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Abstract

This work focuses on a method ( Variational Iteration Method ) that is
based on the Lagrange multiplier to solve complex differential equations.
Besides we presented three examples to find out the effectiveness, and accu-
racy of the proposed technique.

1 Introduction

The Variational Iteration Method (VIM) is one of the estimation methods used to
solve both linear and nonlinear equations related to physics and mathematics prob-
lems [1–5]. Many authors have used this method ( variational iteration method ) to
solve several problems such as Issa and Düz [6] have employed the variational iter-
ation method to get the Fourier transforms. Xu et al. [7] solved the boundary layer
equations of magnetohydrodynamic flow using VIM. Wazwaz [8] has implemented
the VIM for solving ODEs with variable coefficients. In [9], Moghimi and Hejazi
applied the Variational iteration method to solve Burger, and Fisher equations. The
complex differential equations have been solved using several methods [10–12].

Keywords and phrases: Variational Iteration Method, Lagrange multiplier, complex differen-
tial equation.
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In this study, we applied the VIM for solving complex differential equations with
constant coefficients given by

a · ∂w
∂z

+ b · ∂w
∂z

+ c · w = H (z, z) . (1.1)

Where a, b, c are constant coefficients, and w (z, z) is the unknown function of
Eq (1.1).

2 VIM for the Solution of complex differential equations

Theorem 2.1. Let a, b, c ∈ R, w ∈ C and consider the complex differential equa-
tions defined by

a · ∂w
∂z

+ b · ∂w
∂z

+ c · w = H (z, z) . (2.1)

Then the solution of Eq (2.1) is

wα+1(x, y) = wα(x, y)−
∫ y

0
e

2ic(y−s)
b−a

(
∂wα

∂s
+ i

(
a+ b

a− b

)
∂wα

∂x

+
2ic

a− b
wα +

2iH1(x, s)

b− a

)
ds, α ≥ 0. (2.2)

Proof. By complex derivatives, Eq (2.1) can be written as follows:

a · 1
2
(
∂w

∂x
− i

∂w

∂y
) + b · 1

2
(
∂w

∂x
+ i

∂w

∂y
) + cw = H1(x, y) (2.3)

(a+ b)
∂w

∂x
+ i(b− a)

∂w

∂y
+ 2cw = 2H1(x, y)

∂w

∂y
+

a+ b

i(b− a)

∂w

∂x
+

2c

i(b− a)
w =

2H1

i(b− a)
. (2.4)

Now, by applying the VIM formula of Eq (2.4), we obtain:



Solution of complex differential equations by using · · · 59

wα+1(x, y) = wα(x, y) +

∫ y

0
λ (s, y)

(
∂wα

∂s
+

i

(
a+ b

a− b

)
∂wα

∂x
+

2ic

a− b
wα +

2iH1(x, s)

b− a

)
ds, (2.5)

where λ (s, y) is general Lagrange multiplier.

To find the Lagrange multiplier, we use the stationary condition

δwα+1(x, y) = δwα(x, y)

+ δ

∫ y

0
λ (s, y)

(
∂wα

∂s
+ i

(
a+ b

a− b

)
∂wα

∂x
+

2ic

a− b
wα +

2iH1(x, s)

b− a

)
ds (2.6)

δwα+1(x, y)

= δwα(x, y) + δ

[
λ (s, y)wα(x, s) ↕s=y −

∫ y

0
wα(x, s)

∂λ (s, y)

∂s

]
− i

a+ b

b− a
δ

∫ y

0

∂wα

∂x
ds− 2ic

b− a
δ

∫ y

0
λ (s, y)wα(x, s)ds+ δ

2i

b− a

∫ y

0
H1(x, s)ds

(2.7)

1 + λ (y, y) = 0, − ∂λ (s, y)

∂s
− 2icλ (s, y)

b− a
= 0

λ (s, y) = −e
2ic(y−s)

b−a . (2.8)

Set Eq (2.8) into Eq (2.5), we obtain

wα+1(x, y) = wα(x, y)

−
∫ y

0
e

2ic(y−s)
b−a

(
∂wα

∂s
+ i

(
a+ b

a− b

)
∂wα

∂x
+

2ic

a− b
wα +

2iH1(x, s)

b− a

)
ds (2.9)
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3 Examples of Applying Variational Iteration Method on
Complex Differential Equations

Example 3.1. Consider the following equation

∂w

∂z
+ 2

∂w

∂z
= 3z2 + 2, (3.1)

w(x, 0) = x3 + x, (3.2)

a = 1, b = 2, c = 0, H(z, z) = 3z2 + 2, H1 (x, y) = 3(x + iy)2 + 2 =

3x2 − 3y2 + 2 + 6ixy, λ (s, y) = −e
2ic(y−s)

b−a = −1.
By applying Theorem 2.1 of Eq (3.1), we obtain

wα+1(x, y) = wα(x, y)−
∫ y
0

(
∂wα
∂s + i

(
a+b
a−b

)
∂wα
∂x + 2ic

a−bwα + 2iH1(x,s)
b−a

)
ds

= wα(x, y)−
∫ y
0 (

∂wα
∂s − 3i∂wα

∂x + 2i
(
3x2 − 3s2 + 2 + 6ixs

)
)ds.

(3.3)
From condition w0(x, y) = x3 + x,

w1(x, y) = w0(x, y)−
∫ y
0 (−3i∂w0

∂x + 2i(3x2 + 6ixs− 3s2 + 2))ds

= x3 + x−
∫ y
0 (−3i(3x2 + 1) + 2i(3x2 + 6ixs− 3s2 + 2))ds

= x3 + x+ 6xy2 + i
(
3x2y − y + 2y3

)
(3.4)

w2(x, y) = x3 + x+ 6xy2 + i
(
3x2y − y + 2y3

)
−
∫ y
0 (18xs− 18is2)ds

= x3 + x− 3xy2 + i(3x2y − y + 8y3)
(3.5)

w3(x, y) = x3 + x− 3xy2 + i(3x2y − y + 8y3)−
∫ y
0 27is2ds

= x3 + x− 3xy2 + i(3x2y − y − y3)
(3.6)

wα(x, y) = z3 + z.
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Example 3.2. Consider the following equation

∂w

∂z
− ∂w

∂z
− w = 0, (3.7)

w(x, 0) = e3x, (3.8)

a = 1, b = −1, c = −1, H(z, z) = 0, H1 (x, y) = 0, λ (s, y) = −e
2ic(y−s)

b−a =

−ei(y−s).

By applying Theorem 2.1 of Eq (3.7), we obtain

wn+1(x, y) = wn(x, y)−
∫ y

0
ei(y−s)

(
∂wn

∂s
− iwn

)
ds.

From condition w0(x, y) = e3x,

w1(x, y) = e3x −
∫ y

0
ei(y−s)(−ie3x)ds = e3x + ie3x

ei(y−s)

−i
↕y0= e3x+iy

w2(x, y) = e3x+iy −
∫ y

0
ei(y−s)(ie3x+is − ie3x+is)ds = e3x+iy = e2z+z.

Example 3.3. Consider the following equation

2
∂w

∂z
− ∂w

∂z
= 4z + 1, (3.9)

w(x, 0) = x2 + 5x, (3.10)

a = 2, b = −1, c = 0, H(z, z) = 4z + 1, H1(x, y) = 4x + 1 + 4iy, λ (s, y) =

−e
2ic(y−s)

b−a = −1,

wn+1(x, y) = wn(x, y)−
∫ y

0

(
∂wn

∂s
+ i

(
a+ b

a− b

)
∂wn

∂x
+

2ic

a− b
wn +

2iF1(x, s)

b− a

)
ds.

By applying Theorem 2.1 of Eq (3.9), we obtain

wn+1(x, y) = wn(x, y)−
∫ y

0

(
∂wn

∂s
+

i

3

∂wn

∂x
− 2i

3
(4x+ 1 + 4is)

)
ds.

From condition w0(x, y) = x2 + 5x,
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w1(x, y) = x2 + 5x−
∫ y
0

(
i
3(2x+ 5)− 2i

3 (4x+ 1 + 4is)
)
ds

= x2 + 5x− i
3(2x+ 5)s+ 2i

3 (4xs+ s+ 2is2) ↕y0

= x2 + 5x− i
3(2x+ 5)y + 2i

3 (4xy + y + 2iy2)

= x2 + 5x− 4y2

3 + i
3(6xy − 3y),

(3.11)

w2(x, y) = x2 + 5x− 4y2

3
+

i

3
(6xy − 3y)

−
∫ y

0

[(
−8s

3
+ 2ix− i

)
+

i

3
(2x+ 5 + 2is)− 2i

3
(4x+ 1 + 4is)

]
ds

= x2 + 5x− 4y2

3
+

i

3
(6xy − 3y)

−
∫ y

0

[
−8s

3
− 2s

3
+

8s

3
+ i

(
2x− 1 +

2x

3
+

5

3
− 8x

3
− 2

3

)]
ds

= x2 + 5x− 4y2

3
+

i

3
(6xy − 3y) +

y2

3
= x2 + 5x− y2 + i(2xy − y)

= z2 + 3z + 2z. (3.12)

4 Conclusion

In this work, we have used the method (Variational Iteration Method) to solve com-
plex differential equations. Moreover, the results showed that the proposed method
is an accurate and suitable scientific method for dealing with complex differential
equations.
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[10] M. Düz, Application of Elzaki transform to first order constant coefficients
complex equations, Bulletin of International Mathematical Virtual Institute, 7
(2017), 387–393.
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