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Abstract

The proximity pair associated with the pair (A,B) of non-empty sub-
sets A, B of a metric space (X, d) is (Ao, Bo), where Ao = {x ∈ A :

d(x, y) = dist(A,B), for some y ∈ B} and Bo = {y ∈ B : d(x, y) =

dist(A,B), for some x ∈ A}. The pair (A,B) is said to have (d)-property
(respectively, weak (d)-property) if d(x1, y1) = dist(A,B), d(x2, y2) =

dist(A,B) imply d(x1, x2) = d(y1, y2) (respectively, d(x1, x2) ≤ d(y1, y2)),
where x1, x2 ∈ A and y1, y2 ∈ B. For a mapping T : A → B, a point
xo ∈ A is called a best proximity point of T if d(xo, Txo) = dist(A,B).

In this paper, we discuss proximity pairs and apply (d)-property and weak
(d)-property to discuss the uniqueness of best approximation and the exis-
tence and uniqueness of best proximity points when the underlying spaces
are metric spaces and linear metric spaces. It is also shown that if a linear
metric space (X, d) is strictly convex, then each pair (A,B) of non-empty
closed and convex subsets of X has (d)-property.

Keywords and phrases: Best proximity point, proximity pair, convex metric space, strict con-
vexity, metric projection.
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1 Introduction

Let A and B be non-empty subsets of a metric space (X, d) and dist(A,B) =
inf{d(x, y) : x ∈ A, y ∈ B}. The proximity pair associated with the pair (A,B),
denoted by (Ao, Bo) is defined as Ao = {x ∈ A : d(x, y) = dist(A,B), for
some y ∈ B} and Bo = {y ∈ B : d(x, y) = dist(A,B), for some x ∈ A}.
The pair (A,B) is said to have (d)-property (respectively, weak (d)-property) if
d(x1, y1) = dist(A,B), d(x2, y2) = dist(A,B) imply d(x1, x2) = d(y1, y2)
(respectively, d(x1, x2) ≤ d(y1, y2)), where x1, x2 ∈ A and y1, y2 ∈ B. Clearly,
(d)-property implies weak (d)-property but converse is not true (Example 2.2). A
metric space (X, d) is said to have (d)-property (weak (d)-property) if for every
two non-empty subsets A, B of X, the pair (A,B) has the (d)-property(weak
(d)-property). Basha and Veeramani [3] showed that in a normed linear space
X , Ao ⊆ Bd(A), Bo ⊆ Bd(B); Ao and Bo are closed and convex subsets of
A and B respectively if A and B are closed and convex subsets of X. Kirk et
al. [5] discussed sufficient conditions which ensure the non-emptyness of Ao and
Bo when the underlying spaces are normed linear spaces. Raj [7] introdued (d)-
property in normed linear spaces and proved that any pair (A,B) of non-empty
closed and convex subsets of a real Hilbert space H has (d)-property. Caballero
et al. [4] used (d)-property to prove a best proximity point theorem for Geraghty-
contraction map in complete metric spaces. Zhang et al. [11] introduced weak (d)-
property and used it to generalize the best proximity point theorem of Caballero
et al. [4]. Raj and Eldred [8] characterized strictly convex normed linear spaces
in terms of (d)-property, and used (d)-property to prove the uniqueness of best
approximation and also to prove best proximity point theorems in normed linear
spaces. Bajracharya and Damai [2] used (d)-property and weak (d)-property to
discuss best approximation problems.

In this paper we shall discuss some of the results of [2], [3], [7] and [8] in
spaces more general than normed linear spaces.

2 Preliminaries

In this section, we recall few definitions and examples related to results proved in
the paper. A subset K of a metric space (X, d) is said to be

1. proximinal if for each x ∈ X there exists a point ko ∈ K, called a best
approximation to x in K, such that d(x, ko) = dist(x,K) ≡ inf{d(x, k) :
k ∈ K},
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2. semi-Chebyshev if each x ∈ X has at most one best approximation in K,

3. Chebyshev if each x ∈ X has exactly one best approximation in K.

Since

PK(x) =

{
x, if x ∈ K

ϕ, if x ∈ K \K,

every proximinal set is closed. The mapping PK : X → 2K ≡ collection of all
subsets of K which takes each element x of X to the set K is called a metric
projection.

A mapping W : X ×X × [0, 1] → X is said to be a convex structure [10] on
X if for all x, y ∈ X and λ ∈ [0, 1], d(u,W (x, y, λ)) ≤ λd(u, x)+ (1−λ)d(u, y)
holds for all u ∈ X . A metric space (X, d) together with a convex structure is
called a convex metric space and is denoted by (X, d,W ). A nonempty subset K
of a convex metric space (X, d,W ) is said to be convex [10] if W (x, y, λ) ∈ K for
every x, y ∈ K and λ ∈ [0, 1]. Every normed linear space is a convex metric space
but there are many convex metric spaces which are not normed linear spaces (see
[6], [10]). A linear space X equipped with a metric d is called a linear metric space
(see [1]) if both addition and scalar multiplication in X are continuous, and the
metric d is translation invariant, i.e., d(x+ z, y + z) = d(x, y) for all x, y, z ∈ X .

A linear metric space (X, d) is said to be strictly convex [1] if for x, y ∈ X ,
x ̸= y, d(x, 0) ≤ r, d(y, 0) ≤ r imply d(x+y

2 , 0) < r, r > 0. A subset K
of a linear metric space (X, d) is convex if for each x, y ∈ K, the line segment
[x, y] joining x and y lies in K. If A, B are non-empty subsets of a metric space
(X, d) and T : A → B, a point xo ∈ A is called a best proximity point of T if
d(xo, Txo) = dist(A,B).

Example 2.1. [8] In the Euclidean space (R2, | · |2), let

A = {(x, y) : −2 ≤ x ≤ 1, 0 ≤ y ≤ 1}

B = {(x, y) : 1 ≤ x ≤ 2, 0 ≤ y ≤ 1}.

Then A, B are non-empty closed and convex subsets with dist(A,B) = 2. It
is easy to verify that Ao = {(−1, y) : 0 ≤ y ≤ 1}, Bo = {(1, y) : 0 ≤ y ≤ 1}.

Example 2.2. [11] In the Euclidean space (R2, | · |2), let A = {(0, 0)}, B = {y :

y = 1+
√
1− x2}. Then dist(A,B) =

√
2, Ao = {(0, 0)}, Bo = {(−1, 1), (1, 1)},

d((0, 0), (−1, 1)) = d((0, 0), (1, 1)) =
√
2. The pair (A,B) satisfies the weak d-

property but not the d-property as 0 = d((0, 0), (0, 0)) < d((−1, 1), (1, 1)) = 2.
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3 The results

It is easy to see that in any metric space (X, d), the sets Ao and Bo are closed
subsets of A and B respectively if A and B are closed subsets of X. The following
proposition deals with the convexity of these sets:

Proposition 3.1. If A is a convex subset of a convex metric space (X, d,W ), then
Ao is convex.

Proof. Let x1, x2 ∈ Ao. Then, d(x1, y) = d(x2, y) = dist(A,B) for some y ∈ B.

We claim that W (x1, x2, λ) ∈ Ao for 0 ≤ λ ≤ 1. Consider

d(W (x1, x2, λ), y) ≤ λd(x1, y) + (1− λ)d(x2, y)

= λdist(A,B) + (1− λ)dist(A,B)

= dist(A,B)

≤ d(W (x1, x2, λ), y)) as W (x1, x2, λ) ∈ A.

This gives d(W (x1, x2, λ), y) = dist(A,B) and so W (x1, x2, λ) ∈ Ao for all
λ ∈ [0, 1]. Hence Ao is convex. The proof for the convexity of Bo is similar.

The following proposition shows that Ao ⊆ Bd(A):

Proposition 3.2. If A is a convex subset of a convex metric space (X, d,W ), then
Ao ⊆ Bd(A).

Proof. Let x ∈ Ao be arbitrary. Then there exists some y ∈ B such that d(x, y) =
dist(A,B). Suppose x ∈ int(A), then some open ball Bϵ(x) ⊆ A, ϵ > 0. Let
zn = W (y, x, 1

n). Then, for all n,

d(zn, x) = d(W (y, x,
1

n
), x)

≤ 1

n
d(y, x) =

1

n
d(x, y)

=
1

n
dist(A,B).
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This implies d(zm, x) < ϵ for large m, i.e., zm ∈ Bϵ(x) ⊂ A for large m. Consider

d(W (y, x,
1

m
), y) ≤ (1− 1

m
)d(x, y)

< dist(A,B), (3.1)

i.e., d(W (y, x, 1
m), y) < dist(A,B)), a contradiction. Hence x ∈ Bd(A), i.e.,

Ao ⊆ Bd(A), i.e., Ao ⊆ Bd(A).

Recall that a normed linear space is said to be strictly convex (see [8]) if for any
two distinct points in the closed unit sphere, the mid-point of the line segment join-
ing them lies strictly inside the closed unit sphere. Raj and Eldred [8] established
the following characterization of strictly convex normed linear spaces:

Theorem 3.1. A normed linear space X is strictly convex if and only if every pair
(A,B) of non-empty closed and convex subsets of X has the (d)-property.

Using this characterization, the following results were obtained in [8]:

Corollary 3.1. [8] Let M be non-empty, closed and convex subset of a strictly
convex normed linear space X . Then, M has at most one point of minimum norm.

Corollary 3.2. [8] Let A and B be non-empty closed and convex subsets of a
strictly convex normed linear space X such that Ao is non-empty. Then, the re-
striction of the metric projection mapping PAo to Bo is an isometry, i.e., PAo :

Bo → Ao is an isometery.

As an application of the above characterization theorem, the following best
proximity point theorem was proved in [8]:

Theorem 3.2. Let A, B be non-empty closed and convex subsets of a strictly con-
vex Banach space X and T : A → B be a contraction mapping (i.e., ∥Tx−Ty∥ ≤
k∥x − y∥ for all x, y ∈ A and k < 1) such that Ao ̸= ϕ and T (Ao) ⊆ Bo where
Ao = {x ∈ A : d(x, y) = dist(A,B), for some y ∈ B} and Bo = {y ∈ B :

d(x, y) = dist(A,B), for some x ∈ A}. Then there exists a unique x∗ ∈ A such
that ∥x∗−Tx∗∥ = dist(A,B). Further, for each fixed xo in Ao, there is a sequence
< xn > such that for each n ∈ N, ∥xn+1 − Txn∥ = dist(A,B) and < xn >

converges to best proximity point x∗ of the map T.
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We have the following generalizations of the corresponding results of V. Shankar
Raj [7] proved for Hilbert spaces and of Raj and Eldrd [8] proved for normed linear
spaces.

Theorem 3.3. If a linear metric space (X, d) is strictly convex, then every pair
(A,B) of non-empty closed and convex subsets of X has the (d)-property.

Proof. Let (X, d) be a strictly convex linear metric space and A, B be non-empty
closed and convex subsets of X. Suppose x1, x2 ∈ A and y1, y2 ∈ B be such that
d(x1, y1) = d(x2, y2) = dist(A,B) > 0 as A and B are closed subsets of X. Put
u = x1−y1, v = x2−y2. If u = v, then x1−y1 = x2−y2, i.e., x1−x2 = y1−y2

and so d(x1, x2) = d(y1, y2) Thus (A,B) has the (d)-property. Suppose u ̸= v,

then

dist(A,B) ≤ d

(
x1 + x2

2
,
y1 + y2

2

)
as

x1 + x2
2

∈ A and
y1 + y2

2
∈ B

= d

(
x1 − y1

2
,
y2 − x2

2

)
= d

(
u

2
,
−v

2

)
= d

(
u+ v

2
, 0

)
< dist(A,B).

As d(u, 0) = d(x1 − y1, 0) = d(x1, y1) = dist(A,B), d(v, 0) = d(x2 − y2, 0) =

d(x2, y2) = dist(A,B) and u ̸= v. Therefore, u ̸= v is not possible. Hence, every
pair (A,B) of closed convex subsets of X has the (d)-property.

Theorem 3.4. If M is a non-empty closed convex subset of a linear metric space
(X, d) in which every pair of non-empty closed convex subsets has (d)-property,
then each element x ∈ X has atmost one best approximation to x in M.

Proof. Take A = {x} and B = M. Suppose some x ∈ X has two distinct best
approximations in M , i.e.,

d(x, y1) = d(x, y2) = d(x,M) = dist({x},M).
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Since the pair ({x}, M) has (d)-property,

0 = d(x, x) = d(y1, y2).

Hence, y1 = y2.

Corollary 3.3. If M is a non-empty closed and convex subset of a strictly convex
linear metric space (X, d), then M is semi-Chebyshev.

Corollary 3.4. Let A, B be non-empty closed and convex subsets of a linear metric
space (X, d) in which (A,B) has (d)-property (or (X, d) is a strictly convex linear
metric space) and Ao ̸= ϕ. Then the restriction of the metric projection PAo to Bo

i.e., PAo : Bo → Ao. is an isometery.

Proof. Let y1, y2 ∈ Bo. Then by using Theorem 3.4, there exists unique pair
(x1, x2) ∈ Ao×Ao such that d(x1, y1) = d(x2, y2) = dist(A,B), i.e., PAo(yi) =

xi, i = 1, 2. By the (d)-property,

d(PAo(y1), PAo(y2)) = d(x1, x2) = d(y1, y2).

Hence, PAo : Bo → Ao. is an isometery.

It can be easily seen that the proof of Theorem 3.2 for normed linear spaces
given in [8] can easily be extended to linear metric spaces and so, we have:

Theorem 3.5. Let A, B be non-empty closed and convex subsets of a complete lin-
ear metric space (X, d) in which (A,B) has (d)-property (or (X, d) is a complete
strictly convex linear metric space) and T : A → B be a contraction mapping
such that Ao ̸= ϕ. and T (Ao) ⊆ Bo. Then, there exists a unique x∗ ∈ A such that
d(x∗, Tx∗) = dist(A,B). Further, for each xo in Ao, there is a sequence < xn >

such that for each n ∈ N, d(xn+1, Txn) = dist(A,B) and < xn > converges to
the best proximity point x∗ of the mapping T.

Remark 3.1. Whereas it was shown in [8] that the converse of Theorem 3.3 also
holds in normed linear spaces, it is not known whether the converse holds in linear
metric spaces too.

Remark 3.2. It can be easily seen that Theorem 3.4, its two corollaries and The-
orem 3.5 hold in convex metric spaces. It will be interesting to prove Theorem 3.3
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and its converse for convex metric spaces. We may recall (see [6]) that a convex
metric space (X, d,W ) is said to be strictly convex if for any r > 0 and x, y, p ∈ X

with d(x, p) ≤ r, d(y, p) ≤ r and x ̸= y we have d(W (x, y, 12), p) < r.

Remark 3.3. The condition of convexity of the sets A and B in Theorem 3.5 can
not be relaxed even in case of normed linear spaces (see [8], Example 4.1)

Bajracharya and Damai [2] used (d)-property and weak d-property to dis-
cuss existence and uniqueness of best approximation in metric spaces and Banach
spaces. We also use these two properties to discuss existence and uniqueness of
best approximation in metric spaces thereby extend and generalize some of the
results proved in [2], We start with proving:

Theorem 3.6. Let M be a proximinal convex subset of a convex metric space
(X, d,W ) in which each pair of non-empty closed and convex subsets has (d)-
property, then M is Chebyshev.

Proof. Since M is proximinal, for each x ∈ X there is mo ∈ M such that
d(x,mo) = dist(x,M). Suppose M is not Chebyshev, then there exists some x ∈
X which has two distinct best approximations say m1,m2 ∈ M , i.e., d(x,m1) =

dist(x,M), d(x,m2) = dist(x,M). Take A = {x}, B = M. Then A and B

are non-empty closed and convex subsets of X . So by the (d)-property of the pair
({x},M), 0 = d(x, x) = d(m1,m2) and hence m1 = m2, which is a contradic-
tion. Therefore M is Chebyshev.

Remark 3.4. Theorem 3.6 holds if the space X is such that in it each pair of non-
empty closed and convex subsets has weak (d)-property. In this case d(m1,m2) ≤
d(x, x) = 0 and so m1 = m2.

Since compact, approximatively compact and boundedly compact subsets of a
metric space are all proximinal (see [9]), we have

Corollary 3.5. If M is a compact or approximatively compact or boundedly com-
pact closed and convex subsets of a convex metric space (X, d,W ) in which each
pair of non-empty closed and convex subsets has (d)-property or weak (d)-property,
then M is Chebyshev.

Remark 3.5. The following example shows that the convexity condition of the set
M in Theorem 3.6 can not be dropped even in Banach spaces.
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Example 3.1. [2] Consider the Euclidean space R2 with usual norm and M =

R2\B(0, 1). Then M is proximinal but not Chebyshev as

PM (x) =


x, if x ∈ M

x
∥x∥ , if x ∈ B(0, 1) \ {0},

{y ∈ R2 : ∥y∥ = 1}, if x = 0.

Remark 3.6. Theorem 3.6 was proved in [2] under stronger conditions on the set
M as well as on the space X (the set M was assumed to be compact and the space
X was taken to be one in which each pair (A, B) of non-empty closed subsets sat-
isfy (d)-property or weak (d)-property).

Acknowledgement: The authors are thankful to the learned referee for valuable
suggestions, leading to an improvement of the paper.
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