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Abstract

The present paper aims to prove the invariance of minimal prime ideals
under higher derivations. Later on, with the help of invariance property of
minimal prime ideals under higher derivations, we establish the ∗-version
of Posner’s second theorem for higher derivations in semiprime rings with
involution ‘∗’.

1 Introduction

Throughout this article, T will be used to designate a semiprime ring with center
Z(T ). “Martindale’s ring of quotient and extended centroid of T will be denoted
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by Q and C, respectively (we refer the reader to [2], for the definitions and related
properties of these objects). For any ϑ, ℓ ∈ T , denote the commutator ϑℓ − ℓϑ by
[ϑ, ℓ]. Recall that a ring T is prime if ϑT ℓ = {0} implies that ϑ = 0 or ℓ = 0, and
T is said to be semiprime if ϑT ϑ = {0} implies that ϑ = 0. Recall that an ideal P
of T is said to be prime if P ̸= T and for ϑ, ℓ ∈ T , ϑT ℓ ⊆ P implies that ϑ ∈ P or
ℓ ∈ P . A prime ideal P of T is minimal if P does not properly include any prime
ideals of T . Let n ≥ 2 be an integer, a ring T is said to be n-torsion free if nϑ = 0
implies ϑ = 0 where ϑ ∈ T . The right annihilator of a set S in T is defined as the
set annr(S) = {r ∈ T | sr = 0 for all s ∈ S}. The left annihilator of a set S in T
is defined in a similar manner as the set annl(S) = {r ∈ T | rs = 0 for all s ∈ S}.
If left annihilator and right annihilator coincide, then it is simply called an anni-
hilator of S. A ring T is of bounded index if there is an integer n > 1 such that
ϑn = 0 whenever ϑ is a nilpotent element of T . The least such positive integer is
called the index of T . A ring without nonzero nilpotent elements is merely a ring
of bounded index 1. A ring is called a reduced ring if it has no nonzero nilpotent
elements. Equivalently, a ring is reduced if it has no nonzero elements with square
zero, that is, ϑ2 = 0 implies ϑ = 0.

An involution is an additive mapping ϑ 7→ ϑ∗ of T such that (i) (ϑℓ)∗ =
ℓ∗ϑ∗ and (ii) (ϑ∗)∗ = ϑ for all ϑ, ℓ ∈ T . A ring equipped with an involution is
referred as ring with involution or a ∗-ring. An element ϑ in a ∗-ring T is said to
be hermitian if ϑ∗ = ϑ and skew-hermitian if ϑ∗ = −ϑ. H(T ) and S(T ) refer
to the set of all hermitian and skew-hermitian elements of T , respectively. The
involution is said to be of the first kind if Z(T ) ⊆ H(T ), otherwise it is said to be
of the second kind. In the later case, S(T ) ∩ Z(T ) ̸= {0} (see [12] for details). A
ring equipped with an involution ∗ is said to be ∗-prime if ϑT ℓ = ϑ∗T ℓ = {0} or
ϑT ℓ = ϑT ℓ∗ = {0} implies that ϑ = 0 or ℓ = 0. It is easy to verify that every
∗-prime ring is a semiprime ring.

An additive mapping f : T → T is said to be centralizing (resp. commut-
ing) on T if [f(ϑ), ϑ] ∈ Z(T ) (resp. [f(ϑ), ϑ] = 0) for all ϑ ∈ T . A map
d : T → T is a derivation of a ring T if d is additive and satisfies the Leib-
niz rule; d(ϑℓ) = d(ϑ)ℓ + ϑd(ℓ), for all ϑ, ℓ ∈ T . An obvious example of a
non-trivial derivation is the usual differentiation on the ring F [ϑ] of polynomials
defined over a field F . For a fixed a ∈ T , define d : T → T by d(ϑ) = [a, ϑ]
for all ϑ ∈ T . The function d so defined can be easily checked to be additive and
d(ϑℓ) = [a, ϑℓ] = ϑ[a, ℓ] + [a, ϑ]ℓ = ϑd(ℓ) + d(ϑ)ℓ for all ϑ, ℓ ∈ T . Thus, d is a
derivation which is called inner derivation of T associated with a and is generally
denoted by Ia. It is obvious to see that every inner derivation on a ring T is a
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derivation. Given a derivation d of T , an ideal I of T is said to be invariant under
d or d-invariant if d(I) ⊆ I . Many authors have analyzed the structure of rings and
the structure of additive mappings in various ways. They have extended the notion
of derivation in numerous directions, such as generalized derivation, Jordan deriva-
tion, higher derivation, etc. In 1957, Posner [26] proved that a prime ring must be
commutative if it possesses a nonzero centralizing derivation. Vukman [28] ex-
tended Posner’s second theorem by showing that if d is a derivation of prime ring
of characteristic not 2 such that [[d(ϑ), ϑ], ϑ] = 0, for all ϑ ∈ T , then d = 0 or T
is commutative.

In [27], Schmidt and Hasse introduced the notion of higher derivation as fol-
lows: let D = (di)i∈N be a family of additive mappings di : T → T . Then D is
said to be a higher derivation on T , if d0(ϑ) = ϑ and dn(ϑℓ) =

∑
i+j=n

di(ϑ)dj(ℓ)

for all ϑ, ℓ ∈ T and for each n ∈ N, where N is the set of all non-negative in-
tegers. On the similar lines, a higher derivation of rank n ≥ 1 on T is defined
as a family of additive mappings, say, (d0, d1, . . . , dn), where d0 is the identity
map on T and dm(ϑℓ) =

∑
i+j=m

di(ϑ)dj(ℓ) for all ϑ, ℓ ∈ T and 1 ≤ m ≤ n. The

above expression can be written as dm(ϑℓ) = dm(ϑ)ℓ+Bm(ϑ, ℓ)+ϑdm(ℓ), where
Bm(ϑ, ℓ) =

∑
i+j=m
i,j≥1

di(ϑ)dj(ℓ). This notation has been used more frequently in this

article. Observe that for n = 1, d1 is just a derivation of T . If z ∈ Z(T ), then
d1(z) ∈ Z(T ). For n = 2, we have

d2(ϑz) = d2(zϑ)

or
d2(ϑ)z + d1(ϑ)d1(z) + ϑd2(z) = d2(z)ϑ+ d1(z)d1(ϑ) + zd2(ϑ)

for all ϑ ∈ T which gives d2(z) ∈ Z(T ). Similarly, di(z) ∈ Z(T ) for all i ∈ N.

In [20], Herstein postulated a conjecture stating that in a semiprime ring T ,
every minimal prime ideal is invariant under any derivation d of T (cf.; [20]). This
classical problem was also brought up by other authors as well. It would be interest-
ing to look at some favourable partial results on this conjecture (see [3,7,10,14] for
details). Krempa [14] proved that in a semiprime algebra over a field of character-
istic 0, all minimal prime ideals are always invariant under derivation. Propositions
1.1 and 1.3 of [10] provides a much deeper result in this direction. The best result
on this conjecture was given by Beidar and Mikhalev [3]. They proved that: let T
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be a ring of bounded index m such that the additive order of every nonzero torsion
element of T , if any, is strictly larger than m. Then all minimal prime ideals of T
are invariant under any derivation of T . In particular, every minimal prime ideal
of a reduced ring is invariant under derivation of the ring. But the above conjec-
ture is not true in general (viz., [6] for counter example). In 2006, Chuang and
Lee [7] proved the following: if the semiprime ring T either satisfies a polynomial
identity or has only countably many elements, then there exists a family {Pα}α∈A
of minimal prime ideals such that

⋂
α∈A Pα = 0 and each Pα is d-invariant for

any derivation d of T . In this direction, Matczuk [22] proved that every minimal
prime ideal P , which has nonzero annihilator of a semiprime ring T is invariant
under any derivation d of T . Very recently, in [19], Lee and Lin generalizes the
Matczuk’s result for arbitrary rings.

Section 3 investigates the invariance property of prime ideals under higher
derivations. In Section 4, we establish ∗-version of Posner’s second theorem for
higher derivations in semiprime rings with involution. Precisely, we prove the fol-
lowing result: let T be a semiprime ring with involution ∗ of first kind and L be
a ∗-ideal of T . Next, let (di)i∈N be a higher derivation of rank T on T such that
[dn(ϑ), ϑ

∗] ∈ Z(T ) for all ϑ ∈ L, n ≤ r. Then either T is a commutative ring or
the center of T is mapped to zero by some linear combination of (di)i∈N”.

2 Preliminaries

In this section, we compile several familiar facts and outcomes that aid us in estab-
lishing our conclusions.

• Z(Q) ∩ T = Z(T ) ( [15], Proposition 14.17).

• The Martindale ring of quotient Q associated with a semiprime ring T is it-
self a semiprime ring ( [13], page 65).

• L, T and Q satisfy the same generalized polynomial identity (GPI) where L
is an ideal of T ( [5]).

• For a prime ring T , its Martindale ring of quotients is itself a prime ring, and
the associated extended centroid C is a field. ( [12], page 22).
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Lemma 2.1. [9, Proposition 1.1] Let T be a semiprime ring and let D = (di)i∈N

represent a higher derivation on T . Then there exists a unique higher derivation
D∗ = (d∗i )i∈N on Q such that d∗n|T = dn for every n ∈ N.

Lemma 2.2. [17, Main Theorem] Let T be a semiprime ring, D be a nonzero
derivation of T and L be a nonzero left ideal of T . If for some positive integers
t0, t1, . . . , tn and for all ϑ ∈ L, the identity [[. . . [[D(ϑt0), ϑt1 ], ϑt2 ], . . .], ϑtn ] = 0

holds, then either D(L) = 0, or both D(L) and D(T )L are contained within
a nonzero central ideal of T . Specifically, if T is a prime ring, then T must be
commutative.

Lemma 2.3. Let T be a semiprime ring. Let M be a minimal prime ideal of T .
Then intersection of the rest of minimal prime ideals of T is the annihilator of M .

Proof. Let A represent the collection of all minimal prime ideals of T . For a
minimal prime ideal M of T , AM denote the set A \ {M}. Now for such a
ideal M of T , we show that ann(M) =

⋂
P∈AM

P . Let
⋂

P∈AM

P = B. Now we

have to show ann(M) = B. Consider M ∩ B. Any element in M ∩ B is in the
intersection of all minimal prime ideals of T . Using the semiprimeness of T , we
get M ∩ B = 0. Now, MB ⊆ M ∩ B = 0. This gives

B ⊆ ann(M). (2.1)

The reverse inclusion is a direct consequence of the inclusion

M(ann(M)) = 0 ⊆ P,

where P is a minimal prime ideal of T different from M . Using primeness of P ,
for every P ∈ AM either M ⊆ P or ann(M) ⊆ P . By the minimality of P ,
M ⊈ P so we have, ann(M) ⊆ P . Since P is arbitrary, it follows that

ann(M) ⊆ B. (2.2)

From (2.1) and (2.2), we get

B = ann(M) =
⋂

P∈AM

P.
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This proves the lemma.

3 Invariance of prime ideals under higher derivations

This section aims to prove the conjecture suggested by Herstein for higher deriva-
tions (viz., [20]). A number of authors have proved the Herstein’s conjecture in
various ways (see [3, 7, 10, 14] for details). Recently, Matczuk [22], proved the
following result:

Theorem 3.1. For a semiprime ring T , any minimal prime ideal P with a nonzero
annihilator is invariant under any derivation d of T .

Additionally, Lee and Lin [19] extended the previously mentioned result to
arbitrary rings. Specifically, they established the following result:

Theorem 3.2. Let P be a prime ideal of a ring T with lT (P) ⊈ P . Then P is
invariant under any derivation of T .

A natural question arises: do the above results hold for higher derivations?
Theorems 3.3 & 3.4 below give affirmative answers.

Theorem 3.3. Let T be a semiprime ring. Then every minimal prime ideal K of T
having nonzero annihilator is invariant under the action of the higher derivation
(di)i∈N of T .

Proof. In a semiprime ring T , it is a well-known fact that the right annihilator of
an ideal J coincides with its left annihilator which we called the annihilator of J
and is denoted by ann(J).
Let A represent the collection of all minimal prime ideals of the ring T . For a
minimal prime ideal K of T , AK denote the set A \ {K}. In view of Lemma 2.3,
we obtain ann(K) =

⋂
P∈AK

P .

Let K be a minimal prime ideal of T such that ann(K) = I ̸= {0}. It is given
that (di)i∈N is higher derivation on T . The proof is carried out using the principle
of mathematical induction on i. When i = 1, the result is a direct consequence of
Theorem 3.1. In the case i = 2, for any q ∈ K and ϑ ∈ I , we have

0 = d2(qϑ)

= d2(q)ϑ+ d1(q)d1(ϑ) + qd2(ϑ).
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On multiplying by t ∈ I from left to the above expression and using the fact that
IK = {0} and d1(K) ⊆ K, we get td2(q)ϑ = 0 for all ϑ, t ∈ I and q ∈ K. This
further gives that

{0} = IT d2(K)T I ⊆ K.

Because K is a prime ideal and I ⊈ K, we can conclude that d2(K) ⊆ K. Hence, K
is invariant under d2.
Let the result holds for all i ≤ k, that is, di(K) ⊆ K for all i ≤ k. Now, for
i = k + 1, and q ∈ K, ϑ ∈ I , we have

0 = dk+1(qϑ)

= dk+1(q)ϑ+ dk(q)d1(ϑ) + · · ·+ d1(q)dk(ϑ) + qdk+1(ϑ).

Again multiply the above relation by t ∈ I from left and using IK = {0} and
di(K) ⊆ K, we conclude that tdk+1(q)ϑ = 0 for all ϑ, t ∈ I and q ∈ K. This
implies that

{0} = IT dk+1(K)T I ⊆ K.

By the primeness of K and I ⊈ K, we obtain dk+1(K) ⊆ K. Hence, K is di-invariant
under higher derivation (di)i∈N of T .

Let P be a prime ideal of a semiprime ring T , satisfying the condition lT (P) ̸=
{0}. Then, it is well-established that the left annihilator of P , denoted by lT (P),
satisfies lT (P) ∩ P = {0}. In particular, we have lT (P) ⊈ P . Building on this
idea, we extend the aforementioned theorem to arbitrary rings in the context of
higher derivation.

Theorem 3.4. Let T be a ring, P a prime ideal of T and lT (P) be left annihilator
of P , with the condition that lT (P) ⊈ P . Then, P is di-invariant under higher
derivation (di)i∈N of T .

Proof. Suppose I = lT (P) = {ϑ ∈ T | ϑp = 0 for all p ∈ P}. Note that I forms
an ideal of T . By the definition of I , for any a ∈ I and p ∈ P , we have ap = 0.

We prove the result by induction on i. For i = 1, d1 is a derivation, so the result
follows from Theorem 3.2. For i = 2, we have

0 = d2(ap)

= d2(a)p+ d1(a)d1(p) + ad2(p)
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for all a ∈ I and p ∈ P. This gives that Iad2(p) = {0} for all a ∈ I and p ∈ P.

Since a ∈ I is arbitrary, we have I2d2(p) = {0}. This can be written as

I2T d2(P) ⊆ P.

Primeness of P and the condition I2 ⊆ I ⊈ P yields that d2(P) ⊆ P. Now,
suppose that the result holds for all i ≤ k, that is, di(P) ⊆ P for all i ≤ k. For
i = k + 1, we have

0 = dk+1(ap)

= dk+1(a)p+ dk(a)d1(p) + · · ·+ d1(a)dk(p) + adk+1(p)

for all a ∈ I and p ∈ P. This implies

Iadk+1(p) = 0

for all a ∈ I and p ∈ P, which further gives

I2T dk+1(P) ⊆ P.

Again by using the primeness of P and the condition I ⊈ P , we conclude that
dk+1(P) ⊆ P. Hence, P is invariant under higher derivation (di)i∈N of T . This
proves the theorem completely.

Using the analogous argument, we may come up with the following:

Corollary 3.1. Let T be a ring and P a prime ideal of T with rT (P) ⊈ P , where
rT (P) is a right annihilator of P . Then, P is di-invariant under higher derivations
(di)i∈N of T .

It is worth noting that in the hypotheses of Theorem 3.4, the condition of
lT (P) ⊈ P is necessary. This is shown by the following example.

Example 3.1. Let T = Q[X] be the ring of polynomials over Q. Consider P =<

x2 + 1 > to be the prime ideal of T . Define d : T −→ T by d(f) = f ′ for all
f ∈ T . Then, it is straightforward to check that d is a derivation on T . Moreover,
if we put d0 = idT (the identity map on T ) and dn(f) =

f (n)

n! for n ≥ 1, f ∈ T ,
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then D = (dn)n∈N is a higher derivation on T . Further, it is easy to see that
lT (P) ⊆ P . However, di(P) ⊈ P for some values of P .

4 Applications

This section focuses on examining the applications of the results established in
the preceding section, including connections to a renowned result established by
Posner [26]. In [26], Posner made groundbreaking contributions to the study of
centralizing and commuting mappings. He proved a fundamental theorem stating
that the presence of a nonzero centralizing derivation in a prime ring ensures the
ring’s commutativity. Further, Lanski [16] used differential identities to extend
Posner’s work in more general setting for Lie ideals. Furthermore, Posner’s sec-
ond theorem has also been generalized in a number of ways and several important
outcomes have already been derived (see for example, [4, 8, 18, 25] for details).

On the other hand, recently Ali and Dar [1] demonstrated the ∗-version of result
established by Posner. Indeed, they proved that if T is a prime ring that is 2-torsion
free and possesses an involution ∗ and d is a nonzero derivation of T such that
[d(ϑ), ϑ∗] ∈ Z(T ) for all ϑ ∈ T , along with the condition d(S(T )∩Z(T )) ̸= {0},
then T is commutative. Further, this result improved in [24, Theorem 3.7] and they
removed the condition d(S(T )∩Z(T )) ̸= {0}. Our next theorem is the ∗-version
of Posner’s second theorem for higher derivations in rings with involution.

Theorem 4.1. Let T be a semiprime ring equipped with an involution ∗ of the first
kind and L be a ∗-ideal of T . Next, let (di)i∈N be a higher derivation of rank
r on T such that [dn(ϑ), ϑ∗] ∈ Z(T ) for all ϑ ∈ L, n ≤ r. Then, either T is
a commutative ring or there exists a linear combination of (di)i∈N that maps the
center of T to zero.

Proof. Under the stated assumption, it holds that

[dn(ϑ), ϑ
∗] ∈ Z(T ) (4.1)

∀ ϑ ∈ L. By applying a linearization to (4.1), it follows that

[dn(ϑ), ℓ
∗] + [dn(ℓ), ϑ

∗] ∈ Z(T ) (4.2)
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∀ ϑ, ℓ ∈ L. Substituting ℓ with ℓh in (4.2), where h ∈ H(T ) ∩ Z(T ), results in

[Bn(ℓ, h) + ℓdn(h), ϑ
∗] ∈ Z(T )

∀ ϑ, ℓ ∈ L, which infer that

[[Bn(ℓ, h) + ℓdn(h), ϑ], t] = 0 (4.3)

∀ ϑ, ℓ, t ∈ L. Since L and Q both satisfy the same generalized polynomial identity,
and as stated in Lemma 2.1, any higher derivation defined on T can be extended
uniquely to a higher derivation on Q. Thus, we can conclude that

[[Bn(ℓ, h) + ℓdn(h), ϑ], t] = 0 (4.4)

for all ϑ, ℓ, t ∈ Q. Let P be a prime ideal of Q with lQ(P) ̸= {0}. Then Q̄ = Q/P
is a prime ring. Utilizing the invariance of prime ideals under higher derivation, we
introduce a family of additive mappings (d̄i)i∈N : Q̄ → Q̄ such that d̄i(q + P) =

di(q) + P for all q ∈ Q. It is easy to check that (d̄i)i∈N is a higher derivation on
Q̄. From (4.4), we conclude that

[[Bn(ℓ̄, h̄) + ℓ̄d̄n(h̄), ϑ̄], t̄] = 0̄

∀ ϑ̄, r̄ ∈ Q̄. This can be reformulated as

[δ(ϑ̄), t̄] = 0̄

∀ ϑ̄, t̄ ∈ Q̄ and h̄ ∈ Z(Q̄), where δ(ϑ̄) = [Bn(ℓ̄, h̄) + ℓ̄d̄n(h̄), ϑ̄] is an inner
derivation for fix ℓ̄ and h̄. Replace r̄ by ϑ̄, we get

[δ(ϑ̄), ϑ̄] = 0̄. (4.5)

Thus, in view of Lemma 2.2, we establish that δ = 0̄ or Q̄ is commutative.
If Q̄ is commutative, then [ϑ̄, ℓ̄] = 0̄ ∀ ϑ̄, ℓ̄ ∈ Q̄. This implies [ϑ, ℓ] ∈ P for all
ϑ, ℓ ∈ Q. Since P represents an arbitrary prime ideal of Q and

⋂
{P | P is a prime

ideal of Q} = {0}, it follows that [ϑ, ℓ] = 0 ∀ ϑ, ℓ ∈ Q. This shows that Q is
commutative, leading to the conclusion that T is commutative. On the other hand,
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if δ = 0̄, then
[Bn(ℓ̄, h̄) + ℓ̄d̄n(h̄), ϑ̄] = 0̄ (4.6)

for all ϑ̄ ∈ Q̄. Substituting the expression for Bn(ℓ̄, h̄) into the preceding equa-
tion, we get

[d̄n−1(ℓ̄)d̄1(h̄) + d̄n−2(ℓ̄)d̄2(h̄) + · · ·+ d̄1(ℓ̄)d̄n−1(h̄) + ℓ̄d̄n(h̄), ϑ̄] = 0̄

∀ ϑ̄ ∈ Q̄. Using the fact d̄i(h̄) ∈ Z(Q̄) for h̄ ∈ Z(Q̄), the above equation reduces
to

[d̄n−1(ℓ̄), ϑ̄]d̄1(h̄) + [d̄n−2(ℓ̄), ϑ̄]d̄2(h̄) + · · ·+ [d̄1(ℓ̄), ϑ̄]d̄n−1(h̄) (4.7)

+ [ℓ̄, ϑ̄]d̄n(h̄) = 0̄

for all ϑ̄ ∈ Q̄. Replacing ϑ̄ by ϑ̄r̄ (where r̄ ∈ Q̄) in (4.7), we obtain

[d̄n−1(ℓ̄), ϑ̄]r̄d̄1(h̄) + [d̄n−2(ℓ̄), ϑ̄]r̄d̄2(h̄) + · · ·+ [d̄1(ℓ̄), ϑ̄]r̄d̄n−1(h̄)

+ [d̄0(ℓ̄), ϑ̄]r̄d̄n(h̄) = 0̄

∀ ϑ̄, r̄ ∈ Q̄. By [21, Corollary, page 444], we conclude that either the set
{
[d̄0(ℓ̄), v̄],

[d̄1(ℓ̄), v̄], . . . , [d̄n−1(ℓ̄), v̄]
}

is linearly dependent or {d̄1(h̄), d̄2(h̄), . . . , d̄n(h̄)} is
linearly dependent over the center C̄ of Q̄.
First, we consider the set

{
d̄1(h̄), d̄2(h̄), . . . , d̄n(h̄)

}
is linearly dependent over C̄,

then there exist scalars φ̄1, γ̄2, . . . , γ̄n ∈ C̄, not all zero such that
n∑

i=1
γ̄id̄i(h̄) = 0̄

or
n∑

i=1
γidi(h) ∈ P . Since P is an arbitrary prime ideal of Q and

⋂
{P | P is a

prime ideal of Q} = {0}, so we have
n∑

i=1
γidi(h) = 0 for all h ∈ Z(T ). That is,

n∑
i=1

γidi(Z(T )) = {0}, which is the required result.

Now, if the set
{
[d̄0(ℓ̄), ϑ̄], [d̄1(ℓ̄), ϑ̄], . . . , [d̄n−1(ℓ̄), ϑ̄]

}
is linearly dependent over

C̄, then there exist scalars φ̄0, φ̄1, φ̄2, . . . , φ̄n−1 ∈ C̄, not all zero, such that

φ̄0[d̄0(ℓ̄), ϑ̄] + φ̄1[d̄1(ℓ̄), ϑ̄] + · · ·+ φ̄n−1[d̄n−1(ℓ̄), ϑ̄] = 0̄.

Assume k to be the highest value of the index such that φ̄k ̸= 0. In this way, the
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concluding expression takes the form

k∑
i=0

φ̄i[d̄i(ℓ̄), ϑ̄] =
k∑

i=0

φ̄iδ
i
d̄i(ℓ̄)

(ϑ̄) = 0̄ ∀ ϑ̄ ∈ Q̄, (4.8)

where δi
d̄i(ℓ̄)

(ϑ̄) = [d̄i(ℓ̄), ϑ̄] for i = 0, 1, . . . , k. Based on equation (4.8), we ob-

serve that the set of derivations
{
δ0
d̄0
(ℓ̄), δ1

d̄1
(ℓ̄), . . . , δk

d̄k
(ℓ̄)

}
satisfies a linear rela-

tion over Q̄ with coefficients in C̄ of length k+1. According to [9, Corollary 1.4],
there are q̄0 = 1̄, q̄1, . . . , q̄k ∈ Q̄ such that

k∑
i=0

q̄k−iδ
i
d̄i(ℓ̄)

= 0̄. (4.9)

Furthermore,

δ0d̄0(ℓ̄) = δq̄1 and δsd̄s(ℓ̄)(t̄) = δq̄s(t̄)−
s−1∑
i=1

q̄iδ
s−i
d̄s−i(ℓ̄)

(t̄) (4.10)

∀ t̄ ∈ Q̄, 2 ≤ s ≤ k. If δ0
d̄0(ℓ̄)

= δq̄1 = [d̄0(ℓ̄), t̄] = [ℓ̄, t̄] = [q̄1, t̄] for all t̄, ℓ̄ ∈ Q̄.

Since ℓ̄ is arbitrarily fixed, so we replace ℓ̄ by t̄, to get [q̄1, t̄] = 0̄ for all t̄ ∈ Q̄.
This gives q̄1 ∈ C̄. The second expression of equation (4.10) can also be written
as

[d̄s(ℓ̄), t̄] = [q̄s, t̄]−
s−1∑
i=1

q̄i[d̄s−i(ℓ̄), t̄] ∀ t̄, ℓ̄ ∈ Q̄. (4.11)

In particular, for ℓ̄ = 1̄ and using d̄k(1̄) = 0̄ for all k ≥ 1, we have [q̄s, t̄] = 0̄ for
all t̄ ∈ Q̄. Thus q̄s ∈ C̄ ∀ 2 ≤ s ≤ k. Hence, when s = k, the second term in
(4.10) simplifies to

δkd̄k(ℓ̄)(t̄) +
k−1∑
i=1

q̄iδ
k−i
d̄k−i(ℓ̄)

(t̄) = 0̄. (4.12)

Combining (4.9) and (4.12), we find that

q̄kδ
0
d̄0(ℓ̄)

(t̄) = 0̄
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for all t̄, ℓ̄ ∈ Q̄. That is,

q̄k[d̄0(ℓ̄), t̄] = 0̄

for all t̄, ℓ̄ ∈ Q̄. As q̄k ∈ C̄, it follows that

0̄ = [d̄0(ℓ̄), t̄]

= [ℓ̄, t̄]

for all t̄, ℓ̄ ∈ Q̄. That is, [ℓ, t] ∈ P for all ℓ, t ∈ Q. Since P is an arbitrary prime
ideal of Q and

⋂
{P | P is a prime ideal of Q} = {0}, it follows that [ℓ, t] = 0 for

all t, ℓ ∈ Q. Thus, Q is commutative and hence T is commutative. This completes
the proof of the theorem.

The necessity of the semiprimeness condition in Theorem 4.1 is established
through the following example.

Example 4.1. Let us consider T = T1 × T2, where T1 =

{[
α β

0 γ

]
| α, β, γ ∈

Q
}

and T2 = Q[X] and let L = L1 × L2, where L1 =

{[
0 β

0 0

]
| β ∈ Q

}
and L2 = Q[X] are ideals of T1 and T2, respectively. The involution Φ on T1

is defined by Φ(N) =

[
γ β

0 α

]
for all N ∈ T1 and the involution Ψ on T2 is

defined by Ψ(f) = f for all f ∈ T2. Let us define involution ∗ on T by setting
(N, f)∗ = (Φ(M),Ψ(f)) for all (N, f) ∈ T . It can be readily verified that T
is not a semiprime ring equipped with an involution ∗ of the first kind. Define

dn : T1 → T1 by d0 = idT1 and dn

([
α β

0 γ

])
=

[
0 α−γ

(n−1)! +
β
n!

0 0

]
, for all

α, β, γ ∈ Q and gn : T2 → T2 by g0 = idT2 and gn(f) =
f (n)

n! , for all f ∈ T2 and
f (n) denotes the nth derivative of f . It is easy to see that (dn)n∈N and (gn)n∈N

are higher derivations of T1 and T2. Next, define Dn : T → T by Dn(N, f) =

(dn(N), gn(f)), where D0 = idT for all (N, f) ∈ T . We can easily check that
(Dn)n∈N is a higher derivation of T . For any element (N, f) ∈ L, the condition
of Theorem 4.1, i.e., [Dn(N, f), (N, f)∗] ∈ Z(T ) is satisfied. However, T is a
noncommutative ring and

∑n
i=1 λiDi(Z(T )) ̸= {0}.
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Theorem 4.1 has several fascinating corollaries, some of which are interesting by
themselves.

Corollary 4.1. Assume that T is a ∗-prime ring with involution ∗ of the first kind,
and let L be a ∗-ideal of T . Next, let (di)i∈N be a higher derivation of rank r

on T such that [dn(ϑ), ϑ∗] ∈ Z(T ) ∀ ϑ ∈ L, n ≤ r. Then one of the following
must hold: either T is a commutative ring, or there exists a linear combination of
(di)i∈N that maps the center of T to zero.

Proof. It is a well-established fact that every ∗-prime ring is also a semiprime ring.
Therefore, the conclusion directly follows from Theorem 4.1.

Corollary 4.2. Let T be a prime ring with involution ∗ of the first kind and L be
a ∗-ideal of T . Next, let (di)i∈N be a higher derivation of rank T on T such that
[dn(ϑ), ϑ

∗] ∈ Z(T ) for all ϑ ∈ L, n ≤ r. Then, either T is a commutative ring or
the center of T is mapped to zero by some linear combination of (di)i∈N.

Corollary 4.3. Let T be a semiprime ring with involution ∗ of the first kind. Next,
let d be a derivation on T such that [d(ϑ), ϑ∗] ∈ Z(T ) for all ϑ ∈ L, where L be
a ∗-ideal of T . Then, either T is a commutative ring or d(Z(T )) = {0}.

Proof. Put n = 1 and d1 = d in previous theorem, we get either T is commutative
or {d(h)}, where h ∈ Z(T ) ⊆ Z(Q) = C is linearly dependent over C which
implies d(h) = 0. Since h ∈ Z(T ) was arbitrary, we get d(Z(T )) = {0}.

Corollary 4.4. Let T be a ∗-prime ring with involution ∗ of the first kind. Next, let
d be a derivation on T such that [d(ϑ), ϑ∗] ∈ Z(T ) for all ϑ ∈ L, where L be a
∗-ideal of T . Then, either T is a commutative ring or d(Z(T )) = {0}.

Corollary 4.5. Let T be a prime ring with involution ∗ of the first kind. Next, let
d be a derivation on T such that [d(ϑ), ϑ∗] ∈ Z(T ) for all ϑ ∈ L, where L be a
∗-ideal of T . Then, either T is a commutative ring or d(Z(T )) = {0}.

5 Conclusion

In conclusion, the present work has successfully demonstrated the invariance prop-
erty of minimal prime ideals under higher derivations. Building upon this crucial
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result, we have extended our investigation to establish the ∗-version of Posner’s
second theorem for higher derivations in semiprime rings equipped with an invo-
lution ∗. This achievement not only advances our comprehension of the intricate
relationship between minimal prime ideals and higher derivations but also provides
valuable perspectives to the domain of ring theory.
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