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Abstract: In this work, we consider the higher-order parabolic type Kirchhoff

equation in a bounded domain. Firstly, we establish the global existence of solu-
tions. Finally, we prove the decay of solutions using the Komornik’s lemma.

1 Introduction

1.1  Setting of the problem

In this work, we consider the following initial-boundary value problem for a class
of higher-order parabolic-type Kirchhoff equation

(1 1) 2+ M (HAézHQ> Az =212z, (2,t) € Q2 x (0,T), (L.1)

with the initial-boundary conditions

Z(.CL‘,O):ZU(CL'), ZL‘EQ,
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and )
o t
Za(xi’):o, i=0,1,2,....m—1, (z,t) € 02 x (0,T),
v

where A =(—A)™, m > 1 is a natural number, 2 is a bounded domain in R"
(n > 1) with smooth boundary 0f2, v is unit outward normal vector on 9€2; p, g >
2 and

M(s)=1+s", v>1.

The problem (1.1) is a generalization of a model introduced by Kirchhoff [[7]].
More precisely, Kirchhoff proposed a model given by the equation for f = g = 0,

L

Eh
phzu + 0zt + g (2) = {Po +o7 (22)? dflf} Zzz + f(2), (1.2)
0

for0 < z < L, t > 0, where z (z,t) is the lateral displacement, E the Young
modulus, p the mass density, h the cross-section area, L the length, pg the initial
axial tension, J the resistance modulus, and f and g the external forces. Moreover,
(1.2) is called a degenerate equation when pg = 0 and nondegenerate one when
po > 0.

1.2 Literature overview

When m = 1, (1.1) becomes the following Kirchhoff-type parabolic equation
(1 + \zVH’) w— M <HV2||2> Az =272 2. (1.3)

Ouaoua et al. [9] studied the global existence and decay of solutions of the problem
(1.3). Later, Khaldi et al. [6] studied by taking variables instead of constants p and
qin (1.2).

Piskin and Ekinci [|14] studied the blow up and growth for the following equa-
tion with initial-boundary conditions

2 — Azp — M(|V2)|))Az + 2|72 2 = |2P 2 2.

Piskin and Comert [12] studied the following nonlinear Kirchhoff-type parabolic
equation with logarithmic source term

2z — M(|Vz]|*)Az — Az = |2]7 % z1n |2|.
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They established the existence and decay solutions.
Ishige et al. [4] considered the Cauchy problem for nonlinear higher-order heat
equation as follows
2+ Az = 2]

They proved the existence of solutions for Cauchy problem.
Xiao and Li [[18]] considered initial boundary value problem for nonlinear higher-
order heat equations of

2t + .AZt + .AZ = f(Z)

They established the existence of solutions.

Moreover, numerous researchers have studied the existence, decay and blow
up of solutions for the higher-order partial differential equations [2}3}/5,{10}/11}/13}
150(17,{19L[20]. Motivated by the above studies, in this work, we investigate the
global existence and decay solutions for the eq. (1.1). This paper is organized as
follows: In Section 2, we introduce some lemmas which will be needed later. In
Section 3, we prove the global existence of solutions. In Section 4, we prove the
decay of solutions using the Komornik’s lemma.

2 Preliminaries

In this part, we shall give some lemmas, which will be used throughout this work.
Let ||.|| and ||.||,, denote the usual L? (©) norm and LP (2) norm, respectively.

Lemma 2.1. (Sobolev-Poincaré inequality) [1,|16|] Let p be a number with

2<p<4oo, if n<2m,
2<p< 2 if n>2m.

n—2
Then, there is constant C depending on ) and p such that

lull, < C HA%UH ,Yu e HIVQ).

Lemma 2.2. [8]. Let F : R™ — R™ be a non-increasing function and assume
that there are two constants o > 0 and C' > 0 such that

/ Fotl (s)ds < CF*(0) F (s), Vt € R,
t
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Then,
-1
F(t)<n(C+at)= 6 Vt>C,

where 1 is a positive constant.

3 Global existence

In this part, we prove the global existence of solutions.
The energy function E (¢) and the Nehari’s functional I (¢) can be defined re-
spectively by

’2(v+1)

E(t) = E() :%HA%Z’Q

+

1 1 1 q
2+ 1) HAQZ ~y 121l (3.1

and

[(t)=1(z)= HA%Z ‘2 + HA%Z )2”“) — |l=)1e. 3.2)

Lemma 3.1. Suppose that z be a solution of (1.1). Then, the energy function E (t)
is a nonincreasing function for t € [0,T) and

B ()=~ lal? = [ o7 2| dw <0, (33)
Q
and
E(t) < E(0).
Proof. Multiplying the equation in (1.1) by z; and integrating over the domain {2,
to obtain
d |1 12 1 11200+ 1
| = 3 I — 2 — — 7 — — 2— p—2 2d .
bl ey A~ ] =t s
Then,
B'(0) =~ Nl = [ o7 2 |z o <0
Q

Integrating (3.3) over (0,t) , we get

E(t) < E(0).
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O
Lemma 3.2. Let z be a solution of (1.1) and g > 2 (v + 1),
1(0) >0,
and
P+ P2 <1, (3.4)
here
2 0 2(y+1) S
q B Y q v
BlzacZ<E0) and52:1—acg<Eo> :

with 0 < a < 1, and cy is the best embedding constant of H{* (2) — L7 (),
then
I(t)>0,

forallt €10,T).
Proof. By continuity, there exist 7}, such that
I(t)>0, forallt e [0,T,]. (3.5)

By direct comptutation, we obtain for all ¢t € [0, 7],

20 = 5= s st b - e
- e g
2 2(y+1)
(e )
> (J;QQHAéz‘Q—F(mHA%z‘Q(VH)-F;I(t)-

By using (3.5), we have
-2 1
a=2(+1) HA% <E@),Vte[0,T.). (3.6

’2(7+1)
2(v+1)q

-9 2
7t
2q
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By the definition of E (¢) , we obtain

12 2q
< ——FE(t
HAZZ - qg—2 ®)
2q
< —F(0 3.7
=722 (0) (3.7)
and
2(v+1) 2 1
q—2(y+1)
2¢(v+1)
< ————F(0). (3.8)
26000
On the other hand, we get
I121lg = allzllg + (1 = a) [[2]g-
By the embedding of Hj" (2) — L7 (£2), we have
Izl < ad A%z(qﬂl_a)HA%z]q
-2 2
= acd A%z‘q HA%z‘
—2(7+1) 2(y+1)
1 e b ks
From (3.7) and (3.8), we have
2 =3 2
2
/]z\qu < ad <qE(0)> HA%Z‘
Q q—2
2¢ (7 + 1) e 2(y+1)
qly v 1 Y
+(1-« cZ(E 0) HA22’ ,Vt € 0,7,
which implies that
12 1 [|2(v+D)
/|Z|deg51H,422\ +52H,42z\ Mel0,T]. (3.9
Q
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Since 81 + 2 < 1, so

2 2(y+1)
/yz\qug HA%z‘ +HA%z L Vte[0,T].
Q
This implies that
I(t)>0,VvVtel0,Ty].
By repeating the above procedure, we can extend T} to 7. O

Theorem 3.1. Under the assumptions of above lemma, the local solution of (1.1)
is global.

; 2(y+1)
Proof. 1t is sufficient to show that HA2 zH + H 22 ‘

dently of ¢. By using (3.1) and (3.2), we have

is bounded indepen-

1 12 (v+1) 1
B0 = gl s gy At - L
0 = g o |4 quq
T bl G e
2q 2(y+1)q q ®)
Since I(t) > 0, which implies that
(v+1)
HAM‘ +HA22‘ < CE (t),
)
(v+1)
HAzz( +HA22‘ < CE(0),
_ 2 2(y+1)
where C = max{q_—qg, q_;’(,y_g)}. O

4 Decay of solutions
In this part, we prove the decay of solutions by using the Komornik’s lemma.

Lemma 4.1. Assume that the assumptions of Lemma 3.1 and p > 2, hold. Then,
there exist a positive constant c such that

I2]l? < cE(¢). @.1)
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Proof. By direct computation, we get

2 < ebf|azz]’
—2 2
< o Ak
2 R
q 2 q
< 2| ——=EFE(0 ——FE(t
2 (2p) 2w
< cE(t).

Theorem 4.1. Suppose that the assumptions of Lemma 3.1. Then, there exists
constants C' > 0, such that

C+qt
C+qC

r<ro)( >f

Proof. Multiplying the equation of (1.1) by z (¢) E4(t),(q > 0) and integrating
over Q x (S,T), we get

T
/ /Eq (t) [zztz(M (/ ‘A%z
s Ja Q
T
_ / P (t)/ 129 dudt.
S Q
It follows that
T 1
/ / E?(t) [zzt + ‘Aiz
S JQ
T
= / E1 (t)/ |z|? dxdt.
S Q

We add and substract the term

/ST B (t)/ﬂ [51 ]A%z

2
dx) Az + |z|P 72 z)] dxdt

1 2
A2z

2 1 2’}/
uas

+z|zP2 zt] dxdt

2 1
‘ ’Aiz
2

2 1
+ Bs H.AEZ

2
] dxdt
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and use (3.9) to obtain

T L2
(1—51)/ Eq(t)/ UAM dxdt}
1—52/ EY(t /“A?z‘ ’A2z ]da:dt
+/ E1 (t)/ [22¢] dxdt
S Q
T
+/ E1 (t)/zzt‘zp_Q}dxdt
S Q
T 1|2 12y 112
—/ Eq(t)/ {&’A?z —1—52“.,452‘ ’Aiz —|z@ dxdt < 0. (4.2)
S Q 2
It is clear that
T 1 12 12 |Z|q
T
< (151)/ Eq(t)/ [ ‘A%z }d:cdt
9 ( 27| L |2

where £ = min {1 — 31, 1 — B2} . By use of (4.2), (4.3) and definition of E (t),

we have
T T
3 / ET(t)dt < — / E(t) / zzdxdt
S S Q

T
—/ E1 (t)/zzt\z|p_2 dxdt. 4.4
S Q

We estimate the terms in the right-hand side of (4.4), for the first term, we use the
following Young inequality, we have

1
XY < XM+ ——Y* XY >0,>0
¥ )
)\25*1
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1 1 _
and/\—l—kg—l,

T
—/ E1 (t)/ zzpdxdt
S Q
T
g/ Eq(t)/ (EC|Z|2—|—CE\Z,5|2> dzdt. 4.5)
S Q

We use again the above Young inequality, we get

T
—/ E1 (t)/zzt\z|p2 dxdt
= / E7(t /|z| zt|z zdfvdt

< / E? (t)/ €c|z\p + ¢ 2P 72 th) dxdt. (4.6)
S Q

By (4.5) and (4.6), inequality (4.4), becomes

T T
g/ gt (t)dtg/ Eq(t)/ (ec|z\2+c€|z|2dxdt)
S S Q
T
—|—/ E1 (t)/ sc\z|p+c€]z\p_2,z§dxdt>
< 5c/ Bt / 22 4|2 dadt
cg/ Eq(t)/ \zt|2+|zyp*2z§)dxdt. (4.7)
S Q

By (3.10) and definition of E’ (¢), we have

T T T
¢ /S ET (1) dt < ec /S BT () dt4c. /S E(t) /Q (—E'(t)) dzdt. (4.8)
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This implies
T T
3 / ET (t)dt < ec / BT (t)dt + c. [ETT(S) — BT (T)]
s s
T
< ec / ETY () dt 4+ ¢.E1(0) E(S). (4.9)
s
Choosing € small enough such that, we arrive at
T
/ EL (1) dt < cEY (0) E(S).
s
By taking T goes to oo, we have
o0
/ ETT(t)dt < cE1(0)E(S).
S
Komornik’s integral inequality yields the desired result. O
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