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Abstract

In this paper, first we compute covering space of SPn(Sn) and then

we compute homology of the covering spaces ˜SPn(Sn) and ˜SP∞(Sn) of
SPn(Sn) and SP∞(Sn) respectively.
Also, if m and n are distinct non-negative integers, then using Homology
of covering space of infinite symmetric products of spheres, we deduce the
following results:
i) Hp( ˜SP∞(Sm)) ≇ Hp( ˜SP∞(Sn)) ;

ii) Hp( ˜SP∞(Sm)) ≁ Hp( ˜SP∞(Sn)).

1 Introduction and preliminaries

The unit n-sphere of radius 1 is defined as : Sn = {x ∈ Rn+1 : ||x|| = 1}. The
n-sphere is a Riemannian manifold of positive curvature and is orientable. The
n-sphere admits, for every point x0 ∈ Sn, a CW-structure with one 0-cell x0 and
one n-cell Sn − x0. Hence Sn is an n-dimensional CW-complex(cell complex).
Now, we recall the following definitions and statements:-
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Definition 1.1. (Symmetric product) Let X be a topological space with base point
x0 ∈ X . For n ≥ 0, we define the n fold symmetric product of X , denoted by
SPn(X) by SP 0(X) = x0, SP

n(X) = Xn/Sn for n ≥ 1,where Xn denotes the
n fold cartesian product of X with itself and Sn denotes the symmetric group on n
objects regarding as acting on Xn by permuting the coordinates.
Hence for n ≥ 1, SPn(X) = {(x1, . . . , xn) : xi ∈ X)}.
There is an embedding SPn(X) ↪→ SPn+1(X) given by
j(x1, x2, . . . , xn) = (x1, x2, . . . , xn, x0). Thus SPn(X) can naturally considered
as a subset of SPn+1(X) and is given by a sequence
SP 1(X) ⊂ SP 2(X) ⊂ · · · ⊂ SPn(X) ⊂ SPn+1(X) ⊂ · · · .
We define the infinite symmetric product of Xis the colimit SP∞(X) ≃ Colim
SPn(X) according to the above sequence.
Rana [6] showed that SPn and SP∞ are covariant functor from the category
of pointed topological spaces and base point preserving continuous maps to the
category of pointed topological spaces and base point preserving continuous maps.

Definition 1.2. (CW-complex) A pair (X,ε) consisting of a Hausdorff space X and
a cell decomposition ε of X is called a CW-complex if the following axioms are
satisfied:
(i) (Characteristic map): For each n-cell enα ∈ ε there is a map ϕα : (Dn, Sn−1)→
(X,Xn−1) restricting to a homeomorphism ϕα|Dn−Sn−1 : Dn − Sn−1 → enα and
taking Sn−1 into Xn−1.
(ii) (Closure finite): For any cell eα ∈ ε the closure eα intersects only a finite
number of other cells in ε.
(iii) (Weak topology): A subset A ⊆ X is closed if and only if A ∩ eα is closed in
X for each eα ∈ ε.

Definition 1.3. (Eilenberg-Maclane space) A pointed CW-complex is called an
Eilenberg MacLane space if it has only one nontrivial homotopy group. If G is a
group and n is a positive integer, the Eilenberg-MacLane space of type (G,n) is a
pointed CW-complex X whose homotopy groups vanish in all dimensions except n,
where G = πn(X) and G is to be abelian for n > 1,
we can write the notation K(G, n) for a CW-complex which represents an Eilenberg-
MacLane space of type (G, n).
The unit circle S1 with G = Z : K(Z, 1) ≃ S1.
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The infinite dimensional real projective space RP∞ with G = Z2 : K(Z2, 1) ≃
RP∞.
The infinite dimensional complex projective space CP∞ with G = Z : K(Z, 2) ≃
CP∞.

Definition 1.4. (Homotopy) Let X be a space and x0 a base point of X . For a given
positive integer n, consider the set Fn(X,x0) of all continuous maps α from the
unit n-cube In into X for which α(∂In) = x0.
Define an equivalence relation ∼ x0 on Fn(X,x0) as follows:
For α and β in Fn(X,x0), α is equivalent module x0 to β written as α ∼ x0β, if
there is a homotopy H : In × I → X such that
H(t1, t2, . . . , tn, 0) = α(t1, t2, . . . , tn)

H(t1, t2, . . . , tn, 1) = β(t1, t2, . . . , tn), (t1, t2, . . . , tn) ∈ In and H(t1, t2, . . . ,

tn, s) = x0, (t1, t2, . . . , tn) ∈ (∂In), s ∈ I ,
Under this equivalence relation on Fn(X,x0), the equivalence class determined
by α is denoted by [α] and is called the homotopy class of α module x0 or simply
the homotopy class of α.

Define (α ◦ β)(t) =

{
α(2t1, t2, . . . , tn) if 0 ≤ t1 ≤ 1

2

β(2t1 − 1, t2, . . . , tn) if 1
2 ≤ t1 ≤ 1

with this operation, the set of equivalence classes of Fn(X,x0) is a group called
the n-th homotopy group of X at x0 denoted by πn(X,x0).

Definition 1.5. (Homology) A sequenceC∗ = {Cn, ∂n}, n ∈ Z of additive abelian
groups Cn together with a sequence of group homomorphisms ∂n : Cn → Cn−1

such that ∂n ◦ ∂n+1 = 0 is called a chain complex and ∂n is called a boundary
homomorphism. More precisely

C∗ · · · → Cn+1
∂n+1−−−→ Cn

∂n−→ · · · ∂1−→ C1
∂0−→ 0 is called a chain complex if

∂n ◦ ∂n+1 = 0, ∀n ∈ Z.
The elements of Zn = ker(∂n) are called n-cycles and the elements of Bn =

Im(∂n+1) are called n -boundaries of the chain complex C∗.
As ∂n ◦ ∂n+1 = 0, Im(∂n+1) ⊂ ker(∂n), so Bn is a normal subgroup of Zn, ∀n .
Define Hn = Zn

Bn
= ker(∂n)

Im(∂n+1)
, is called n-th homology group.

Definition 1.6. (Cohomology) A sequence C∗ = {Cn, ∂n}, n ∈ Z of additive
abelian groupsCn together with a sequence of group homomorphisms ∂n : Cn−1 →
Cn such that ∂n+1 ◦ ∂n = 0 is called a cochain complex and ∂n is called a
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coboundary homomorphism. More precisely,

C∗ · · · → Cn−1 ∂n

−→ Cn ∂n+1

−−−→ Cn+1 → · · · is called a cochain complex if
∂n+1 ◦ ∂n = 0, ∀n ∈ Z.
The elements of Zn = ker(∂n+1) are called n-cocycles and the elements of Bn =

Im(∂n) are called n -coboundaries of the cochain complex c∗.
As ∂n+1 ◦ ∂n = 0 , Im(∂n) ⊂ ker(∂n+1), so Bn is a normal subgroup of
Zn,∀n ∈ Z .
Define Hn = Zn

Bn = ker(∂n+1)
Im(∂n) , is called n-th cohomology group.

Definition 1.7. (Covering space) A covering space of a space (X,x) is a triple
(X̃, x̃, p) consisting of a pointed space (X,x) and a continuous surjective map
p : (X̃, x̃) → (X,x) such that each point x ∈ X has a path connected open
neighborhood U such that each path component of p−1(U) is mapped homeo-
morphically onto U by p, that is, each point x ∈ X has a path connected open
neighborhood U such that p−1(U) is a disjoint union of open sets , each of which
is mapped homeomorphically onto U by p.

Definition 1.8. (Fiber bundle) Let Y , X and F be topological spaces, called total
space, base space and Fiber respectively. A fiber bundle is a structure (Y,X, q, F )
with continuous surjection q : Y → X satisfying the following conditions:
(i) For any x ∈ X the pre-image q−1(x) is homeomorphic to F and is called the
fiber over x.
(ii) For any x ∈ X there is an open neighbourhood U ⊆ X of x such that there is
a homeomorphism ϕ : q−1(U)→ U×F with subspace topology and the following
diagram commutes:

q−1(U)

U

U × F
ϕ

q
p1

where p1 is the natural projection onto the first coordinate. The set of all {Ui, ϕi}
is called a local trivialization of the bundle.
Note that when the fiber is a vector space, the bundle is called a vector bundle.
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Definition 1.9. (Pullback bundle) Let q : Y → X be a fiber bundle with fiber
F and let f : X ′ → X be a continuous map. Define the pullback bundle by
f∗Y = {(x′, y) ∈ X ′ × Y |f(x′) = q(y)} ⊆ X ′ × Y and the projection map
q′ : f∗Y → X ′, given by the projection onto the first coordinate and g : f∗Y → Y ,
given by the projection onto the second coordinate, such that the following diagram
commutes:

f∗Y

X ′

Y

X

g

q′ q

f

If (U, ϕ) is a local trivialization of Y , then (f−1(U), ψ) is a local trivialization of
f∗Y , where ψ(x′, y) = (x′, p2(ϕ(y))). It then follows that f∗Y is a fiber bundle
over X ′ with fiber F and the bundle is called the pullback bundle of Y by f .

Definition 1.10. A sequence of abelian groups and homomorphisms A B C
f g

is called exact at B if ker(g) = Im(f).

2 Some useful results

Lemma 2.1. ([5]) Let h : C → D be a morphism of chain complexes such that
pi : Ci → Di is an isomorphism for i ≤ n.

.... Ci+1

Di+1

Ci Ci−1 .... 0

.... Di Di−1 .... 0

σi

δi

pi−1pi

Then, Hi(C) ∼= Hi(D) for i ≤ n− 1.

Theorem 2.1. (Dold-Thom) ([5]) Let X be a connected cell complex. Then, there

is a homotopy equivalence SP∞(X) ≃
∞∏
n=1

K(Hn(X,Z), n).
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Theorem 2.2. Let Σm be a compact Riemann surface of genus m. Then there is a
homotopy equivalence such that SP∞(Σm) ∼= CP∞ × (S1)2m.

Proof. We know that Hn(Σm;Z) =


Z for n = 0, 2

Z2m for n = 1

0 otherwise
.

Now, as Σm is a connected cell complex , the Dold-Thom theorem (Theorem 2.1)
implies:

SP∞(Σm) ≃
∞∏
n=1

K(Hn(Σm,Z), n) = K(H1(Σm,Z, 1)×K(H2(Σm,Z), 2)

= K(Z2m, 1)×K(Z, 2) = (S1)2m × CP∞.
Hence, SP∞(Σm) ∼= CP∞ × (S1)2m.

As SP∞(Σm) is the colimit of SPn(Σm), SP∞(Σm) has a cell complex
structure for which the SPn(Σm) are subcomplexex such that the natural inclusion
i : SPn(Σm) ↪→ SP∞(Σm) is an isomorphism upto the n-skeletons: (SPn(Σm))n
∼= (SP∞(Σm)n.

Theorem 2.3. Let Σn be a compact Riemann surface of genus m with an nth sym-
metric product space SPn(Σm) and infinite symmetric product space SP∞(Σm).
Then for a filed F,Hk(SP

n(Σm),F) ∼= Hk(SP
∞(Σm),F) for k = 0, 1, 2, . . . , n−

1.

Proof. The proof follows directly by Lemma 2.1.

Theorem 2.4. If X is a cell complex with the n-skeleton Xn and X̃ is a cov-
ering space with the covering map p, then X̃ is a cell complex with n-skeleton
p−1(Xn) = X̃n.

Proof. The proof can be found in Hatcher [1].

Corollary 2.1. Let p : X̃ → X be a covering map and f : Y → X be a continuous
map. Then, Pullback f∗p of the covering map p along f is a covering map.

f∗(X̃) X̃

Y X

f̃

f∗p p

f
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Proof. Let f(y) = x in X for any y ∈ Y . Since p is a covering map, there exists
an open neighbourhood Ux ⊂ X such that p−1(Ux) =

⋃
i∈I

Vi, where each Vi is

open in X̃ for i ∈ I and maps homeomorphically onto Ux by p. Now, since f is
continuous , f−1(Ux) is an open set. Let Uy = f−1(Ux) be the open neighbour-
hood of y.
Claim: Uy is evenly covered by f∗p .
That is (f∗p )

−1(Uy) = (f∗p )
−1(f−1(Ux)) = f̃−1(p−1(Ux)) = f̃−1(

⋃
i∈I

Vi) =⋃
i∈I

f̃−1(Vi). So we need to check that each f̃−1(Vi) is mapped homeomorphi-

cally onto Uy by f∗p . By Corollary 2.2 we have f̃ is a homeomorphism and hence
we have the result.

Corollary 2.2. Let p : X̃ → X be a covering map and f : Y → X be a homeo-
morphism. If the pullback of p along f is Ỹ , and the covering map f∗p : Ỹ → Y ,
then the function f̃ : Ỹ → X̃ is a homeomorphism.

Ỹ X̃

Y X

f̃

f∗p

∼=

p

f

Theorem 2.5. The long sequence of homomorphisms

... Hn+1(X,A) Hn(A) Hn(X) Hn(X,A) Hn−1(A) ... 0
σ Hn(i) Hn(j) σ

is exact and is called the long exact homology sequence associated to the pair
(X,A).

Proof. Proof can be found in Hatcher [1].

Lemma 2.2. (The Five-Lemma) In a commutative diagram of abelian groups,
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A B C D E

A′ B′ C ′ D′ E′

i j k l

i′ j′ k′ l′

α β γ δ ρ

if the two rows are exact and α, β, δ, ρ are isomorphism, then γ is also an isomor-
phism.

Proof. Proof can be found in Hatcher [1].

Theorem 2.6. (Whitehead Theorem)([5]) Let f : X → Y be a continuous map
between connected cell complexes. Then f is a homotopy equivalence if and only
if f∗ : πk(X)→ πk(Y ) is an isomorphism for all k ≥ 1, where πk(X) and πk(Y )

are k-th homotopy groups of X and Y respectively for k ≥ 1.

Theorem 2.7. ([5]) Given a fiber bundle (Y,X, q, F ) and choosing a base point
y0 ∈ Y ; then, there is a long exact sequence of homotopy groups

· · · π2(F, y0) π2(Y, y0) π2(X, q(y0)) π1(F, y0) π1(Y, y0) π1(X, q(y0)) .

3 Homology of SP n(Sn) and SP∞(Sn)

Definition 3.1. (Betti numbers) Let X be a topological space and Hn(X) be the
nth homology group ofX . Then, for a non-negative integer p, the pth Betti number
bp(X) of X is the dimension of Hp(X), i.e, Hp(X,F) = Fbp for a field F.

Example 3.1. For the n-dimensional sphere Sn, we have,

Hp(S
n,F) =

{
F for p = 0, n

0 otherwise
Therefore, b0(Sn) = bn(S

n) = 1 and all other Betti numbers are 0.

Definition 3.2. (Poincaré polynomial) For a fixed coefficient field F the Poincaré
polynomial PX(t) of a topological space X is the generating power series of its
Betti numbers, i.e, PX(t) =

∑
i
biti where bi is the dimension of Hi(X,F) as a

vector space of F, i.e, the ith Betti number of X .
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Example 3.2. For the n-dimensional sphere Sn, The Betti numbers are b0(S
n) =

bn(S
n) = 1 and all other Betti numbers are 0 (by Example 3.1). Therefore,

PSn(t) = 1 + tn.

Theorem 3.1. ([5]) Let X and Y be two topological spaces. Then, the Poincaré
polynomial of the tensor productX×Y can be written asPX×Y (t) = PX(t)PY (t).

Theorem 3.2. ([10]) LetX be a finite cell complex. If for any field F and all k ≥ 0

the dimension of Hk(X,F) is independent of F, then Hk(X,F) is a free abelian
group of the same rank as the Betti number.

By Theorem 2.1 and Theorem 3.1, we have the Poincaré polynomial for SP∞(Sn)
as PSP∞(Sn)(t) = PCP∞×(S1)2n(t) = PCP∞(t)P(S1)2n(t) = (1 + t)2n( 1

1−t2
)

=
∞∑
j=0

∞∑
i=0

(
2n
i

)
ti+2j .

Note that the pth Betti number bp of a space is the coefficient of tp of its own
Poincaré polynomial.
Hence, bp(SP∞(Sn))

=


p/2∑
i=0

(
2n
2i

)
for p = 0, even

(p−1)/2∑
i=0

(
2n

2i+ 1

)
for p = odd

Now the homology of a space X , Hp(X,F) = Fbp for a field F.
Hence, by Theorem 3.2 we have, Hp(SP

∞(Sn),Z)

=


Z

p/2∑
i=0

 2n
2i


for p = 0, even

Z

(p−1)/2∑
i=0

 2n
2i+ 1


for p = odd

.

Now by the above result and by Theorem 2.3 we have,

Hp(SP
n(Sn),Z)=


Z

p/2∑
i=0

 2n
2i


for p = 0, even

Z

(p−1)/2∑
i=0

 2n
2i+ 1


for p = odd

for p = 0, 1, 2, . . . , n− 1.
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4 Covering space of SP n(Sn)

First we will define the Abel-Jacobi map.
Let Σm be a compact Riemann surface of genusm. Let γ1, γ2, . . . , γ2m are smooth
closed loops representing a basis [γ1], [γ2], . . . , [γ2m] for H1(Σm;Z) ∼= Z2m. Let
H0(Σm; Ω1,0) be the vector space of holomorphic 1-forms on Σm. Letα1, α2, . . . , αm

be a basis for H0(Σm; Ω1,0) ∼= Cm.

Let L be a 2m dimensional lattice defined by L = {
2m∑
i=1

niwi|ni ∈ Z} ≤ Cm, gen-

erated by the basis ofw1, w2, . . . , w2m ∈ L such thatwi = (
∫
γi

α1,
∫
γi

α2, . . . ,
∫
γi

αm).

The Jacobian of the Σm, denoted by J(Σm) is the compact quotient space, J(Σm) =
Cm/L ∼= R2m/L.
Note that Cm/L is a 2m dimensional torus which is homeomorphic to (S1)2m as
a topological space as L is a discrete subgroup of Cm of maximal rank.
Now, fix a point x0 ∈ Σm. The Abel-Jacobi map is a map AJ : Σm → J(Σm).
For every point x ∈ Σm, choose a curve γ from x0 to x and define the map AJ as

AJ(x) = (
x∫

x0

α1,
x∫

x0

α2, . . . ,
x∫

x0

αm) + L.

As J(Σm) is an abelian group, the Abel-Jacobi map AJ can be extended to a sym-
metric product, AJn : SPn(Σm) → J(Σm) defined by AJn(p) = AJ1(y1) +
AJ2(y2) + . . .+AJn(yn), where p = (y1, y2, . . . , yn) ∈ SPn(Σm).
Now, we will construct a homomorphism J(Sn) → J(Sn) which is also a cov-
ering map.The Jacobian is the compact quotient space J(Sn) = R2n/L. Let
{u1, u2, . . . , u2n} ∈ R2n be a basis for L and C = [u1, u2, . . . , u2n] be the col-
umn matrix for the basis. Let A be a 2n× 2n matrix with integer entries such that
det(A) ̸= 0. Then B := CAC−1 is a surjective linear map R2n → R2n that sends
L to L. This is determined to be a surjective homomorphism p : J(Sn) → J(Sn)
by p([x]) = [Bx] for x ∈ R2n.
Then p determines a covering map J(Sn) → J(Sn), where |det(A)| represents
the number of sheets. Now we shall consider the pullback diagram of p along the
Abel-Jacobi map:

˜SPn(Sn) J(Sn)

SPn(Sn) J(Sn)

f∗p p

AJ
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By Corollary 2.1, the pullback f∗p of the covering map p is also a covering map with

|det(A)| number of sheets. Hence, ˜SPn(Sn) is a covering space of SPn(Sn).

5 Homology of the covering spaces ˜SP∞(Sn) and ˜SP n(Sn)

In this section, we will find the homology groups of the covering spaces ˜SP∞(Sn)

and ˜SPn(Sn). Also we will show that a covering space of SP∞(Sn) has the same
homology as SP∞(Sn).
Consider the following diagram of topological spaces and continuous maps which
is commutative:

X ′ Y ′ Z ′

X Y Z

f ′ g′

f g

ϕx ϕy ϕz

Then we have two respective pullback spaces X ′ ×Y ′ Z ′ and X ×Y Z to the dia-
grams X ′ → Y ′ ← Z ′ and X → Y ← Z such that
X ′ ×Y ′ Z ′ = {(x′, z′) ∈ X ′ × Z ′|f ′(x′) = g′(z′)} and X ×Y Z = {(x, z) ∈
X × Z|f(x) = g(z)}.
Hence, we can define a function ψ : X ′ ×Y ′ Z ′ → X ×Y Z such that ψ(x′, z′) =
(ϕx(x

′), ϕz(z
′)).

So, we can define the pullback space for the diagram

CP∞ × J(Sn) J(Sn) J(Sn)
p2 p

as a covering space ˜CP∞ × J(Sn) of CP∞ × J(Sn).
Similarly, we can define the pullback space for the diagram

SP∞(Sn) J(Sn) J(Sn)
AJ∞ p

as a covering space ˜SP∞(Sn) of SP∞(Sn).
As, the pullback of a trivial fiber bundle is a trivial fiber bundle with the same fiber,

˜CP∞ × J(Sn) :→ J(Sn) is a trivial bundle.

Moreover, since we have the pullback as the covering space, ˜CP∞ × J(Sn) ∼=
CP∞ × J(Sn).
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Lemma 5.1. ψ : ˜SP∞(Sn)→ ˜CP∞ × J(Sn) is a homotopy equivalence.

Proof. As we have pullback diagrams of a trivial fiber bundle and fiber bundle, we
can say that CP∞ → ˜CP∞ × J(Sn) → J(Sn) is a trivial bundle and CP∞ →
˜SP∞(Sn)→ J(Sn) is a fiber bundle.

Now, we have a long exact sequence of homotopy groups (by Theorem 2.7), which
make the following commutative diagram:

... πn+1(J(S
n)) πn(CP∞) πn( ˜CP∞ × J(Sn)) πn(J(S

n)) πn−1(CP∞) ...

... πn+1(J(S
n)) πn(AJ

−1
∞ (∗)) πn( ˜SP∞(Sn)) πn(J(S

n)) πn−1(AJ
−1
∞ (∗)) ...

Id f∗ ϕ∗ Id f∗

where ∗ is the identity element of J(Sn).
Since we have all the homotopy groups are abelian, by the Five-Lemma (Lemma
2.2) the map ψ∗ is an isomorphism. Hence by Whitehead Theorem (Theorem 2.6)
ψ is a homotopy equivalence.

Corollary 5.1. Hp( ˜SP∞(Sn),Z) = Hp(SP
∞(Sn),Z).

Proof. by Lemma 5.1, we have the homotopy equivalence, ˜SP∞(Sn) ∼=
˜CP∞ × J(Sn) ∼= CP∞ × J(Sn) ∼= SP∞(Sn). Hence, Hp( ˜SP∞(Sn),Z) =

Hp(SP
∞(Sn),Z).

Hence, we haveHp( ˜SP∞(Sn),Z) =


Z

p/2∑
i=0

 2n
2i


for p = 0, even

Z

(p−1)/2∑
i=0

 2n
2i+ 1


for p = odd

.

Now, let us consider the relationship between the covering spaces.
Let p : X̃ → X be a covering map and let X be a cell complex with n-skeleton
Xn. Then X̃ is a cell complex with X̃n = p−1(Xn) representing the n-skeleton of
X̃ .

Proposition 5.1. Hp( ˜SPn(Sn),Z) ∼= Hp( ˜SP∞(Sn),Z) for p = 0, 1, 2, . . . , n− 1.

Proof. Consider the pullback diagram:
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˜SPn(Sn)n
˜SP∞(Sn)n

SPn(Sn)n SP∞(Sn)n

f̃

f∗p

f

p

As we have a homeomorphism of n-skeletons SPn(Sn)n ∼= SP∞(Sn)n for upto

the nth skeletons, so, we have ˜SPn(Sn)n
∼= ˜SP∞(Sn)n (By Corollary 2.2) for

upto the nth skeletons. Now Lemma 2.1 gives the proof.

Thus, as a result we have, Hp( ˜SPn(Sn),Z)

=


Z

p/2∑
i=0

 2n
2i


for p = 0, even

Z

(p−1)/2∑
i=0

 2n
2i+ 1


for p = odd

for p = 0, 1, 2, . . . , n− 1.

Proposition 5.2. Hp( ˜SP∞(Sn)) ≇ Hp( ˜SP∞(Sm) for distinct non-negative inte-
gers n and m.

Proof. As we know Hp(SP
∞(Sn)) ≇ Hp(SP

∞(Sm) for distinct non-negative
integers n and m, the proof follows by Corollary 5.1

Proposition 5.3. Hp( ˜SP∞(Sn)) ≁ Hp( ˜SP∞(Sm) for distinct non-negative inte-
gers n and m.

Proof. The proof follows by Proposition 5.2.
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