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Abstract

We investigated the stability conditions of f(Q) gravity using a dynami-
cal system approach, comparing the outcomes for both interacting and non-
interacting dark energy models. For our analysis, we adopt a linear f(Q)

function of the form f(Q) = β + αQ. Our analysis of the interacting model
revealed two stable critical points, which we further examine through phase
portraits to elucidate their physical implications. We calculate and display
the values of cosmological parameters Ωm, Ωϕ, ωTot, and q at every critical
point, providing a comparison with observed values. Further, We also calcu-
late the density parameters, the deceleration parameter, and the equation of
state parameter and their respective graphs. The universe’s fast expansion is
represented by our model.

1 Introduction

Introduced in 1915, Albert Einstein’s groundbreaking General Theory of Relativity
transformed our comprehension of gravity and the cosmos, profoundly impacting
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our understanding of the Universe’s fundamental nature and evolution. Indeed,
general relativity is a foundational pillar of modern physics and its triumph lies
in elegantly describing gravitational interactions as the curvature of spacetime, in-
duced by the presence of mass and energy. General Relativity (GR) has withstood
rigorous scrutiny through numerous experimental tests and observational evidence,
spanning from the precise prediction of Mercury’s orbital precession to the ground-
breaking detection of gravitational waves. Despite its remarkable success, GR has
its limitations, as it is unable to fully explain the entirety of the universe’s phe-
nomena, leaving room for further refinement and the development of new theories.
One of the main limitations of general relativity is its inability to describe the be-
haviour of the universe at extremely small, quantum scales, highlighting the need
for a more comprehensive theory that merges gravity with quantum mechanics.
This limitation stems from the fact that general relativity is a classical field the-
ory that neglects the fundamental principles of quantum mechanics, rendering it
incompatible with the quirky and probabilistic nature of the quantum realm. Re-
searchers have endeavoured to merge GR with quantum physics, yielding theoreti-
cal frameworks like string theory and loop quantum gravity. The latest observations
from Supernova Type Ia (SNeIa) [48], Cosmic Microwave Background (CMB) ra-
diation [46], and Baryon Acoustic Oscillations (BAO) [10] collectively provide
robust evidence for the universe’s accelerated expansion. Furthermore, a substan-
tial portion of the Universe’s composition is attributed to Dark Matter (DM) and
Dark Energy (DE) [61], mysterious entities that lie beyond the explanatory realm
of GR, necessitating the development of new theories and frameworks to account
for these enigmatic phenomena. While DM and DE remain elusive, their pres-
ence can be inferred from their gravitational signatures. Notably, the latest CMBR
measurements show 76% DE of the universe. The late-time acceleration of the
universe is attributed to the cosmological constant, denoted by Λ, which is charac-
terised by a negative equation of state parameter. The (EoS) parameter takes the
form ωϕ =

pϕ
ρϕ

[29, 55]. The conventional cosmological model, corresponding to
a cosmological constant (ΛCDM), is recovered when the equation of state (EoS)
parameter ωϕ approaches −1, indicating a negative pressure that drives the accel-
erating expansion of the universe. A stiff fluid corresponds to ωϕ = 1, representing
a scenario where the pressure is equal to the energy density. The matter-dominated
phase is characterised by ωϕ = 0, indicating pressureless dust-like behaviour. The
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radiation-dominated phase is described by ωϕ = 1
3 , where the pressure is one-third

of the energy density. The universe enters the quintessence phase in both the phan-
tom dark energy model, where ωϕ < −1, and the standard quintessence regime,
where −1 ≤ ωϕ ≤ −1

3 . Lastly, the cosmological constant or ΛCDM model is
characterised by ωϕ = −1 [28].
However, despite the abundance of empirical data which supports the accelerated
expansion of the universe, contemporary cosmology and GR are unable to recon-
cile with it. Cosmologists must adapt or expand GR in order to completely under-
stand many facets of contemporary cosmology. Cosmologists need to modify GR
in order to comprehend all of the many facets of contemporary cosmology. The
most straightforward method of altering Einstein’s theory of gravity is to substitute
a function f(R) for the Ricci scalar in the Einstein-Hilbert action [14]. Riemannian
geometry makes it possible to formulate GR using the Levi-Civita link. Torsion and
non-metricity are not used in the construction of the geometry in this framework.
There are several geometric frameworks in which GR may be expressed. One such
method is teleparallel gravity, in which torsion T is used to represent gravity in-
stead of curvature R.
The symmetric teleparallel gravity framework, represented by Q, is an alternative
method that defines gravitational interactions without taking torsion or curvature
into account. Symmetric teleparallel gravity (ST), often known as f(Q) gravity,
has garnered attention recently as a contemporary and developing theory of grav-
ity [31]. According to Weyl’s geometry, the idea of Riemannian geometry serves
as the basis for f(Q) gravity [32]. GR is equal to f(Q) gravity in flat spacetime. It
has also been observed that the formulations of f(Q) gravity and f(T ) gravity are
identical.
Both f(Q) and f(T ) gravity are governed by second-order field equations and
exhibit similar dynamical behavior in the cosmic background [17]. However, no-
table differences emerge at the level of cosmic perturbations. While f(Q) grav-
ity theories on FLRW backgrounds often avoid such issues, f(T ) gravity theories
generally suffer from significant coupling problems. These coupling issues are
particularly evident in maximally symmetric backgrounds such as Minkowski and
de Sitter spacetimes. Although such backgrounds pose major coupling challenges,
these are typically less severe in f(Q) gravity compared to f(T ) gravity. Moreover,
less symmetric cosmological models—which may offer intriguing phenomenolog-
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ical prospects—are unaffected by these issues. We have also demonstrated that the
predictions of f(Q) and f(T ) gravity models converge in the small-scale quasi-
static limit. In contrast to f(T ) gravity, f(Q) models propagate additional scalar
degrees of freedom at larger scales. Two quintessence-based accelerating models
analyzing the stability behavior of f(Q) theories are investigated in [43], while [34]
explores the thermodynamic properties of f(Q) gravity.
This paper investigates a cosmological scenario in which the universe is homoge-
neous, isotropic, and composed of three main components: baryonic matter, dark
energy (DE), and dark matter (DM). In this framework, baryonic matter is modeled
as a perfect fluid, DE is treated as a dynamical scalar field, and DM is considered
pressureless dust. The scalar field can also be equivalently described as a perfect
fluid. The dynamics of baryonic matter, DM, and DE are interconnected, and they
interact with one another with minimal coupling, as discussed in [39]. Cosmo-
logical models that incorporate interactions between DM, DE, and other external
components have gained significant attention in recent years [23]. Interacting DE
models have been proposed as potential solutions to pressing cosmological issues,
such as the phantom crossing problem, the cosmic coincidence problem, and the
cosmic age problem [24, 62].

In this study, we examine the implications of interacting DE within the frame-
work of modified gravity, specifically f(Q) gravity. Intense research and ongoing
debate within the physics community aim to understand the nature of the inter-
action between DM and DE. Despite extensive efforts, the fundamental nature of
both DM and DE remains unclear, making it difficult to derive a precise interaction
model from first principles. Nonetheless, field-theoretical approaches often pro-
pose a reciprocal or bidirectional interaction between DM and DE, allowing for the
exchange of energy and momentum between the two components. A well-designed
interaction mechanism can help alleviate the cosmic coincidence problem. In the
framework of f(Q) gravity, we have examined the dynamical system of a scalar
field [53]. Because of the intrinsic complexity and non-linearity of the underlying
field equations, one of the main challenges in constructing gravity theories is the
difficulty of finding analytical or numerical solutions [54]. It is difficult to directly
compare Einstein’s field equations with observational data because they contain
nonlinear elements that are hard to solve. Alternative approaches are required to
overcome this difficulty, and dynamical system analysis has become a useful tech-
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nique for addressing the nonlinearities included in Einstein’s field equations. It
offers a framework for comprehending the qualitative behaviour of cosmological
models. The stability behaviour of a particular system is investigated and numeri-
cal solutions are obtained via the use of dynamical system analysis [51]. Finding
the critical points of a system of autonomous first-order ordinary differential equa-
tions—obtained by reformulating Einstein’s field equations is an essential step in
this method, which enables a qualitative examination of the cosmic dynamics. By
computing the Jacobian matrix at each critical point and figuring out its eigenval-
ues, one may evaluate a model’s stability [52].
We want to study the late-time acceleration in f(Q) gravity using the functional
form f(Q) = β+αQ in this work. The following is the structure of the manuscript:
In Section 2, we present the summary of f(Q) gravity theory. In Section 3, we de-
velop some new variables and apply dynamical system analysis. In Section 4, we
identify the critical points of the dynamical system and perform a stability analy-
sis using phase plots. In Section 5, we also calculate the density parameters, the
deceleration parameter, and the equation of state (EoS) parameter, along with their
respective graphical representations. Lastly, Section 6 contains our conclusions.

2 Non-linear gravity theory function f(Q)

The metric tensor gµν serves as the generalized gravitational potential in the frame-
work of differential geometry. While Yµν denotes parallel transport and the co-
variant derivative, the metric tensor gµν is mostly utilised for computing volumes,
angles, and distances. The affine connection may be broken down into the two
separate parts shown below, per [34]: the Christoffel symbol expressed as follows:

Lγ
µν + Γγ

µν = Y γ
µν . (2.1)

The Levi-Civita connection of the metric gµν appears in equation (2.1).

(∂µgδν + ∂νgδµ − ∂δgµν)
1

2
gγδ = Γγ

µν . (2.2)

The distortion tensor Lγ
µν can be expressed as:
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(Qµνσ +Qνµσ −Qγµν)
1

2
gγσ = Lγ

µν , (2.3)

where Qγµν= -∇γgµν . is the non-metricity tensor. The sum of f(Q) gravity’s
actions is ∫

1

2
f(Q)

√
−g d4x+

∫
Lm

√
−g d4x = S, (2.4)

In accordance with [50], we define the superpotential tensor, conjugate to the non-
metricity term, as follows:

−Qγ
µν + 2Qγ

µν +Qγgµν − Q̃γgµν − δγµQν = 4P γ
µν . (2.5)

The expression for the stress-energy momentum tensor is

− 2√
−g

δ
√
−gLm

δgµν
= Tµν . (2.6)

To derive the field equations, we perform a variation of the action (4) with respect
to the metric tensor gµν , following the procedure outlined in [36].

−Tµν =
2√
−g

∇γ(
√
−gfQP

γ
µν) +

1

2
gµνf + fQ(PνρσQ

ρσ
µ − 2PρσµQ

ρσ
ν ). (2.7)

We examine a cosmological model that uses the FLRW metric in Cartesian coor-
dinates to explain an isotropic, homogeneous, and spatially flat universe (k = 0):

ds2 = a(t)2(dx2 + dy2 + dz2) + (−dt2), (2.8)

where t is cosmic time and a(t) is the scaling factor. Similar to the spatially flat
FLRW metric, the non-metricity scalar is provided by

6H2 = Q . (2.9)

The formula H = ȧ
a With respect to time ‘t’, the top dot represents the derivative,

and the Hubble parameter is used to determine the universe’s rate of expansion.
The following is an expression for the stress-energy momentum tensor:

(ρ+ p)uµuν + pgµν = Tµν . (2.10)
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The fluid with four velocity uµuν = −1, where p denotes the isotropic pressure,
ρ is the energy density, and uµ is the fluid. The field equations for f(Q) gravity
using the FLRW metric are as follows [6],

ρ = 6fQH
2 − f

2
, (2.11)

−1

2
(ρ+ p) = (12fQQH

2 + fQ)Ḣ. (2.12)

with ∂2f
dQ2 = fQQ. Here we take 1 = c = 8πG. The continuity equation of the

stress-energy momentum tensor is −3H(ρ+ p) = ρ̇.

3 Examination of dynamical systems in f(Q) gravity

The primary objective is to understand dynamical systems, especially nonlinear
equations, with an emphasis on visualizing the stability of fixed or equilibrium
points. Understanding cosmic behavior in the Universe necessitates a dynamical
systems approach. Accurate solutions could not be determined due to the com-
plexity of the systems [63]. The formulated as σ(v) = v̇, where σ : V → V

defines the governing function of the system. In this formulation, v̇ denotes the
time derivative, where t ∈ R, and (v1, v2, v3, . . . , vm) = v is an element of the
vector space V . The function (σ1(v), σ2(v), . . . , σm(v)) = σ(v) governs the evo-
lution of the system [5]. This implies that the stability criteria were examined for
m variables by solving a system of m equations. The equation σ(v) = v̇ describes
the time evolution of the function v(t), where dv

dt depends on v according to the
function σ(v), under given initial conditions. This condition implies that the evo-
lution of the system is entirely determined by its current state v, where the rate of
change v̇ is governed by the function σ(v). The equation σ(v) = v̇ is referred
to as an ordinary differential equation (ODE), where the rate of change of v de-
pends on its current value v. Autonomous differential equations depend solely on
the current value of the variable v and are independent of time t. A fixed point
v0 = v of the system satisfies σ(v0) = 0, meaning that if the system starts at v0,
it remains there indefinitely. This implies that v0 is a fixed point of the system,
meaning that if the system starts at v0, it remains there indefinitely, as there is no
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change in v over time. We examine small oscillations about them and analyze the
behavior of the system under these perturbations. A fixed point v0 is deemed stable
if, for any small perturbation ξ, the solution ϕ(t) of the equation σ(v) = v̇ satis-
fies ξ > ∥ϕ(t0) − v0∥ for all t, meaning that trajectories starting near v0 remain
close to it as time progresses. This implies that the fixed point v0 is not only stable
but also asymptotically stable. That is, any solution that starts sufficiently close
to v0 will not only remain close but will eventually converge to v0 as t → ∞. In
contrast, a stable critical point ensures that trajectories remain within a bounded
region around it but do not necessarily converge to it. An asymptotically stable
critical point, on the other hand, ensures that all trajectories not only stay within a
bounded region but eventually converge to the point over time. This is because, in
cosmology, stable critical points typically correspond to attractor solutions, mean-
ing that the universe naturally converges towards these states over time. Unstable
critical points are characterized by nearby trajectories that initially converge but
ultimately deviate and move away. Unstable critical points are characterized by
trajectories that start near them but eventually diverge away. We now explore var-
ious techniques for analyzing the stability criteria of fixed points. Linear stability
theory is one of the most effective approaches for examining the physical prop-
erties of cosmological models [16]. This theory linearizes the equations at key
points to examine their dynamic properties. Suppose v0 is an equilibrium point of
the system v̇ = σ(v). To analyze the behavior near this fixed point, we linearize
the system using Taylor expansion, For each constituent σi(v) of the vector field
σ(v) is expanded around v0.

Additionally, we examine a (FRW) metric that is isotropic, homogeneous, as-
sociated with an energy density ρm. Model as a minimally coupled scalar field ϕ

with a self-interacting potential V (ϕ) [4]. The energy density and pressure of the
scalar field are expressed as:

1

2
ϕ̇2 + V (ϕ) = ρϕ ,

1

2
ϕ̇2 − V (ϕ) = pϕ . (3.1)

Finally, the recently modified Friedmann equations in f(Q) gravity are ex-
pressed as:

1

6fQ

[
ρϕ + ρm +

f

2

]
= H2 , (3.2)
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Ḣ = −1

2

[
ρm + ρϕ + pϕ
12fQQH2 + fQ

]
= −1

2

[
ρm + ϕ̇2

2QfQQ + fQ

]
. (3.3)

The energy equations are

0 = ˙ρm + 3Hρm, 0 = ρ̇ϕ + 3H(1 + ωϕ)ρϕ. (3.4)

Let’s examine the dynamics of a minimally coupled scalar field ϕ, which obeys the
following equation:

0 =
dV (ϕ)

dϕ
+ ϕ̈ + 3Hϕ̇. (3.5)

Differentiation with regard to time t is shown by the overdot. This equation is
widely recognized as a modified Klein-Gordon equation. Equation (3.5) cannot be
solved analytically due to its complexity. To understand cosmic behavior, we must
transform Equation (3.5) into an equivalent autonomous system for further analy-
sis. The most effective approach to analyzing solution stability is introducing new
variables. This transformation is particularly useful for handling exponential po-
tentials. This method converts complex solutions into fixed points within a system
of equations [57]. Therefore, we introduce dimensionless variables.

ϕ̇√
6H

= x ,

√
V (ϕ)√
3H

= y ,
ρm
3H2

= Ωm. (3.6)

The density parameter is defined as Ωm = ρm
3H2 . By substituting the variables

from Equation (3.6) into Equation (3.2), we obtain the expression for the density
parameter as:

1− x2 − y2 = Ωm. (3.7)

The density parameter Ωm satisfies the energy condition within the range 0 <

Ωm < 1. The pair (x, y) satisfies the equation of the circle x2+y2 = 1−Ωm for a
given Ωm. The model is characterized by the Friedmann equation x2+y2+Ωm =

1. The values Ωm = 0 and Ωm = 1 define its boundaries. We consider f(Q) in the
form f(Q) = β + αQ, where β and α represents the cosmological constant. The
equation of state parameter ωϕ and the cosmological parameters associated with
the scalar field are given as follows. The newly introduced dimensionless variables
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lead to the expressions for the following form:

ωϕ =
pϕ
ρϕ

=
x2 − y2

x2 + y2
, Ωϕ =

ρϕ
3H2

= x2 + y2, (3.8)

and

x2−y2 =
x2 − y2

x2 + y2 +Ωm
=

pϕ
ρϕ + ρm

=
p

ρ
= ωTot ( by using 1−x2−y2 = Ωm)

(3.9)
By utilizing the variables in Equation (3.6), the Friedmann Equations (3.2-3.3), and
the given f(Q) model, we obtain the following results:

Ḣ

H2
= − 3

2α
(1 + x2 − y2). (3.10)

Utilizing Equation (3.10), We derive the deceleration parameter expression as fol-
lows:

q = −1− Ḣ

H2
= −1 +

3

2α
(1 + x2 − y2). (3.11)

Equation (3.10) along with the previously mentioned f(Q) model can be used to
express the variables in Equation (3.6) as a system of autonomous equations as
follows:

dx

dN
= 3x

(
− 1 +

1

2α
(1 + x2 − y2)

)
−

√
3

2
y2λ, (3.12)

dy

dN
= λxy

√
3

2
+

3y

2α
(1 + x2 − y2), (3.13)

dΩm

dN
=

3Ωm

α
(1− α+ x2 − y2). (3.14)

Here, we assume eλϕ = V (ϕ), which implies that λ = V ′(ϕ)
V (ϕ) . To identify the

critical points, we begin by setting the system of Equations (3.12-3.14) equal to
zero. Then, we study whether the key points identified in Section 4 are stable.



Dynamical system techniques for stability analysis in f(Q) gravity 11

4 Analysis of equilibrium points and their stability

The stability characteristics of the autonomous system are analyzed at each critical
point by evaluating the eigenvalues of the Jacobian matrix. The phase space is
a crucial tool for understanding the behavior of dynamical systems. This study
includes phase diagrams that effectively visualize the stability characteristics of
the models. Identifying the critical points of the autonomous system is essential
for plotting the phase graphs (3.12-3.14). To determine the critical points, we solve
the system of equations defined by x′ = 0, y′ = 0, and Ω′

m = 0. The system of
Equations (3.12-3.14) yields four critical points, namely:

I. CP;A, B = (
√
2α− 1, 0, 0).

II. CP;C, D =(− αλ√
6
,±

√
1− α2λ2

6 , 0).

where λ = V ′

V = constant and V ′ = dV
dϕ in Table 1.

Table 1 shows that the existence of fixed points C and D requires λ2 < 6
α2 ,

Table 1: Fixed points and their corresponding cosmological parameters.

Points x y Ωm ωϕ ωTot Ωϕ q

A
√
2α− 1 0 0 1 2α− 1 2α−1 2

B −
√
2α− 1 0 0 1 2α− 1 2α−1 2

C − λα√
6

√
1− λ2α2

6 0 λ2α2

3 −1 λ2α2

3 −1 1 −1+ λ2α2

2

D − λα√
6

−
√
1− λ2α2

6 0 λ2α2

3 −1 λ2α2

3 −1 1 −1+ λ2α2

2

whereas fixed points A and B exist without any constraints. The stability analysis
of the fixed points is presented in Table 1.

The characteristic values of the fixed points, presented in Table 2, are examined
to determine their stability properties.

As shown in Table 2, the fixed points A and B remain hyperbolic for all values
of λ. The positive eigenvalues (λ1, λ2, λ3) indicate that critical point A is an
unstable node, as shown in the left plot of Figure 1. However, for λ < −

√
6. This

implies that λ2 is negative, while λ1 and λ3 are both positive. The coexistence
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Table 2: The eigenvalues corresponding to the system of Equations (3.12)-(3.14).

Points λ1 λ2 λ3 Nature

A 6− 3
α 3 + λ

√
3
2(2α− 1) 3 unstable for λ >

√
6, sad-

dle for λ < −
√
6

B 6− 3
α 3− λ

√
3
2(2α− 1) 3 saddle for λ > −

√
6, un-

stable for λ <
√
6

C αλ2−3 αλ2

2 − 3
α αλ2−3 stable for λ2 < 3, saddle

for 3 < λ2 < 6, α = 1

D αλ2−3 αλ2

2 − 3
α αλ2−3 stable for λ2 < 3, saddle

for 3 < λ2 < 6, α = 1

-2 -1 0 1 2

-2

-1

0

1

2

x

y

-2 -1 0 1 2

-2

-1

0

1

2

x

y

Figure 1: Phase diagrams of the System (3.12)-(3.14) with (i) λ = 2.4, α = 0.3
(left panel), and (ii) λ = −0.4, α = 0.3 (right panel).

of positive and negative eigenvalues characterizes point A as a saddle node, as
depicted in the right plot of Figure 1. This means that two of the eigenvalues, λ1

and λ3, have positive values, and the third eigenvalue, λ2, is negative. Figure 1
(left plot) depicts the unstable saddle at critical point B, This behavior arises due to
the presence of both positive and negative eigenvalues. The right plot of Figure 1
shows critical point B as an unstable node, resulting from the positive nature of its
eigenvalues (λ1, λ2, λ3). The fact that Ωm = 0 and Ωϕ = 1 at fixed points A and
B reveals a Universe in a kinetic energy-dominated phase. The values of q = 2
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-2 -1 0 1 2

-2

-1

0

1

2

x

y

Figure 2: Phase diagram of the System (3.12)-(3.14) for λ = −1.1 and α = 0.3.

and ωTot = 2α− 1 suggest that the cosmic expansion is decelerating at these sites.
The divergence of trajectories from the fixed points A and B in Figure 1 suggests
that these points are unstable and exhibit saddle-like behavior.

As shown in Table 1, fixed points C and D are hyperbolic for λ2 < 6. Accord-
ing to Table 2, critical points C and D exhibit identical negative eigenvalues (λ1,
λ2, λ3) under the condition λ2 < 3. The Figure 2 depicts critical points C and D

as a stable node, due to the negativity of all eigenvalues. For the range 3 < λ2 < 6,
critical points C and D have two positive eigenvalues (λ1 and λ3) and one nega-
tive eigenvalue (λ2). The coexistence of positive and negative eigenvalues at these
points indicates saddle point behavior, as illustrated in the Figure 2. Table 1 shows
that the density parameters for sites C and D are Ωm = 0 and Ωϕ = 1, signifying
a universe dominated by scalar fields. The condition λ2 < 2 yields a deceleration
parameter q that is less than zero. At critical points C and D, the universe’s expan-
sion accelerates for λ2 < 2. Furthermore, in the (λ = 0), the total EoS parameter
(ωTot) is negative and approaches −1.

The energy equations serve as the foundation for creating interacting cosmo-
logical models.

Q∗ = ˙ρm + 3Hρm, (4.1)
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and
−Q∗ = ρ̇ϕ + 3H(1 + ωϕ)ρϕ. (4.2)

The symbol Q∗ represents the interaction between dark energy and dark matter,
implying that energy density is transferred from dark energy to dark matter. This
interaction term serves as a small correction to our understanding of the universe’s
evolution. A positive Q implies a matter-dominated universe, whereas a negative
Q indicates otherwise; at present, the universe is in a matter-dominated state. The
study of large-scale structure and galaxy formation [41] is complicated by the un-
known properties of DM and DE, making it difficult to constrain the interaction
between them from a phenomenological perspective. The interaction term, Q∗, is
derived from the multiplication of the energy density function [64] and the Hubble
parameter.

Another possible interaction between dark energy and dark matter is repre-
sented by Q∗ = ηHρϕ, with η being an extremely small, positive-definite dimen-
sionless constant [?]. By leveraging Equations (3.2) and (3.3), We utilize dimen-
sionless variables to facilitate the analysis of the dynamical system, taking into
account the following key factors:

ϕ̇√
6H

= x ,

√
V (ϕ)√
3H

= y ,
ρm
3H2

= Ωm . (4.3)

The autonomous system of first-order differential equations can be derived from
the variables in equation (4.3) as follows:

dx

dN
= −

(
η

2
+ 3

)
x− y2

(
η

2x
+

√
3

2
λ

)
+

3x

2α
(1 + x2 − y2), (4.4)

dy

dN
=

√
3

2
λxy +

3y

2α
(1 + x2 − y2), (4.5)

dΩm

dN
= −3Ω + η(x2 + y2) +

3Ω

α
(1 + x2 − y2). (4.6)

We assume a potential V (ϕ) = eλϕ, where both the independent variable ϕ and the
constant λ are present. Additionally, we introduce the logarithmic time variable
N = log a, which is related to the scale factor a. First, we solve equations (4.4-
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4.6) by setting them to zero, which yields the critical points; subsequently, we
analyze their stability.

Solving the system of equations dx
dN = 0, dy

dN = 0, and dΩm
dN = 0 yields six

critical points for the dynamical system represented by Equations (4.4-4.6). Table
3 summarizes the critical points obtained for the system. We evaluate the stability
of the critical points by computing the Jacobian matrix from Equations (4.4-4.6)
and then determining the eigenvalues associated with each point.

I. CP: A∗
1, A∗

2 = (±
√

α
3 (n+ 6)− 1, 0, 0),

II. CP: B∗
1 , B∗

2 = (− λα√
6
, ±

√
1− α2λ2

6 , 0),

III. CP: C∗
1 , C∗

2 = (±
√

1 + ηα
3 , 0, −ηα

3 ), in which λ = V ′

V = constant and V ′ =
dV
dϕ .

Table 3: Stability points and cosmological parameter values at these points.

Points x y Ωm ωϕ ωTot Ωϕ q

A∗
1

√
(η+6)

3 α− 1 0 0 1 (η+6)
3 α− 1 (η+6)

3 α− 1 2 + η
2

A∗
2 −

√
(η+6)

3 α− 1 0 0 1 (η+6)
3 α− 1 (η+6)

3 α− 1 2 + η
2

B∗
1 − λα√

6

√
1− α2λ2

6 0 λ2α2

3 −1 λ2α2

3 − 1 1 −1 + αλ2

α

B∗
2 − λα√

6
−
√

1− α2λ2

6 0 λ2α2

3 −1 λ2α2

3 − 1 1 −1 + αλ2

α

C∗
1

√
1 + αη

3 0 −αη
3 1 1 + ηα

3 1 + ηα
3 −1+ η

2+
3
α

C∗
2 −

√
1 + αη

3 0 −αη
3 1 1 + ηα

3 1 + ηα
3 −1+ η

2+
3
α

To investigate the stability of critical points in the system of equations (x, y,Ωm),
we refer to Table 4, which lists the corresponding eigenvalues.

The critical point A∗
1 undergoes a loss of hyperbolicity precisely when the pa-

rameters satisfy λ = −(η + 6)/
√
2α(η + 6)− 6 and η = 6, whereas it re-

mains hyperbolic under all other parameter combinations. Similarly, the criti-
cal point A∗

2 becomes non-hyperbolic at the specific parameter values λ = (η +

6)/
√

2α(η + 6)− 6 and η = 6, while maintaining hyperbolicity for all other pa-
rameter choices. The stability properties of the critical point A1 are contingent
upon the value of the parameter λ. When λ > −(η + 6)/

√
2α(η + 6)− 6, the
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Figure 3: Phase portrait of the dynamical system (4.4)-(4.6) for (i) (λ = 0.3),
(α = 0.3, (η = 0.01 (left plot), (ii) (λ = −0.3), (α = 0.3, (η = 0.01 (right plot).

Table 4: The eigenvalues corresponding to the system of equations (4.4-4.6).

Points γ∗1 γ∗2 γ∗3 Nature

A∗
1 η + 6− 3

α
η+6
2 + λ

√
(η+6)α

2 − 3
2 3 + η unstable for λ > −(η +

6)/
√
2α(η + 6)− 6, saddle for

λ < −(η+6)/
√

2α(η + 6)− 6

A∗
2 η + 6− 3

α
η+6
2 − λ

√
(η+6)α

2 − 3
2 3 + η saddle for λ > (η +

6)/
√
2α(η + 6)− 6, un-

stable for λ < (η +
6)/

√
2α(η + 6)− 6

B∗
1 −η− 3+αλ2 + 3η

α2λ2
αλ2

2 − 3
α −3+αλ2 stable for λ2 < 3/α and 0 <

η < (3−αλ2)α2λ2

3−α2λ2 , saddle for
3
α < λ2 < 6

α2 and 0 < η <
(3−αλ2)α2λ2

3−α2λ2

B∗
2 −η− 3+αλ2 + 3η

α2λ2
αλ2

2 − 3
α αλ2 − 3 stable for λ2 < 3/α and 0 <

η < (3−αλ2)α2λ2

3−α2λ2 , saddle for
3
α < λ2 < 6

α2 and 0 < η <
(3−αλ2)α2λ2

3−α2λ2

C∗
1 η − 3 + 6

α
η
2 + 3

α + λ
√

αη+3
2 η−3+ 6

α stable for λ < −(ηα+6)
α
√
2αη+6

and α <

−6
(η−3) , saddle for λ > −(ηα+6)

α
√
2αη+6

and α < −6
(η−3)

C∗
2 η − 3 + 6

α
η
2 + 3

α − λ
√

αη+3
2 η−3+ 6

α stable for λ > −(ηα+6)
α
√
2αη+6

and α <

−6
(η−3) , saddle for λ < −(ηα+6)

α
√
2αη+6

and α < −6
(η−3)
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critical point A∗
1 is characterized by three positive eigenvalues (γ∗1 , γ∗2 , and γ∗3 ),

rendering it an unstable node, as illustrated in the right panel of Figure 3. Con-
versely, when λ < −(η + 6)/

√
2α(η + 6)− 6, the critical point A∗

1 exhibits a
mixed stability profile, characterized by two positive eigenvalues (γ∗1 and γ∗3 ) and
one negative eigenvalue (γ∗2 ). The coexistence of positive and negative eigenvalues
signifies that the critical point A∗

1 is a saddle node, with its characteristic stable and
unstable manifolds depicted in Figure 3.
For values of λ less than (η + 6)/

√
2α(η + 6)− 6, the critical point A∗

2 is char-
acterized by three positive eigenvalues (γ∗1 , γ∗2 , and γ∗3 ), indicating that it is an
unstable node. The right panel of Figure 3 illustrates the unstable nature of critical
point A∗

2, marked by positive eigenvalues. However, when λ surpasses the thresh-
old (η+6)/

√
2α(η + 6)− 6, the stability profile changes: while γ∗1 and γ∗3 remain

positive, γ∗2 becomes negative, indicating a saddle-like behavior. The presence of
both positive and negative eigenvalues confirms that the critical point A∗

2 is a sad-
dle node, as visually represented in the left panel of Figure 3. The critical points
A∗

1 and A∗
2 are characterized by Ωm = 0 implying a universe entirely dominated

by the kinetic energy of the scalar field. The phase portrait in Figure 3 reveals that
the critical points A∗

1 and A∗
2 are unstable, as the trajectories originating from these

points diverge.
The critical points B∗

1 and B∗
2 share the same set of hyperbolic eigenvalues.

The eigenvalues γ∗1 , γ∗2 , and γ∗3 corresponding to the critical points are negative
when λ2 < 3/α and 0 < η < (3−αλ2)α2λ2

3−α2λ2 . The uniformly negative eigenval-
ues of critical points B∗

1 and B∗
2 unequivocally establish them as stable nodes,

with all neighboring trajectories asymptotically converging towards these points,
as visually depicted in Figure 3. The eigenvalues γ∗1 and γ∗3 are negative for
0 < η < 3−λ2, but γ∗2 is positive within the narrower range 0 < η < (3−αλ2)α2λ2

3−α2λ2 .
The points B∗

1 and B∗
2 have eigenvalues with both positive and negative signs. The

critical points B∗
1 and B∗

2 exhibit saddle point behavior, as evidenced by the mix of
positive and negative eigenvalues, and illustrated in Figure 3. Table 3 indicates that
the critical points B∗

1 and B∗
2 correspond to a universe with Ωm = 0 and Ωϕ = 1.

The scalar field dominance in the universe is confirmed by the density parameters.
The critical point C∗

1 exhibits non-hyperbolic behavior when λ = −(ηα+6)
α
√
2αη+6

and η = −6; otherwise, it remains hyperbolic. The critical point C∗
2 exhibits non-
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hyperbolic behavior when λ = (ηα+6)
α
√
2αη+6

and η = −6, but is hyperbolic otherwise.

The stability of C∗
1 depends on the value of λ: when λ < −(ηα+6)

α
√
2αη+6

and η = −6,

all eigenvalues are negative, indicating stability, whereas for λ > −(ηα+6)
α
√
2αη+6

and
η = −6, the presence of one positive eigenvalue renders the critical point unstable.
The existence of eigenvalues with opposite signs confirms that the critical point
C∗
1 behaves as a saddle node, as illustrated in the right panel of Figure 3. For the

critical point C∗
2 , if λ < −(ηα+6)

α
√
2αη+6

and η = −6, then all eigenvalues γ∗1 , γ∗2 , and
γ∗3 take negative values. This implies that C∗

2 is a stable node, with all trajectories
moving toward this fixed point, as shown in Figure 3. However, if λ < −(ηα+6)

α
√
2αη+6

and η = −6, then two eigenvalues, γ∗1 and γ∗3 , are negative, while γ∗2 is positive.
The presence of both positive and negative eigenvalues indicates that C∗

2 exhibits
saddle node behavior, as illustrated in Figure 3.

5 Law of hybrid expansion in the f(Q) gravity model

Cosmological model with exponential and power-law scale factors have been used
to study the Universe’s development. Existing models neglect the transition phase,
assuming a constant deceleration parameter q = −1− Ḣ

H2 throughout the universe’s
evolution. Recent findings confirm that the universe is undergoing accelerated ex-
pansion. We use a hybrid expansion law for the scale factor a(t) to study the
Universe’s transition phase, [19, 30, 36, 44, 47, 60]

a0t
αeβt = a(t). (5.1)

We derive the Hubble parameter from Equation (5.1), given the scale factor’s hy-
brid expansion law with constants a0, α, and β.

H =
ȧ

a
= β + αt−1. (5.2)

From Equation (5.2), the deceleration parameter is derived as:

q = −1− Ḣ

H2
= −1 +

α

(βt+ α)2
. (5.3)
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In cosmology, parameters are often transformed into functions of redshift for ob-
servational relevance. The scale factor a(t) and the redshift z are related by the
equation a(t) = a0

1+z , where a0 = 1 denotes the current (present-day) value of the
scale factor. Cosmic time and redshift are related through a derivable expression.

αW

β
(

1
(1+z)a1

) 1
α

α


β

 = t(z) (5.4)

‘W’ represents the Lambert function, also referred to as the product log func-
tion. Figure 4 shows the deceleration parameter as a function of redshift for se-
lected parameters. The deceleration parameter describes the universe’s shift from
deceleration to acceleration. The universe’s expansion phase is determined by
the deceleration parameter q: q > 0: deceleration, q < 0: acceleration, q = 0:
marginal expansion (constant rate). Observations suggest q lies in the range −1 ≤
q ≤ 0, indicating accelerated expansion. The deceleration parameter q is plotted
against redshift z in Figure 4, derived from Equations (5.3) and (5.4). The universe
shifted from deceleration (q > 0) at high redshifts to acceleration (q < 0) at low
redshifts, with q = 0 marking the transition point. The universe’s current acceler-
ation q = −1 is driven by dark energy.
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Figure 4: The evolution of the cosmic deceleration parameter q with redshift z.
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The model f(Q) = β+αQ yields expressions for pressure and energy density
via Friedmann Equations (2.11) and (2.12), as follows:

ρ = 3α
(
β + αt−1

)2 − β

2
, (5.5)

p = 2α2t−2 − 3α
(
β + αt−1

)2
+

β

2
. (5.6)
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Figure 5: Pressure and energy density are evaluated by plotting them against red-
shift.

Figure 5 depicts the variation of energy density with redshift in the f(Q) grav-
ity model. It is clear from the figure that the energy density increases with redshift
and remains positive for all values of z. Energy density begins with a large positive
value and decreases to zero at present time. The pressure-redshift relationship is il-
lustrated in Figure 5. The pressure starts high and decreases to zero in the future (as
z approaches −1 is not possible, likely meant z approaches −1 in terms of evolu-
tion towards future, or more accurately as time progresses towards future, z would
approach −1 is not accurate, more like pressure decreases as universe evolves for-
ward). Recent studies confirm the universe’s acceleration, driven by dark energy
with positive energy density and negative pressure. The EoS parameter is derived
from Equtions (5.5) and (5.6) in our model.

ωde =
p

ρ
=

2α2t−2 − 3α
(
β + αt−1

)2
+ β

2

3α (β + αt−1)2 − β
2

. (5.7)

Figure 6 presents the evolution of the equation of state (EoS) parameter ω as a
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Figure 6: Evolution of the EoS parameter versus redshift curve.

function of red-shift z, showing that ω varies between −1 ≤ ω ≤ 0. The EoS pa-
rameter ω indicates different cosmic models; ω = 1; stiff fluid, ω < −1; phantom
model, ω = −1; ΛCDM model, −1 ≤ ω ≤ −1/3; quintessence stage. From Fig-
ure 6, ω indicates the universe is in the quintessence stage at present time (z = 0)

and approaches the ΛCDM model as z approaches −1 (future evolution). The
model supports an accelerating universe, as shown in Figure 6. Furthermore, it is
found that the present value of the EoS parameter is ω0 ≈ −0.88, which is in good
agreement with the Planck observational data.

6 Conclusions

We performed a dynamical system analysis of the f(Q) gravity theory, a modified
gravity framework that generalizes the symmetric teleparallel equivalent of gen-
eral relativity. Specifically, we investigated a linear f(Q) gravity model, where
the gravity function takes the form: f(Q) = αQ + β, here, α and β are free
parameters that characterize the theory, and Q is the non-metricity scalar. A thor-
ough stability analysis of the f(Q) gravity model was undertaken, utilizing phase
portraits to investigate dynamic behavior. The study compared interactive and
non-interactive scenarios, shedding light on the model’s stability and cosmolog-
ical repercussions. In this study, we adopt an interaction term, Q∗ = ηHρϕ, that
incorporates a key parameter, η, which regulates the coupling between the Hub-
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ble expansion rate and dark energy density. We rewrite the differential equations
obtained from the Friedmann equations using dimensionless variables (x, y,Ωm),
simplifying the mathematical framework for analyzing cosmic evolution. Solving
the autonomous differential equations yielded four fixed points, which serve as the
cornerstone for our subsequent examination of stability properties. We found four

fixed points: A (
√
2α− 1, 0, 0), B (−

√
2α− 1, 0, 0), C (− αλ√

6
,
√

1− α2λ2

6 , 0),

and D (− αλ√
6
,−

√
1− α2λ2

6 , 0). The stability analysis reveals that the fixed points
C and D are stable for λ2 < 3. Additionally, the critical points A and B describe a
universe undergoing decelerated expansion, whereas C and D correspond to an ac-
celerating universe , with the EoS parameter taking the value −1 at λ = 0. We eval-
uated six critical points as A∗

1 (
√

α
3 (n+ 6)− 1, 0, 0), A∗

2 (−
√

α
3 (n+ 6)− 1, 0, 0),

B∗
1 (− λα√

6
,
√

1− α2λ2

6 , 0), B∗
2 (− αλ√

6
,−

√
1− α2λ2

6 , 0), C∗
1

(√
1 + ηα

3 , 0, −ηα
3

)
and C∗

2

(
−

√
1 + ηα

3 , 0, −ηα
3

)
for the interaction. The stability analysis reveals

that the critical points A∗
1 and A∗

2 correspond to unstable node and saddle node,
respectively, with the parameter λ playing a crucial role in determining their sta-
bility. Critical points A∗

1 and A∗
2 show unstable and saddle-like dynamics, with

their stability controlled by the parameter λ. The deceleration parameter q = 2

corresponding to points A∗
1 and A∗

2 reveals that the Universe undergoes a strongly
decelerating expansion. Conversely, points B∗

1 and B∗
2 give rise to saddle and un-

stable solutions, whose properties are influenced by the parameters λ and η, and
are characteristic of a universe undergoing accelerated expansion.
For λ2 < 2, critical points B∗

1 and B∗
2 represent a quintessence-dominated era,

characterized by accelerated expansion. Interestingly, when λ2 = 0, the equation
of state parameter ωϕ equals −1, mirroring the cosmological constant behavior of
the ΛCDM model. Within the range 2 < λ2 < 3, points B∗

1 and B∗
2 are confirmed

to be stable via local stability analysis. Furthermore, for the critical points C∗
1 and

C∗
2 , one of the corresponding eigenvalues, γ∗1 , is expressed as γ∗1 = η − 3 + 6

α ,
providing insight into their stability properties. As a result, points C∗

1 and C∗
2 are

non-hyperbolic, implying that their stability analysis falls beyond the realm of lin-
ear stability theory, necessitating alternative approaches to determine their stability
properties. The cosmic acceleration or deceleration in the vicinity of points C∗

1

and C∗
2 is sensitively dependent on the parameter α, highlighting its crucial role
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in shaping the dynamical evolution of the universe. The expansion of the universe
accelerates for α > 1 and decelerates for α < 1, with the parameter α serv-
ing as a threshold for the cosmic expansion regime. Estimates of the equation of
state parameter ωϕ from recent surveys include −1.035 (Supernovae Cosmological
Project), −1.073 (WMAP+CMB), and −1.03 (Planck 2018), while the decelera-
tion parameter q is estimated to be −1.08.
Our model uses a hybrid expansion law for the scale factor. Cosmological param-
eters are rewritten as functions of z. The universe’s acceleration is supported by
observational data. The deceleration parameter q ranges from −1 to 0. Figure 4
shows q evolving from positive to negative, approaching −1, confirming an accel-
erating universe. Figure 5 shows energy density is positive for all z and approaches
0 as z → −1. In Figure 5, pressure is significant at higher z and approaches 0 as
z → −1. Positive energy density and negative pressure drive the universe’s ac-
celeration. Figure 6 illustrates the behavior of the EoS parameter ω as a function
of redshift. At z = 0, ω lies within the quintessence regime, and as redshift de-
creases to z = −1, it approaches the value ω = 1. The model’s current EoS value,
ω0 = −0.88, aligns with Planck observational data. We thus conclude that all ob-
servable constraints are fully satisfied by the existing model.
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