Complex valued dislocated metric spaces and fixed point theorem for pair of contractive maps

Surendra Kumar Tiwari, Suresh Kumar Sahani and Bindeshwari Sonant
Department of Mathematics, Dr. C. V. Raman University
Kota, Bilaspur (C.G.)-India
Email: sk10tiwari@gmail.com

(Received: January 4, 2023, Accepted: July 10, 2023)

Abstract

In this paper, we review, generalize, and establish some fixed-point theorems for contractive mapping in complex-valued dislocated metric space.The obtained results unify and generalize several existing results from the literature [5].

1 Introduction

$\mathrm{BCP}($ Banach contraction principle) [1], which has numerous applications in the fields mathematics, science and engineering, is one of the most crucial relationships in investigating non-linear equations. By utilizing different contractive conditions in an ambient space, numerous extensions and generalizations have been made. These contractive circumstances are crucial for demonstrating the implicitness and exclusiveness of a fixed point.
During their studies in 2000 and 2001, Hitzler and Seda [2]and Hitzler [3] generalized the BCP (Banach contraction principle) [1] in d - metric space. In this space, the distance between two points does not have to be zero.
However, Azam et al. [4], who defined the concept of complex valued metric space

[^0]and demonstrated the Banach contraction principle. Several results have been proved for fixed points in a complex-valued metric space by many researchers. Quickly, Ozgur Ege and Ismet, Karaca [5] delivered the theory of complex valued dislocated metric spaces, and this space was constructed by Bunch, Kannan and Chatterjee to prove certain fixed point theorems

2 Basic Concept and Preliminaries Notes

Here, we begin with some fundamental definitions and notations that will be necessary to understanding and applying our findings [4]. Consider $\Lambda_{1}, \Lambda_{2} \in \mathbb{C}$, where \mathbb{C} be the set of complex numbers. Define a partial order \preceq on \mathbb{C} as follows:
$\Lambda_{1} \preceq \Lambda_{2}$ if and only if $\operatorname{Re}\left(\Lambda_{1}\right) \leq \operatorname{Re}\left(\Lambda_{2}\right)$ and $\operatorname{Im}\left(\Lambda_{1}\right) \leq \operatorname{Im}\left(\Lambda_{2}\right)$.
As a result, one can presume that $\Lambda_{1} \preceq \Lambda_{2}$, whenever one of the following situations occurs
$\left(C_{1}\right) \operatorname{Re}\left(\Lambda_{1}\right)=\operatorname{Re}\left(\Lambda_{2}\right)$ and $\operatorname{Im}\left(\Lambda_{1}\right)<\operatorname{Im}\left(\lambda_{2}\right)$,
$\left(C_{2}\right) \operatorname{Re}\left(\Lambda_{1}\right)<\operatorname{Re}\left(\Lambda_{2}\right)$ and $\operatorname{Im}\left(\Lambda_{1}\right)=\operatorname{Im}\left(\Lambda_{2}\right)$,
$\left(C_{3}\right) \operatorname{Re}\left(\Lambda_{1}\right)<\operatorname{Re}\left(\Lambda_{2}\right)$ and $\operatorname{Im}\left(\Lambda_{1}\right)<\operatorname{Im}\left(z \Lambda_{2}\right)$,
$\left(C_{4}\right) \operatorname{Re}\left(\Lambda_{1}\right)=\operatorname{Re}\left(\Lambda_{2}\right)$ and $\operatorname{Im}\left(\Lambda_{1}\right)<\operatorname{Im}\left(\Lambda_{2}\right)$.
Specifically, we compose $\Lambda_{1} \precsim \Lambda_{2}$ if $\Lambda_{1} \neq \Lambda_{2}$ and one of $\left(C_{1}\right),\left(C_{2}\right)$ and $\left(C_{3}\right)$ is satisfied and we write $\Lambda_{1} \prec \Lambda_{2}$ if only $\left(C_{3}\right)$ is satisfied. Notice that:
(1) If $\alpha_{1}, \alpha_{2} \in R$ with $\alpha_{1} \leq \alpha_{2}$, then $\alpha_{1} \Lambda \prec \alpha_{2} \Lambda$ for all $\Lambda \in \mathbb{C}$.
(2) If $0 \precsim \Lambda_{1} \precsim \Lambda_{2}$, then $\left|\Lambda_{1}\right|<\left|\Lambda_{2}\right|$.
(3) If $\Lambda_{1} \precsim \Lambda_{2}$ and $\Lambda_{2} \prec \Lambda_{3}$, then $\Lambda_{1} \prec \Lambda_{3}$.

Now, the opinion of complex valued dislocated metric space is given [5].
Definition 2.1. Suppose $\mu_{d}: W \times W \rightarrow \mathbb{C}$ be a mapping, where μ_{d} is a non void set satisfies the following conditions:

$$
\begin{aligned}
& \left(d_{1}\right) \mu_{d}\left(a_{1}, a_{2}\right)=\mu_{d}\left(a_{2}, a_{1}\right) \\
& \left(d_{2}\right) \mu_{d}\left(a_{1}, a_{2}\right)=\mu_{d}\left(a_{2}, a_{1}\right) \text { iff } a_{1}=a_{2} ; \\
& \left(d_{3}\right) \mu_{d}\left(a_{1}, a_{2}\right) \precsim \mu_{d}\left(a_{1}, a_{3}\right)+d\left(a_{3}, a_{2}\right) \forall a_{1}, a_{2}, a_{3} \in W .
\end{aligned}
$$

Thereafter $\left(W, \mu_{d}\right)$ known as a complex valued dislocated metric space, where μ_{d} kown as a complex valued dislocated metric on W.

Example 2.1. Let $\mu_{d}: W \times W \rightarrow \mathbb{C}$ be defined by $\mu_{d}\left(\theta_{1}, \theta_{2}\right)=\max \left(\theta_{1}, \theta_{2}\right)$, then it is called as complex valued dislocated metric space.

Remark 2.1. It is true that every complex metric space is also a complex valued dislocated metric space, but the opposite need not be true.

Definition 2.2. [5] Given a complex-valued dislocated metric space $\left(W, \mu_{d}\right)$, and define a sequence $\theta_{n} \in W$ because $\theta \in W$.

1. Consider the sequence $\left\{\theta_{n}\right\}$ be convergent to θ in $\left(W, \mu_{d}\right)$ is called complex valued dislocated convergent then for each $\epsilon>0 \exists n_{0} \in \mathbb{N}$ such that $\mu_{d}\left(\theta_{n}, \theta\right)<\epsilon$, for each $n>n_{0}$, which is denoted by $\theta_{n} \rightarrow \theta$ as $n \rightarrow \infty$.
2. Let the sequence $\left\{\theta_{n}\right\}$ be Cauchy sequence in complex valued dislocated metric space $\left(W, \mu_{d}\right)$ If $\lim _{n \rightarrow \infty} \mu_{d}\left(\theta_{n}, \theta_{n+p}\right)=0$.
3. If each Cauchy sequence in W converges to a particular $\theta \in W$, in which case $\left(W, \mu_{d}\right)$ is a complex valued complete dislocated metric space.

Now, to support our main results, we state the two lemmas that are relevant.
Lemma 2.1. Let $\left\{\theta_{n}\right\}$ be a sequence on complex valued dislocated metric space $\left(W, \mu_{d}\right)$. Then $\left\{\theta_{n}\right\}$ converges to θ if and only if $\left|\mu_{d}\left(\theta_{n}, \theta\right)\right| \rightarrow 0$ as $n \rightarrow \infty$.

Lemma 2.2. Assume that, $\left\{\theta_{n}\right\}$ be a sequence on complex valued metric space $\left(W, \mu_{d}\right)$. Then $\left\{\theta_{n}\right\}$ is a Cauchy sequence if and only if $\left|\mu_{d}\left(\theta_{n}, \theta_{n+p}\right)\right| \rightarrow 0$ as $n \rightarrow$ ∞ where $p \in \mathbb{N}$.

Definition 2.3. Consider A mapping $H: W \rightarrow W$ contraction mapping on complex valued dislocated metric space $\left(W, \mu_{d}\right)$, if ther exist $0<r<1$ such that $\mu_{d}\left(H \theta_{1}, H \theta_{2}\right) \precsim r \mu_{d}\left(\theta_{1}, \theta_{2}\right)$, for $\theta_{1}, \theta_{2} \in W$.

3 Main Results

Theorem 3.1. Assume that the two self mappings $E, F: W \rightarrow W$ on complete complex valued dislocated metric space $\left(W, \mu_{d}\right)$, that satisfy the conditions

$$
\begin{equation*}
\mu_{d}\left(E \theta_{1}, F \theta_{2}\right) \precsim \lambda \mu_{d}\left(\theta_{1}, \theta_{2}\right) \tag{3.1}
\end{equation*}
$$

Then E and F have a unique common fixed point.
Proof. Consider $\theta_{0} \in W$, and the sequence $\left\{\theta_{2 i}\right\}$ defined by

$$
\begin{aligned}
& \theta_{2 i+1}=E \theta_{2 i}=E^{2 i+1}, \text { and } \\
& \theta_{2 i+2}=F \theta_{2 i+1}=F^{2 i+2}
\end{aligned}
$$

Then from 3.1, we get

$$
\begin{aligned}
\mu_{d}\left(\theta_{2 i+1}, \theta_{2 i+2}\right) & =\mu_{d}\left(E \theta_{2 i}, F \theta_{2 i+1}\right) \\
& \precsim \lambda^{4} \mu_{d}\left(\theta_{2 i-2}, \theta_{2 i-1}\right) .
\end{aligned}
$$

Continuing this process, we have

$$
\begin{equation*}
\mu_{d}\left(\theta_{2 i+1}, \theta_{2 i+2}\right) \precsim \lambda^{2 i} \mu_{d}\left(\theta_{0}, \theta_{1}\right) \tag{3.2}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\mu_{d}\left(\theta_{2 i+1}, \theta_{2 i+2}\right)\left|\leq \lambda^{2 i}\right| \mu_{d}\left(\theta_{0}, \theta_{1}\right) \mid \tag{3.3}
\end{equation*}
$$

Let us use definition $2.1\left(d_{3}\right)$ for all $i, j \in \mathbb{N}$ with $i<j$,

$$
\begin{aligned}
\mu_{d}\left(\theta_{2 i}, \theta_{2 j}\right) & \precsim \mu_{d}\left(\theta_{2 I}, \theta_{2 i+1}\right)+\mu_{d}\left(\theta_{2 i+1}, \theta_{2 j}\right) \\
& \precsim \mu_{d}\left(\theta_{2 i}, \theta_{2 i+1}\right)+\mu_{d}\left(\theta_{2 i+1}, \theta_{2 i+2}\right)+\cdots+\mu_{d}\left(\theta_{2 i-1}, \theta_{2 j}\right) \\
& \precsim\left(\lambda^{2 i}+\lambda^{2 i+1}+\cdots+\lambda^{2 j_{1}}\right) \mu_{d}\left(\theta_{0}, \theta_{1}\right) \\
& \precsim \lambda^{2 i}\left[1+\lambda+\lambda^{2}+\cdots+\lambda^{i-j-1}\right] \mu_{d}\left(\theta_{0}, \theta_{1}\right) \\
& \precsim \frac{\lambda^{2 i}-\lambda^{2 j}}{1-\lambda} \mu_{d}\left(\theta_{0}, \theta_{1}\right)
\end{aligned}
$$

therefore, we get

$$
\begin{equation*}
\left|\mu_{d}\left(\theta_{2 i}, \theta_{2 j}\right)\right| \leq \frac{\lambda^{2 i}-\lambda^{2 j}}{1-\lambda}\left|\mu_{d}\left(\theta_{0}, \theta_{1}\right)\right| \tag{3.4}
\end{equation*}
$$

Since $\lambda \in[0,1)$, taking limit $n \rightarrow \infty$. Then

$$
\frac{\lambda^{2 i}-\lambda^{2 j}}{1-\lambda}\left|\mu_{d}\left(\theta_{0}, \theta_{1}\right)\right| \rightarrow 0 ., i . e .,\left|\mu_{d}\left(\theta_{0}, \theta_{1}\right)\right| \rightarrow 0 .
$$

Finalize that $\left\{\theta_{2 i}\right\}$ is complex valued dislocated Cauchy sequence by Lemma 2.2 . As a result, $\theta_{2 i}$ is complex valued and dislocated convergent to v, and there is an element v in W .

$$
\begin{aligned}
\mu_{d}(v, E v) & \precsim \mu_{d}\left(v, \theta_{i}\right)+\mu_{d}\left(\theta_{i}, E v\right) \\
& =\mu_{d}\left(v, \theta_{i}\right)+\mu_{d}\left(E \theta_{i}, E v\right) \\
& \precsim \mu_{d}\left(v, \theta_{i}\right)+\lambda \mu_{d}\left(\theta_{i}, v\right) .
\end{aligned}
$$

As a result, we conclude that $\mu_{d}(v, E v)=0$ because $\left\{\theta_{i}\right\}$ is complex valued dislocated convergent to v as $n \rightarrow \infty$. By $\left(d_{3}\right)$ we have $E v=v$. Similarly, we can prove that $F v=v$. Hence $E v=v=F v$. Thus, v is a common fixed point of E and F in W. Now we shall prove that, the unique common fixed point of E and F in W. Suppose $u \neq v$ be another common fixed point of E and F. Now from (3.1), we get

$$
\begin{aligned}
\mu_{d}(v, u) & =\mu_{d}(E u, F v) \\
& \precsim \lambda \mu_{d}(v, u) .
\end{aligned}
$$

Thus, $\left|\mu_{d}(v, u)\right| \leq \lambda\left|\mu_{d}(v, u)\right| . \Rightarrow(1-\lambda)\left|\mu_{d}(v, u)\right| \leq 0$. Since $\lambda \in[0,1)$, so, we get $\left|\mu_{d}(v, u)\right|=0$. Hence $v=u$. i.e., v is unique common fixed point of E and F in W. This completes the proof.

Theorem 3.2. Consider $E, F: W \rightarrow W$ be a pair mappings on complete complex valued dislocated metric space (W, μ_{d}), satisfying the conditions for $0 \leq \lambda<1$

$$
\begin{equation*}
\mu_{d}\left(E \theta_{1}, F \theta_{2}\right) \precsim \lambda\left[\mu_{d}\left(\theta_{1}, E \theta_{1}\right)+\mu_{d}\left(\theta_{2}, F \theta_{2}\right)\right] \tag{3.5}
\end{equation*}
$$

for $\theta_{1}, \theta_{2} \in W$. Then E and F have a unique common fixed point in W.

Proof. : Let $\theta_{0} \in W$. and the sequence $\left\{\theta_{2 i}\right\}$ defined by

$$
\begin{aligned}
& \theta_{2 i+1}=E \theta_{2 i}=E^{2 i+1} \\
& \text { and } \\
& \theta_{2 i+2}=F \theta_{2 i+1}=F^{2 i+2}
\end{aligned}
$$

Then from 3.5), we have

$$
\begin{aligned}
\mu_{d}\left(\theta_{2 i}, \theta_{2 i+1}\right) & =\mu_{d}\left(E \theta_{2 i-1}, F \theta_{2 i}\right) \\
& \precsim \lambda\left[\mu_{d}\left(\theta_{2 i-1}, E \theta_{2 i-1}\right)+\mu_{d}\left(\theta_{2 i}, F \theta_{2 i}\right)\right] \\
& =\lambda\left[\mu_{d}\left(\theta_{2 i-1}, \theta_{2 i}\right)+\mu_{d}\left(\theta_{2 i}, \theta_{2 i+1}\right)\right]
\end{aligned}
$$

Therefore

$$
\mu_{d}\left(\theta_{2 i}, \theta_{2 i+1}\right) \precsim \frac{\lambda}{1-\lambda} \mu_{d}\left(\theta_{2 i-1}, \theta_{2 i}\right)
$$

Implies that

$$
\mu_{d}\left(\theta_{2 i}, \theta_{2 i+1}\right) \precsim h \mu_{d}\left(\theta_{2 i-1}, \theta_{2 i}\right)
$$

If we continue in the same way, we get

$$
\begin{aligned}
\mu_{d}\left(\theta_{2 i}, \theta_{2 i+1}\right) & \precsim h \mu_{d}\left(\theta_{2 i-1}, \theta_{2 i}\right) \\
& \precsim h^{2} \mu_{d}\left(\theta_{2 i-2}, \theta_{2 i-1}\right) \\
& \vdots \\
& \precsim h^{2 i} \mu_{d}\left(\theta_{0}, \theta_{1}\right)
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
\left|\mu_{d}\left(\theta_{2 i}, \theta_{2 i+1}\right)\right| \leq h^{2 i}\left|\mu_{d}\left(\theta_{0}, \theta_{1}\right)\right| \tag{3.6}
\end{equation*}
$$

On the other hand, from the triangle inequality,

$$
\begin{aligned}
\mu_{d}\left(\theta_{2 i}, \theta_{2 i+2 k}\right) & \precsim \mu_{d}\left(\theta_{2 i}, \theta_{2 i+1}\right)+\mu_{d}\left(\theta_{2 i+1}, \theta_{2 i+2}+\ldots+\mu_{d}\left(\theta_{2 i+2 k-1}, \theta_{2 i+2 k}\right)\right. \\
& \precsim\left(h^{2 i}+h^{2 i+1}+\ldots+h^{2 i+2 k+1}\right) \mu_{d}\left(\theta_{0}, \theta_{1}\right) \\
& =\frac{h^{2 i}}{1-h} \mu_{d}\left(\theta_{0}, \theta_{1}\right) .
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
\left|\mu_{d}\left(\theta_{2 i}, \theta_{2 i+2 k}\right)\right| \leq \frac{h^{2 i}}{1-h}\left|\mu_{d}\left(\theta_{0}, \theta_{1}\right)\right| . \tag{3.7}
\end{equation*}
$$

From the fact that $0 \leq h<1$, taking limit as $i \rightarrow \infty$, then $\left|\mu_{d}\left(\theta_{2 i}, \theta_{2 i+2 k}\right)\right| \rightarrow 0$. By Lemma 2.5, $\left\{\theta_{2 i}\right\}$ is a complex valued dislocated Cauchy sequence. There is a point $v \in W$ Such that

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \mu_{d}\left(\theta_{2 i}, v\right)=0 \tag{3.8}
\end{equation*}
$$

Because of the completeness of $\left(W, \mu_{d}\right)$. We need to show that v is a common fixed point of E and F in W. First we prove that v is a fixed point of E. For this purpose, we use (3.5) as follows:

$$
\begin{aligned}
\mu_{d}(v, E v) & \precsim \mu_{d}\left(v, \theta_{2 i}\right)+\mu_{d}\left(\theta_{2 i}, E v\right) \\
& =\mu_{d}\left(\theta_{2 i}\right)+\mu_{d}\left(E \theta_{2 i-1}, E v\right) \\
& \precsim \mu_{d}\left(v, \theta_{2 i}\right)+\lambda\left[\mu_{d}\left(\theta_{2 i-1}, \theta_{2 i}\right)+\mu_{d}(v, E v)\right] \\
& \precsim \mu_{d}\left(v, \theta_{2 i}\right)+\lambda \mu_{d}(v, E v)+\lambda h^{2 i-1} \mu_{d}\left(\theta_{0}, \theta_{1}\right) \\
& \precsim \frac{1}{1-\lambda} \mu_{d}\left(v, \theta_{2 i}+h^{2 i} \mu_{d}\left(\theta_{0}, \theta_{1}\right) .\right.
\end{aligned}
$$

We obtain $\mu_{d}(v, E v)=0$ for $n \rightarrow \infty$. On the other hand,

$$
\begin{aligned}
\mu_{d}(E v, v) & \precsim \mu_{d}\left(E v, \theta_{2 i}+\mu_{d}\left(\theta_{2 i}, v\right)\right) \\
& =\mu_{d}\left(E v, E \theta_{2 i-1}\right)+\mu_{d}\left(\theta_{2 i}, v\right) \\
& \precsim \lambda\left[\mu_{d}(v, E v)+\mu_{d}\left(\theta_{2 i-1}, \theta_{2 i}\right)\right]+\mu_{d}(\theta 2 i, v) \\
& \precsim \lambda \mu_{d}\left(\theta_{2 i-1}, \theta_{2 i}\right)+\mu_{d}\left(\theta_{2 i}, v\right) .
\end{aligned}
$$

Since $\mu_{d}(v, E v)=0$. Taking limit as $n \rightarrow \infty$. So, $\left|\mu_{d}(E v, v)\right|=0$ i.e., $\mu_{d}(E v, v)=0$. As a result, therefore $\mu_{d}(v, E v)=\mu_{d}(E v, v)=0$. Implies that, $E v=v$. Thus, v is a fixed point of E. Similarly, we can prove that v is fixed point of F such that $F v=v$ is a fixed point of F. Since $E v=v$ and $F v=v$. So, $E v=v=F v$. Thus v is common fixed point of E and F in W. Now we show the uniqueness: Let u, v be any two diferent common fixed point of E and F in W. From (3.5), we get

$$
\begin{aligned}
\mu_{d}(u, v) & =\mu_{d}(E u, F v) \\
& \precsim \lambda\left[\mu_{d}(u, E u)+\mu_{d}(v, F v)\right] \\
& \precsim \lambda\left[m u_{d}(u, u)+\mu_{d}(v, v)\right] \\
& =0 .
\end{aligned}
$$

Thus $\left|\mu_{d}(u, v)\right|=0$ implies that, $\mu_{d}(u, v)=0$. So, $u=v$. Thus, v is unique common fixed point of E and F in W. This completes the proof.

Theorem 3.3. Consider $E, F: W \rightarrow W$ be a pair mappings on complete complex valued dislocated metric space $\left(W, \mu_{d}\right)$, satisfying the conditions for $0 \leq \lambda<1$

$$
\begin{equation*}
\mu_{d}\left(E \theta_{1}, F \theta_{2}\right) \precsim \lambda\left[\mu_{d}\left(\theta_{1}, F \theta_{2}\right)+\mu_{d}\left(\theta_{2}, E \theta_{1}\right)\right] \tag{3.9}
\end{equation*}
$$

for $\theta_{1}, \theta_{2} \in W$. Then E and F have a unique common fixed point in W.
Proof. Let $\theta_{0} \in W$, and the sequence $\left\{\theta_{2 i}\right\}$ defined by

$$
\begin{aligned}
& \theta_{2 i+1}=E \theta_{2 i}=E^{2 i+1} \\
& \text { and } \\
& \theta_{2 i+2}=F \theta_{2 i+1}=F^{2 i+2}
\end{aligned}
$$

Then from (3.9), we have

$$
\begin{aligned}
\mu_{d}\left(\theta_{2 i}, \theta_{2 i+1}\right) & =\mu_{d}\left(E \theta_{2 i+1}, F \theta_{2 i}\right) \\
& \precsim \lambda\left[\mu_{d}\left(\theta_{2 i-1}, F \theta_{2 i}\right)+\mu_{d}\left(\theta_{2 i}, E \theta_{2 i-1}\right)\right] \\
& =\lambda\left[\mu_{d}\left(\theta_{2 i-1}, \theta_{2 i+1}\right)+\mu_{d}\left(\theta_{2 i}, \theta_{2 i}\right)\right] \\
& \precsim \lambda\left[\mu_{d}\left(\theta_{2 i-1}, \theta_{2 i}\right)+\mu_{d}\left(\theta_{2 i}, \theta_{2 i+1}+\mu_{d}\left(\theta_{2 i}, \theta_{2 i-1}\right)+\mu_{d}\left(\theta_{2 i-1}, \theta_{2 i}\right)\right]\right. \\
& =\lambda \mu_{d}\left(\theta_{2 i}, \theta_{2 i+1}\right)+3 \lambda \mu_{d}\left(\theta_{2 i-1}, \theta_{2 i}\right)
\end{aligned}
$$

implies that

$$
\mu_{d}\left(\theta_{2 i}, \theta_{2 i+1}\right) \precsim \frac{3 \lambda}{1-\lambda} \mu_{d}\left(\theta_{2 i-1}, \theta_{2 i}\right) .
$$

Therefore

$$
\mu_{d}\left(\theta_{2 i}, \theta_{2 i+1}\right) \precsim r \mu_{d}\left(\theta_{2 i-1}, \theta_{2 i}\right), \text { wherer }=\frac{3 \lambda}{1-\lambda} .
$$

Applying this procedure consequently, we get

$$
\begin{aligned}
\mu_{d}\left(\theta_{2 i}, \theta_{2 i+1}\right) & \precsim r \mu_{d}\left(\theta_{2 i-1}, \theta_{2 i}\right) \\
& \precsim r^{2} \mu_{d}\left(\theta_{2 i-2}, \theta_{2 i-1}\right) \\
& \vdots \\
& \precsim r^{2 i} \mu_{d}\left(\theta_{0}, \theta_{1}\right) .
\end{aligned}
$$

Thus we have

$$
\left|\mu_{d}\left(\theta_{2 i}, \theta_{2 i+1}\right)\right| \precsim r^{2 i}\left|\mu_{d}\left(\theta_{0}, \theta_{1}\right)\right| .
$$

So, for $i<j$. By triangle inequality

$$
\begin{aligned}
\mu_{d}\left(\theta_{2 i}, \theta_{2 i+2 j}\right) & \precsim \mu_{d}\left(\theta_{2 i}, \theta_{2 i+1}\right)+\mu_{d}\left(\theta_{2 i+1}, \theta_{2 i+2}\right)+\cdots+\mu_{d}\left(\theta_{2 i+2 j-1}, \theta_{2 i+2 j}\right) \\
& \precsim\left(r^{2 i}+r^{2 i+1}+\cdots+r^{2 i+2 j-1}\right) \mu_{d}\left(\theta_{0}, \theta_{1}\right) \\
& =\frac{r^{2 i}}{1-r} \mu_{d}\left(\theta_{0}, \theta_{1}\right) .
\end{aligned}
$$

Thus we have

$$
\left|\mu_{d}\left(\theta_{2 i}, \theta_{2 i+2 j}\right)\right| \leq \frac{r^{2 i}}{1-r}\left|\mu_{d}\left(\theta_{0}, \theta_{1}\right)\right| .
$$

Since $r \in[0,1)$. So, $\left|\mu_{d}\left(\theta_{0}, \theta_{1}\right)\right| \rightarrow 0$ where $n \rightarrow \infty$ i.e., $\theta_{2 i}$ is a complex valued dislocated Cauchy sequence. By the completeness of $\left(W, \mu_{d}\right)$, there is a point $v \in W$ such that

$$
\lim _{i \rightarrow \infty} \theta_{2 i}=v
$$

Since E and F are continous map. So,

$$
\begin{aligned}
E\left(\lim _{i \rightarrow \infty} \theta_{2 i}\right) & =\lim E \theta_{2 i} \\
& =\lim _{i \rightarrow \infty} \theta_{2 i+1} \\
& =v . \\
\Rightarrow v=E v . &
\end{aligned}
$$

Similiarly, we can prove that $v=F v$. Hence $E v=v=F v$. Therefore, v is a common fixed point of E and F in W. Now to prove that the common fixed point of E and F are unique. For this, let v^{*} be another common fixed point of E and F, that is $E v^{*}=v^{*}=F v^{*}$ with $v^{*} \neq v$. Then we have to show that $v=v^{*}$. It
follows from (3.9) that

$$
\begin{aligned}
\mu_{d}\left(v, v^{*}\right) & =\mu_{d}\left(E v, F v^{*}\right) \\
& \precsim \lambda\left[\mu_{d}\left(v, F v^{*}\right)+\mu_{d}\left(v^{*}, E v\right)\right] \\
& =\lambda\left[\mu_{d}\left(v, v^{*}\right)+\left(v^{*}, v\right)\right]
\end{aligned}
$$

Implies that

$$
(1-2 \lambda)\left|\mu_{d}\left(v, v^{*}\right)\right|=0
$$

Since $0<\lambda<1$. So, $\mu_{d}\left(v, v^{*}\right)=0$. Thus, we get $v=v^{*}$. Hence, v is the unique common fixed point of E and F. This completes the proof.

Example 3.1. : Let $W=\mathbb{C}$ be the set of complex number. Define a mapping μ_{d} : $\mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$ on a complex valued dislocated metric space $\left(\mathbb{C}, \mu_{d}\right)$ as $z_{1}=\alpha_{1}+i \beta_{1}$ and $z_{2}=\alpha_{2}+i \beta_{2}$. Now, let $E, F: W \rightarrow W$ defined by

$$
\begin{equation*}
E \theta_{1}=\left\{\frac{2 \theta_{1}}{3}\right\} \text { and } F \theta_{2}=\left\{\frac{4 \theta_{2}}{3}\right\} \text { and } \mu_{d}\left(\theta_{1}, \theta_{2}\right)=\frac{\theta_{1}}{2}+\frac{\theta_{2}}{2} \tag{3.6}
\end{equation*}
$$

So, now

$$
\begin{aligned}
\mu_{d}\left(E \theta_{1}, F \theta_{2}\right) & =\frac{\theta_{1}}{3}+\frac{2 \theta_{2}}{3} \\
& =\frac{1}{6}+\frac{2}{9} \\
& =\frac{5}{18}
\end{aligned}
$$

Now using the contractive condition (3.1) of Theorem 3.1. we have

$$
\mu_{d}\left(e \theta_{1}, F \theta_{2}\right) \precsim \lambda \mu_{d}\left(\theta_{1}, \theta_{2}\right)
$$

as given that $0<\lambda<1$, choose $\lambda=\frac{1}{3}$, then clearly $0<\lambda<1$. Now putting
$\theta_{1}=\frac{1}{2}$ and $\theta_{2}=13$. Then

$$
\begin{aligned}
\frac{5}{18} & \precsim \frac{1}{3}\left(\frac{\theta_{1}}{2}+\frac{\theta_{2}}{3}\right) \\
& \precsim \frac{1}{3}\left(\frac{1}{4}+\frac{1}{6}\right) \\
& \precsim \frac{5}{36} .
\end{aligned}
$$

Now we use the condition (3.5) of Theorem 3.2, we have

$$
\begin{aligned}
\mu_{d}\left(E \theta_{1}, F \theta_{2}\right) & \precsim \lambda\left[\mu_{d}\left(\theta_{1}, E \theta_{1}\right)+\mu_{d}\left(\theta_{2}, F \theta_{2}\right)\right] . \text { Then } \\
\frac{5}{18} & \precsim \frac{1}{3}\left[\left(\frac{1}{4}+\frac{1}{6}\right)+\left(\frac{1}{6}+\frac{2}{9}\right)\right] \\
& =\frac{1}{3}\left[\frac{5}{12}+\frac{5}{18}\right] \\
& \precsim \frac{25}{108} .
\end{aligned}
$$

Again we use the condition (3.9) of Theorem 3.3 we have

$$
\begin{aligned}
\mu_{d}\left(E \theta_{1}, F \theta_{2}\right) & \precsim \lambda\left[\mu_{d}\left(\theta_{1}, F \theta_{2}\right)+\mu_{d}\left(\theta_{2}, E \theta_{1}\right)\right] . \text { Then } \\
\frac{5}{18} & \precsim \frac{1}{3}\left[\left(\frac{1}{4}+\frac{2}{9}+\frac{1}{6}+\frac{1}{6}\right)\right] \\
& =\frac{1}{3}\left[\frac{17}{3}+13\right] \\
& \precsim 2 .
\end{aligned}
$$

Hence all contractive condition of Theorem 3.1, 3.2 and 3.3 are satisfied and $z=0$ is the unique common fixed point of E and F.

Acknowledgements

The author would like to thank the anonymous referee for his careful reading and valuable suggestions to improve this work.

References

[1] S. Banach, Surles operations dans less ensembles abstraits et leurs applications aux equations integrales, Fund. Math. (3) (1922), 133-181.
[2] P. Hitzler and A. K. Seda, Dislocated Topologies, Journal Electr. Engi (51) (2000), 3-7.
[3] P. Hitzler, Generalized metrics and Topology in logic programming semantics, Ph.D thesis , National University of Irland, University College Cork, (2001).
[4] A. Azam, B. Fisher, and M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Funct. Anal. Optim., (32) (2011), 243-253.
[5] O. Ege, and I. Karaca, Complex valued dislocated metric spaces Korean J. of Math., 26(4) (2018), 809-822.

[^0]: Keywords and phrases: Fixed point, common fixed point, contractive map, complex valued dislocated metric space.

 2020 AMS Subject Classification: $47 \mathrm{H} 10,54 \mathrm{H} 25$

