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Abstract

Let R be a prime ring with its Utumi ring of quotient U , C = Z(U), the
extended centroid of R, G a generalized derivation of R and λ a nonzero ideal
of R. Suppose that there exists 0 ̸= b ∈ R such that
b([x, y]t[G([x, y]), [x, y]][x, y]s)m = 0 or b((x ◦ y)t[G(x ◦ y), (x ◦ y)](x ◦
y)s)m for all x, y ∈ λ, where t ≥ 1, s ≥ 0, m ≥ 1 are fixed integers.
Then either R satisfies the standard identity s4(x1, x2, x3, x4) in four vari-
ables x1, x2, x3, x4 and G(x) = qx + xq + αx for some q ∈ U and α ∈ C

or G(x) = αx for all x ∈ R with α ∈ C.

Keywords and phrases: Prime ring, generalized derivation, Utumi quotient ring, extended
centroid.
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1 Introduction

Throughout this paper, R will represent a prime ring with centre Z(R), extended
centroid C and U its utumi quotient ring. We shall write for any pair of elements
x, y ∈ R, the commutator [x, y] = xy − yx and skew commutator x ◦ y =
xy + yx. The standard polynomial identity s4 in four variables is defined as
s4(x1, x2, x3, x4) = Σσ∈s4(−1)σxσ(1)xσ(2)xσ(3)xσ(4), where (−1)σ is +1 or −1
according to σ being an even or odd permutation in the permutation group S4. An
additive mapping d : R → R such that d(xy) = d(x)y + xd(y) for all x, y ∈ R
is a derivation. Starting from this definition Bresar [10] introduced the concept
of a generalized derivation. An additive mapping F : R → R associated with a
derivation d : R → R such that F (xy) = F (x)y+ xd(y) for all x, y ∈ R is called
a generalized derivation. One may observe that concept of generalized derivation
includes the concept of derivation, also of the left multiplier when d = 0. Let
a, b ∈ R, an additive mapping F : R → R defined by F (x) = ax + xb for all
x ∈ R is an example of a generalized derivation. Generalized derivations have
been primarily studied in operator algebras. Therefore, any investigation from al-
gebraic point of view might be interesting [6]. In [18], it is proved that if R is a
prime ring and d is a derivation of R such that ad(R) = 0, then either a = 0 or
d = 0. Bresar [16] proved that if R is a (n− 1)!-torsion free semiprime ring with
ad(x)n = 0 for all x ∈ R and a ∈ R, n ≥ 1 a fixed integer, then ad(R) = 0.
When R is a prime ring, it is obvious that either a = 0 or d = 0. In [11], Lee and
Lin extended Bresar’s result for Lie ideal case by deleting the restriction on R to
be (n − 1)!-torsion free. For one-sided ideal, Chang and Lin [15] considered the
case when d(x)xn = 0 for all x ∈ I , a nonzero ideal right ideal of R. They showed
that if R is a prime ring and d is a nonzero derivation of R and n is a fixed positive
integer, then d(I)I = 0 and if xnd(x) = 0 for all x ∈ I , then R ∼= M2(F ), the
2 × 2 matrices over a field F of two elements. Later, for noncommuting Lie ideal
L of R, Dhara and Sharma [14] proved that if (us[d(u), u]ut)n ∈ Z(R) for all
u ∈ L, where s ≥ 0, t ≥ 0, n ≥ 1 are fixed integers, then R satisfies s4.
Following this line of investigation, we prove the following theorem:

Theorem 1.1. Let R be a prime ring with characteristic different from 2, U its
Utumi quotient ring, C its extended centroid, λ a nonzero ideal of R and G a
nonzero generalized derivation with associated derivation d of R, s ≥ 0, t ≥ 1,
m ≥ 1 fixed integers and 0 ̸= b ∈ R. Assume that b([x, y]t[G([x, y]), [x, y]][x, y]s)m

= 0 for all x, y ∈ λ. Then one of the following holds:

(i) R satisfies the standard identity s4(x1, x2, x3, x4) in four variables and G(x) =
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qx+ xq + αx for some q ∈ U and α ∈ C;

(ii) G(x) = αx for all x ∈ R and α ∈ C.

2 Preliminaries

In all that follows, R always denotes a prime ring, U its Utumi quotient ring. The
definition and axiomatic formulation of Utumi quotient ring U can be found in [4]
and [5], respectively. We have the following properties which we need:

1. R ⊆ U ;

2. U is prime ring with identity;

3. The centre of U denoted by C and is called the extended centroid of R, C is
a field.

Moreover, we will use frequently some important theory of generalized polynomial
identities and differential identities. We recall some of the facts.

Fact 1. If B is a basis of U over C, then any element of T = U ∗CC{x1, . . . , xn},
the free product over C of U and the free C-algebra C{x1, . . . , xn}, can be written
in the form of g =

∑
i αimi. In this decomposition the coefficients αi are in C and

the elements mi are B-monomials, that is mi = q0x1q1, . . . , xkqk, with qi ∈ B and
xi ∈ {x1, . . . , xn}. In [5] it is shown that a generalized polynomial g =

∑
i αimi

is the zero element of T if and only if all αi are zero. Let a1, a2, . . . , ak ∈ U be
linearly independent over C and a1g1(x1, x2, . . . , xn) + a2g2(x1, x2, . . . , xn) +

· · · + akgk(x1, x2, . . . , xn) = 0 ∈ T , for some g1, g2, . . . , gk ∈ T . If for any i,
gi(x1, x2, . . . , xn) =

∑n
j=1 xjhj(x1, x2, . . . , xn) and hj(x1, x2, . . . , xn) ∈ T ,

then g1(x1, x2, . . . , xn), g2(x1, x2, . . . , xn), . . . , gk(x1, x2, . . . , xn) are zero ele-
ment of T . The same conclusion holds if g1(x1, x2, . . . , xn)a1 + g2(x1,

x2, . . . , xn)a2 + · · · + gk(x1, x2, . . . , xn)ak = 0 ∈ T and g1(x1, x2, . . . , xn) =∑n
j=1 hj(x1, x2, . . . , xn)xj for some hj(x1, x2, . . . , xn) ∈ T .

We refer the reader to [4] for more details of generalized polynomials identities.

Fact 2. [7, Theorem 2] If I is a two-sided ideal of R, then I and U satisfy the
same differential identities.
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Fact 3. [6, Theorem 3] Let R be a semiprime ring. Then every generalized deriva-
tion F on a dense right ideal of R is uniquely extended to U and assumes the form
F (x) = ax + d(x) for some a ∈ U and a derivation d on U . Moreover, a and d

are uniquely determined by the generalized derivation F .

Fact 4. [5, Theorem 2] If I is a two-sided ideal of R, I and U satisfy the same
generalized polynomial identities with coefficients in U .

Fact 5. [12, Theorem 2] Let R be a prime ring and d be a nonzero derivation
on R and I be a nonzero ideal of R. By Kharchenko’s Theorem if I satisfies the
differential polynomial identity P (x1, x2, . . . , xn, d(x1), d(x2), . . . , d(xn)) = 0,
then either d is an inner derivation or I satisfies the generalized polynomial identity
P (x1, x2, . . . , xn, y1, y2, . . . , yn) = 0.

Fact 6. [17, Lemma 2.2] Let K be a field, R be a dense ring of K-linear transfor-
mations (over a vector space V ) with dimKV ≥ 3, b, q ∈ R and q /∈ K. Assume
bv = 0 for any v ∈ V such that {v, qv} is linearly K-independent, then b = 0.

3 Main results

We begin with the following lemmas:

Lemma 3.1. Let R be a prime ring, Utumi quotient ring U , extended centroid C

and p, q ∈ U . If there exists 0 ̸= b ∈ R such that b([x, y]t[p[x, y]+[x, y]q, [x, y]][x, y]s)m

= 0 for all x, y ∈ R, where s ≥ 0, t ≥ 1,m ≥ 1 are fixed integers, then either R
satisfies a nontrivial generalized polynomial identity (GPI) or p, q ∈ C.

Proof. Let R does not satisfy any nontrivial GPI. Let T = U ∗ CC{x, y}, the free
product over C of U and C{x, y}, the free C-algebra in noncommuting indeter-
minates x and y. Then b([x, y]t[p[x, y] + [x, y]q, [x, y]][x, y]s)m is zero element in
T = U ∗ CC{x, y}. Thus b([x, y]t[p[x, y] + [x, y]q, [x, y]][x, y]s)m = 0 ∈ T , that
is,

b([x, y]t(p[x, y]2 + [x, y](q − p)[x, y]− [x, y]2q)[x, y]s)m = 0 ∈ T. (3.1)
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We suppose that p /∈ C, then p and 1 are linearly independent over C. Thus,

b([x, y]t(p[x, y]2+[x, y](q−p)[x, y]−[x, y]2q)[x, y]s)m−1([x, y]tp[x, y]2+s) = 0 ∈ T.

(3.2)
Again since p and 1 are linearly independent over C, we get

b([x, y]t(p[x, y]2+[x, y](q−p)[x, y]−[x, y]2q)[x, y]s)m−2([x, y]tp[x, y]2+s)2 = 0 ∈ T.

Arguing in the similar manner as above, we have

b([x, y]tp[x, y]2+s)m = 0 ∈ T. (3.3)

Which implies that p = 0, a contradiction. Therefore, we conclude that p ∈ C

and R satisfies
b([x, y]t+1[[x, y], q][x, y]s)m = 0 ∈ T. (3.4)

Which yields that q ∈ C.

Lemma 3.2. Let R = M2(F ) be a ring of 2×2 matrices over the field F of charac-
teristic not 2. Suppose there exists 0 ̸= b ∈ R such that b([x, y]t[p[x, y]2+[x, y](q−
p)[x, y] − [x, y]2q][x, y]s)m = 0 for all x, y ∈ R, where s ≥ 0, t ≥ 1,m ≥ 1 are
fixed integers. Then, q − p ∈ Z(R).

Proof. By assumption, we have

b([x, y]t[p[x, y]2 + [x, y](q − p)[x, y]− [x, y]2q][x, y]s)m = 0 for all x, y ∈ R.

(3.5)
Let x = e21, y = e12 ∈ R, so [x, y] = e22 − e11. Also let q − p =(
a11 a12

a21 a22

)
. Our hypothesis becomes

b((e22 − e11)
t

(
0 −2a12

−2a21 0

)
(e22 − e11)

s)m = 0.

That is,

b

(
0 ±2a12

∓2a21 0

)m

= 0.
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Since characteristic of R ̸= 2, we have

b

(
0 ±a12

∓a21 0

)m

= 0. (3.6)

If m is odd, then we have

b

(
0 ±a

(m+1)/2
12 a

(m−1)/2
21

∓a
(m+1)/2
21 a

(m−1)/2
12 0

)
= 0.

If m is even then, we get

b

(
a
(m+1)/2
12 a

(m−1)/2
21 0

0 a
(m+1)/2
21 a

(m−1)/2
12

)
= 0.

In both the cases, we get bkla12a21 = 0 for all k, l = 1, 2. As b ̸= 0, we
have some nonzero bkl. In this case a12a21 = 0. For any automorphism θ of R,
θ(b), θ(p) and θ(q) enjoy the same property as b, p, q have, namely, for all x, y ∈ R

θ(b)([x, y]t[θ(p)[x, y]2 + [x, y](θ(q)− θ(p))[x, y]− [x, y]2θ(q)][x, y]s)m = 0.

(3.7)
Hence θ(b)klθ(a)12θ(a)21 = 0, where θ(a)ij is the (i, j)-entry of θ(p − q). Let
a12 = a21 = 0 and θ1(x) = (1− e21)x(1 + e21) be an inner automorphism of R.
Then θ1(p − q)12 = 0, i.e., a11 = a22. That is, p − q is a scalar matrix and hence
p−q ∈ Z(R). Therefore, we assume that a12 ̸= 0 and θ2(x) = (1+e21)x(1−e21)

is an inner automorphism of R. Then

θ2(p− q)12θ(p− q)21 = a12(a21 − a22 + a11 − a12) = 0

θ1(p− q)12θ(p− q)21 = a12(a21 + a22 − a11 − a12) = 0.

Above two equations give that 2a212 = 0. Since, characteristic of R ̸= 2, we get
a12 = 0, a contradiction. Similarly if a21 ̸= 0, we get the contradiction a21 =

0.

Lemma 3.3. Let R = M3(F ) be a ring of 3 × 3 matrices over the field F of
characteristic not 2. Suppose there exists 0 ̸= b ∈ R such that b([x, y]t[p[x, y]2 +



Rings with annihilator conditions on power values of generalized derivations 29

[x, y](q − p)[x, y] − [x, y]2q][x, y]s)m = 0 for all x, y ∈ R, where s ≥ 0, t ≥
1, m ≥ 1 are fixed integers. Then, q − p ∈ Z(R).

Proof. By assumption, we have

b([x, y]t[p[x, y]2 + [x, y](q − p)[x, y]− [x, y]2q][x, y]s)m = 0 for all x, y ∈ R.

(3.8)
Let p− q = (akl), p = (pkl), q = (qkl) for akl, pkl, qkl ∈ F , k, l = 1, 2, 3. Also let
x = e21, y = e12 ∈ R. Thus

b

(e22 − e11)
l

 p11 − q11 − a11 p12 − q12 + a12 0

p21 − q21 + a21 p22 − q22 − a22 −q23

p31 p32 0

 (e22 − e11)
s


m

= 0.

(3.9)
As p11 − q11 = a11, p12 − q12 = a12, p21 − q21 = a21, p22 − q22 = a22, above
equation becomes

b

(e22 − e11)
l

 0 2a12 0

2a21 0 −q23

p31 p32 0

 (e22 − e11)
s


m

= 0. (3.10)

Let a12a21 ̸= 0. We show that this leads a contradiction. The proof is divided into
a number of steps:
Step-1 Let s ̸= 0. In this case equation (3.10) becomes

b

 0 2a12 0

2a21 0 0

0 0 0


m

= 0.

Since characteristic of R ̸= 2, we have

b

 0 a12 0

a21 0 0

0 0 0


m

= 0. (3.11)
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If m is even, then

b

 a
m/2
12 a

m/2
21 0 0

0 a
m/2
12 a

m/2
21 0

0 0 0

 = 0.

If m is odd, we get

b

 0 a
m+1/2
12 a

m−1/2
21 0

a
m−1/2
12 a

m+1/2
21 0 0

0 0 0

 = 0.

In either case, we have bkl = 0 for all k = 1, 2, 3 and l = 1, 2. Now consider
the two following inner automorphism of R, f1(x) = (1 + e31)x(1 − e31) and
f2(x) = (1−e31)x(1+e31). If f1(p−q)12f1(p−q)21 = f2(p−q)12f2(p−q)21 = 0,
then a12(a21 − a22) = 0 and a12(a21 + a22) = 0, i.e., a12a21 = 0, a contradiction.
Hence one of them is zero. Assume f1(p − q)12f1(p − q)21 ̸= 0. This gives that
f1(b)ij = 0 for all i = 1, 2, 3 and j = 1, 2. By calculation, we have f1(b)i1 =

bi1 − bi3 = −bi3 = 0 for i ̸= 3 and f1(b)31 = b31 + b11 − b33 − b13 = −b33 = 0.
This gives that b = 0, a contradiction.
Step-2 Let s = 0. In this case equation (3.10) becomes

b

 0 −2a12 0

2a21 0 −q23

0 0 0


m

= 0. (3.12)

Right multiplying by e11 + e22, if m is even, then

b

 2ma
m/2
12 a

m/2
21 0 0

0 2ma
m/2
12 a

m/2
21 0

0 0 0

 = 0
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and if m is odd, we get

b

 0 −2ma
m+1/2
12 a

m−1/2
21 0

2ma
m−1/2
12 a

m+1/2
21 0 0

0 0 0

 = 0.

As above, we get a contradiction. Therefore, we have a12a21 = 0. Let a21 = 0

and a12 ̸= 0. For any automorphism θ1(x) = (1 − e21)x(1 + e21) and θ2(x) =

(1 + e12)x(1− e12) of R, we have

θ1(q − p)12θ1(q − p)21 = θ2(q − p)12θ2(q − p)21 = 0.

Then,

a12(a21 + a11 − a12 − a12) = 0, a12(a21 − a11 + a12 − a12) = 0.

We have a12 = 0 which is a contradiction. Therefore, a12 = 0 = a21 = 0. Arguing
in the similar manner, we can show that akl = 0 for k ̸= l that is p−q is a diagonal
matrix. Let θ(x) = (1 − ekl)x(1 + ekl), k ̸= l be an inner automorphism of R.
Then, θ(p − q)kl = all − akk + akl − alk = all − akk = 0. That is all = akk.
Hence q − p is a scalar matrix.

Lemma 3.4. Let R be a prime ring with characteristic different from 2, U its Utumi
quotient ring, C extended centroid of R, λ an ideal of R and p, q ∈ U . If there
exists 0 ̸= b ∈ R such that b([x, y]t[p[x, y] + [x, y]q, [x, y]][x, y]

s)m = 0 for all
x, y ∈ λ where s ≥ 0, t ≥ 1, m ≥ 1 are fixed integers, then either R satisfies s4
and p+ 2q ∈ C or p, q ∈ C.

Proof. By hypothesis, we have

P (x, y) = b([x, y]t[p[x, y] + [x, y]q, [x, y]][x, y]
s)m = 0 for all x, y ∈ λ. (3.13)

By Fact-4, I , R, U satisfy the same generalized polynomials identity with coeffi-
cients in U and we have

P (x, y) = b([x, y]t[p[x, y] + [x, y]q, [x, y]][x, y]
s)m = 0 for all x, y ∈ R. (3.14)
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If R does not satisfy any nontrivial generalized polynomials identity, then by
Lemma 3.1 we are done. Let R satisfies a nontrivial generalized polynomial iden-
tity. In the light of Fact-4, U satisfies P (x, y). In case C is infinite, we have
P (x, y) = 0 for all x, y ∈ U

⊗
c C̄, where C̄ is the algebraic closure of C. Since

both U and U
⊗

c C̄ are prime and centrally closed [8], we may replace R by U or
U
⊗

c C̄ according to C is finite or infinite. Thus we may assume that R is centrally
closed over C which is either finite or algebraically closed and P (x, y) = 0 for all
x, y ∈ R. By Martindale’s Theorem [22], R is a primitive ring having nonzero
soc(R) with C as associative division ring. Hence by Jacobson’ Theorem [13], R
is isomorphic to dense ring of linear transformations of vector space V over C. If
V is finite dimensional over C, then R ∼= Mn(C). If n = 2, then we are done by
Lemma 3.2. If n = 3, then by Lemma 3.3, we get p − q ∈ Z(R). Therefore, our
hypothesis becomes

b([x, y]t([x, y]2q − q[x, y]2)[x, y]s)m = 0 for all x, y ∈ R. (3.15)

For some v ∈ V , if {v, qv} is linearly independent over C, then there exists w ∈ V

such that {v, qv, w} is linearly independent over C. By Jacobson’s Theorem there
exist x1, x2 ∈ R such that

x2v = w, x2qv = w, x1v = 0, x1qv = 0, x1w = v.

Multiplying equation (3.15) by v from right, we get bv = 0, hence b = 0 by Fact-6
which is a contradiction to b ̸= 0. Hence {v, qv} is linearly dependent over C, i.e.,
q ∈ C. If n > 3 and for some v ∈ V , {v, pv} is linearly independent over C, then
there exist w, r ∈ V such that {v, pv, w, r} is linearly independent over C. In light
of Jacobson’s Theorem there exist x1, x2 ∈ R such that

x2v = w, x2pv = −w, x2r = 0, x2qv = 0

x1v = 0, x1pv = r, x1w = v, x1qv = 0.

Multiplying equation (3.14) by v from right, to have bv = 0 and hence b = 0 by
Fact-6 which is a contradiction to b ̸= 0. Hence {v, pv} is linearly dependent over
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C, i.e., p ∈ C and by hypothesis, we have

b([x, y]t+1[q, [x, y]][x, y]s)m = 0 for all x, y ∈ R. (3.16)

Again let for some v ∈ V , {v, qv} be linearly independent over C. Then {v, qv, w}
is linearly independent over C for some w ∈ V . Again by Jacobson’s Theorem
there exist x1, x2 ∈ R such that

x2v = qv, x2qv = w, x2w = −v

x1v = w, x1qv = 0, x1w = qv − v.

Multiplying equation (3.16) by v from right, to have bv = 0 and hence b = 0 by
Fact-6 which is a contradiction to b ̸= 0. Hence {v, qv} is linearly dependent over
C, i.e., q ∈ C. Finally assume that V is infinite dimensional over C. Then as in
Lemma 2 in [19], R satisfies

b(ut(pu2 + u(p− q)u)− u2q)ut)m = 0. (3.17)

For some v ∈ V let {v, qv} be linearly independent over C. Then {v, qv, w} for
some w ∈ V is linearly independent over C. By Jacobson’s Theorem there exists
x ∈ R such that

xv = v, uqv = −pv + w, xw = w − v.

Multiplying equation (3.17) by v from right, to have bv = 0 and hence b = 0 by
Fact-6 which is a contradiction to b ̸= 0. Hence {v, qv} is linearly dependent over
C that is q ∈ C. Therefore equation (3.17) becomes

b(ut[p, u])ut+1)m = 0. (3.18)

Again let for some v ∈ V , {v, pv} be linearly independent over C. By Jacobson’s
Theorem there exists x ∈ R such that

xv = v, xpv = pv − v.

Multiplying equation (3.18)by v from right, to have bv = 0 and hence b = 0 by
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Fact-6 which is a contradiction to b ̸= 0. Hence {v, pv} is linearly dependent over
C, i.e., p ∈ C.

Now, we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1 By assumption, we have

b([x, y]t[G([x, y]), [x, y]][x, y]s)m = 0 for all x, y ∈ λ. (3.19)

By Fact-4 I,R, U satisfy the same generalized polynomial identity, we have

b([x, y]t[G([x, y]), [x, y]][x, y]s)m = 0 for all x, y ∈ U. (3.20)

In the light of Fact-3, G(x) can be written as G(x) = px + d(x) for some p ∈ U
and a derivation d of U . Now equation (3.20) becomes

b([x, y]t[p[x, y] + d([x, y]), [x, y]][x, y]s)m = 0 for all x, y ∈ U. (3.21)

Assume first that d is an inner derivation of U that is there exists q ∈ U such that
d(x) = [q, x]. Therefore, we have

b([x, y]t[p[x, y] + [q, [x, y]], [x, y]][x, y]s)m = 0 for all x, y ∈ U. (3.22)

That is,

b([x, y]t[(p+ q)[x, y]− q[x, y], [x, y])[x, y]s)m = 0 for all x, y ∈ U. (3.23)

This can be written as

b([x, y]t((p+ q)[x, y]2 − [x, y]p[x, y]− q[x, y]2)[x, y]s)m = 0 for all x, y ∈ U.
(3.24)

By Lemma 3.4 either R satisfies s4 and p + 2q ∈ C or p + q, −q ∈ C, that is,
p, q ∈ C. In the first case R satisfies s4, then we assume that p+ q = −q + α for
some α ∈ C. Thus we have G(x) = px+ [q, x] = (p+ q)x− xq = (−q+ α)x−
xq = −qx − xq + αx for all x ∈ R. If d is not an inner derivation of U , then by
Kharchenko’s Theorem [12], U satisfies the generalized polynomial identity

b([x, y]t[p[x, y]+[z, y]+[x,w], [x, y]][x, y]s)m = 0 for all x, y, w, z ∈ U. (3.25)
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In particular choosing z = w = 0, we obtain

b([x, y]t[p[x, y], [x, y]][x, y]s)m = 0 for all x, y ∈ U. (3.26)

By [9, Lemma 5], we get p ∈ C. For z = 0, equation (3.25) becomes

b([x, y]t[[x,w], [x, y]][x, y]s)m = 0 for all x, y, w ∈ U. (3.27)

By [21], we get

([x, y]t[[x,w], [x, y]][x, y]s)m = 0 for all x, y, w ∈ U. (3.28)

It is a polynomial identity for U , so U is a P.I. ring. Since U is P.I. ring, it is
well known that there exists a field K such that U ⊆ Mt(K), the ring of t × t
matrices over K. Moreover, U and Mt(K) satisfy the same polynomial identity
[20, Lemma 2]. If t = 1, then U is commutative and hence R is commutative, a
contradiction. Suppose t ≥ 2 and choose w = e22 and x = e12 − e21, y = −e21.
Since characteristic of R ̸= 2, we obtain the following contradiction:

2m(e12 + e21)
m = 0.

This completes the proof.

Similarly, we can prove the following theorem:

Theorem 3.1. Let R be a prime ring with characterstic different from 2, U its
Utumi quotient ring, C its extended centroid, λ a nonzero ideal of R and G a
nonzero generalized derivation with associated derivation d of R, s ≥ 0, t ≥
1,m ≥ 1 fixed integers and 0 ̸= b ∈ R. Assume that b((x ◦ y)t[G(x ◦ y), (x ◦
y)](x ◦ y)s)m = 0 for all x, y ∈ λ. Then one of the following holds:

(i) R satisfies the standard identity s4(x1, x2, x3, x4) in four variables and G(x) =

qx+ xq + αx for some q ∈ U and α ∈ C;

(ii) G(x) = αx for all x ∈ R with α ∈ C.
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