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Abstract

In this work, the approximation properties of the matrix submethods in
Orlicz spaces are investigated . We obtain some results related to trigonomet-
ric approximation using matrix submethods of partial sums of Fourier series
of functions in Orlicz spaces.The degree of trigonometric approximations by
the matrix methods to the functions have been investigated in Orlicz spaces.
The error of estimations in this work is obtained in more general terms.

1 Introduction and main results

Let T denote the interval [−π, π] , C the complex plane, and Lp(T), 1 ≤ p ≤ ∞,
the Lebesgue space of measurable complex-valued functions on T. A convex and
continuous function M : [0,∞) → [0,∞) which satisfies the conditions

M (0) = 0, M (x) > 0 for x > 0,

lim
x→0

(M (x) /x) = 0; lim
x→∞

(M (x) /x) = ∞

Keywords and phrases: Orlicz spaces, Fourier series, n-th partial sums, summability of Fourier
series, modulus of smoothness, best approximation.
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is called a Young function. We will say that M satisfies the ∆2−condition if
M(2u) ≤ cM(u) for any u ≥ u0 ≥ 0 with some constant c, independent of u.

We can consider a right continuous, monotone increasing function ρ : [0,∞) →
[0,∞) with

ρ (0) = 0; lim
t→∞

ρ (t) = ∞ and ρ (t) > 0 for t > 0,

then the function defined by

N (x) =

|x|∫
0

ρ (t) dt

is called N−function. For a given Young function M , let L̃M (T) denote the set of
all Lebesgue measurable functions f : T → C for which∫

T

M (|f(x)|) dx < ∞.

The N−function complementary to M is defined by

N (y) := max
x≥0

(xy −M (x)) , for y ≥ 0.

Let N be the complementary Young function of M . It is well-known [20, p.
69], [33, pp. 52-68] that the linear span of L̃M (T) equipped with the Orlicz norm

∥f∥LM (T) := sup


∫
T

|f(x)g(x)| dx : g ∈ L̃N (T),
∫
T

N (|g(x)|) dx ≤ 1

 ,

or with the Luxemburg norm

∥f∥∗LM (T) := inf

k > 0 :

∫
T

M

(
|f(x)|
k

)
dx ≤ 1

 ,

becomes a Banach space. This space is denoted by LM (T) and is called an Or-
licz space [20, p. 26]. The Orlicz spaces are known as the generalizations of the
Lebesgue spaces Lp(T), 1 < p < ∞. If M(x) = M(x, p) := xp, 1 < p < ∞,
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then Orlicz spaces LM (T) coindices with the usual Lebesgue spaces Lp(T), 1 <
p < ∞. Note that the Orlicz spaces play an important role in many areas such as
applied mathematics, mechanics, regularity theory, fluid dynamics and statistical
physics (e.g., [2], [4], [26] and [34]). Therefore, investigation of approximation
of functions by means of Fourier trigonometric series in Orlicz spaces is also
important in these areas of research.

The Luxemburg norm is equivalent to the Orlicz norm. The inequalities

∥f∥∗LM (T) ≤ ∥f∥LM (T) ≤ 2 ∥f∥∗LM (T) , f ∈ LM (T)

hold [24, p. 80].
If we choose M(u) = up/p, 1 < p < ∞ then the complementary function is

N(u) = uq/q with 1/p+ 1/q = 1 and we have the relation

p−1/p ∥u∥Lp(T) = ∥u∥∗LM (T) ≤ ∥u∥LM (T) ≤ q1/q ∥u∥Lp(T) ,

where ∥u∥Lp(T) =

(∫
T
|u(x)|p dx

)1/p

stands for the usual norm of the Lp(T) space.

If N is complementary to M in Young’s sense and f ∈ LM (T), g ∈ LN (T)
then the so-called strong Hölder inequalities [24, p. 80]∫

T

|f(x)g(x)| dx ≤ ∥f∥LM (T) ∥g∥
∗
LN (T) ,

∫
T

|f(x)g(x)| dx ≤ ∥f∥∗LM (T) ∥g∥LN (T)

are satisfied.
If we choose M(u) = up/p (1 < p < ∞) then the complementary function

is N(u) = uq/q with 1/p+ 1/q = 1 and we have the relation

p−1/p |u|Lp(T) = ∥u∥∗LM (T) ≤ ∥u∥LM (T) ≤ q1/q ∥u∥Lp(T) ,

where ∥u∥Lp(T) =

(∫
T
|u(x)|p dx

)1/p

denotes the usual norm of the Lp(T)−space.

A N−function M satisfies the ∆2−condition if

lim sup
x→∞

M (2x)

M (x)
< ∞.
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The Orlicz space LM (T ) is reflexive if and only if the N−function M and its
complementary function N both satisfy the ∆2−condition [33, p.113].

Let M−1 : [0,∞) → [0,∞) be the inverse function of the N−function M.
The lower and upper indices αM , βM

αM := lim
t→+∞

− log h(t)

log t
, βM := lim

t→o+
− log h(t)

log t

of the function

h : (0,∞) → (0,∞], h(t) := lim
y→∞

sup
M−1(y)

M−1(ty)
, t > 0

first considered by Matuszewska and Orlicz [24], are called the Boyd indices of
the Orlicz spaces LM (T).

It is known that the indices αM and βM satisfy 0 ≤ αM ≤ βM ≤ 1, αN +
βM = 1, αM +βN = 1 and the space LM (T) is reflexive if and only if 0 < αM ≤
βM < 1. The detailed information about the Boyd indices can be found in [3],
[24], [25] and [33].

Let LM (T) be a Orlicz space. For f ∈ LM (T) we set

(νhf) (x) :=
1

h

h∫
−h

f (x+ t) dt, 0 < h < π, x ∈ T.

By reference [14, Lemma 1], the shift operator νh is a bounded linear operator on
LM (T):

∥νh (f)∥LM (T) ≤ c ∥f∥LM (T) .

The function

ΩM (δ, f) := sup
0<h≤δ

∥f (·)− (νhf)∥LM (T) , δ > 0

is called the modulus of continuity of f ∈ LM (T) .

It can easily be shown that ΩM (·, f) is a continuous, nonnegative and nonde-
creasing function satisfying the conditions

lim
δ→0

ΩM (δ, f) = 0, ΩM (δ, f + g) ≤ ΩM (δ, f) + ΩM (δ, g)
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for f, g ∈ LM (T).
We will use the relation f = O (g) which means that f ≤ cg for a constant

c independent of f and g.

Let f ∈ LM (T) . We define the following class of functions:

ΩM (f, δ) = O (ω(δ)) , δ > 0

where ω is a functions of modulus of continuity type on interval [0, 2π] .That ω is
a nondecreasing continuous function having the following properties : ω (0) =
0, ω (δ1 + δ2) ≤ ω (δ1) + ω (δ2) for any 0 < δ1 ≤ δ2 ≤ δ1 + δ2 ≤ 2π.

Let
a0
2

+
∞∑
k=1

(ak (f) cos kx+ bk (f) sin kx) (1.1)

be the Fourier series of the function f ∈ L1(T), where ak(f) and bk(f) the Fourier
coefficients of the function f . The n-th partial sum of series (1.1) is defined, as

Sn (x, f) : =
a0
2

+
n∑

k=1

(ak (f) cos kx+ bk (f) sin kx) ,

=
a0
2

+
n∑

k=1

Bk(x, f) =
n∑

k=0

Bk(x, f) , B0(x, f) :=
a0
2

,

Bk(x, f) : = (ak (f) cos kx+ bk (f) sin kx) .

If A := (an,k)0≤n,k<∞ be an infinite matrix of real numbers such that

an,k ≥ 0 when k, n = 0, 1, 2, . . . , lim
n→∞

an,k = 0 and
∞∑
k=0

an,k = 1

or A0 := (an,k)0≤k≤n<∞ where

an,k = 0 when k > n.

We define the means of the series (1.1), as

T (A)
n (x, f) :=

∞∑
k=0

an,kSk(x, f)
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T (A0)
n (x, f) :=

n∑
k=0

an,kSk(x, f).

We will use the relation f = O (g) which means that f ≤ cg for a constant
c independent of f and g.

Note that the results obtained in [10], [13], [21] and [36 ] have been gen-
eralized and improved by Łenski and Szal [23]. The results in these studies are
obtained in variable exponent Lebesgue space Lp(x)

2π , p (x) ≥ 1. The general meth-
ods of summability of Fourier series of functions from variable exponent Lebesgue
space L

p(x)
2π , p (x) ≥ 1 have been investigated in study [23]. For estimate of the

error of approximation of functions by the matrix means a modulus of continu-
ity constructed by the Steklov functions of the increments of considered functions
without of absolute values is used. In the present paper, we study the degree of
approximation by the matrix submethods T

(λ)
n (·, f) of the partial sums of their

Fourier series of functions in Orlicz spaces. The results obtained in Orlicz spaces
in this study are analogue to the results obtained in [23] for variable exponent
Lebesgue spaces L

p(x)
2π , p (x) ≥ 1. In addition, in this study we used the proof

method in [23]. Similar problems about approximation properties of the different
sums, constructed according to the Fourier series of given functions in the different
spaces have been investigated by several authors (see, for example, [1], [5–19],
[21-23], [27-32], [35] and [36] ).
Our main results are the followings:
Theorem 1.1. Let LM (T) be a reflexive Orlicz space and the following conditions
hold:

∞∑
k=0

(k + 1)β

∣∣∣∣∣ an,k

(k + 1)β
−

an,k+1

(k + 2)β

∣∣∣∣∣ = O

(
1

n+ 1

)
, β ≥ 0 (1.2)

and

∞∑
k=0

(k + 1) an,k = O (n+ 1) . (1.3)

Then the estimate

∥∥∥T (A)
n (·, f) − f

∥∥∥
LM (T)

= O

(
ΩM

(
f,

1

n+ 1

))
+

n∑
k=0

an,kΩM

(
f,

1

n+ 1

)
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holds.
Theorem 1.2. Let LM (T) be a reflexive Orlicz space and the following conditions
hold:

∞∑
k=0

(k + 1)β

∣∣∣∣∣ an,k

(k + 1)β
−

an,k+1

(k + 2)β

∣∣∣∣∣ = O (an,n) , β ≥ 0 (1.4)

and

(n+ 1) an,n = O (1) . (1.5)

Then the estimate

∥∥∥T (A0)
n (·, f) − f

∥∥∥
LM (T)

= O

(
n∑

k=0

an,kΩM

(
f,

1

k + 1

))
holds.
Theorem 1.3. Let f ∈ Lip(ω,M) and the conditions (1.2) and (1.3) hold. Then,
the estimate ∥∥∥T (A)

n (·, f) − f
∥∥∥
LM (T)

= O

(
ω

(
1

n+ 1

))
holds.
Theorem 1.4. Let f ∈ Lip(ω,M). If the conditions (1.4) and (1.5) hold, then the
estimate ∥∥∥T (A0)

n (·, f) − f
∥∥∥
LM (T)

= O

(
ω

(
1

n+ 1

))
holds.

2 Auxiliary results

In the proof of the main result we need the following Lemmas:
Lemma 2.1. [23] Let β ≥ 0 and 0 < t ≤ π. Then the inequality∣∣∣∣∣

∞∑
k=0

(k + 1)β
sin (2l−1)t

2

2 sin t
2

∣∣∣∣∣ ≤ π2 (n+ 1)β

t2

holds.
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Lemma 2.2.[23] If the conditions (1.2 ) and (1.3 ) hold, then the estimate

1

2π

∫ π

−π

∣∣∣∣∣
∞∑
k=0

an,k

k∑
ν=0

lν cos νt

∣∣∣∣∣ dt = O (1) ,

holds, where lν =

{
1, when ν = 0,
π

4 sin π
8
, when ν > 0.

Lemma 2.3. Let LM (T) be a reflexive Orlicz space . Then, for an arbitrary
measurable function f (x, y) defined on T× T, the following inequality holds:∥∥∥∥∫

T
f (·, y)

∥∥∥∥
LM (T)

≤ 2

∫
T
∥f (·, y)∥LM (T) dy.

Proof. It is clear that according to [20, page-80] the Hölder inequalities

∣∣∣∣∫
T
f (x) g (x) dx

∣∣∣∣ ≤ ∫
T
|f (x) g (x)| dx ≤ ∥f∥LM (T) ∥g∥

∗
LN (T) ,

∣∣∣∣∫
T
f (x) g (x) dx

∣∣∣∣ ≤ ∫
T
|f (x) g (x)| dx ≤ ∥f∥∗LM (T) ∥g∥LN (T) ,

hold for every f ∈ LM (T) and g ∈ LN (T) . On the other hand the inequalities

∥f∥∗LM (T) ≤ ∥f∥LM (T) ≤ 2 ∥f∥∗LM (T) (2.1)

hold. By the definition of the norm and the Fubini theorem we have∥∥∥∥∫
T
f (·, y)

∥∥∥∥∗
LM (T)

≤
∫
T
∥f (·, y)∥∗LM (T) dy. (2.2)

Using (2.1) and (2.2), we arrive at the following Minkowski inequality for the
Orlicz space LM (T) :∥∥∥∥∫

T
f (·, y)

∥∥∥∥
LM (T)

≤
∫
T
∥f (·, y)∥LM (T) dy.

The proof of Lemma 2.3 is completed.
Lemma 2.4. Let f ∈ LM (T) . Then, the estimate
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∥∥∥f 1
2λ

(·,+τ)
∥∥∥
LM (T)

= O(1), ∥f (·)∥LM (T)

holds, for every τ ∈ R, where f 1
2λ

(τ) = λ
∫ 1

2λ
+τ

− 1
2λ

+τ
f (t) dt with λ > 1.

Proof. Let ∥f∥LM (T) ≤ 1 and τ ∈ R. There exists an integer m such that mπh ≤
τ ≤ (m+ 2)πh. Now, we use the definition of the norm, apply Jensen’s inequality,
and take the supremum into the integral we obtain∥∥∥f 1

2λ
(·,+τ)

∥∥∥
LM (T)

= sup

∫ π

−π

∣∣∣f 1
2λ

(x+ τ)
∣∣∣ |g (x)| dx

= sup

∫ π

−π

∣∣∣∣∣λ
∫ 1

2λ
+x+τ

− 1
2λ

+x+τ
f (t) dt

∣∣∣∣∣ |g (x)| dx
= sup

∫ π−(m+1)πh

−π−(m+1)πh
sup

∣∣∣∣∣λ
∫ 1

2λ
+x+τ

− 1
2λ

+x+τ
f (t) dt

∣∣∣∣∣ |g (x)| dx
= O (1)λ

∫ 1
2λ

−τ

− 1
2λ

−τ
sup

{∣∣∣∣∣
∫ 1

2λ
+x+τ

− 1
2λ

+x+τ
f (t) dt

∣∣∣∣∣ |g (x)| dx
}
dt

= O (1)λ

∫ 1
2λ

−τ

− 1
2λ

−τ
sup

{∫ 1
2λ

+x+τ

− 1
2λ

+x+τ
|f (t)| dt |g (x)| dx

}
dt

= O (1)λ

∫ 1
2λ

−τ

− 1
2λ

−τ
sup

{∫ 1
2λ

+x+τ

− 1
2λ

+x+τ
|f (t)| dt |g (x)| dx

}
dt

= O (1)λ

∫ 1
2λ

−τ

− 1
2λ

−τ
sup

{∫ π+x+τ

−π+x+τ
|f (t)| dt |g (x)| dx

}
dt

= O (1)λ

∫ 1
2λ

−τ

− 1
2λ

−τ
sup

{∫ π

−π
|f (x) g (x)| dx

}
dt

= O (1) ∥f∥LM (T) ,

where all the supremum above are taken over all functions g ∈ LN (T) with
ρ (g,N) ≤ 1.

The proof of Lemma 2.4 is completed.
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Lemma 2.5. Let f ∈ LM (T) and Tn be a trigonometric polynomial of the degree
at most n, such that ∥f − Tn∥ = O (1)Ω

(
f, 1

n+1

)
M

. If the conditions (1.2) and
(1.3 ) hold, then the estimate

∥∥∥∥∥
∞∑
k=0

an,kSk (·, f − Tn)

∥∥∥∥∥
LM (T)

= O

(
ΩM

(
f,

1

n+ 1

))

holds.

Proof. We denote

fh (t) :=
1

2h

h∫
−h

f (x+ t) dx.

According to [23, Lemma 5] the following equations hold:

a0 (f) = a0 (fh) , al (f) =
lh

sin lh
al (fh) , (l = 1, 2, 3, ...) (2.3)

and

bl (f) =
lh

sin lh
bl (fh) , (l = 1, 2, 3, ...). (2.4)

Using (2.3) and (2.4) we have [23]
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Sk (x, f) =
a0 (f)

2
+

k∑
l=1

(al (f) cos lx+ bl (f) sin lx)

=
a0 (fh)

2
+

k∑
l=1

(
lh

sin lh
al (fh) cos lx+

lh

sin lh
bl (f) sin lx

)

=
1

2π

h∫
−h

fh (t) dt+

k∑
l=1

lh

sin lh

1

π

π∫
−π

fh (t) cos ltdt cos lx

+
k∑

l=1

lh

sin lh

1

π

π∫
−π

fh (t) sin ltdt sin lx

=
1

2π

h∫
−h

fh (t) dt+

k∑
l=1

lh

sin lh

1

π

π∫
−π

fh (t) cos l (t− x) dt

=
1

2π

h∫
−h

fh (t) dt+
1

π

k∑
l=1

lh

sin lh

π∫
−π

fh (t+ x) cos ltdt

=
1

π

π∫
−π

fh (t+ x)

(
1

2
+

k∑
l=1

lh

sin lh
cos lt

)
dt. (2.5)

If we show

Tn,h (t) =
1

2h

h∫
−h

Tn (x+ t) dx.

then according to (2.5) we have

Sk (x, f − Tn) =
1

π

π∫
−π

(f − Tn)h (x+ t)

(
1

2
+

k∑
l=1

lh

sin lh
cos lt

)
dt

=
1

π

π∫
−π

(fh (t+ x)− Tn,h (t+ x))

(
1

2
+

k∑
l=1

lh

sin lh
cos lt

)
dt.(2.6)
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Using (2.6) we obtain [23]

∞∑
k=0

an,kSk (x, f − Tn)

=
∞∑
k=0

an,k
1

π

π∫
−π

(fh (t+ x)− Tn,h (t+ x))

(
1

2
+

k∑
l=1

lh

sin lh
cos lt

)
dt

=
1

π

π∫
−π

(fh (t+ x)− Tn,h (t+ x))
∞∑
k=0

an,k

(
1

2
+

k∑
l=1

lh

sin lh
cos lt

)
dt.(2.7)

Let 0< h < 1
2 and |t| ≤ π.Then using (2.7), Lemma 2.3 and Lemma 2.4 we

reach

∥∥∥∥∥
∞∑
k=0

an,kSk (·, f − Tn)

∥∥∥∥∥
LM (T)

≤ 2

π

π∫
−π

∥fh (t+ ·)− Tn,h (t+ ·)∥LM (T)

∣∣∣∣∣
∞∑
k=0

an,k

(
1

2
+

k∑
l=1

lh

sin lh
cos lt

)
dt

∣∣∣∣∣
= O (1)

1

π

π∫
−π

∥f − Tn∥LM (T)

∣∣∣∣∣
∞∑
k=0

an,k

(
1

2
+

k∑
l=1

lh

sin lh
cos lt

)
dt

∣∣∣∣∣ . (2.8)

If h = π
8l <

1
2 is taken into account in inequality (2.8) we have∥∥∥∥∥

∞∑
k=0

an,kSk (·, f − Tn)

∥∥∥∥∥
LM (T)

= O (1)
1

2π

π∫
−π

∣∣∣∣∣
∞∑
k=0

an,k

(
1 +

π

4 sin π
8

k∑
l=1

cos lt

)
dt

∣∣∣∣∣ ∥f − Tn∥LM (T) .(2.9)
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In the other hand according to Lemma 2.2 the relation

1

2π

π∫
−π

∣∣∣∣∣
∞∑
k=0

an,k

(
1 +

π

4 sin π
8

k∑
l=1

cos lt

)
dt

∣∣∣∣∣ = O (1) (2.10)

holds.
Consequently, if the ∥f − Tn∥LM (T) = O (1)ΩM

(
f, 1

n+1

)
condition given in

the Lemma 2.5 and the relations (2.9) and (2.10) are used, we find that

∥∥∥∥∥
∞∑
k=0

an,kSk (·, f − Tn)

∥∥∥∥∥
= O (1) ∥f − Tn∥LM (T) = O (1)ΩM

(
f,

1

n+ 1

)
.

Thus, Lemma 2.5 is proved.

3 Proofs of the main results

Proof of Theorem 1.1. Let Tn be the polynomial that satisfies the condition

∥f − Tn∥LM (T) = O

(
ΩM

(
f,

1

n+ 1

))
. (3.1)

Its known that the following equality holds:

Sk (x, f − Tn) =

{
Sk (x, f)− Tk (x) , for k ≤ n
Sk (x, f)− Tn (x) , for k ≥ n

. (3.2)
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Using (3.1), (3.2 ) and Lemma 2.5 we find that

∥∥∥T (A)
n (·, f)− f

∥∥∥
LM (T)

=

∥∥∥∥∥T (A)
n (·, f)−

n∑
k=0

an,kTk −
∞∑

k=n+1

an,kTn

+

n∑
k=0

an,kTk +

∞∑
k=n+1

an,kTn − f

∥∥∥∥∥
LM (T)

≤

∥∥∥∥∥T (A)
n (·, f)−

n∑
k=0

an,kTk −
∞∑

k=n+1

an,kTn

∥∥∥∥∥
LM (T)

+

∥∥∥∥∥
n∑

k=0

an,kTk +

∞∑
k=n+1

an,kTn − f

∥∥∥∥∥
LM (T)

=

∥∥∥∥∥
n∑

k=0

an,k {Sk (·, f)− Tk}+
∞∑

k=n+1

an,k {Sk (·, f)− Tn}

∥∥∥∥∥
LM (T)

+

∥∥∥∥∥
n∑

k=0

an,k (f − Tk) +

∞∑
k=n+1

an,k (f − Tn)

∥∥∥∥∥
LM (T)

≤

∥∥∥∥∥
n∑

k=0

an,kSk (·, f − Tn)

∥∥∥∥∥
LM (T)

+

∥∥∥∥∥
n∑

k=0

an,k {f − Tn}

∥∥∥∥∥
LM (T)

+

∥∥∥∥∥
∞∑

k=n+1

an,k {f − Tn}

∥∥∥∥∥
LM (T)

=

∥∥∥∥∥
n∑

k=0

an,kSk (·, f − Tn)

∥∥∥∥∥
LM (T)

+O (1)

n∑
k=0

an,kΩ

(
f,

1

k + 1

)
M

+

∞∑
k=n+1

an,kO

(
Ω

(
f,

1

n+ 1

)
M

)

= O

(
Ω

(
f,

1

n+ 1

)
M

)
+

n∑
k=0

an,kΩ

(
f,

1

k + 1

)
M

.

Hence, theorem is proved.
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Proof of Theorem 1.2. We can note that the assumptions on entries of A0 yield

∞∑
k=0

(k + 1)β

∣∣∣∣∣ an,k

(k + 1)β
−

an,k+1

(k + 2)β

∣∣∣∣∣
=

n−1∑
k=0

(k + 1)β

∣∣∣∣∣ an,k

(k + 1)β
−

an,k+1

(k + 2)β

∣∣∣∣∣+ an,n

= O (an,n) + an,n = O (an,n) = O

(
1

n+ 1

)
and

∞∑
k=0

(k + 1) an,k =

n∑
k=0

(k + 1) an,k ≤ (n+ 1)

n∑
k=0

an,k = n+ 1.

Considering the monotonicity of Ω (f, δ)M with respect to δ > 0 and using Theo-
rem. 1.1, we conclude that

n∑
k=0

an,kΩM

(
f,

1

k + 1

)
≥ ΩM

(
f,

1

n+ 1

) n∑
k=0

an,k = ΩM

(
f,

1

n+ 1

)
which completes the proof.

Proof of Theorem 1.3. Let ω be a function of mudulus of continuity type. For
the function ω the inequality

ω (nδ) ≤ nω (δ) , n ∈ N0. (3.3)

holds. Then from we can write the inequality

ω (λδ) ≤ (λ+ 1)ω (δ) , λ ≥ 0. (3.4)

Using (3.4), for 0 < δ1 ≤ δ2 gives us



16 Sadulla Z. Jafarov

ω (δ2) = ω

(
δ1
δ1
δ2

)
≤
(
δ2
δ1

+ 1

)
ω (δ1)

≤
(
δ2
δ1

+
δ1
δ1

)
ω (δ1) ≤

(
δ2
δ1

+
δ2
δ1

)
= 2

δ2
δ1
ω (δ1) . (3.5)

Taking into account of (3.5) we obtain inequality,

ω (δ2)

δ2
≤ 2

ω (δ1)

δ1
..

Therefore, using relation (1.2) for β > 0, we conclude that

n∑
k=0

an,kω

(
1

k + 1

)
=

n∑
k=0

an,k
k + 1

ω
(

1
k+1

)
1

k+1

≤ 2 (n+ 1)ω

(
1

n+ 1

) n∑
k=0

an,k
k + 1

= 2 (n+ 1)ω

(
1

n+ 1

) ∞∑
k=0

(k + 1)β−1 an,k

(k + 1)β

≤ 2 (n+ 1)ω

(
1

n+ 1

) ∞∑
k=0

∣∣∣∣∣ an,k

(k + 1)β
−

an,k+1

(k + 2)β

∣∣∣∣∣
k∑

p=0

(p+ 1)β−1

= O (n+ 1)ω

(
1

n+ 1

) ∞∑
k=0

(k + 1)β

∣∣∣∣∣ an,k

(k + 1)β
−

an,k+1

(k + 2)β

∣∣∣∣∣
= (n+ 1)ω

(
1

n+ 1

)
O

(
1

n+ 1

)
= O

(
ω

(
1

n+ 1

))
.

The proof of Theorem 1.3 is completed.
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