
The Aligarh Bulletin of Mathematics

Volume 43, Number 1 (2024), 65 - 76

ISSN: 0304-9787

Copyright © Department of Mathematics
Aligarh Muslim University, Aligarh-202002, India

Mersenne numbers that are expressible as the
summation of two Fibonacci numbers

Ahmet Emin

Department of Mathematics, Faculty of Science
Karabük University, Karabük, Turkey
Email: ahmetemin@karabuk.edu.tr

(Received: May 20, 2024 Accepted: July 25, 2024)

Abstract

This study presents an investigation of the Mersenne numbers that can
be written in terms of the summation of two random Fibonacci numbers
within the context of linear forms in logarithms of algebraic numbers by us-
ing Matveev’s theorem and Dujella-Pethö reduction lemma. More precisely,
all the solutions to the Diophantine equation Mk = Fm + Fn are presented
in this study.

1 Introduction and motivation

The Fibonacci sequence {Fn}n≥0 and the Mersenne sequence {Mn}n≥0 are de-
fined by the initial values (F0, F1) = (0, 1) and (M0,M1) = (0, 1), respectively,
and the recurrence relations Fn = Fn−1 + Fn−2 and Mn = 3Mn−1 − 2Mn−2, for
n ≥ 2. Furthermore, the Fibonacci sequence can also be generated using Binet’s
formula, and there is a Binet-like formula for the Mersenne sequence, as shown
below:

Fn =
γn − δn√

5
and Mn = 2n − 1, (1.1)

for all non-negative integer, where γ = 1+
√
5

2 and δ = 1−
√
5

2 .
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Many types of integer sequences have applications in various branches of sci-
ence, especially in arithmetic and geometry. For this reason, scientists have con-
ducted many studies on different integer sequences. The most studied of these inte-
ger sequences are the Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, and Mersenne
sequences, among others. In this study, Pell and Mersenne numbers will be dis-
cussed, but only in one section, a property of Lucas numbers will be examined.

One can consult [1] to find the properties and examples of Fibonacci, and Lucas
numbers.

It has been extensively studied whether the product or sum of the terms of the
number sequences mentioned above is equal to the terms of another number se-
quence. Ddamulira et al. investigated in [2] which of the two Fibonacci numbers
the product of their terms equals a Pell number, as well as which of the two Pell
numbers the product of is a Fibonacci number. Alekseyev worked to find the com-
mon terms of Fibonacci, Pell, Lucas and Pell-Lucas numbers and showed these
common terms in [3]. Gaber studied in [4] whether the sum of any two Jacobsthal
numbers is a term of the Pell or Pell-Lucas numbers.

In [5], Erduvan and Keskin identified all Fibonacci numbers that result from the
product of two Jacobsthal numbers. Alan and Alan researched Mersenne numbers
that can be represented as the product of two arbitrary Pell numbers in [6]. There
are many similar articles that can be found using integer sequences, but readers
may also wish to refer to other similar articles in references [7–10].

The author proved in [11] which Pell numbers can be represented as the sum
of two arbitrary Mersenne numbers, as well as the opposite scenario: Mersenne
numbers that can be represented as the sum of two arbitrary Pell numbers. How-
ever, the current literature does not cover the study of Mersenne numbers that can
be expressed as the sum of two random Fibonacci numbers. This deficiency was
the motivation behind our study, and we attempted to address it in this research. In
this paper, we examine the Diophantine equation

Mk = Fm + Fn, (1.2)

where k ≥ 1 and 1 ≤ m ≤ n.

2 Preliminaries

This section of the paper provides fundamental definitions, results, and notations
from algebraic number theory. One can find the following lemma in the book by
Koshy [1].



Mersenne numbers that are expressible · · · 67

Lemma 2.1. [1] For all n ≥ 1,

γn−2 ≤ Fn ≤ γn−1. (2.1)

Lemma 2.2. For all n ≥ 1,

2n−1 ≤ Mn ≤ 2n. (2.2)

Proof. The clarity of the proof is attributed to the Binet-like formula of Mn in
Equation (1.1).

Let χ be an algebraic number of degree s and

a0x
s + a1x

s−1 + . . .+ as =
s∑

j=0

ajx
s−j

be its minimal polynomial in Z[x]. The logarithmic height of χ is denoted by h (χ)
and defined by

h (χ) = s−1

(
log |a0|+

s∑
i=1

log
(
max

{∣∣∣χ(i)
∣∣∣ , 1})) , (2.3)

where χi’s are the conjugates of χ.
There are also numerous properties related to logarithmic height, as follows:

h (χ1 + χ2) ≤ h (χ1) + h (χ2) + log 2, (2.4)

h
(
χ1χ

±1
2

)
≤ h (χ1) + h (χ2) , (2.5)

h (χr) = |r|h (χ) . (2.6)

Let χ1, χ2, . . . , χr be nonzero real algebraic numbers in a number field T of
degree dT, and let t1, t2, . . . , tr be nonzero rational numbers. Also

Λ = χ1
t1χ2

t2 . . . χr
tr − 1 and B ≥ max {|t1| , |t2| , . . . , |tr|} .

Let A1, A2, . . . , Ar be the positive real numbers such that

Aj ≥ max {dTh (χj) , |logχj | , 0.16} for all j = 1, 2, . . . , r. (2.7)
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Based on the notations mentioned above, an important theorem established by
Matveev in [13], will be presented as follows:

Theorem 2.1. [13] If Λ ̸= 0 and T is real algebraic number field of degree dT,
then,

log (|Λ|) > −1.4×30r+3×r4.5×d2T×(1 + log dT)×(1 + logB)×A1×A2×· · ·×Ar.

To reduce the bounds from applying Theorem 2.1, the following Lemma was
developed by Dujella and Pethö (Lemma 5(a)) in [14].

Lemma 2.3. [14] Let M be a positive integer, p/q be a convergent of the continued
fraction expansion of the irrational τ such that q > 6M , and let X , Y , µ be some
real numbers with X > 0 and Y > 1. Let ε =: ∥µq∥ − M ∥τq∥, where ∥·∥ is
the distance from the nearest integer. If ε > 0, then there is no integer solution
(k, n, ν) of inequality

0 < kτ − n+ µ < XY −ν

with

k ≤ M and ν ≥ log (Xq/ε)

log Y
.

3 The results

The main result of the paper is given below.

Theorem 3.1. Let k, m, and n be a positive integers. Then, Equation (1.2) holds
only for the triples of

(k,m, n) ∈ {(2, 1, 3) , (2, 2, 3) , (3, 3, 5) , (4, 3, 7) , (6, 6, 10)} . (3.1)

Proof. Assume that Equation (1.2) holds. When m = n, Equation (1.2) is reduced
to Mk = 2k − 1 = 2Fn, which is a contradiction. Since the right-hand side of the
equation is an even number, the left-hand side is not. Therefore, for the rest of the
paper, we assume that m < n.

If n ≤ 400, a brute-force search using Mathematica for 1 ≤ m < n ≤ 400,
yields the solutions (k,m, n) ∈ {(2, 1, 3) , (2, 2, 3) , (3, 3, 5) , (4, 3, 7) , (6, 6, 10)}.
Henceforth, we will consider n > 400 for the remainder of the paper.
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If m and n are two consecutive integers, we can consider the equation Mk =

2k − 1 = Fm + Fn = Fn−1 + Fn = Fn+1. Therefore, we have Fn+1 = 2k − 1.
According to Theorem 1.2. in [12], the only solution is (k,m, n) ∈ {(2, 2, 3)}.
Therefore, we can even suppose that n−m > 1 and, specifically, n−m ≥ 2.

Now we get a relation between n and a. Considering Lemma 2.1 and Lemma
2.2, we can write

2k−1 ≤ Mk = Fn + Fm ≤ γn−1 + γm−1 < γn+m. (3.2)

From Equation (3.2), we conclude that

(k − 1) log 2 < (n+m) log γ ⇒ k < 1 + (n+m)
log γ

log 2
< 2n+ 1

which satisfies k < 2n + 1. Applying the Binet’s formulas in Equation (1.1) to
Equation (1.2) yields

Mk = Fn + Fm ⇒ 2k − 1 =
γn − δn√

5
+

γm − δm√
5

(3.3)

and from this, we get

√
5 · 2k − γn = γm − δn − δm +

√
5.

Dividing both sides of the last equation by γn and taking absolute values we get∣∣∣∣∣2k.
√
5

γn
− 1

∣∣∣∣∣ =
∣∣∣∣∣γmγn − δn

γn
− δm

γn
+

√
5

γn

∣∣∣∣∣ < 1

γn−m
+

|δ|n

γn
+

|δ|m

γn
+

√
5

γn
<

7

γn−m
.

As a result, we have

|Λ1| <
7

γn−m
, Λ1 := 2k · γ−n ·

√
5− 1. (3.4)

According to Theorem 2.1, we get r = 3, χ1 = 2, χ2 = γ, χ3 =
√
5, t1 =

k, t2 = −n, and t3 = 1. Because of χ1, χ2, χ3 ∈ Q
(√

5
)
, we should consider

T = Q
(√

5
)

of degree dT = 2. It is clear that Λ1 ̸= 0. Indeed, if Λ1 = 0, then
we obtain γn =

√
5 · 2k. If we compute the square of both sides of this equation,
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we obtain γ2n = 5 · 4k, which leads to a contradiction because the left-hand side,
γ2n ∈ Z, is impossible. So, Λ1 ̸= 0. From Equations (2.3) and (2.7), we can
compute

h (χ1) = log 2, h (χ2) =
1

2
log γ, h (χ3) =

1

2
log 5,

A1 = 2 log 2, A2 = log γ, and A3 = log 5.

Besides, for B = 2n + 1, B ≥ max {k, |−n| , 1}, since k < 2n + 1. As a result,
based on Theorem 2.1, with certain mathematical simplifications, we obtain

log(|Λ1|) > −1.1× 1012 (1 + log (2n+ 1))

and with certain mathematical simplifications of the above inequality, we obtain,

log(|Λ1|) > −4.5× 1012 log n (3.5)

where we used the fact that 1 + log (2n+ 1) < 4 log n, for n ≥ 2. From Equation
(3.4), we have

log(|Λ1|) < log 7− (n−m) log γ. (3.6)

From Equations (3.5) and (3.6), we get that

(n−m) log γ < 4.6× 1012 log n. (3.7)

Furthermore, if we rearrange Equation (1.2) as follows:

Mk = Fm + Fn ⇒ 2k − 1 =
γm − δm√

5
+

γn − δn√
5

⇒ 2k − γn√
5

(
1 + γm−n

)
= 1− δn√

5
− δm√

5
.

Taking absolute values after dividing both sides of the last equation by γn
√
5
(1 + γm−n),

we get ∣∣∣∣∣ 2k ·
√
5

γn · (1 + γm−n)
− 1

∣∣∣∣∣ < 6

γn
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and

|Λ2| <
6

γn
, Λ2 := 2kγ−n

√
5

1 + γm−n
− 1. (3.8)

To apply the Matveev theorem into Equation (3.8), we can consider that case where
r = 3, χ1 = 2, χ2 = γ, χ3 =

√
5/ (1 + γm−n), t1 = k, t2 = −n, and t3 = 1.

Since χ1, χ2, χ3 ∈ Q
(√

5
)

we can take T = Q
(√

5
)

of degree dT = 2. As can
be seen, since 2k ·

√
5 = γn + γm is never satisfied, Λ2 ̸= 0. Besides, if we take

B = 2n+ 1, then B ≥ max {k, |−n| , 1}, since k < 2n+ 1. In this case, we can
compute the followings:

h (χ1) = log 2, h (χ2) =
1

2
log γ,A1 = 2 log 2, and A2 = log γ.

From (2.4), (2.5), (2.6), and (2.7) we get

h (χ3) ≤ 1.5 + (n−m) log γ.

Therefore, we can take

A3 = 3 + 2 (n−m) log γ = dT( 1.5 + (n−m) log γ) ≥ dTh (χ3) .

In this case, according to Matveev’s theorem, we can write

log(|Λ2|) > −6.5× 1011 × (3 + 2 (n−m) log γ) . (3.9)

From the right-hand side of the Equation (3.8) we get

log(|Λ2|) < log 6− n log γ. (3.10)

Considering the Equations (3.7), (3.9), and (3.10), we deduce that

n < 3.81× 1026. (3.11)
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Thus, we can summarize the results mentioned above with a lemma as follows:

Lemma 3.1. All possible solutions of Equation (1.2) are over the ranges 1 ≤ m <

n, n > 400, and k < 2n+ 1 < 7.7× 1026.

3.1 Reducing the bounds on n

Now we need to reduce the bound. To achieve this, we will repeatedly use the
following result, which is a slight variation of a result originally developed by
Dujella and Pethö in [14].

We first consider the notation

Γ1 := k log 2− n log γ + log
√
5. (3.12)

Then, from inequality (3.4), we have

|Λ1| =
∣∣eΓ1 − 1

∣∣ < 7

γn−m
. (3.13)

Now, by using the Equations (1.1) and (1.2), we can write

γn√
5
= Fn +

δn√
5
< Fn +

1

2
< Fn + Fm = Mk = 2k − 1 < 2k

for m ≥ 1. Thus 1 < 2k · γ−n ·
√
5, and so, Γ1 > 0. Considering this inequality

with (3.13), we get that

0 < Γ1 ≤ eΓ1 − 1 <
7

γn−m
,

where we used the fact that l ≤ el − 1 for all l ∈ R. Using the formula (3.12) in
the above inequality, we find that

Γ1 := k log 2− n log γ + log
√
5 <

7

γn−m
. (3.14)

Dividing both sides of the above inequality by log γ, we obtain

0 < k
log 2

log γ
− n+

log
√
5

log γ
<

7

γn−m log γ
<

15

γn−m
.
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Then, accordingly Lemma 2.3, for M = 7.7 × 1026 (M > 2n+ 1 > k) and τ =
log 2
log γ , 67th convergent of the continued fraction expansion of τ is

p67
q67

=
729778205193420675925701180216

506642617699397667695263997821

and so, 6M < q67 = 506642617699397667695263997821. Therefore, we have

ε = ∥µq67∥ −M ∥τq67∥ , ε > 0.01, µ =
log

√
5

log γ
.

So, taking X := 15, Y := γ, and ν := n−m into account, since from Lemma 2.3
the inequality

n−m > 157 >
log (Xq67/ε)

log Y

has no solution, we deduce that n−m ≤ 157.
Now we consider the notation

Γ2 := k log 2− n log γ + log

( √
5

1 + γm−n

)
. (3.15)

Then, from inequality (3.8), we have

|Λ2| =
∣∣eΓ2 − 1

∣∣ < 6

γn
. (3.16)

Since Λ2 ̸= 0, we observe that Γ2 ̸= 0. Therefore, we consider the following
cases:

• If Γ2 > 0, then eΓ2 − 1 > 0. Thus, using Equation (3.16) and the fact that
l ≤ el − 1 for all l ∈ R, we find that

0 < Γ2 ≤ eΓ2 − 1 <
6

γn
.

• If Γ2 < 0, it is clear that 6
γn < 1

2 for n > 400. Thus, based on (3.16), which
implies that

∣∣eΓ2 − 1
∣∣ < 1

2 , we have e|Γ2| < 2. Since Γ2 < 0, so we can
conclude that
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0 < |Γ2| < e|Γ2| − 1 = e|Γ2|
∣∣eΓ2 − 1

∣∣ < 12

γn
.

In either case, we find that the inequality

0 < |Γ2| <
12

γn

holds for all n > 400. Substituting the formula for Γ2 into the previous inequality
and following the argument in Equation (3.15), then dividing both sides of the
inequality by log γ, we obtain

0 <

∣∣∣∣∣k log 2log γ
− n+

log
(√

5/ (1 + γm−n)
)

log γ

∣∣∣∣∣ < 12

γn log γ
<

25

γn
. (3.17)

As mentioned above, based on the Lemma 2.3, τ is taken as log 2
log γ again. If the 67th

convergent of the continued fraction expansion of this τ is taken, then we have that

ε = ∥µq67∥ −M ∥τq67∥ , ε > 0.001.

Where M = 7.7×1026 (M > 2n+ 1 > k), 6M < q67 and µ =
log(

√
5/(1+γm−n))
log γ ,

for all n−m ∈ [1, 157] except when n−m = 2.
As a result, taking X := 25, Y := γ, and ν := n into account, we obtain that

n ≤ 163. This is a contradiction because we assumed that n > 400.

3.2 Examining the special case for n−m = 2

Finally, we will examine the special case for n − m = 2. If n − m = 2, then

µ =
log(

√
5/(1+γm−n))
log γ = 1. In this case, Lemma 2.3 cannot be applied because

the inequality (3.17) has the form 0 <
∣∣∣k log 2

log γ − n+ 1
∣∣∣ < 25 · γ−n. Therefore, the

Dujella and Pethö reduction method is not applicable here, as the ϵ value in Lemma
2.3 would always be negative.

Let us try to find an upper bound for the value of n using the well-known
identity between Lucas and Fibonacci numbers, which is Ln = Fn−1 + Fn+1 for
all n ≥ 1, see [1]. Since n−m = 2, we can express this identity as Fn−2 + Fn =

2k − 1, where n = m + 2 > 400. From here, the problem can be transformed
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into a simpler form by converting it to the equation Ln−1 = 2k − 1. According
to Theorem 1 in [15], the only solution is (k,m, n) ∈ {(3, 3, 5)}, implying that
there is no solution for n > 400 and only a solution for n = 5. This completes the
investigation for the special case of n − m = 2, indicating the completion of the
proof of Theorem 3.1.
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