A new characterization of groups ${}^{2}\mathrm{E}_{6}(\mathbf{q})$

Behnam Ebrahimzadeh

Department of Mathematics Education, Farhangian University P.O. Box 14665-889, Tehran, Iran Email: behnam.ebrahimzadeh@gmail.com

(Received: October 17, 2024 Accepted: December 8, 2024)

Abstract: In this paper, we prove that the simple groups ${}^{2}E_{6}(q)$, $q = 2^{n}$ and $\frac{q^{6}-q^{3}+1}{3}$ where is prime numbers can be uniquely determined by its order and the largest elements order.

1 Introduction

For a finite group G, the set of prime divisors of |G| is denoted by $\pi(G)$ and the largest element of the set $\pi_e(G)$ of element orders of G is denoted by k(G). The prime graph $\Gamma(G)$ of group G is a graph whose vertex set is $\pi(G)$, and two vertices u and v are adjacent if and only if $uv \in \pi_e(G)$. Moreover, assume that $\Gamma(G)$ has t(G) connected components π_i , for $i = 1, 2, \ldots, t(G)$. In the case where |G| is of even order, we assume that $2 \in \pi_1$.

If *H* be a finite group such that |G| = |H| and k(G) = k(H) implies that $H \cong G$, then we say *G* is recognizable by its order and the largest elements order. In the way, the authors try to characterize some finite simple groups by using less quantities and have successfully characterized simple $L_3(q)$ and $U_3(q)$, where *q* is some special power of prime, by using three numbers: the order of group, the largest and the second largest element orders, of which some results can be seen in [16]. Also, in [3], Chen and He proved the group $L_2(q)$ where $q = p^n < 125$ is recognizable by largest element order and group order, also in [4], Chen and He proved K_4 groups of type $L_2(p)$ are reconizable only by using the order of a group and the

Keywords and phrases: Element order, largest order of elements, prime graph, Frobenius group.

²⁰²⁰ AMS Subject Classification: 20D06, 20D60.

largest element order, where p is a prime but not of the form 2^{n} -1. Moreover, the Authors in ([2], [6], [7], [8], [9], [10], [11], [12], [13], [20]) proved that groups such as, the simple sporadic groups, PGL(2,q), $PSU_{3}(3^{n})$, symplectics groups PSP(8,q), simple groups $C_{4}(q)$, the simple groups ${}^{2}D_{8}(2^{n})^{2}$, symplectic groups $PSP(4,2^{n})$, simple groups ${}^{2}D_{n}(3)$, projective special linear groups PSL(5,2) and PSL(4,5) and suzuki group Sz(q), where q-1 or $q \pm \sqrt{2q} + 1$ is a prime number by largest element order proved.

In this paper, we prove that the groups ${}^{2}E_{6}(q)$, $q = 2^{n}$, where $\frac{q^{6}-3+1}{3}$ is a prime number is recognizable by the largest elements order and order of the group. In fact, we prove the following main theorem:

Main Theorem. Let G be a group such that $k(G) = k({}^{2}E_{6}(q))$ and $|G| = |{}^{2}E_{6}(q)|$, $q = 2^{n}$, and where $\frac{q^{6}-q^{3}+1}{3}$ is a prime number. Then, $G \cong {}^{2}E_{6}(q)$.

2 Notations and preliminaries

Lemma 2.1. [17] Let H be a finite soluble group all of whose elements are of a power prime order. Then, $|\pi(H)| \leq 2$.

Lemma 2.2. [15] Let G be a Frobenius group of even order with kernel K and complement H. Then,

- 1. t(G) = 2, $\pi(H)$ and $\pi(K)$ are vertex sets of the connected components of $\Gamma(G)$;
- 2. |H| divides |K| 1;
- 3. K is nilpotent;
- 4. Every subgroup of H of order p and q (not necessarily distinct) primes, is cyclic. In particular, every Sylow subgroup of H of odd order is cyclic and a Sylow 2-subgroup of H is either cyclic or a generalized quaternion group. If H is non-solvable then H has a subgroup of index at most 2 isomorphic to SL₂(5) × M, where M has cyclic Sylow p-subgroups and order coprime to 2, 3 and 5.

Definition 2.1. A group G is called a 2-Frobenius group if there is a normal series $1 \leq H \leq K \leq G$ such that G/H and K are Frobenius groups with kernel K/H and H, respectively.

Lemma 2.3. [3] Let G be a 2-Frobenius group of even order. Then,

- 1. t(G) = 2, $\pi(H) \cup \pi(G/K) = \pi_1$ and $\pi(K/H) = \pi_2$;
- 2. G/K and K/H are cyclic groups satisfying |G/K| divides |Aut(K/H)|.

Lemma 2.4. [23] Let G be a finite group with $t(G) \ge 2$. Then one of the following statements hold:

- 1. G is a Frobenius group;
- 2. *G* is a 2-Frobenius group;
- 3. G has a normal series $1 \leq H \leq K \leq G$ such that H and G/K are π_1 -groups, K/H is a non-abelian simple group, H is a nilpotent group and |G/K| divides |Out(K/H)|.

Lemma 2.5. [24] Let q, k, l be natural numbers. Then

$$\begin{aligned} I. & (q^{k} - 1, q^{l} - 1) = q^{(k, l)} - 1. \\ 2. & (q^{k} + 1, q^{l} + 1) = \begin{cases} q^{(k, l)} + 1; & \text{if both } \frac{k}{(k, l)} \text{ and } \frac{l}{(k, l)} \text{ are odd,} \\ (2, q + 1); & \text{otherwise.} \end{cases} \\ 3. & (q^{k} - 1, q^{l} + 1) = \begin{cases} q^{(k, l)} + 1; & \text{if } \frac{k}{(k, l)} \text{ is even and } \frac{l}{(k, l)} \text{ is odd,} \\ (2, q + 1); & \text{otherwise.} \end{cases} \end{aligned}$$

In particular, for every $q \ge 2$ and $k \ge 1$, the inequality $(q^k - 1, q^k + 1) \le 2$ holds.

3 Proof of the main theorem

In this section, we prove the main theorem. We denote groups ${}^{2}E_{6}(q)$, $q = 2^{n}$ and prime number $\frac{q^{6}-q^{3}+1}{3}$ by E, p respectively. To prove the main theorem, we will prove several lemmas as follows. In the way, we note that |E| =

 $\frac{q^{36}(q^{12}-1)(q^9+1)(q^8+1)(q^6-1)(q^5+1)(q^2-1)}{3} \text{ and also } k(E) = \frac{(q+1)(q^2+1)(q^3-1)}{3}.$ Hence, we have the following theorem.

Theorem 3.1. Let G be a group and $E := {}^{2}E_{6}(q)$, $q = 2^{n}$ and $p = \frac{q^{6}-q^{3}+1}{3}$ is prime number. Then, k(G) = k(E) and |G| = |E| if and only if $G \cong E$.

Lemma 3.1. *p* is an isolated vertex in $\Gamma(G)$.

Proof. We prove is an isolated vertex of $\Gamma(G)$. On opposite, there is prime number t in $\pi(G)$ such that $t \neq p$ and $tp \in \pi_e(G)$. Thus, we deduce that $tp \geq 2p \geq 2(\frac{q^6-q^3+1}{3}) > \frac{(q+1)(q^2+1)(q^3-1)}{3}$. Hence, $k(G) > \frac{(q+1)(q^2+1)(q^3-1)}{3}$, which is impossible. So, we conclude that p is an isolated vertex of $\Gamma(G)$ and $t(G) \geq 2$. Now, Lemma 2.4 implies that G satisfies one of the following cases.

Lemma 3.2. *G* is nonsoluble.

Proof. Let r be a prime divisor of $\frac{q^6-q^3+1}{3}$ and also $r \neq 3$, $r \neq p$. If G were soluble. Then, there would exist a $\{p, r, s\}$ -Hall subgroup H of G. Since, F does not contain any element of orders pr, ps, rs. Thus all of elements of $\{p, r, 3\}$ -Hall subgroup H of G. Since, E does not contain any elements of orders pr, 3p, 3r. Thus, all of elements of H would be of prime power order. But this contradicts by Lemma 2.1. So, G is nonsoluble.

Lemma 3.3. The group G is neither a Frobenius group nor 2-Frobenius group.

Proof. By Lemma 3.2, G is nonsoluble. Now, we prove that G is not a Frobenius group. On the contrary, we assume G be a Frobenius group with kernel K and complement H. Then, by Lemma 2.2, t(G) = 2, $\pi(H)$ and $\pi(K)$ are vertex sets of the connected components of $\Gamma(G)$ and |H| divides |K| - 1. Since, H be a nonsoluble Frobenius complement, by Lemma2.2, H has a normal subgroup H_0 of index ≤ 2 such that $H_0 \cong SL(2,5) \times Z$ where every sylow subgroup of Z cyclic and $\pi(Z) \cap \{2,3,5\} = \emptyset$. But $5 \in \pi_e(G)$, which is a contradiction. Hence, G is not a Frobenius group. The other case is impossible as G is not 2-Frobenius group. Similarily.

Lemma 3.4. *G* is isomorphic to *E*.

Proof. By the third case of Lemma 2.4, *G* has a normal series $1 \leq H \leq K \leq G$ such that *H* and *G/K* are π_1 -groups, and also *K/H* is a non-abelian simple group. In the other hand, every odd order component of G is the odd order component of *K/H*. Since, $p \mid K/H$ so $t(k/H) \geq 2$. So according to the classification of the finite simple groups, we know that the possibilites for *K/H* are alternating group A_m , $m \geq 5$, one of the 26 sporadic groups, simple groups of Lie type. First, we assume that $G \cong E$. Then, we can easily prove that k(G) = k(E) and |G| = |E|. Now, we need prove sufficient condition, that is, if k(G) = k(E) and |G| = |E|, then $G \cong E$. For this purpose, we know by [18], $k(E) = \frac{(q+1)(q^2+1)(q^3-1)}{3}$, where this is an odd component of *E* and also $|E| = \frac{q^{36}(q^{12}-1)(q^9+1)(q^8-1)(q^6-1)(q^2-1)}{3}$. Now, since *K/H* is a non-abelian simple group. So, *K/H* is isomorphic one of the following groups.

Step 1. Let $K/H \cong A_m$, where $m \ge 5$ and m = r, r + 1, r + 2. Then, by [23] $\pi(A_m) \subseteq r, r-2$ and $|A_m| \mid |G|$, we consider $m \ge \frac{(q+1)(q^2+1)(q^3-1)}{3}$. In the way, since $|A_m| \nmid |G|$, so we have a contradiction.

Step 2. If K/H is isomorphic to sporadic groups, then by [18], $k(S) = \{5, 7, 11, 17, 19, 23, 31, 37, 59\}$. Now, we consider $\frac{(q+1)(q^2+1)(q^3-1)}{3} = 5, 7, 11, 17, 19, 23, 31, 37, 59$. In the way, for example, if $\frac{(q+1)(q^2+1)(q^3-1)}{3} = 7$, then we can easily, see these equation is impossible. If $q^2 + \sqrt{2q^3} + q + \sqrt{2q} + 1 = 7$, then we have a contradiction. Similarly, for other groups, we have a contradiction.

Step 3. In this case, we consider K/H is isomorphic to a the group of Lie-type. Case 3.1. $K/H \not\cong B_n(q')$, where n > 2 and $C_n(q')$ with n > 3, and also q'is a prime power. For this purpose, we consider $K/H \cong B_n(q')$. Now, by [18], $k(B_n(q')) = q'^n + q'$ and $|B_n(q')| = \frac{1}{(2,q'-1)}q'^{n^2}\prod_{i=1}^n (q'^{2i}-1)$. Since, $|B_n(q')| |$ |G|. So, $\frac{1}{(2,q'-1)}q'^{n^2}\prod_{i=1}^n (q'^{2i}-1) | \frac{q^{36}(q^{12}-1)(q^9+1)(q^8-1)(q^6-1)(q^5+1)(q^2-1)}{3}$. Now, we consider $q'^n + q' = \frac{(q+1)(q^2+1)(q^3-1)}{3}$. So, $3q'(q'^{n-1}+1) = (q-1)(q^5+2q^4+3q^3+3q^2+2q+1)$, which is impossible. For, $K/H \ncong C_n(q')$, similarily, we have a contradiction. Case 3.2. If $K/H \cong^3 D_4(q')$, then by [18], $k(^3D_4(q')) = (q'^3-1)(q'+1)$. Also,

Case 3.2. If $K/H \cong ^{3}D_{4}(q')$, then by [18], $k(^{3}D_{4}(q')) = (q'^{3} - 1)(q' + 1)$. Also, we have $|^{3}D_{4}(q')| = q'^{12}(q'^{8} + q'^{4} + 1)(q'^{6} - 1)(q'^{2} - 1)$. Since $|^{3}D_{4}(q')| ||G|$. So, $q'^{12}(q'^{8} + q'^{4} + 1)(q'^{6} - 1)(q'^{2} - 1) |\frac{q^{36}(q^{12} - 1)(q^{9} + 1)(q^{8} - 1)(q^{6} - 1)(q^{5} + 1)(q^{2} - 1)}{3}$. Now, we consider $(q'^{3} - 1)(q' + 1) = \frac{(q+1)(q^{2} + 1)(q^{3} - 1)}{3}$. So, $3(q'^{4} + q'^{3} - q' - 1) = (q - 1)(q^{5} + 2q^{4} + 3q^{3} + 3q^{2} + 2q + 1)$. Thus, q - 1 = 3 and $q'^{4} + q'^{3} - q' - 1 = q^{5} + 2q^{4} + 3q^{3} + 3q^{2} + 2q + 1$. As a result, $q'(q'^{3} + q'^{2} - 1) = q'^{4} + q'^{4} - q'^{4} - q'^{4} + 3q^{4} + 3q^{4}$ $2(2^{5n-1} + 2^{4n} + 3(2^{3n-1}) + 3(2^{2n-1}) + 2^n + 1 \text{ which is impossible.}$ **Case 3.3.** $K/H \cong E_6(q'), E_7(q'), E_8(q'), F_4(q').$ For example, if $K/H \cong F_4(q')$, then by [18], $k(F_4(q')) = (q'^3 - 1)(q' + 1).$ Also $|F_4(q')| = q'^{24}(q'^2 - 1)(q'^6 - 1)(q'^6 - 1)(q'^8 - 1)(q'^{12} - 1).$ Since, $|F_4(q')| ||G|.$ So, $q'^{24}(q'^2 - 1)(q'^6 - 1)(q'^8 - 1)(q'^{12} - 1) ||\frac{q^{36}(q^{12} - 1)(q^8 + 1)(q^8 - 1)(q^5 + 1)(q^2 - 1)}{3}.$ For this purpose, we consider $(q'^3 - 1)(q' + 1) = \frac{(q+1)(q^2 + 1)(q^3 - 1)}{3}.$ Then, similar to the proof case 3.2, we have a contradiction. Similarly, for $K/H \cong E_6(q'), E_7(q'), E_8(q')$, we have a contradiction.

Case 3.4. If $K/H \cong^2 E_6(q')$, then by [18]. $k({}^2E_6(q') = \frac{(q'+1)(q'^2+1)(q'^3-1)}{(3,q'+1)}$. Also, we have $|{}^2E_6(q')| = \frac{q'{}^{36}(q'{}^{12}-1)(q'{}^9+1)(q'{}^8-1)(q'{}^6-1)(q'{}^5+1)(q'{}^2-1)}{(3,q'+1)}$. Now, we consider $\frac{(q'+1)(q'{}^2+1)(q'{}^3-1)}{(3,q'+1)} = \frac{(q+1)(q^2+1)(q^3-1)}{3}$. First, if (3,q'-1) = 1, then $3(q'{}^6+q'{}^5-q'-1) = (q-1)(q^5+2q^4+3q^3+3q^2+2q+1)$, which is a contradiction.

 $\begin{array}{l} \textbf{Case 3.5. If } K/H \cong^2 G_2(3^{2m+1}), \text{ where } m \geq 1, \text{ then by } [18], k(^2G_2(3^{2m+1}))) = \\ 3^{2m+1} + 3^{m+1} + 1. \text{ Also, we know that } |^2G_2(3^{2m+1}| = q'^3(q'^3 + 1)(q' - 1). \text{ Since,} \\ |^2G_2(3^{2m+1}| \mid |G|. \text{ So, } q'^3(q'^3 + 1)(q' - 1) \mid \frac{q^{36}(q^{12} - 1)(q^9 + 1)(q^8 - 1)(q^6 - 1)(q^5 + 1)(q^2 - 1))}{3}. \\ \textbf{For this purpose, we consider } 3^{2m+1} + 3^{m+1} + 1 = \frac{(q+1)(q^2 + 1)(q^3 - 1)}{3}. \text{ So, } 3^{m+1}(3^m + 1) = (q-1)(q^5 + 2q^4 + 3q^3 + 3q^2 + 2q + 1). \text{ Hence, } 3(3^{2m+1} + 2^{m+1} + 1) = 1, \\ q-1)(q^5 + 2q^4 + 3q^3 + 3q^2 + 2q + 1). \text{ Now, since } (3, 3^{2m+1} + 2^{m+1} + 1) = 1, \\ \textbf{so we deduce } q-1 = 3, \text{ also } 3^{2m+1} + 2^{m+1} + 1 = q^5 + 2q^4 + 3q^3 + 3q^2 + 2q + 1, \\ \textbf{which is a contradiction.} \end{array}$

Case 3.6. If $K/H \cong^2 B_2(q')$, where $q' = 2^{2m+1}$, $m \ge 1$, then by [18], $k({}^2B_2(q') = q' + \sqrt{2q'} + 1$, also $|{}^2B_2(q')| = q'{}^2(q'{}^2 + 1)(q' - 1)$. Since $|{}^2B_2(q')| | |G|$. So, $q'{}^2(q'{}^2 + 1)(q' - 1) | \frac{q^{36}(q^{12}-1)(q^9+1)(q^8-1)(q^6-1)(q^5+1)(q^2-1))}{3}$. Now, we consider $q' + \sqrt{2q'} + 1 == \frac{(q+1)(q^2+1)(q^3-1)}{3}$. So, $3(2^{2m+1} + 2^{m+1} + 1) = (q - 1)(q^5 + 2q^4 + 3q^3 + 3q^2 + 2q + 1)$, hence 3 = q - 1 and $2^{2m+1} + 2^{m+1} + 1) = q^5 + 2q^4 + 3q^3 + 3q^2 + 2q + 1$, which is a contradiction.

Case 3.7. If $K/H \cong G_2(q')$, then by [18], $k(G_2(q') = q'^2 + q' + 1, \text{ also} |G_2(q')| = q'^6(q'^6 - 1)(q'^2 - 1)$. Since $|G_2(q')| ||G|$. So, $q'^6(q'^6 - 1)(q'^2 - 1) |q^{36(q^{12}-1)(q^9+1)(q^8-1)(q^6-1)(q^5+1)(q^2-1))}$. For this purpose, we consider $q'^2 + q' + 1 = \frac{(q+1)(q^2+1)(q^3-1)}{3}$. As a result, $3(q'^2 + q' + 1) = (q-1)(q^5 + 2q^4 + 3q^3 + 3q^2 + 2q+1)$, so q-1 = 3 and $q'(q'+1) = 2(2^{5n-1} + 2^{4n-1} + 3(2^{3n-1}) + 3(2^{2n-1}) + 2^{n+1}$, which is a contradiction. Since, (q', q' + 1) = 1, so q' = 2 and $q' + 1 = 2^{5n-1} + 2^{4n-1} + 3(2^{3n-1}) + 3(2^{2n-1}) + 2^{n+1}$, which is impossible.

Case 3.8. If $K/H \cong^2 A_n(q')$, where n > 2, then by [18], $k({}^2A_n(q') = \frac{q'^{n+1}-1}{(3,q'+1)}$

Also, we know that $|^{2}A_{n}(q')| = \frac{1}{(n+1,q'+1)}q'^{n(n+1)/2}\prod_{i=1}^{n}(q'^{i+1} - (1^{i+1}))$. Since, $|^{2}A_{n}(q')| ||G|$. So, $\frac{1}{(n+1,q'+1)}q'^{n(n+1)/2}\prod_{i=1}^{n}(q'^{i+1} - (1^{i+1}))|$ $\frac{q^{36}(q^{12}-1)(q^{9}+1)(q^{8}-1)(q^{6}-1)(q^{5}+1)(q^{2}-1))}{3}$. For this purpose, we consider $\frac{q'^{n+1}-1}{(3,q+1)} = \frac{(q+1)(q^{2}+1)(q^{3}-1)}{3}$. Now, if (3,q'+1) = 1, then $3(q'^{n+1}-1) = (q-1)(q^{5}+2q^{4}+3q^{3}+3q^{2}+2q+1)$, so 3 = q-1 and $q'^{n+1}-1 = q^{5}+2q^{4}+3q^{3}+3q^{2}+2q+1$, which is a contradiction. Similarly for (3,q'+1) = 3, we have a contradiction. **Case 3.9.** If $K/H \cong D_{n}(q')$, where $n \ge 4$, then by [18], $k(D_{n}(q') = \frac{(q'^{n-1}+1)(q'+1)}{(4,q'-1)}$. Also, we know that $|D_{n}(q')| = \frac{1}{(4,q'^{n-1})}q'^{n(n-1)}(q'^{n}-1)\prod_{i=1}^{n-1}(q'^{2i}-1)$. Since, $|D_{n}(q')| ||G|$. So, $\frac{1}{(4,q'-1)}q'^{n(n-1)}(q'^{m}-1)\prod_{i=1}^{n-1}(q'^{2i}-1)|$ $\frac{q^{36}(q^{12}-1)(q^{9}+1)(q^{8}-1)(q^{5}+1)(q^{2}-1))}{3}$. For this purpose, we consider $\frac{(q'^{n-1}+1)(q'+1)}{(4,q'-1)}$ $= \frac{(q+1)(q^{2}+1)(q^{3}-1)}{3}$. Now, if (4,q'-1) = 1, then $3(q'^{n}+q'^{n-2}+q'+1) = 1 = (q-1)(q^{5}+2q^{4}+3q^{3}+3q^{2}+2q+1)$, which is a contradiction. **Case 3.10.** If $K/H \cong L_{n+1}(q')$, where $n \ge 1$, then by [18] $k(L_{n+1}(q')) = \frac{q'^{n+1-1}}{(q'-1)(q'-1,n+1)}$. Also, we know that $|L_{n+1}(q')| = \frac{1}{(n+1,q'-1)}q'^{n(n+1)/2}(q'^{n}-1)$ $\prod_{i=1}^{n}(q'^{i+1}-1) |\frac{q^{36}(q^{12}-1)(q^{9}+1)(q^{8}-1)(q^{6}-1)(q^{5}+1)(q^{2}-1))}{3}$. For this purpose, we consider $\frac{q'^{n+1}-1}{(q'-1,n+1)} = \frac{(q+1)(q^{2}+1)(q^{3}-1)}{3}$. Now, if (q'-1,n+1) = 1 then $3(q'-1)(q'^{n}+q'^{n-1}+\cdots) = (q-1)(q^{5}+2q^{4}+3q^{3}+3q^{2}+2q+1)$, which is impossible. **Case 3.11.** So, $K/H \cong 2E_{6}(q)$, as a result |K/H| = |E|. On the other hand, we have the there there there there there there there there there hand, we

know that $H \leq K \leq G$. Also, $k(K/H) \mid k(E)$, hence $\frac{(q'+1)(q'^2+1)(q'^3-1)}{3}$. Hence, n = n'. Now, since |K/H| = |E| and $1 \leq H \leq K \leq G$, we deduce that H = 1 and $G = K \cong E$.

References

- G.Y. Chen, On the structure of Frobenius groups and 2-Frobenius groups, J. Southwest China Norm. Univ., 20(5)(1995), 485-487.
- [2] G. Y. Chen, L. G. He and J. H. Xu, A new characterization of sporadic simple groups, Ital. J. Pure Appl. Math., 30(2013), 373-392.
- [3] G. Y. Chen and L. G. He, A new characterization of $L_2(q)$ where $q = p^n < 125$ Ital. J. Pure Appl. math., **38**(2011), 125-134.

- [4] G. Y. Chen and L. G. He, A new characterization o simple K_4 -group with type $L_2(p)$ Adv. Math. (China) 2012, doi: 10.11845/sxjz.165b.
- [5] H. Deng and W. J. Shi, *The characterization of Ree Groups* ${}^{2}F_{4}(q)$ by their element orders, J. Algebra, **217**(1999), 180-187.
- [6] B. Ebrahimzadeh., A. Iranmanesh., A. Tehranian and H. Parvizi Mosaed, A characterization of the suzuki groups by order and the largest elements order, J. Sci. Islam. Repub. Iran, 27(4)(2016), 353-355.
- [7] B. Ebrahimzadeh, R. Mohammadyari, A new characterization of projective special unitary groups PSU₃(3ⁿ), Discuss; Math. Gen. Algebra Appl., 39 (2019), 35-41.
- [8] B. Ebrahimzadeh, M. Y. Sadeghi, A. Iranmanesh, A. Tehranian, A new characterization of symplectics groups PSP(8, q), An. Ştiint. Univ. Al. I. Cuza laşi. Mat. (N.S.), 66, (1)(2020), 93-99.
- [9] B. Ebrahimzadeh, R. Mohammadyari, M. Y. Sadeghi, A new characterization of simple groups $C_4(q)$ by its order and the largest order of elements, Acta. Comment. Univ. Tartu. Math., **23**(2)(2019), 283-290.
- [10] B. Ebrahimzadeh, Recognition of the simple groups ${}^{2}D_{8}(2^{n})^{2})$ by its order and the largest order of elements, An. Univ. Vest Timiş. Ser. Mat.-Inform., **2**(2019), 1-8.
- [11] B. Ebrahimzadeh, A. R. Khalili Asboei, A characterization of symplectic groups related to Fermat primes, Comment. Math. Univ. Carolin., 62, (1)(2021), 33-40.
- [12] B. Ebrahimzadeh, A new characterization of simple groups ${}^{2}D_{n}(3)$, Trans. Issue Math. Azerbaijan Natl. Acad. Sci., **41**(4)(2021), 57-62.
- [13] B. Ebrahimzadeh, B. Azizi, A characterization of projective special linear groups PSL(5,2) and PSL(4,5), An. Ştiint. Univ. Al. I. Cuza laşi. Mat. (N.S.), 68(1)(2022), 133-140.
- [14] B. Ebrahimzadeh, On the Suzuki Groups, Asian Journal of Pure and Applied Mathematics, 3, no.1, (2021), 67-71. A characterization of the suzuki groups by order and the largest elements order, J. Sci., Islam. Rep. Iran, 27(4)(2016), 353-355.
- [15] D. Gorenstein, *Finite groups*, Harper and Row, New York, (1980).

- [16] L. G. He, G. Y. Chen, A new characterization of $L_3(q)$ $(q \le 8)$ and $U_3(q)$ $(q \le 11)$, J. Southwest Univ. (Nat. Sci. Ed.), **27**(33)(2011), 81-87.
- [17] G. Higman, *Finite groups in which every element has prime power order*, J. London. Math. Soc., **32**(1957), 335-342.
- [18] W. M. Kantor and A. Seress, Large element orders and the characteristic of Lie-type simple groups, J. Algebra., 322(3)(2009), 802-832.
- [19] A. S. Kondrat'ev, Prime graph components of finite simple groups, Math. Sbornik, 67(1)(1990), 235-247.
- [20] J. Li, W. J. Shi and D. Yu, A characterization of some PGL(2, q) by maximum element orders, Bull. Korean Math. Soc., **322**(2009), 802-832.
- [21] W. J. Shi, Pure quantitative characterization of each finite simples groups, J. PROG. NAT. Sci., 4(3)(1994), 316-32.
- [22] A. V. Vasilev, M. A. Grechkoseerva and V. D. Mazurrov, *Characterization of finite simple groups bye sepecrum and order*, J. Algebra Logic, 48(6)(2009), 385-409.
- [23] J. S. Williams, Prime graph components of finite groups, J. Algebra, 69(2)(1981), 487-513.
- [24] A. V. Zavarnitsine, *Recognition of the simple groups* L₃(q) by element orders, J. Group Theory, 7(1)(2004), 81-97.