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Abstract

Let G be a finite group, g be a fixed non-identity element of G, and
Z(G) be the center of G. We denote by ∆g

G, the g-noncommuting graph,
where the vertex set is G \Z(G). Two distinct vertices, x and y, are adjacent
if [x, y] is not equal to g and g−1. Recall that [x, y] is the commutator of two
elements x and y of G and is equal to x−1y−1xy. In this paper, we prove that
the g-noncommuting graphs associated with the generalized quaternion and
dihedral groups are isomorphic and survey the locating chromatic number of
g-noncommuting graph of this family of groups.

1 Introduction

Let G be a finite group and g be a non-identity element of G. Then, the g-
noncommuting graph of G, ∆g

G, is defined with vertex set G \ Z(G) such that
two distinct vertices x and y join by an edge whenever [x, y] ̸= g and [x, y] ̸= g−1,
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where [x, y] = x−1y−1xy is the commutator of x and y [10]. Recall that for
any group G, K(G) = {[x, y] : x, y ∈ G} is the set of all commutators of G
and G′ = ⟨K(G)⟩, where G′ is the commutator subgroup of G. Therefore, if
g /∈ K(G), then the g-noncommuting graph ∆g

G is a complete graph. Hence, we
assume that g is a non-identity element in K(G). If two finite groups G and H
are isomorphic, then ∆g

G
∼= ∆h

H for some g ∈ G and h ∈ H , but the converse
is not generally true. In [7], authors proved that two groups with isomorphic g-
noncommuting graphs have the same order. Also, the g-noncommuting graphs as-
sociated with symmetric, alternating, and dihedral groups have been studied in [6].
Now, we investigate the g-noncommuting graph associated with quaternion groups
and prove that the g-noncommuting graphs for quaternion and dihedral groups are
generally isomorphic.

One of the essential concepts in graph theory is graph coloring; there are many
kinds of graph coloring, such as vertex coloring, edge coloring, locating coloring,
etc. We remind locating coloring as follows:

Let c be a proper k-coloring of a graph and π = (V1, V2, . . . , Vk) be an or-
dered partition of the vertex set into the resulting color classes. The color code
of vertex v with respect to π, denoted by cπ(v), is defined as the ordered k-tuple
(d(v, V1), d(v, V2), . . . , d(v, Vk)) such that d(v, Vi) is the minimum distance from
v to each other vertex in Vi for 1 ⩽ i ⩽ k. If distinct vertices of the graph have
distinct color codes, then c is called a locating coloring. The locating chromatic
number, denoted by χL, is the minimum number of colors needed for locating
graph coloring. Obviously, χ(Γ) ≤ χL(Γ), for any graph Γ. See [1, 2, 4, 5] for
more results in the subject and related subjects.

In [6], the proper coloring of g-noncommuting graph of dihedral groups was
investigated. Hence, in this article, we will survey the locating coloring of g-
noncommuting graph on dihedral groups.

Here, our notations and terminologies are standard, and one can refer to graph
terminologies to [3].

2 The results

We know that the generalized quaternion group of order 4n is denoted by Q4n and
has the following presentation

Q4n = ⟨x, y : x2n = e, xn = y2, xy = x−1⟩.
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Indeed, Z(Q4n) = {e, xn} and (Q4n)
′ = ⟨x2⟩. Also, the following properties

occur.

[xk, xl] = e k, l = 1, 2, . . . , 2n,
[xky, xl] = x2l k, l = 1, 2, . . . , 2n,

[xky, xly] = x2(k−l) k, l = 1, 2, . . . , 2n.

(2.1)

Therefore, if g is a non-identity element and g = x2i for some 1 ≤ i ≤
n − 1, then by definition of g-noncommuting graph and equalities (2.1), we have
the following properties in g-noncommuting graph associated to Q4n.

1) All vertices xk and xl, 1 ≤ k, l ≤ 2n, are adjacent together. Hence, the
subgraph induced by these vertices is complete.

2) The vertices xky and xl are adjacent if and only if l ̸≡ i (mod n) and
l ̸≡ n− i (mod n).

3) The vertices xky and xly are adjacent if and only if k − l ̸≡ i (mod n) and
k − l ̸≡ n− i (mod n).

The g-noncommuting graph of Q4n for specific element g = x2, n = 2 and n = 3
are as follows:

Figure 1: ∆x2

Q8

Figure 2: ∆x2

Q12

The following discusses the connectivity of ∆g
Q4n

.
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Theorem 2.1. ∆g
Q4n

is a connected graph if and only if n ≥ 4. Moreover, diam
(∆g

Q4n
) = 2.

Proof. As we know, the induced subgraph on ⟨x⟩ \ Z(Q4n) is complete, and the
vertices xky and xl are adjacent if and only if l ̸≡ i (mod n) and l ̸≡ n − i

(mod n). Since n ≥ 4, a vertex xl exists such that xl joins to all vertices like
xky. Therefore, the g-noncommuting graph is connected. Also, the diameter is
two because at least two vertices are not adjacent.

It is clear that the g-noncommuting graphs associated with isomorphic groups
are isomorphic, but the converse is not true.

Now, consider the generalized quaternion group of order 2n as follows:

Q2n = ⟨x, y | x2n−1
= y4 = e, x2

n−2
= y2, xy = x−1⟩.

Hence, Z(Q2n) = {e, x2n−2} and (Q2n)
′ = ⟨x2⟩.

One can see that Q2n
∼= Q4(2n−2). So, the g-noncommuting graphs associated

with this family of groups are isomorphic.
Recall that the dihedral group D2n of order 2n, D2n = ⟨a, b | an = b2 =

e, ab = a−1⟩ has trivial center and D′
2n = ⟨a⟩ if n is odd and Z(D2n) = {e, an/2}

and D′
2n = ⟨a2⟩ when n is even. Nasiri [6] investigated the g-noncommuting

graph associated with dihedral groups. Moreover, Supu et al. [9] investigated the
topological indices of relative g-noncommuting graph of dihedral groups, based
on [8].

The dihedral group and generalized quaternion group are not isomorphic. Still,
the following theorem proves that the g-noncommuting graphs for dihedral and
generalized quaternion groups are isomorphic.

Theorem 2.2. For any integer n, ∆x2i

Q4n
≃ ∆a2i

D2(2n)
.

Proof. Consider the following map.

f : V (∆x2i

Q4n
) −→ V (∆a2i

D2(2n)
)

xk 7−→ ak

y 7−→ b

xky 7−→ akb

One can check that f is a one-to-one corresponding. If xk joins to xl, then [xk, xl] =

e. So by map f , [ak, al] = e, hence ak joins to al and conversely. Now, assume that
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the vertices xky and xl are adjacent. Therefore, [xky, xl] ̸= x2i and [xky, xl] ̸=
x2n−2i if and only if l ̸= i, n−i, n+i and 2n−i. Hence, [akb, al] = a2l ̸= a2i and
a2n−2i and it follows akb and al are adjacent. Similarly, xky and xly are adjacent
if and only if akb and alb are adjacent. So, those two graphs are isomorphic.

In [6], Nasiri et al. computed the chromatic number of dihedral groups. Now,
we find the locating chromatic number of these families of groups.

Theorem 2.3. Let D2n be dihedral group of order 2n, where n is an odd integer,
g = ai, 1 ≤ i ≤ n − 1, i is an even integer and m = 3i

2 . If n = 3i
2 , then

χL(∆
g
D2n

) = 2n− 3. Otherwise

χL(∆
g
D2n

) = n− 3 + [
n

m
]i+ β

when

β =


n− [ nm ]m ; 0 ⩽ n− [ nm ]m < i

2
i
2 ; i

2 ⩽ n− [ nm ]m < i

n− [ nm ]m− i
2 ; i ⩽ n− [ nm ]m < m .

Proof. We know that two vertices arb and asb are adjacent if and only if r − s is
not equal to i

2 and n− i
2 where 0 ≤ r, s ≤ n− 1. Similarly ar is adjacent to asb if

and only if r is not equal to i
2 and n− i

2 where 0 ≤ s ≤ n− 1 and 1 ≤ r ≤ n− 1.
Suppose that all vertices are partitioned into the sets of cardinality i

2 . We know that
all i

2 vertices in the first set are adjacent together, so we need i
2 distinct colors for

coloring them. We can use the previous colors to color the second set because the
vertices in the second set are not adjacent to some of the vertices in the first set. In
the third set, we need new colors since the vertices in the third set are not adjacent
to some vertices in the second set but are adjacent to the first set. If we color the
vertices in the fourth set the same as in the third set, then the color codes of vertices
in the fourth and third sets are the same, and it is impossible by the definition of
the locating chromatic number. Hence, we need i

2 new colors and can use them
for coloring the vertices in the fifth set. This process continues. Therefore, for any
set of cardinality 3i

2 we need i distinct colors. Finally we have n = 3i
2 q + r where

0 ≤ r < 3i
2 and for coloring the vertices to form arb we need qi+β distinct colors
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such that

β =


n− [ nm ]m ; 0 ⩽ n− [ nm ]m < i

2
i
2 ; i

2 ⩽ n− [ nm ]m < i

n− [ nm ]m− i
2 ; i ⩽ n− [ nm ]m < m .

Also, all vertices ar where r is not equal to i
2 and n− i

2 are adjacent to all vertices
asb, so we need n− 3 distinct new colors and we can color a

i
2 and an−

i
2 with the

previous colors for coloring ajb.
That way, this coloring is a locating coloring because the color codes for every
vertex are different, and by coloring process, this is minimum coloring. Hence
χL(∆

g
D2n

) = n− 3 + [ nm ]i+ β and the proof is completed.

The following is an example for D10 (n = 5) where g = a2.

Figure 3: ∆a2

D10

If n and i are odd numbers and g = ai, then we have a similar process, but
it is enough to replace i

2 to n−i
2 , and we divided vertices arb into sets with n−i

2
members. So, we omitted the proof of the following theorem.

Theorem 2.4. Let D2n be dihedral group of order 2n, where n is an odd integer,
g = ai, 1 ≤ i ≤ n − 1, i is an odd integer and m = 3(n−i)

2 . If n = 3(n−i)
2 , then
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χL(∆
g
D2n

) = 2n− 3. Otherwise

χL(∆
g
D2n

) = n− 3 + [
n

m
](n− i) + β,

when

β =


n− [ nm ]m ; 0 ⩽ n− [ nm ]m < n−i

2
n−i
2 ; n−i

2 ⩽ n− [ nm ]m < (n− i)

n− [ nm ]m− n−i
2 ; (n− i) ⩽ n− [ nm ]m < m .
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