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Abstract

This paper deals with the existence of solutions of nonlinear implicit
fractional integrodifferential equations with infinite delay. The results are
obtained by using the fractional calculus, measure of noncompactness and
Darbo’s fixed point theorem. To illustrate the theory, controllability problem
is studied for the fractional delay equation.

1 Introduction

Many mathematical models in the fields of science and engineering involve frac-
tional derivatives and they are expressed in terms of fractional differential equa-
tions. Nowadays the subject has been gaining much importance and attention
among researchers. Fractional order models incorporate implicitly memory effects
that are difficult to describe using classical calculus. We motivate the paper by pro-
viding a model from population dynamics. For the basic theory and applications
of fractional differential equations, one can refer [5, 20, 22].
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The Volterra model for population growth of a species within a closed system is
characterized by a nonlinear fractional integrodifferential equation of the form [25]

CDαu(t) = au(t)− bu2(t)− cu(t)

∫ t

0
u(s)ds, (1.1)

u(0) = u0, (1.2)

where CDα is the Caputo fractional derivative of order 0 < α < 1, u(t) is the
scaled population of identical individuals, t denotes the time, a > 0 is the birth rate
coefficient, b > 0 is the crowding coefficient, and c > 0 is the toxicity coefficient.
The last integral term represents the effect of toxin accumulation on the species.
There are many variations of this model studied by several researchers [29, 30].

Delay is very often encountered in many real world problems and there has
been widespread interest in the study of delay differential equations for many
years. Several papers have been devoted to the study of existence results for in-
teger order delay differential equations. Differential equations and integrodifferen-
tial equations with infinite delays are studied by many authors [3, 4, 6, 13, 14, 19].
In recent years, fractional delay differential and integrodifferential equations be-
gin to arouse the attention of many researchers due to their applications in various
fields [12, 26–28]. However very few papers are appeared for fractional integrod-
ifferential equations with infinite delays. These types of equations with integer
derivative occur in the study of viscoelastic materials, population dynamics, wave
propagation in dissipative materials with memory and many other physical phe-
nomena [14]. So it is natural and interesting to extend the study for the models
with fractional derivatives [1, 24]. In this paper we discuss the existence of solu-
tions of implicit fractional integrodifferential equations with infinite delay by using
the measure of noncompactness of a set and the Darbo fixed point theorem and ap-
ply the method to the controllability problem for the similar class of equations.

2 Preliminaries

Let us recall some basic definitions from fractional calculus [5, 20].

Definition 2.1. The Riemann-Liouville fractional integral of a function f ∈ L1

([a, b]) of order α > 0 is defined as

Iαf(t) =
1

Γ(α)

∫ t

a
(t− s)α−1f(s)ds, (2.1)
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provided the integral exists.

Definition 2.2. The Caputo fractional derivative of order n−1 < α ≤ n is defined
as

CDαf(t) =
1

Γ(n− α)

∫ t

a
(t− s)n−α−1f (n)(s)ds, (2.2)

where the function f(t) has absolutely continuous derivatives up to order (n− 1).
In particular, if 0 < α ≤ 1,

CDαf(t) =
1

Γ(1− α)

∫ t

a

f ′(s)

(t− s)α
ds, (2.3)

where f ′(s) = Df(s) = df(s)
ds .

The following property is used in this paper for proving the existence results

Iα CDαf(t) = f(t)− f(a), 0 < α < 1. (2.4)

Next we introduce the concepts of measure of noncompactness of a set, the modu-
lus of continuity of functions and the Darbo fixed point theorem.

Definition 2.3. [23] Let (X, ∥.∥) be a Banach space and E be a bounded subset of
X . Then, the measure of noncompactness of a set E is defined by µ(E)=inf{r >

0; E can be covered by a finite number of balls whose radii are smaller than r}.

For the space of continuous functions Cn[t0, t1] with norm

∥x∥ = max{|xi(t)| : i = 1, 2, . . . , n, t ∈ [t0, t1]},

the measure of noncompactness of a set E is given by

µ(E) =
1

2
ω0(E)

.
=

1

2
lim

h→0+
ω(E, h), (2.5)

where ω(E, h) is the common modulus of continuity of the function which belong
to the set E, that is

ω(E, h) = sup
x∈E

[sup |x(t)− x(s)| : |t− s| ≤ h] (2.6)
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and for the space of continuously differentiable functions C1
n[t0, t1] with norm

∥x∥C1
n
= ∥x∥Cn + ∥Dx∥Cn ,

we have

µ(E) =
1

2
ω0(DE),

where DE = {Dx : x ∈ E}. Introduce the space Cα
n [t0, t1] =

{
x : CDαx ∈

Cn andx ∈ C1
n

}
with the norm

∥x∥
Cα
n
= ∥x∥Cn + ∥CDαx∥Cn .

This space is a Banach space under the above norm (see [5]). Then the measure of
noncompactness of a set E is given by

µ(E) =
1

2
ω0(

CDαE),

where CDαE = {CDαx : x ∈ E}.
Now we state the fixed point theorem due to Darbo [16] as:

Theorem 2.1. If S is a nonempty bounded closed convex subset of X and P : S →
S is a continuous mapping such that for any set E ⊂ S, we have

µ(PE) ≤ kµ(E),

where k is a constant such that 0 ≤ k < 1, then P has a fixed point.

3 Basic assumptions

Consider the following nonlinear fractional delay integrodifferential equations

CDαx(t) = f(t, x(t),CDαx(t)) +

∫ t

−∞
q(t, τ, x(τ))dτ, t ≥ t0 (3.1)

x(t) = ϕ(t), −∞ < t ≤ t0,

where x, f and q are n-vectors and the initial function ϕ(t) is continuous. In the
equation (3.1) the fractional derivative occurs implicitly in the nonlinear function
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f and so we have to use the method introduced by Dacka in [15] to establish the
existence results of (3.1). Let ∆ = {(t, s) : −∞ < s ≤ t ≤ t1}. Assume the
following conditions:

i) The function q : ∆ × Rn → Rn is continuous and there exists a constant
N > 0 such that

|q(t, τ, x(τ))| ≤ N.

ii) For each ϕ ∈ Cn(−∞, t0], the improper Riemann integral

Q(t) = lim
a→∞

∫ t0

−a
q(t, τ, ϕ(τ))dτ

exists and it is continuous on [t0, t1]. Furthermore there exists a constant
K > 0 such that

|Q(t)| ≤ K.

iii) The function f : [t0, t1] × Rn × Rn → Rn is continuous and for every
x, y, ȳ ∈ Rn and t ∈ [t0, t1]

|f(t, x, y)− f(t, x, ȳ)| ≤ k|y − ȳ|

and |f(t, x, y)| ≤ M,

where the constant M > 0 and the constant k is such that 0 ≤ k < 1.

We shall define the solution of (3.1) with initial function ϕ(t) as follows.

Definition 3.1. Any function x(t) defined in the interval (−∞, t1] and satisfy the
following conditions is called as the solution.

a) The function x(t) is continuous in the interval (−∞, t1] and of class Cα
n in

the interval [t0, t1] such that at the point t0 the right side derivative is taken
into account.

b) Equation (3.1) is satisfied by the function x(t) in the interval [t0, t1], where
as on the interval (−∞, t0] the function x(t) = ϕ(t).
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By the condition (ii) the equation (3.1) takes the following form

CDαx(t) = f(t, x(t),CDαx(t)) +Q(t) +

∫ t

t0

q(t, τ, x(τ))dτ, t ≥ t0,

(3.2)

x(t) = ϕ(t), −∞ < t ≤ t0.

Applying the property (2.4) to the equation (3.2) we get

x(t) = ϕ(t0) +
1

Γ(α)

∫ t

t0

(t− s)α−1f(s, x(s),C Dαx(s))ds

+
1

Γ(α)

∫ t

t0

(t− s)α−1Q(s)ds

+
1

Γ(α)

∫ t

t0

(t− s)α−1

∫ s

t0

q(s, τ, x(τ))dτ ds, t ≥ t0, (3.3)

x(t) = ϕ(t), on (−∞, t0].

4 Existence theorem

In this section, we prove an existence theorem for the implicit fractional delay
integrodifferential equations (3.1).

Theorem 4.1. Under the assumptions (i) to (iii), the equation (3.1) has at least
one solution for any initial function ϕ ∈ Cn(−∞, t0].

Proof. Consider the Banach space Cα
n [t0, t1] and in this space the subset

H = {x : x ∈ Cα
n [t0, t1], x(t0) = ϕ(t0)}.

We now define the mapping P : Cα
n [t0, t1] → Cα

n [t0, t1] by the formula

Px(t) = ϕ(t0) +
1

Γ(α)

∫ t

t0

(t− s)α−1f(s, x(s),C Dαx(s))ds

+
1

Γ(α)

∫ t

t0

(t− s)α−1Q(s)ds+
1

Γ(α)

∫ t

t0

(t− s)α−1

∫ s

t0

q(s, τ, x(τ))dτds.

(4.1)
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Further, consider the closed bounded convex set B in H by

B = {x ∈ H : ∥x∥ ≤ N1, ∥CDαx∥ ≤ N2},

where N1 and N2 are positive constants defined by

N1 =
(t1 − t0)

α

Γ(α+ 1)
N2 + |ϕ(t0)|

and
N2 = M +K + (t1 − t0)N.

Since ϕ, f,Q and q are all continuous functions, it follows that P is continuous
and maps B into itself. The functions Px(t) are equicontinuous, since they have
uniformly bounded derivatives. Now we shall find an estimate for the modulus of
continuity of the functions CDαPx(t) for t, s ∈ [t0, t1] as in [15].

|CDαPx(t)−C DαPx(s)| ≤ |Q(t)−Q(s)|

+

∣∣∣∣∫ t

t0

q(t, τ, x(τ))dτ −
∫ s

t0

q(s, τ, x(τ))dτ

∣∣∣∣
+|f(t, x(t),C Dαx(t))− f(s, x(s),C Dαx(s))|

≤ |Q(t)−Q(s)|

+

∣∣∣∣∫ t

t0

q(t, τ, x(τ))dτ −
∫ s

t0

q(t, τ, x(τ))dτ

∣∣∣∣
+

∣∣∣∣∫ s

t0

q(t, τ, x(τ))dτ −
∫ s

t0

q(s, τ, x(τ))dτ

∣∣∣∣
+ | f(t, x(t),C Dαx(t))− f(s, x(s),C Dαx(s)) |

≤ |Q(t)−Q(s)|+
∫ t

s
|q(t, τ, x(τ))|dτ

+

∫ s

t0

|q(t, τ, x(τ))− q(s, τ, x(τ))|dτ

+|f(t, x(t),C Dαx(t))− f(s, x(s),C Dαx(t))|
+ |f(s, x(s),C Dαx(t))− f(s, x(s),C Dαx(s))|.

(4.2)
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The first three terms of the right hand side of (4.2) can be estimated from the above
by β0(|t− s|), where β0 is a nonnegative function such that limh→0+ β0(h) = 0.
The last two terms can be made as k|CDαx(t)−C Dαx(s)|+ β1(|t− s|).

Setting β = β0 + β1, we finally obtain

|CDαPx(t)−C DαPx(s)| ⩽ k|CDαx(t)−C Dαx(s)|+ β(|t− s|).

Hence, we infer that

ω(CDαPx, h) ⩽ kω(CDαx, h) + β(h).

Thus, for any bounded set E ⊂ B ⊂ H, we have

µ(PE) ⩽ kµ(E).

Consequently by the Darbo fixed point theorem, the mapping P has a fixed point
x ∈ Cα

n [t0, t1] such that
x(t) = Px(t).

Clearly the extension of this function to the interval (−∞, t0] by means of the
function ϕ(t) is a solution of the following equation

x(t) = ϕ(t0) +
1

Γ(α)

∫ t

t0

(t− s)α−1f(s, x(s),C Dαx(s))ds

+
1

Γ(α)

∫ t

t0

(t− s)α−1Q(s)ds

+
1

Γ(α)

∫ t

t0

(t− s)α−1

∫ s

t0

q(s, τ, x(τ))dτds, t ≥ t0,

x(t) = ϕ(t), on (−∞, t0].

Hence, the proof is complete.

Remark 4.1. It should be observed that if we assume that the function f and q

satisfy also the Lipschitz condition with respect to x, then the uniqueness of the
solution of equation (3.1) can be established by standard technique.

Remark 4.2. The existence problem for the case α = 1 is studied in [3] and the
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nonlinear function f is independent of ẋ is thoroughly discussed in [13].

Example 4.1. Consider the scalar fractional delay integrodifferential equation

CDαx(t) = sinCDαx(t) +

∫ t

−∞
e−(t−s) 1

1 + x2(s)
ds, t ≥ 0, (4.3)

x(t) = 1, −∞ < t ≤ 0.

Here ϕ(t) = 1, f(t, x(t),CDαx(t)) = sinCDαx(t) and q(t, s, x(s)) = e−(t−s)

1
1+x2(s)

. Note that Q(t) = lima→∞
∫ 0
−a

e−(t−s)

2 ds = e−t

2 and so |Q(t)| < 1
2 . Since

all the conditions of the above theorem are satisfied and hence the equation (4.3)
has a solution.

5 Controllability result

The problem of controllability of linear and nonlinear dynamical systems includ-
ing delay systems in finite dimensional spaces is well established [2, 7, 8, 21]. Re-
cently this problem has been extended to fractional dynamical systems by many
authors [5, 9–11, 17, 18]. Here as an application of the above theory we discuss
the controllability of fractional delay integrodifferential systems by introducing a
control variable in the equation (3.1).

Consider the fractional delay integrodifferential control system of the form

CDαx(t) = B(t, x(t))u(t) + f(t, x(t),CDαx(t))

+

∫ t

−∞
q(t, τ, x(τ))dτ, t0 ≤ t ≤ t1, (5.1)

x(t) = ϕ(t), −∞ < t ≤ t0,

where B is an n × m continuous matrix valued function on [t0, t1] × Rn and
u ∈ Rm.

Definition 5.1. [18] The system (5.1) is said to be controllable on [t0, t1], if for
every ϕ ∈ Cn(−∞, t0] and every x1 ∈ Rn there exists a control function u(t)

defined on [t0, t1] such that the solution of (5.1) satisfies x(t1) = x1.

Define the controllability matrix W by

W (t, x) =

∫ t

t0

B(s, x)B∗(s, x)ds,
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where the star denotes the matrix transpose. Assume that

(iv) there exists a constant L > 0 such that

∥B(t, x)∥ ≤ L for all (t, x) ∈ [t0, t1]×Rn,

and the norm of a continuous matrix valued function is taken as in [2]. Put

p(t, x) = ϕ(t0) +
1

Γ(α)

∫ t

t0

(t− s)α−1
(
Q(s) + f(s, x(s),C Dαx(s))

+

∫ s

t0

q(s, τ, x(τ))dτ
)
ds

Theorem 5.1. Given the system (5.1) with conditions (i) to (iv) and assume that

inf
x∈Cα

n

det W (t, x) > 0.

Then, the system (5.1) is controllable on [t0, t1].

Proof. Let ϕ ∈ Cn(−∞, t0] be an arbitrary initial function. Define the nonlinear
mapping T : Cα

n [t0, t1] → Cα
n [t0, t1] by

Tx(t) = ϕ(t0) +
1

Γ(α)

∫ t

t0

(t− s)α−1[B(s, x(s))u(s) +Q(s)]ds

+
1

Γ(α)

∫ t

t0

(t− s)α−1

(
f(s, x(s),C Dαx(s)) +

∫ s

t0

q(s, τ, x(τ))dτ

)
ds,

(5.2)

where the control u is given by

u(t) = (t1 − t)1−αB∗(t, x)W−1(t1, x)[x1 − p(t1, x)]. (5.3)
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Substituting (5.3) into (5.2), we get

Tx(t)

= ϕ(t0) +
1

Γ(α)

∫ t

t0

(t− s)α−1(t1 − s)1−αB(s, x(s))

B∗(s, x)W−1(t1, x)[x1 − p(t1, x)]ds (5.4)

+
1

Γ(α)

∫ t

t0

(t− s)α−1

(
Q(s) + f(s, x(s),C Dαx(s)) +

∫ s

t0

q(s, τ, x(τ))dτ

)
ds.

Since all the functions involved in the definition of the operator T are continuous,
it is easy to show that T is continuous and maps Cα

n [t0, t1] into itself. Consider the
closed convex subset of Cα

n [t0, t1]:

H = {x : x ∈ Cα
n [t0, t1], ∥x∥ ≤ M1, ∥CDαx(t)∥ ≤ M2},

where M1 and M2 are positive constants defined by

M1 =
(t1 − t0)

α

Γ(α+ 1)
(M3 +K) +M4; M2 = L(t1 − t0)

1−αM3 +M4;

M3 = L sup
x∈Cα

n

∥W−1(t1, x)∥[|x1|+M4];

M4 = |ϕ(t0)|+
(t1 − t0)

α

Γ(α+ 1)
[K +M +N(t1 − t0)].

The operator T maps H into itself. It is easy to see that all the functions Tx with
x ∈ H are equicontinuous, since they have uniformly bounded derivative. By a
similar argument as in the above theorem we can show that

|CDαTx(t)−C DαTx(s)| ⩽ k|CDαx(t)−C Dαx(s)|+ β(|t− s|).

Hence, for any set E ⊂ H , we have µ(TE) ⩽ kµ(E). Consequently, by the Darbo
fixed point theorem, there exists a function x ∈ Cα

n [t0, t1] such that x(t) = Tx(t).

Writing this explicitly and extending the function by the function ϕ on (−∞, t0],
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we get

x(t) = ϕ(t0) +
1

Γ(α)

∫ t

t0

(t− s)α−1[B(s, x(s))u(s) +Q(s)]ds

+
1

Γ(α)

∫ t

t0

(t− s)α−1

(
f(s, x(s),C Dαx(s)) +

∫ s

t0

q(s, τ, x(τ))dτ

)
ds

(5.5)

on [t0, t1] and x(t) = ϕ(t) on (−∞, t0]. Substituting (5.3) into (5.5), it can be
easily shown that x(t1) = x1. Hence, the system (5.1) is controllable on [t0, t1].

Remark 5.1. The controllability problem for the case α = 1 is studied in [2].

Acknowledgement: The author is grateful to the referee for his suggestions that
improved the contents of this paper.
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