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Abstract

If K is a non-empty bounded subset of a metric space (X,d) and z €
X, a sequence {k,} in K is called a maximizing sequence for z in K if
ILm d(z,k,) = sup{d(x,k) : k € K}. Apoint k, € K is called a farthest
goiroli to xin K if d(z, k,) = sup{d(z, k) : k € K}. There are some types of
sets connected with the concept of maximizing sequences. These sets have
played a very significant role in giving some partial affirmative answers to
one of the most interesting and hitherto unsolved problem in the theory of
farthest points : If every point of a normed linear space X admits a unique
farthest point in a given bounded set K in X, then must K be a singleton?
Moreover these sets have been very useful in proving many results on the
existence and uniqueness of farthest point and in proving the continuity of the
farthest point map. This paper deals with some such sets which are related to
maximizing sequences, their inter-relationships and their applications in the
theory of farthest points. The underlying spaces are metric spaces.

Keywords and phrases: Maximizing sequence, remotal set, uniquely remotal set, nearly com-

pact set.
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1 Introduction

For a non-empty bounded subset K of a metric space (X, d) and x € X, asequence
{kn} in K is called a maximizing sequence for z if nh—>Holo d(z,ky) = 0(z, K) =
sup{d(z,k) : k € K}. A point k, € K is called a farthest point to z if d(z, k,) =
d(z, K). There are some types of sets connected with the concept of maximizing
sequences which are known in the literature. One such type of set is M -compact
set introduced in normed linear spaces by Vlasov [25]. M-compact sets have been
utilized in giving partial affirmative answers to one of the most interesting and
hitherto unsolved problem (see [3], [S]-[7], [12], [15], [16], [18]-[24], [26] and
references cited therein) in the theory of farthest points (known as farthest point
problem-FPP): If every point of a normed linear space X admits a unique farthest
point in a given bounded set K in X then must K be a singleton?

Many researchers have studied M-compact sets and their applications in the
theory of farthest points when the underlying spaces are normed linear spaces (see
[6], [12], [18], [20] and [25]). Only a few of them have taken up this study in
more abstract spaces (see [7], [14]-[16] and [24]). One of the natural ways of de-
velopment in mathematical research is to refine the framework of existing results
and to see which of the results available in normed linear spaces survive in more
abstract spaces. Many times, metric is a natural measure of the error while norm
is not suitable. With this in mind, we have taken up the study of M -compact sets
and their variants in the theory of farthest points in metric spaces. It may be re-
marked that farthest points have applications in the study of extremal structure of
sets, characterization of weakly compact sets, characterization of strictly convex
Banach spaces and inner product spaces and in finding the deviation of sets. They
are important building blocks of convex sets which are extensively applied in pro-
gramming (see [12], [23]).

In this paper, we shall study M -compact sets and some variants of M -compact
sets, also study their inter-relationships and their applications in the theory of far-
thest points. The underlying spaces are metric spaces.

2 Definitions, notations and preliminaries

In this section, we give some definitions, notations and related facts. We start with
few definitions. The notations and definitions not given here, can be found in the
respective cited references.

A non-empty bounded subset K of a metric space (X, d) is said to be:
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(i) M-compact [25] or A — compact [6] or nearly compact [2] if for any x € X,
every maximizing sequence {k,} in K has a convergent subsequence in K,

(ii) nearly Cauchy set [2] if for any = € X, every maximizing sequence {k, } in
K is a Cauchy sequence,

(iii) strongly nearly compact [17] if for any z € X, every maximizing sequence
{kn} in K is convergent in K,

(iv) remotal (see [12]) if each z € X has a farthest point in K,

(v) uniquely remotal (see [12]) if each x € X has a unique farthest point in K.

For a remotal subset K of X, the multivalued mapping Fi taking each x € X
to its set of farthest points Fx(x) = {k € K : d(x,k) = §(z, K)} is called
farthest point map or metric anti projection (see [12]). The map is single-valued
for uniquely remotal sets. The number §(z, K) is called the deviation of K from
x. It is the farthest distance of x from K. This farthest distance of x from K may
or may not be attained by an element of K. If the distance is attained, then the
collection of all such points of K is the set Fx(x). The collection of all points
of K for which the farthest distance of x from K is attained for some x € X is
denoted by Far(K), i.e., Far(K) = ngFK(:n)

A center (or Chebyshev center) of a bounded non-empty set K in a metric
space (X,d) is an element z, € X for which sup d(z,,y) = inf sup d(z,y)
yeK zeX yeK
= r(K). The collection of all centers of K is denoted by F(K). The space X is
said to admit centers (see [12]) if for every bounded non-empty set K in X, the set
E(K) is nonempty. The set K is said to be centerable if r(K) = 3 diam K.

A metric space (X, d) is said to be:

(i) externally convex (see [24]) if for all distinct points x,y € X such that
d(xz,y) = Xand r > ), there exists a unique z € X such that d(z,y) +
d(y,z) =d(z,z) =r,

(i1) a linear metric space (see [24]) if (a) X is a linear space (b) addition and
scalar multiplication in X are continuous and (c) d is translation invariant,
ie,d(x+z,y+z) =d(x,y) forall z,y, = € X. A complete locally convex
linear metric space is called a Frechet space (see [24]).

Let (X, d) be a metric space. A mapping W : X x X x [0,1] — X is said to
be a convex structure on X if forall z,y € X and A € [0, 1],

d(u, W(z,y,\)) < Ad(u,x) + (1 — N)d(u,y)
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holds for all u € X. A metric space (X, d) together with a convex structure W is
called a convex metric space(see [23]).

A normed linear space X is said to be strictly convex (see [16]) if || 23| < 1
whenever z,y € X, ||z|| =1, |ly]| = 1 and = # y.

Throughout this article, K or cl(K) denotes closure of the set K and conv(K)
denotes convex hull of K.

Remark 2.1. In normed linear spaces, the notion of M —compact sets was intro-
duced by Viasov in [25] and was called \ — compact by Blatter [6]. They used this
concept in proving some results on the existence and uniqueness of farthest points,
in proving continuity of the farthest point map and in giving some partial answers
to the FPP in the theory of farthest points. This notion was extended to metric
spaces under the name ‘nearly compact’ in [2] wherein the existence of farthest
points was discussed. M —compact sets are important in the theory of farthest
points as such sets are always remotal. (Theorem 3.1) All compact sets are M -
compact but the converse is not true. An M-compact set need not even be closed.
The study of remotal and uniquely remotal sets has attracted many researchers due

to their connection to the geometry of Banach spaces (see [19]).

Example 2.1. Let X = {(z,y) : 22 +¢y> <1} CR% K = X \ {(0,0)}. Then,
K is M-compact but not compact (see [2]).

Example 2.2. [18] In the 2-dimensional Euclidean space R?, the set K consisting
of open unit square together with its corners is remotal. This set is not compact. It
is not even closed.

Whereas every singleton set is uniquely remotal, the following example shows
that converse is not true.

Example 2.3. [15] Let X = R\ {0} with the usual metric d defined by d(x,y) =
|z —y| and K = [—1,1]\ {0}. Then, the set K is a uniquely remotal set but is not
a singleton.

A remotal set need not be uniquely remotal, as shown by the following exam-
ple.
Example 2.4. [22] Let X = R? with the usual metric and K = {(x,0) : —1 <
x < 0}. Here F(p) = {(—1,0),(0,0)}, where p = (—%,y),y € R. It is easy to
see that each point of R? \ {(—3,y) : y € R} has unique farthest point in K. The

set K is remotal but not uniquely remotal.
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M -compact sets have also been used in the study of Chebyshev centers. It is
easy to see [18] that if A is M-compact, then A is M-compact but converse is not
true. It is known (see [21], [24]) that converse is true if the space is a strictly convex
normed linear space (or an externally convex metric space) and A is also uniquely
remotal. It is proved in [24] that if A is uniquely remotal M -compact subset of a
metric space (X, d), then A is uniquely remotal. Moreover, (see [21], [24]) if A is
uniquely remotal M -compact subset of a normed linear space (or a convex metric
space) X, then the derived set A is either empty or Ais uniquely remotal and M-
compact. Further, if A is uniquely remotal and M-compact subset of a Banach
space X and Ais compact, then A is a singleton. Using the result (see [20]) that
in a Banach space X if A is bounded centerable M -compact subset containing its
Chebyshev center, then A attains its diameter. The following characterization of
strictly convex Banach spaces was proved in [20]:

A Banach space X is strictly convex if and only if every bounded centerable
M-compact subset A of X which contains its Chebyshev center is CCNF (Cheby-
shev center not in Far(A)).

Remark 2.2. The notion of nearly compact sets is analogous to the notion of ap-
proximatively compact sets, introduced by Efimov and Steckin [9] while dealing
with two outstanding and hitherto unsolved problems in the theory of best approx-
imation, viz., proving the convexity of Chebyshev sets in a Hilbert space, and of
characterizing those Banach spaces in which every Chebyshev set is convex (see
[13]). Approximatively compact sets played a vital role in proving many results in
the theory of best approximation and in giving partial affirmative answers to the
problem of convexity of Chebyshev sets (which is so closely related to the FPP that
in a Hilbert space, the solution of one will lead to a solution of the other- see [11],

[13]).

Remark 2.3. The notion of nearly Cauchy set (which is analogous to the notion
of approximatively Cauchy set introduced in [1]) was introduced in [2] wherein
relationships between nearly compact sets and nearly Cauchy sets were discussed,

and existence of farthest points was proved for complete nearly Cauchy sets.

Remark 2.4. The notion of strongly nearly compact set is analogous to the notion
of strongly approximative compact sets. Strongly approximative compact sets were
introduced and discussed in Banach spaces by Bandyopadhyay et al. [4], and in

metric spaces by Narang and Gupta [17], wherein a variety of results were proved
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in the theory of nearest points. It is easy to see that, a complete nearly Cauchy set

is strongly nearly compact.

3 Main results

Before proving our main results, we briefly survey some known results related to
the definitions of Section 2. The following theorem on the existence of farthest
points was proved for metric spaces in [2]. For Banach spaces, this result was
proved by Blatter [6].

Theorem 3.1. A nearly compact set in a metric space is remotal.

Since a complete nearly Cauchy set is nearly compact, we have the following
corollary:

Corollary 3.1. [2] A complete nearly Cauchy set in a metric space is remotal.

Since a closed subset of a complete metric space is complete, we have the
following corollary:

Corollary 3.2. [2] A closed nearly Cauchy set in a complete metric space is remo-
tal.

Blatter [6] proved that in a Banach space, a nearly compact uniquely remotal
set supports a continuous farthest point map. This result was extended to metric
spaces in [14].

Theorem 3.2. If K is nearly compact and uniquely remotal subset of a metric

space (X, d), then the farthest point map F is continuous.

Remark 3.1. If K is nearly compact subset of a metric space (X,d), then the

set-valued farthest point map F' is upper semi continuous (see [14]).

Remark 3.2. Blatter [6] has shown that if K is nearly compact uniquely remotal
subset of a Banach space X, then K is singleton. This result is not true in a metric
space as shown by the following example. (The result is not true even in a linear

metric space-see[7]).

Example 3.1. [16] Let X = R\ {0} with the usual metric. Take K = [—1,1]\{0}.

Then, K is nearly compact uniquely remotal set in X but K is not a singleton.
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Infact, Blatter [6] proved the following:

Theorem 3.3. Let K be a non-empty bounded subset of a Banach space X. Then
the following are equivalent:

(i) K is nearly compact uniquely remotal subset of X,

(ii) K is uniquely remotal and the farthest point map is continuous,
(iii) K is remotal and the farthest point map is lower semi-continuous,
(iv) K is a singleton.

The following partial affirmative answer to the FPP was given in [15] for nearly
compact sets:

Theorem 3.4. If K is a totally bounded nearly compact set in a Frechet space
(X, d) and each point of cl(conv K ) admits a unique farthest point in K, then K

is a singleton.

Remark 3.3. For compact subsets of Banach Spaces, this result was proved by
Klee [11]. Can we extend the result to metric spaces?

Using the idea of Chebyshev centers, Panda and Kapoor [18] proved the fol-
lowing:

Theorem 3.5. Let X be a normed linear space admitting centers and K be a
nearly compact uniquely remotal subset of X. Then, K is a singleton.

Remark 3.4. Whether we can prove a similar result in metric spaces remains to

be investigated.

The following affirmative answer to the FPP was given by Astaneh [3]:

Theorem 3.6. Let K be a nearly compact subset of a Hilbert space H. If cl(K)
admits a unique farthest point to the Chebyshev center of K, then K is a singleton.

Now, we discuss our main results. The following theorem gives relationship
among nearly compact, nearly Cauchy and strongly nearly compact sets.
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Theorem 3.7.

(i)

(ii)

Proof.

(i)

Every complete nearly Cauchy set K in a metric space (X,d) is strongly
nearly compact,

The set K is strongly nearly compact if and only if K is nearly compact and
nearly Cauchy set.

(i) Let z € X and {k,} be a maximizing sequence for z in K, i..,
li_)m d(z,ky,) = d(z, K). Since, K is nearly Cauchy, {k,} is a Cauchy
:eqfloence in K. Since K is complete, {k,,} converges to some k, € K, and
hence K is strongly nearly compact.

Suppose K is strongly nearly compact. Then, K is nearly compact and
nearly Cauchy set by the definitions. Conversely, suppose K is nearly Cauchy
and nearly compact. Let x € X and {k,} be a maximizing sequence for x
in K ie. nli_{god(x, kn) = 6(x, K). Since K is nearly Cauchy, {k,} is a
Cauchy sequence in K. Since, K is nearly compact, {k, } has subsequence
{kn, } such that {k,,,} — k, € K. Now, using the well known result that if a
Cauchy sequence has a convergent subsequence, then the Cauchy sequence
itself is convergent, we obtain {k,} — k, € K. Hence, K is strongly nearly
compact.

O

Since a closed subset of a complete metric space is complete, we obtain the fol-
lowing:

Corollary 3.3. A closed nearly Cauchy set in a complete metric space is strongly

nearly compact.

For nearly Cauchy sets, we have the following theorem:

Theorem 3.8. A closed (complete) nearly Cauchy set in a complete metric space

(metric space) is uniquely remotal.

Proof. Let K be a closed nearly Cauchy set in a complete metric space (X, d).

Then, by Corollary 3.2, K is remotal. Suppose, for some = € X, there exists
y1,y2 € K such that y; # y2 and d(z,y1) = d(z, K) = d(z,y2). Consider the
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sequence {k,, } such that ko, = y1 and ko, 1 = y2. Then, d(z, k,,) = 6(x, K) for
all n and so lim d(z,ky) = d(z, K) i.e. {k,} is a maximizing sequence for z in
K. Since yln; Ogjg, {k,} is not a Cauchy sequence. But this contradicts that K is
nearly Cauchy. Hence y; = y2 and consequently, K is uniquely remotal. O

For nearly compact uniquely remotal sets, we have the following:

Theorem 3.9. A nearly compact uniquely remotal subset of a metric space is

strongly nearly compact.

Proof. Let K be a nearly compact uniquely remotal subset of a metric space
(X,d),z € X and {k,,} be a maximizing sequence for x in K, i.e., nh_g)lod(x, k) =
d(z, K). Since, K is nearly compact {k,} has a subsequence {k,,} — k, € K.
Then, d(z, k,) = d(x, K) i.e. k, € K is a farthest point to = in K. We claim that
every subsequence of {k;, } also converges to k,. Suppose {k,, } has a subsequence
{ky,} such that {k,,} — k* € K. Then, d(z,k*) = nh_>n010 d(z, ky,) = 0(z, K),
i.e., k* is also a farthest point to = in K. Since, K is uniquely remotal, k* = k,.
Therefore, every subsequence of {k,} converges to k, and so {k,} — k, € K.
Hence, K is strongly nearly compact. O

For strongly nearly compact sets, we have the following:

Theorem 3.10. Every strongly nearly compact set in a metric space is uniquely

remotal.

Proof. Let K be a strongly nearly compact subset of a metric space (X, d). Then,
K is nearly compact, and hence remotal by Theorem 3.1. Suppose for some
x € X, there are two different farthest points to x in K, say ko, k* i.e. d(z, ko) =
d(z,K) = d(z,k*). Consider the sequence {k,} in K such that ks, = ko,
kan41 = k*. Then, {k, } is maximizing sequence for = in K. Since k, # k*, {ky}
is not convergent in K as it is not a Cauchy sequence, which is a contradiction.
Therefore, k, = k*, and so K is uniquely remotal. O

From Theorems 3.9 and 3.10, we obtain that strongly nearly compact sets are
precisely those which are nearly compact and uniquely remotal.
Applying Theorem 3.7(i), we have the following:

Corollary 3.4. Every complete nearly Cauchy set in a metric space is uniquely

remotal.
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Applying Theorem 3.2, we obtain the following:

Corollary 3.5. If K is strongly nearly compact subset of a metric space (X,d),
then the farthest point map Fi is continuous.

For Banach spaces, Corollary 3.5 was proved in [10]. Whether its converse
holds is not known. The answer appears to be in negative even for Banach spaces
(see [10]). The converse holds for the Banach spaces whose norms are sufficiently
well behaved, i.e., those Banach spaces for which the norms of X and of the con-
jugate space X * are both Frechet differentiable (see Corollary 3.5 [10]).

Applying Theorem 3.7(i), we obtain the following corollary:

Corollary 3.6. If K is complete nearly Cauchy set in a metric space (X, d), then
the farthest point map F is continuous.

For complete metric spaces, we have

Theorem 3.11. Let (X,d) be a complete metric space. Then, the following are

equivalent:

(i) Every bounded closed subset K of X is a nearly compact uniquely remotal

set.

(ii) For every bounded closed subset K of X and x € X, every maximizing
sequence {ky,} in K is a Cauchy sequence.

Proof. (i) = (i) Let x € X and {k,} be a maximizing sequence for x in K,
ie., le d(x,k,) = 6(x, K). Since K is nearly compact, {k, } has a subsequence
{knﬁ i>o ko, € K. Then, d(x,k,) = 0(z, K), and so k, € Fg(x). We claim that,
every subsequence of {k,, } also converges to k,. Suppose {ky, } is a subsequence of
{ky} such that k,,, — k, € K, ko # ko. Then d(z, k,) = lim d(z, kn,) = 0(z, K)
and so 14;0 € Fg(x). Since, K is uniquely remotal, k/o = k,, a contradiction.
Therefore, every subsequence of {k,} converges to k, € K, and hence {k,} —
ko, € K i.e. {ky} is a convergent sequence, and so is a Cauchy sequence.

(73) = (i) Let x € X and {k,} be a maximizing sequence for = in K. Then,
by the hypothesis, {ky, } is a Cauchy sequence. Since, K being closed, is complete,
{kn} — ko, € K, and therefore, K is nearly compact. Now we show that K is
uniquely remotal. Suppose for some, = € X, there exist k1, ke € Fr(x), ki1 # ko.



On sets related to maximizing sequences 63

Then, d(x, k1) = §(z, K) = d(z, k2). Consider the sequence {k, } in K such that
kon = k1 and ko1 = ko. Then, {k,, } is a maximizing sequence for z in K. Since
k1 # ko, {kn} is not a Cauchy sequence, a contradiction. Therefore, k; = k2, and
hence K is uniquely remotal. O

Theorem 3.11 can be restated as:

Theorem 3.12. Let (X, d) be a complete metric space. Then, the following are
equivalent:

(i) Every bounded closed subset of X, is nearly compact uniquely remotal set.

(i) Every bounded closed subset of X is nearly Cauchy set.

Since strongly nearly compact set is nearly compact and uniquely remotal,
from the proof of above theorem we obtain:

Corollary 3.7. Let (X,d) be a complete metric space. Then, the following are
equivalent:

(i) Every bounded closed subset of X is strongly nearly compact uniquely re-

motal set.
(ii) Every bounded closed subset of X is nearly Cauchy set.

Remark 3.5. From the proof of the Theorem 3.11 (i) = (it) part, we observe that
a nearly compact uniquely remotal set is strongly nearly compact.

Remark 3.6. For Banach spaces, Theorem 3.11 was proved by Fitzpatrick [10].

Remark 3.7. For a bounded subset K of X and x € X, we say that, the problem of
farthest points max(x, K) is well posed if it has a unique solution k,(z) € K and
every maximizing sequence {k,} in K converges to k,(z) (see [8]). Some results
on the well posedness of the problem max(x, K) are known in the literature (see
[8], [23]). It follows from the above discussion that, the problem max(x, K) is
well posed if K is strongly nearly compact or K is complete nearly Cauchy set.

Conclusion: Most of the literature available in the theory of farthest points is
either in Hilbert spaces or in normed linear spaces. The construction of the farthest
point theory in more abstract spaces is challenging. Although, some attempts have
been made in this direction by few researchers (viz.; [2], [12], [14]-[16], [22]-[24]
and references cited therein), but much remains to be done.
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The aim of this paper is twofold, first to discuss M -compact sets and some
of its variants which are related to maximizing sequences, their inter relationships
and applications to the farthest point theory, secondly, to see which of the results
available in normed linear spaces on these topics survive in metric spaces.

Acknowledgement: The authors are thankful to the two anonymous learned refer-
ees for their critical comments and very useful suggestions leading to an improve-
ment of the paper.
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