convergent to a, written as an

o−→ a,
if there exists a sequence (bn) in P such that bn ↓ 0 and |an − a| ≤ bn for all n.
Furthermore, if there exists a sequence (bn) in P with bn ↓ 0 and |an−an+p| ≤ bn
for all n and p, then the sequence (an) is referred to as order-Cauchy. Also, P is o-
Cauchy complete for each o-Cauchy sequence is o-convergent. Further for notions
on Riesz spaces, we direct the reader to [18], [2].

We now revisit few important notions from [19]. Let Y be a nonempty set.
Suppose the mapping d : Y × Y → P satisfies the following conditions:
0 < d(e, f) for all e, f ∈ Y and d(e, f) = 0 iff e = f ; d(e, f) = d(f, e) for all
e, f ∈ Y and d(e, f) ≤ d(e, g) + d(g, f) for all e, f, g ∈ Y . Thus d is said to be a
cone metric on Y and (Y, d) is said to be a cone metric space.

Sequence (hn) in Y is called vectorially converges (or P -converges for short)

to an element h in Y , denoted as hn
d,P−−→ h, if ∃ (bn) in P such that bn ↓ 0

and d(hn, h) ≤ bn for all n. Similarly, a sequence (hn) is called P -Cauchy if
∃ a sequence (bn) in P such that bn ↓ 0 and d(hn+p, hn) ≤ bn for all p and n.
Moreover, if every P -Cauchy sequence in Y P -converges to a limit within Y , then
Y is said to be P -complete.

The following lemma establishes a connection between o-convergence and P -
convergence:

Lemma 1.1. Suppose Y be a cone metric space and (hn) ∈ Y . Then, hn
d,P−−→ h

iff d(hn, h)
o−→ 0. Moreover, (hn) is P -Cauchy iff d(hn+p, hn)

o−→ 0 for all n and
p.

Further, F : Y 3 → Y is vectorial continuous if
d(F (in, hn, gn), F (i, h, g))

o−→ 0 for d((in, hn, gn), (i, h, g))
o−→ 0.

Before proceeding to the main discussion, we first revisit the concepts of the
mixed monotone property and tripled fixed point, as introduced in [6]. Given a
partially ordered set (Y,≤) we can extend this order to Y 3 as

(t, k, r) ≤ (i, h, g) ⇔ t ≤ i, h ≤ k and r ≤ g,

for all i, h, g, t, k, r ∈ Y . We say F : Y 3 → Y have mixed monotone property for
all t, k, r ∈ Y

t1, t2 ∈ Y, t1 ≤ t2 ⇒ F (t1, k, r) ≤ F (t2, k, r),
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k1, k2 ∈ Y, k1 ≤ k2 ⇒ F (t, k1, r) ≥ F (t, k2, r),

and
r1, r2 ∈ Y, r1 ≤ r2 ⇒ F (t, k, r1) ≤ F (t, k, r2).

An element (i, h, g) ∈ Y 3 is said to be tripled fixed point of F : Y 3 → Y if
F (i, h, g) = i, F (h, i, h) = h and F (g, h, i) = g.

2 Main results

Throughout this study, unless mentioned otherwise, the ordered set (Y,≤) is a P -
complete cone metric space where P is an Archimedean Riesz space.

Theorem 2.1. Let F : Y 3 → Y have mixed monotone property. If either F is
vectorial continuous or Y have below three properties:

1. if in
d,P−−→ i and (in) is order-preserving, then in ≤ i for all n,

2. if hn
d,P−−→ i and (hn) is order-reversing, then h ≤ hn for all n,

3. if gn
d,P−−→ g and (gn) is order-preserving, then gn ≤ g for all n.

Suppose F satisfies the contractive condition

d(F (i, h, g), F (u, v, w)) ≤ k

2
[d(i, u) + d(h, v) + d(g, w)]

for all i, h, g, u, v, w ∈ Y where u ≤ i, h ≤ v, w ≤ g, k be a constant such
that k ∈ [0, 1). If ∃ t, k, r ∈ Y such that t ≤ F (t, k, r), k ≥ F (k, t, k) and
r ≤ F (r, k, t), then F has a triple fixed point.

Proof. Let t = i0, k = h0 and r = g0. For the sequences (in), (hn) and (gn)

defined by in = T (in−1, hn−1, gn−1), hn = T (hn−1, in−1, hn−1) and gn =

T (gn−1, hn−1, in−1) for all n.
Since the function F have mixed monotone property, then

i1 = F (i0, h0, g0) ≤ F (i1, h1, g1) = i2,

h1 = F (h0, i0, h0) ≥ F (h1, i1, h1) = h2,
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g1 = F (g0, h0, i0) ≤ F (g1, h1, i1) = g2,

which further implies
i0 ≤ i1 ≤ · · · ≤ in ≤ · · · ,

h0 ≥ h1 ≥ · · · ≥ hn ≥ · · · ,

g0 ≤ g1 ≤ · · · ≤ gn ≤ · · · .

Hence,

d(in+1, in) = d(F (in, hn, gn), F (in−1, hn−1, gn−1))

≤ k

2
[d(in, in−1) + d(hn, hn−1) + d(gn, gn−1)]

=
k

2
[d(F (in−2, hn−2, gn−2), F (in−1, hn−1, gn−1))

+ d(F (hn−2, in−2, hn−2), F (hn−1, in−1, hn−1))

+ d(F (gn−2, hn−2, in−2), F (gn−1, hn−1, in−1))]

≤ k

2

[
k

2
[d(in−2, in−1) + d(hn−2, hn−1) + d(gn−2, gn−1)]

+
k

2
[d(hn−2, hn−1) + d(in−2, in−1) + d(hn−2, hn−1)]

+
k

2
[d(gn−2, gn−1) + d(hn−2, hn−1) + d(in−2, in−1)]

]
=

k2

2
[d(in−2, in−1) + d(hn−2, hn−1) + d(gn−2, gn−1)]

k3

2
[d(in−2, in−3) + d(hn−2, hn−3)] ≤ · · · ≤kn

2

[
d(i1, i0) + d(h1, h0)

+ d(g1, g0)

]
.

Similarly, d(hn, hn+1) ≤ kn

2 [d(h0, h1) + d(i0, i1) + d(h0, h1)] and
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d(gn, gn+1) ≤ kn

2 [d(g0, g1) + d(h0, h1) + d(i0, i1)] for all n. Thus,

d(in, in+p) ≤d(in, in+1) + d(in+1, in+2) + · · ·+ d(in+p−1, in+p)

≤
(
kn

2
+

kn+1

2
+ · · ·+ kn+p−1

2

)
[d(i1, i0) + d(h1, h0)

+ d(g1, g0)]

≤ kn

2(1− k)
[d(i1, i0) + d(h1, h0) + d(g1, g0)].

Similarly, d(hn, hn+p) ≤ kn

2(1−k) [d(h0, h1) + d(i0, i1) + d(h0, h1)] and

d(gn, gn+p) ≤ kn

2(1−k) [d(g0, g1) + d(h0, h1) + d(i0, i1)] ∀ n and p. As, P is
Archimedean Riesz space, sequences (gn), (hn), (in) are P -Cauchy sequences.

Thus, ∃ g, h, i ∈ h such that gn
d,P−−→ g, hn

d,P−−→ h, in
d,P−−→ i because Y is

P -complete. Thus, ∃ (cn), (bn), (an) such that cn ↓ 0, bn ↓ 0, an ↓ 0 and
d(gn, g) ≤ cn, d(hn, h) ≤ bn and d(in, i) ≤ an for all n.

Case 1: Let F be a vectorially continuous function, ∃ (cn) satisfying cn decreases
to 0 and

d(F (in, hn, gn), F (i, h, g)) ≤ cn for all n.

As

d(F (i, h, g), i) ≤d(F (in, hn, gn), F (i, h, g)) + d(F (in, hn, gn), i)

≤d(in+1, i) + cn

≤an+1 + cn

≤an + cn for all n,

for all n, then 0 = d(i, F (i, h, g)), that is, i = F (i, h, g). Likewise, h = F (h, i, h)

and g = F (g, h, i).



Triple fixed point results for new classes of functions · · · 91

Case 2: in ≤ i, h ≤ hn and gn ≤ g for all n. As,

d(F (i, h, g), i) ≤d(F (in, hn, gn), F (i, h, g)) + d(F (in, hn, gn), i)

≤k

2
[d(in, i) + d(hn, h) + d(gn, g)] + d(in+1, i)

≤k

2
[an + bn + cn] + an+1

≤k

2
[bn + cn] +

3k

2
an

for all n, thus d(F (i, h, g), i) = 0 implies F (i, h, g) = i. Similarly, F (h, i, h) = h

and F (g, h, i) = g.

The above result confirms existence of a tripled fixed point and indicates the
function does not have to be vectorially continuous under certain conditions. But,
this does not suffice to ensure uniqueness of fixed point. For instance, suppose
Y = 2, 3 ⊆ N+ and Y 3 with an order relation defined as

(i, h, g) ≤ (t, k, r) ⇔ ∃ p, q, r ∈ N+ : t = px, h = qk, p = rz,

and P = R with usual order relation. Thus, Y is a P -complete cone metric space.
As, F : Y 3 → Y defined as

F (i, h, g) =

{
2, if i = 3, h = 3, g = 3

3, otherwise.

All the conditions of Theorem 2.1 holds. Also, F has a tripled fixed point but not
unique.

To establish uniqueness, an additional condition must be imposed to assump-
tions of Theorem 2.1. If Y 3 is lattice or Dedekind (σ−) complete, then the tripled
fixed point is unique. Two elements (t, k, r) and (i, h, g) in Y 3 are comparable or
at least one of the supremum (t, k, r) ∨ (i, h, g) = (i ∨ t, h ∧ k, g ∨ r) and the
infimum (t, k, r) ∧ (i, h, g) = (i ∧ t, h ∨ k, g ∧ r) are in Y 3, then the tripled fixed
point is unique. For any two elements (t, k, r) and (i, h, g) in Y 3, the conditions
below are weaker and equivalent than the previous ones:

1. Set {(t, k, r), (i, h, g)} have upper bound or lower bound in Y 3,

2. ∃ an element (u, v, w) in Y 3 comparable to (i, h, g), (t, k, r).
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We now replace the previous conditions with one of the following two alterna-
tive conditions.

Theorem 2.2. If condition (1) is incorporated into the assumptions of Theorem
2.1, F possesses a unique tripled fixed point.

Proof. Let (t, k, r) be another tripled fixed point of F . Our claim is that
d((t, k, r), (i, h, g)) = 0. Case I: If (t, k, r) and (i, h, g) are comparable, we get

d((i, h, g), (t, k, r)) = d(i, t) + d(h, k) + d(g, r)

= d(F (i, h, g), F (t, k, r)) + d(F (h, i, h), F (k, t, k))

+ d(F (g, h, i), F (r, k, t))

≤ k[d(i, t) + d(h, k) + d(g, r)]

= kd((i, h, g), (t, k, r)).

As k ∈ [0, 1) implies d((i, h, g), (t, k, r)) = 0.
Case II: If (t, k, r) and (i, h, g) are incomparable, ∃ upper or lower bound

(a1, a2, a3) ∈ h3 of {(i, h, g), (t, k, r))}. Since, (a1, a2, a3) is comparable to
(i, h, g), (t, k, r), we have (i, h, g) = (Fn(i, h, g), Fn(h, i, h), Fn(g, h, i)) and
(t, k, r) = (Fn(t, k, r), Fn(k, t, k), Fn(r, k, t)) are comparable with (Fn(a1, a2,

a3), F
n(a2, a1, a2), F

n(a3, a2, a1)) for all n. So, we have

d((i, h, g), (t, k, r)) = d

(
(Fn(i, h, g), Fn(h, i, h), Fn(g, h, i)),

(Fn(t, k, r), Fn(k, t, k), Fn(r, k, t))

)
≤ d((Fn(i, h, g), Fn(h, i, h), Fn(g, h, i)),

(Fn(a1, a2, a3), F
n(a2, a1, a2), F

n(a3, a2, a1)))

+ d((Fn(a1, a2, a3), F
n(a2, a1, a2), F

n(a3, a2, a1)),

(Fn(t, k, r), Fn(k, t, k), Fn(r, k, t)))

≤ kn([d(a1, i) + d(a2, h) + d(a3, g)]

+ [d(a1, t) + d(a2, k) + d(a3, r)])
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for all n. Since P is Archimedean Riesz space, d((t, k, r), (i, h, g)) = 0.

Theorem 2.3. Suppose (i, h, g) be tripled fixed point F . Along with the conditions
of first Theorem, for each triple of elements of Y has lower or upper bound in Y

implies i = h = g.

Proof. Suppose (i, h, g) be tripled fixed point of F .

Case I: If i, h, g are comparable elements, we have

d(i, h) = d(F (i, h, g), F (h, i, h)) ≤ kd(i, h).

Thus, i = h as k ∈ [0, 1). Similarly, i = g. So, i = h = g.

Case II: If i, h, g are incomparable and b be upper bound of {i, h, g}, then

F (b, h, g) ≥ F (i, h, g), F (h, b, h) ≤ F (h, i, h) and F (g, h, b) ≥ F (g, h, i),

F (b, h, b) ≥ F (b, h, g), F (b, h, b) ≥ F (i, h, i) and F (b, h, b) ≥ F (g, h, b),

F (h, b, h) ≤ F (b, h, b).

Also,

Fm+1(i, h, g) = Fm(T (i, h, g), F (h, i, h), F (g, h, i))

≤ Fm(F (b, h, g), F (h, b, h), F (g, h, b))

= Fm+1(b, h, g),

Fm+1(h, i, h) = Fm(F (h, i, h), F (i, h, i), F (h, i, h))

≥ Fm(F (h, b, h), F (b, h, b), F (h, b, h))

= Fm+1(h, b, h),

Fm+1(g, h, i) = Fm(T (g, h, i), F (h, g, h), F (i, h, g))

≤ Fm(F (g, h, b), F (h, g, h), F (b, h, g))

= Fm+1(g, h, b),
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Fm+1(b, h, g) = Fm(F (b, h, g), F (h, b, h), F (g, h, b))

≤ Fm(F (b, h, b), F (h, b, h), F (b, h, b))

= Fm+1(b, h, b),

Fm+1(g, h, b) = Fm(F (g, h, b), F (h, g, h), F (b, h, g))

≤ Fm(F (b, h, b), F (h, b, h), F (b, h, b))

= Fm+1(b, h, b),

Fm+1(i, h, i) = Fm(F (i, h, i), F (h, i, h), F (i, h, i))

≤ Fm(F (b, h, b), F (h, b, h), F (b, h, b))

= Fm+1(b, h, b).

Hence,

d(i, h) = d(Fm+1(i, h, g), Fm+1(h, i, h))

≤ d

(
F (Fm(i, h, g), Fm(h, i, h), Fm(g, h, i)),

F (Fm(b, h, g), Fm(h, b, h), Fm(g, h, b))

)
+ d

(
F (Fm(b, h, g), Fm(h, b, h), Fm(g, h, b)),

F (Fm(b, h, b), Fm(h, b, h), Fm(b, h, b))

)
+ d

(
F (Fm(h, i, h), Fm(i, h, i), Fm(h, i, h)),

F (Fm(h, b, h), Fm(b, h, b), Fm(h, b, h))

)
+ d

(
F (Fm(h, b, h), Fm(b, h, b), Fm(h, b, h)),

F (Fm(b, h, b), Fm(h, b, h), Fm(b, h, b))

)
.
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implies

d(i, h) ≤ k

2

[
d(Fm(b, h, g), Fm(i, h, g)) + d(Fm(h, b, h),

Fm(h, i, h)) + d(Fm(g, h, b), Fm(g, h, i))

+ · · ·+ d(Fm(b, h, b), Fm(h, b, h))

]
.

Thus, d(i, h) ≤ km+1[d(i, b) + d(h, b) + d(g, b)] and hence d(i, h) = 0 as P is
Archimedean Riesz space.

If every triplet of elements in Y 3 has an upper or lower bound, then Y forms
a lattice. By incorporating condition (1) into the assumptions of Theorem 2.1, we
can ensure both the uniqueness of the tripled fixed point and the equality of its
components. However, the presence of an upper or lower bound for each triplet in
Y does not necessarily imply that every triplet in Y 3 also has at least one upper or
lower bound. Additionally, it can be proven that the components of a fixed point
are identical if t, k and r in first Theorem are comparable.

Theorem 2.4. With the conditions of Theorem 2.1 is incorporated for any tripled
fixed point (i, h, g) of F , if t, k and r are comparable in Y , then i = h = g.

Proof. We have t ≤ F (t, k, r) by Theorem 2.1. Using mathematical induction, we
claim im ≤ hm for all m and t ≤ k. If t ≤ k, then h1 = F (k, t, k) ≥ F (t, k, r) =

i1 as F have mixed monotone property. As hm ≥ im for some m, we have

im+1 = Fm+1(t, k, r)

= F (Fm(t, k, r), Fm(k, t, k), Fm(r, k, t))

= F (im, hm, gm)

≤ F (hm, im, hm)

= hm+1,

i.e., hm ≥ im for all m. As gm
d,P−−→ g, hm

d,P−−→ h and im
d,P−−→ i, there exist

three sequences (an), (bn) and (cn) in P such that an ↓ 0, bn ↓ 0, cn ↓ 0 and
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d(gm, g) ≤ cm, d(hm, h) ≤ bm, d(im, i) ≤ am. Thus

d(i, h) ≤ d(i, Fm+1(t, k, r)) + d(Fm+1(t, k, r), Fm+1(k, t, k))

+ d(h, Fm+1(k, t, k))

≤ am+1 + d(F (Fm(t, k, r), Fm(k, t, k), Fm(r, k, t)),

F (Fm(k, t, k), Fm(t, k, t), Fm(k, t, k)))

+ bm+1

≤ am + kd(Fm(t, k, r), Fm(k, t, k) + bm

≤ am + k[d(Fm(t, k, r), i) + d(i, h) + d(h, Fm(k, t, k))] + bm

≤ (k + 1)(am + bm) + kd(i, h).

Therefore, (1 − k)d(i, h) ≤ (k + 1)(am + bm). Thus, 0 = d(i, h). Likewise,
0 = d(i, g) and 0 = d(h, g).

The next result shows that we get a unique tripled fixed point using condition
F (t, k, r) ≤ t, F (k, t, k) ≥ k and F (r, k, t) ≤ r instead of the condition t ≤
F (t, k, r), k ≥ F (k, t, k) and r ≤ F (r, k, t) in Theorem 2.1.

Theorem 2.5. Suppose Y hold condition (1) and F : Y 3 → Y have mixed mono-
tone property on Y and either F is vectorial continuous or Y have the properties
below:

1. if in
d,P−−→ i and (in) is order-preserving, then i ≤ in for all n,

2. if hn
d,P−−→ h and (hn) is order-reversing, then hn ≤ h for all n,

3. if gn
d,P−−→ g and (gn) is order-preserving, then g ≤ gn for all n.

Also, F satisfies

d(F (i, h, g), F (u, v, w)) ≤ k

2
[d(i, u) + d(h, v) + d(g, w)]

for all i, h, g, u, v, w in h where u ≤ i, h ≤ v, w ≤ g, k be a constant such
that k ∈ [0, 1). If ∃ t, k, r ∈ h satisfying F (t, k, r) ≤ t, F (k, t, k) ≥ k and
F (r, k, t) ≤ r implies F has a unique tripled fixed point in Y 3.



Triple fixed point results for new classes of functions · · · 97

Proof. Assume t = i0, k = h0, r = g0, Fn(i0, h0, g0) = in, Fn(h0, i0, h0) =

hn and Fn(g0, h0, i0) = gn. Since, F (i0, h0, g0) ≤ i0, T (h0, i0, h0) ≥ h0,
T (g0, h0, i0) ≤ g0, thus

· · · ≤ in ≤ · · · ≤ i2 ≤ i1 ≤ i0,

h0 ≤ h1 ≤ h2 ≤ · · · ≤ hn ≤ · · · ,

· · · ≤ gn ≤ · · · ≤ g2 ≤ g1 ≤ g0.

As in the proof of Theorem 2.1, we get

d(in+1, in) ≤
kn

2
[d(i1, i0) + d(h1, h0) + d(g1, g0)]

d(hn+1, hn) ≤
kn

2
[d(i1, i0) + d(h1, h0) + d(g1, g0)]

d(gn+1, gn) ≤
kn

2
[d(i1, i0) + d(h1, h0) + d(g1, g0)],

implies (gn), (hn), (in) are E-Cauchy sequences. As h is E-complete, ∃ i, h and

g in h where in
d,P−−→ i, hn

d,P−−→ h and gn
d,P−−→ g. So, there exist three sequences

in P , say, (an), (bn) and (cn) satsifying cn ↓ 0, bn ↓ 0, an ↓ 0 and d(gn, g) ≤ cn,
d(hn, h) ≤ bn, d(in, i) ≤ an. Therefore, (i, h, g) is a tripled fixed point of F

where F is vectorially continuous. As, in
d,P−−→ i and in ≤ i ∀ n, we get

d(F (i, h, g), i) ≤ d(F (i, h, g), F (in, hn, gn)) + d(F (in, hn, gn), i)

≤ k

2
[d(i, in) + d(h, hn) + d(g, gn)] + d(i, in+1)

≤ k

2
[cn + bn + an] + an+1

≤ k

2
[cn + bn] +

3k

2
an.

Hence, d(F (i, h, g), i) = 0, that is, F (i, h, g) = i. Similarly, we get F (h, i, h) =

h and F (g, h, i) = g.
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Presented below are the corollaries:

A function F may still have a tripled fixed point if a vectorially convergent se-
quence, with comparable consecutive terms, contains a subsequence where all
terms remain comparable to the limit, i.e., Y fulfills the following condition:

(A) if (in) converges vectorially to i and holds in ≷ in+1 ∀ n, then there exist
a subsequence (inm) of (in) such that inm ≷ i ∀ nm. Here, the symbol ≷ is used
for any two comparable elements.

Corollary 2.1. Suppose a function F : Y 3 → Y has mixed monotone property and
let Y satisfy condition (1), if either Y has property (A) or F is vectorial continuous.
Also, let F hold

d(F (u, v, w), T (i, h, g)) ≤ k

2
[d(u, i) + d(v, h) + d(w, g)]

for all i, h, g, u, v, w in h where u ≤ i, h ≤ v, w ≤ g, k be a constant such that
k ∈ [0, 1). If ∃ t, k, r ∈ h satisfying either F (t, k, r) ≤ t and F (k, t, k) ≥ k or
t ≤ F (t, k, r) and k ≥ F (k, t, k), then F has a unique tripled fixed point in Y 3.

Proof. Assume t = i0, k = h0, r = g0, Fn(i0, h0, g0) = in, Fn(h0, i0, h0) =

hn and Fn(g0, h0, i0) = gn for all n. Suppose i0 ≤ F (i0, h0, g0) = i1, h0 ≥
F (h0, i0, h0) = h1, g0 ≤ F (g0, h0, i0) = g1 ( or i0 ≥ F (i0, h0, g0) = i1, h0 ≤
F (h0, i0, h0) = h1, g0 ≥ F (g0, h0, i0) = g1). Then,

d(in, in+1) ≤
kn

2
[d(i0, i1) + d(h0, h1) + d(g0, g1)],

d(hn, hn+1) ≤
kn

2
[d(i0, i1) + d(h0, h1) + d(g0, g1)],

d(gn, gn+1) ≤
kn

2
[d(i0, i1) + d(h0, h1) + d(g0, g1)].

because in+1 ≷ in, hn+1 ≷ hn and gn+1 ≷ gn for all n. Hence, (in), (hn) and
(gn) are E-Cauchy sequences. E-Completeness of h implies ∃ g, h and i in h such

that gn
d,P−−→ g, hn

d,P−−→ h and in
d,P−−→ i. From Theorem 2.1, ∃ (inm), (hnm),
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(gnm) where the terms are comparable to limit i, h, g respectively. Thus,

d(F (i, h, g), i) ≤d(F (i, h, g), F (inm , hnm , gnm)) + d(F (inm , hnm , gnm), i)

≤k

2
[d(i, inm) + d(h, hnm) + d(g, gnm)] + d(inm+1, i)

≤k

2
[anm + bnm + cnm ] + anm+1

≤k

2
[bnm + cnm ] +

3k

2
anm .

As cn ↓ 0, bn ↓ 0, an ↓ 0, we get cnm ↓ 0, bnm ↓ 0, anm ↓ 0 and F (i, h, g) = i.
Likewise, F (h, i, h) = h and F (g, h, i) = i.

We derive similar results by considering functions that are order-reversing with
respect to the first and third variables and order-preserving with respect to the sec-
ond variable. For convenience, we refer to such functions as having the second type
mixed monotone property. Specifically, a function F : Y 3 → Y is said to have
the second type mixed monotone property if, for any t, k, r ∈ Y , the following
conditions hold:

t1, t2 ∈ Y, t1 ≤ t2 ⇒ F (t2, k, r) ≤ F (t1, k, r),

k1, k2 ∈ Y, k1 ≤ k2 ⇒ F (t, k2, r) ≥ F (t, k1, r),

and

r1, r2 ∈ Y, r1 ≤ r2 ⇒ F (t, k, r2) ≤ F (t, k, r1).

Corollary 2.2. Suppose Y hold condition (1) and F : Y 3 → Y have either second
or first type mixed monotone property on Y . Suppose either Y has property (A) or
F is vectorial continuous. Also, F satisfy

d(F (i, h, g), F (u, v, w)) ≤ k

2
[d(i, u) + d(h, v) + d(g, w)]
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∀ i, h, g, u, v, w in Y where u ≤ i, h ≤ v, w ≤ g, k be a constant such that
k ∈ [0, 1). If ∃ t, k, r ∈ Y satisfying either F (t, k, r) ≤ t and F (k, t, k) ≥ k or
t ≤ F (t, k, r) and k ≥ F (k, t, k), then F has a unique tripled fixed point in Y 3.

3 Conclusion

Our findings highlight conditions under which triple fixed points exist for certain
classes of functions, providing a significant generalization of classical fixed point
theorems. These results demonstrate the versatility of cone metric spaces in ac-
commodating complex function types and mappings that may not fit within the
constraints of traditional metric spaces. The established theorems not only gen-
eralize existing results but also introduce new avenues for studying coupled and
multi-point fixed point problems. This work paves the way for the application of
triple fixed point results in domains like differential equations, dynamic systems,
and mathematical modeling, which frequently require simultaneous resolution of
relationships between multiple variables. Future studies may explore further gen-
eralizations, including higher-order fixed points, and investigate practical appli-
cations in optimization, computational science, and real-world systems modeled
by cone metric spaces. The development of such tools enriches the mathematical
toolkit for addressing complex problems across diverse disciplines.
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