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Abstract

In this paper, we review, generalize, and establish some fixed-point theo-
rems for contractive mapping in complex-valued dislocated metric space.The
obtained results unify and generalize several existing results from the litera-
ture [5].

1 Introduction

BCP(Banach contraction principle) [1], which has numerous applications in the
fields mathematics, science and engineering, is one of the most crucial relation-
ships in investigating non-linear equations. By utilizing different contractive con-
ditions in an ambient space, numerous extensions and generalizations have been
made. These contractive circumstances are crucial for demonstrating the implicit-
ness and exclusiveness of a fixed point.
During their studies in 2000 and 2001, Hitzler and Seda [2]and Hitzler [3] gener-
alized the BCP (Banach contraction principle) [1] in d- metric space. In this space,
the distance between two points does not have to be zero.
However, Azam et al. [4], who defined the concept of complex valued metric space
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and demonstrated the Banach contraction principle. Several results have been
proved for fixed points in a complex-valued metric space by many researchers.
Quickly, Ozgur Ege and Ismet, Karaca [5] delivered the theory of complex valued
dislocated metric spaces, and this space was constructed by Bunch, Kannan and
Chatterjee to prove certain fixed point theorems

2 Basic Concept and Preliminaries Notes

Here, we begin with some fundamental definitions and notations that will be neces-
sary to understanding and applying our findings [4]. Consider Λ1,Λ2 ∈ C, where
C be the set of complex numbers. Define a partial order ⪯ on C as follows:

Λ1 ⪯ Λ2 if and only if Re(Λ1) ≤ Re(Λ2) and Im(Λ1) ≤ Im(Λ2).
As a result, one can presume that Λ1 ⪯ Λ2, whenever one of the following situa-
tions occurs

(C1) Re(Λ1) = Re(Λ2) and Im(Λ1) < Im(λ2),

(C2) Re(Λ1) < Re(Λ2) and Im(Λ1) = Im(Λ2),

(C3) Re(Λ1) < Re(Λ2) and Im(Λ1) < Im(zΛ2),

(C4) Re(Λ1) = Re(Λ2) and Im(Λ1) < Im(Λ2).

Specifically, we compose Λ1 ⋨ Λ2 if Λ1 ̸= Λ2 and one of (C1), (C2) and (C3) is
satisfied and we write Λ1 ≺ Λ2 if only (C3) is satisfied. Notice that:

(1) If α1, α2 ∈ R with α1 ≤ α2, then α1Λ ≺ α2Λ for all Λ ∈ C.

(2) If 0 ≾ Λ1 ⋨ Λ2, then |Λ1| < |Λ2|.

(3) If Λ1 ≾ Λ2 and Λ2 ≺ Λ3, then Λ1 ≺ Λ3.

Now, the opinion of complex valued dislocated metric space is given [5].

Definition 2.1. Suppose µd : W ×W → C be a mapping, where µd is a non void
set satisfies the following conditions:

(d1) µd(a1, a2) = µd(a2, a1);

(d2) µd(a1, a2) = µd(a2, a1) iff a1 = a2;

(d3) µd(a1, a2) ≾ µd(a1, a3) + d(a3, a2) ∀ a1, a2, a3 ∈ W .
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Thereafter (W,µd) known as a complex valued dislocated metric space, where µd

kown as a complex valued dislocated metric on W .

Example 2.1. Let µd : W × W → C be defined by µd(θ1, θ2) = max(θ1, θ2),
then it is called as complex valued dislocated metric space.

Remark 2.1. It is true that every complex metric space is also a complex valued
dislocated metric space, but the opposite need not be true.

Definition 2.2. [5] Given a complex-valued dislocated metric space (W,µd), and
define a sequence θn ∈ W because θ ∈ W .

1. Consider the sequence {θn} be convergent to θ in (W,µd) is called com-
plex valued dislocated convergent then for each ϵ > 0 ∃n0 ∈ N such that
µd(θn, θ) < ϵ, for each n > n0, which is denoted by θn → θ as n → ∞.

2. Let the sequence {θn} be Cauchy sequence in complex valued dislocated
metric space (W,µd) If lim

n→∞
µd(θn, θn+p) = 0.

3. If each Cauchy sequence in W converges to a particular θ ∈ W , in which
case (W,µd) is a complex valued complete dislocated metric space.

Now, to support our main results, we state the two lemmas that are relevant.

Lemma 2.1. Let {θn} be a sequence on complex valued dislocated metric space
(W,µd). Then {θn} converges to θ if and only if |µd(θn, θ)| → 0 as n → ∞.

Lemma 2.2. Assume that, {θn} be a sequence on complex valued metric space
(W,µd). Then {θn} is a Cauchy sequence if and only if |µd(θn, θn+p)| → 0 as n →
∞ where p ∈ N.

Definition 2.3. Consider A mapping H : W → W contraction mapping on com-
plex valued dislocated metric space(W,µd), if ther exist 0 < r < 1 such that
µd(Hθ1, Hθ2) ≾ rµd(θ1, θ2), for θ1, θ2 ∈ W .

3 Main Results

Theorem 3.1. Assume that the two self mappings E,F : W → W on complete
complex valued dislocated metric space(W,µd), that satisfy the conditions

µd(Eθ1, Fθ2) ≾ λµd(θ1, θ2). (3.1)
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Then E and F have a unique common fixed point.

Proof. Consider θ0 ∈ W , and the sequence {θ2i} defined by

θ2i+1 = Eθ2i = E2i+1, and

θ2i+2 = Fθ2i+1 = F 2i+2.

Then from (3.1), we get

µd(θ2i+1, θ2i+2) = µd(Eθ2i, Fθ2i+1)

≾ λ4µd(θ2i−2, θ2i−1).

Continuing this process, we have

µd(θ2i+1, θ2i+2) ≾ λ2iµd(θ0, θ1).

(3.2)

Thus

µd(θ2i+1, θ2i+2)| ≤ λ2i|µd(θ0, θ1)|. (3.3)

Let us use definition 2.1 (d3) for all i, j ∈ N with i < j,

µd(θ2i, θ2j) ≾ µd(θ2I , θ2i+1) + µd(θ2i+1, θ2j)

≾ µd(θ2i, θ2i+1) + µd(θ2i+1, θ2i+2) + · · ·+ µd(θ2i−1, θ2j)

≾ (λ2i + λ2i+1 + · · ·+ λ2j1)µd(θ0, θ1)

≾ λ2i[1 + λ+ λ2 + · · ·+ λi−j−1]µd(θ0, θ1)

≾
λ2i − λ2j

1− λ
µd(θ0, θ1)

therefore, we get

|µd(θ2i, θ2j)| ≤
λ2i − λ2j

1− λ
|µd(θ0, θ1)|. (3.4)
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Since λ ∈ [0, 1), taking limit n → ∞. Then

λ2i − λ2j

1− λ
|µd(θ0, θ1)| → 0., i.e., |µd(θ0, θ1)| → 0.

Finalize that {θ2i} is complex valued dislocated Cauchy sequence by Lemma 2.2.
As a result, θ2i is complex valued and dislocated convergent to v, and there is an
element v in W.

µd(v,Ev) ≾ µd(v, θi) + µd(θi, Ev)

= µd(v, θi) + µd(Eθi, Ev)

≾ µd(v, θi) + λµd(θi, v).

As a result, we conclude that µd(v,Ev) = 0 because {θi} is complex valued dis-
located convergent to v as n → ∞. By (d3) we have Ev = v. Similarly, we can
prove that Fv = v. Hence Ev = v = Fv. Thus, v is a common fixed point of E
and F in W . Now we shall prove that, the unique common fixed point of E andF
in W . Suppose u ̸= v be another common fixed point of E and F . Now from
(3.1), we get

µd(v, u) = µd(Eu,Fv)

≾ λµd(v, u).

Thus, |µd(v, u)| ≤ λ|µd(v, u)|. ⇒ (1− λ)|µd(v, u)| ≤ 0. Since λ ∈ [0, 1), so, we
get |µd(v, u)| = 0. Hence v = u. i.e., v is unique common fixed point of E and F

in W . This completes the proof.

Theorem 3.2. Consider E,F : W → W be a pair mappings on complete complex
valued dislocated metric space (W,µd), satisfying the conditions for 0 ≤ λ < 1

µd(Eθ1, Fθ2) ≾ λ[µd(θ1, Eθ1) + µd(θ2, Fθ2)] (3.5)

for θ1, θ2 ∈ W . Then E and F have a unique common fixed point in W .
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Proof. : Let θ0 ∈ W . and the sequence {θ2i} defined by

θ2i+1 = Eθ2i = E2i+1,

and

θ2i+2 = Fθ2i+1 = F 2i+2.

Then from (3.5), we have

µd(θ2i, θ2i+1) = µd(Eθ2i−1, Fθ2i)

≾ λ[µd(θ2i−1, Eθ2i−1) + µd(θ2i, Fθ2i)]

= λ[µd(θ2i−1, θ2i) + µd(θ2i, θ2i+1)].

Therefore

µd(θ2i, θ2i+1) ≾
λ

1− λ
µd(θ2i−1, θ2i).

Implies that

µd(θ2i, θ2i+1) ≾ hµd(θ2i−1, θ2i).

If we continue in the same way, we get

µd(θ2i, θ2i+1) ≾ hµd(θ2i−1, θ2i)

≾ h2µd(θ2i−2, θ2i−1)

...

≾ h2iµd(θ0, θ1).

Thus, we have

|µd(θ2i, θ2i+1)| ≤ h2i|µd(θ0, θ1)|. (3.6)
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On the other hand, from the triangle inequality,

µd(θ2i, θ2i+2k) ≾ µd(θ2i, θ2i+1) + µd(θ2i+1, θ2i+2 + ...+ µd(θ2i+2k−1, θ2i+2k)

≾ (h2i + h2i+1 + ...+ h2i+2k+1)µd(θ0, θ1)

=
h2i

1− h
µd(θ0, θ1).

Thus ,we have

|µd(θ2i, θ2i+2k)| ≤
h2i

1− h
|µd(θ0, θ1)|. (3.7)

From the fact that 0 ≤ h < 1, taking limit as i → ∞, then |µd(θ2i, θ2i+2k)| → 0.
By Lemma 2.5, {θ2i} is a complex valued dislocated Cauchy sequence. There is a
point v ∈ W Such that

lim
i→∞

µd(θ2i, v) = 0.

(3.8)

Because of the completeness of (W,µd). We need to show that v is a common
fixed point of E and F in W . First we prove that v is a fixed point of E. For this
purpose, we use (3.5) as follows:

µd(v,Ev) ≾ µd(v, θ2i) + µd(θ2i, Ev)

= µd(θ2i) + µd(Eθ2i−1, Ev)

≾ µd(v, θ2i) + λ[µd(θ2i−1, θ2i) + µd(v,Ev)]

≾ µd(v, θ2i) + λµd(v,Ev) + λh2i−1µd(θ0, θ1)

≾
1

1− λ
µd(v, θ2i + h2iµd(θ0, θ1).
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We obtain µd(v,Ev) = 0 for n → ∞. On the other hand,

µd(Ev, v) ≾ µd(Ev, θ2i + µd(θ2i, v))

= µd(Ev,Eθ2i−1) + µd(θ2i, v)

≾ λ[µd(v,Ev) + µd(θ2i−1, θ2i)] + µd(θ2i, v)

≾ λµd(θ2i−1, θ2i) + µd(θ2i, v).

Since µd(v,Ev) = 0. Taking limit as n → ∞. So, |µd(Ev, v)| = 0 i.e.,
µd(Ev, v) = 0. As a result, therefore µd(v,Ev) = µd(Ev, v) = 0. Implies
that, Ev = v. Thus, v is a fixed point of E. Similarly, we can prove that v is fixed
point of F such that Fv = v is a fixed point of F . Since Ev = v and Fv = v. So,
Ev = v = Fv. Thus v is common fixed point of E and F in W . Now we show
the uniqueness: Let u, v be any two diferent common fixed point of E and F in
W . From (3.5), we get

µd(u, v) = µd(Eu,Fv)

≾ λ[µd(u,Eu) + µd(v, Fv)]

≾ λ[mud(u, u) + µd(v, v)]

= 0.

Thus |µd(u, v)| = 0 implies that, µd(u, v) = 0. So, u = v. Thus, v is unique
common fixed point of E and F in W . This completes the proof.

Theorem 3.3. Consider E,F : W → W be a pair mappings on complete complex
valued dislocated metric space(W,µd), satisfying the conditions for 0 ≤ λ < 1

µd(Eθ1, Fθ2) ≾ λ[µd(θ1, Fθ2) + µd(θ2, Eθ1)] (3.9)

for θ1, θ2 ∈ W . Then E and F have a unique common fixed point in W .

Proof. Let θ0 ∈ W , and the sequence {θ2i} defined by

θ2i+1 = Eθ2i = E2i+1,

and

θ2i+2 = Fθ2i+1 = F 2i+2.
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Then from (3.9), we have

µd(θ2i, θ2i+1) = µd(Eθ2i+1, Fθ2i)

≾ λ[µd(θ2i−1, Fθ2i) + µd(θ2i, Eθ2i−1)]

= λ[µd(θ2i−1, θ2i+1) + µd(θ2i, θ2i)]

≾ λ[µd(θ2i−1, θ2i) + µd(θ2i, θ2i+1 + µd(θ2i, θ2i−1) + µd(θ2i−1, θ2i)]

= λµd(θ2i, θ2i+1) + 3λµd(θ2i−1, θ2i)

implies that

µd(θ2i, θ2i+1) ≾
3λ

1− λ
µd(θ2i−1, θ2i).

Therefore

µd(θ2i, θ2i+1) ≾ rµd(θ2i−1, θ2i), where r =
3λ

1− λ
.

Applying this procedure consequently, we get

µd(θ2i, θ2i+1) ≾ rµd(θ2i−1, θ2i)

≾ r2µd(θ2i−2, θ2i−1)

...

≾ r2iµd(θ0, θ1).

Thus we have

|µd(θ2i, θ2i+1)| ≾ r2i|µd(θ0, θ1)|.
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So, for i < j. By triangle inequality

µd(θ2i, θ2i+2j) ≾ µd(θ2i, θ2i+1) + µd(θ2i+1, θ2i+2) + · · ·+ µd(θ2i+2j−1, θ2i+2j)

≾ (r2i + r2i+1 + · · ·+ r2i+2j−1)µd(θ0, θ1)

=
r2i

1− r
µd(θ0, θ1).

Thus we have

|µd(θ2i, θ2i+2j)| ≤
r2i

1− r
|µd(θ0, θ1)|.

Since r ∈ [0, 1). So, |µd(θ0, θ1)| → 0 where n → ∞ i.e., θ2i is a complex val-
ued dislocated Cauchy sequence. By the completeness of (W,µd), there is a point
v ∈ W such that

lim
i→∞

θ2i = v.

SinceE and F are continous map. So,

E( lim
i→∞

θ2i) = limEθ2i

= lim
i→∞

θ2i+1

= v.

⇒ v = Ev.

Similiarly, we can prove that v = Fv. Hence Ev = v = Fv. Therefore, v is a
common fixed point of E and F in W . Now to prove that the common fixed point
of E and F are unique. For this, let v∗ be another common fixed point of E and
F , that is Ev∗ = v∗ = Fv∗ with v∗ ̸= v. Then we have to show that v = v∗. It
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follows from (3.9) that

µd(v, v
∗) = µd(Ev, Fv∗)

≾ λ[µd(v, Fv∗) + µd(v
∗, Ev)]

= λ[µd(v, v
∗) + (v∗, v)].

Implies that

(1− 2λ)|µd(v, v
∗)| = 0.

Since 0 < λ < 1. So, µd(v, v
∗) = 0. Thus, we get v = v∗. Hence, v is the unique

common fixed point of E and F . This completes the proof.

Example 3.1. : Let W = C be the set of complex number. Define a mapping µd :

C×C → C on a complex valued dislocated metric space(C, µd) as z1 = α1+ iβ1

and z2 = α2 + iβ2. Now, let E,F : W → W defined by

Eθ1 = {2θ1
3

} andFθ2 = {4θ2
3

} and µd(θ1, θ2) =
θ1
2

+
θ2
2
.

(3.6)

So, now

µd(Eθ1, Fθ2) =
θ1
3

+
2θ2
3

=
1

6
+

2

9

=
5

18
.

Now using the contractive condition (3.1) of Theorem 3.1, we have

µd(eθ1, Fθ2) ≾ λµd(θ1, θ2)

as given that 0 < λ < 1, choose λ = 1
3 , then clearly 0 < λ < 1. Now putting
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θ1 =
1
2 and θ2 = 13. Then

5

18
≾

1

3
(
θ1
2

+
θ2
3
)

≾
1

3
(
1

4
+

1

6
)

≾
5

36
.

Now we use the condition (3.5) of Theorem 3.2, we have

µd(Eθ1, Fθ2) ≾ λ[µd(θ1, Eθ1) + µd(θ2, Fθ2)]. Then

5

18
≾

1

3
[(
1

4
+

1

6
) + (

1

6
+

2

9
)]

=
1

3
[
5

12
+

5

18
]

≾
25

108
.

Again we use the condition (3.9) of Theorem 3.3, we have

µd(Eθ1, Fθ2) ≾ λ[µd(θ1, Fθ2) + µd(θ2, Eθ1)]. Then

5

18
≾

1

3
[(
1

4
+

2

9
+

1

6
+

1

6
)]

=
1

3
[
17

3
+ 13]

≾ 2.

Hence all contractive condition of Theorem 3.1, 3.2 and 3.3 are satisfied and z = 0

is the unique common fixed point of E and F .
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