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Abstract

Let M be a module over a commutative ring R. A proper subset S of M
is said to be multiplicative-semiprime if rn ∈ S, for all r ∈ R,n ∈ S and if
r2m ∈ S for some r ∈ R and s ∈ M then rm ∈ S. Total graph of a module
with respect to multiplicative-semiprime subset is a graph with all elements
of M as vertices, and for two distinct elements m,n ∈ M , the vertices m

and n are adjacent if and only if m+ n ∈ S. The main purpose of this paper
is to extend the results given in [6] to a more general case, especially when
S is a submodule of M . We prove some properties about connectedness
and completeness of this graph, type of graph, and the impact of girth and
diameter of this graph to the cardinality of the factor module of M .

1 Introduction

Throughout this paper, R is a commutative ring with nonzero identity and M is a
unitary R-module. The notion of total graph has been introduced by some previous
authors, for examples in [2], [5], and [3]. Total graph of a module is a simple graph
with the vertex set M and two distinct vertices x and y are adjacent if x + y ∈
T (M), where T (M) is the set of all torsion elements in M .
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Moreover, some authors define the total graph of module with respect to an-
other proper submodule. We recall first the set of {r ∈ R|rM ⊆ N} which is
denoted by (N : M). Total graph of a module M with respect to a proper sub-
module N is a simple graph with vertex set M and two distinct vertices x and y
are adjacent if x+ y ∈ M(N), where M(N) = {m ∈ M |rm ∈ N, for some r ∈
R\(N : M)}. This adjacency is the generalization of adjacency in the previous
total graph of a module we mentioned before. For more detailed results, the readers
are suggested to read [1].

A nonempty proper subset U of M is called a multiplicative-prime subset of
M if it satisfies the following two properties: (i) ru ∈ U for all r ∈ R and u ∈ U ;
(2) if ru ∈ U for some r ∈ R and u ∈ M , then r ∈ (U : M) or u ∈ U . For any
multiplicative-prime subset U of M , we obtain a generalized total graph GTU (M)
with vertices in M and any two vertices x, y ∈ M are adjacent if x+y ∈ U . Saraei
et.al [6] study some properties of this graph related to its diameter and girth.

Motivated by the notion of semiprime submodule in [4], we define a multiplica-
tive -semiprime subset. In this paper, we introduce and investigate total graph of
M with respect to a multiplicative-semiprime subset S and denoted by GTS(M).
This graph is an undirected graph with all elements of M as vertices, and for two
distinct elements m,n ∈ M , they are adjacent if m+ n ∈ S.

Further observation of GTS(M) can be divided into two cases: S is a sub-
module of M or not. In this paper we only discuss when S is a submodule
of M . We obtain some results of connectedness and completeness of this total
graph, type of the graphs and the relationship between girth and diameter of this
graph to the cardinality of factor module of M . We also conclude that the set
A = {m ∈ M\S|2m ∈ S} is not always an empty set if S is a multiplicative-
semiprime subset. However, A is always empty if S is a multiplicative-prime sub-
set of M . This fact influences the form of related total graph of a module M .

For any simple graph Γ, we denote the set of all edges and vertices of Γ, by
E(Γ) and V (Γ), respectively. We write a ∼ b if the vertices a and b are adjacent.
We recall that a graph is connected if there exists a path connecting any two of its
distinct vertices. We say that a graph is a totally disconnected if no two vertices of
this graph are adjacent. The distance between two distinct vertices a and b, denoted
by d(a, b), is the length of a shortest path connecting them (if such path does not
exist, then d(a, b) = ∞. We define d(a, a) = 0. The diameter of a graph Γ,
denoted by diam(Γ), is equal to sup{d(a, b) : a, b ∈ V (Γ)}. A graph is complete
if it is connected with diameter less than or equal to one. The girth of a graph Γ,
denoted by gr(Γ), is the length of the shortest cycle in Γ, provided Γ contains a
cycle; otherwise; gr(Γ) = ∞. We denote the complete graph on n vertices by Kn
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and the complete bipartite graph of on m and n vertices by Km,n (we allow m and
n to be infinite cardinals). For a graph Γ, the degree of a vertex v ∈ Γ, denoted by
deg(v), is the number of edges incident with v. We say that two induced subgraphs
Γ1 and Γ2 of Γ are disjoint if Γ1 and Γ2 have no common vertices and no vertices
of Γ1 is adjacent in Γ to some vertex Γ2. For other basic definitions in graph theory,
we refer to [7].

2 Main Results

In this section, we begin with the definition of multiplicative-semiprime subset of
a module and total graph of a module with respect to multiplicative-semiprime
subset.

Definition 2.1. Let M be a module over a commutative ring R. A nonempty proper
subset S of M is called a multiplicative-semiprime subset of M if it satisfies the
following conditions :

1. rn ∈ S, for all r ∈ R and n ∈ S.

2. For all r ∈ R and n ∈ M , if r2n ∈ S then rn ∈ S.

The notion of total graph of a module is given below:

Definition 2.2. Let M be a module over a commutative ring. The total graph of a
module with respect to a multiplicative-semiprime subset, denoted by GTS(M), is
a simple undirected graph with all elements of M as vertices, and for two distinct
elements m,n ∈ M , the vertices m and n are adjacent if m+ n ∈ S.

Example 2.1. Let Z12 be a module over Z12. The set S = {0, 6} is multiplicative-
semiprime in Z12. In Figure 1 we give the illustration of total graph of Z12-module
Z12 with respect to {0, 6}.

Next we study the case when S is a semiprime submodule of M . If S = M ,
then it is clear that GTS(M) is a complete graph. In Proposisition 2.1 we will see
the relation between GTS(S) and GTS(M\S).

Proposition 2.1. Let M be a module over a commutative ring R and S a semiprime
submodule of M . Then GTS(S) is a complete subgraph of GTS(M) and is disjoint
from GTS(M\S). In particular, GTS(S) is connected.
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Figure 1: The total graph of Z12-module Z12 with respect to {0,6}.
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Proof. Let x, y ∈ S. Since S is a submodule of M , x + y ∈ S. It means induced
subgraph GTS(S) is a complete graph. Suppose that GTS(S) and GTS(M\S) are
not disjoint. Then, there exist a ∈ S and b ∈ M\S such that a + b ∈ S. Since S

is a submodule of M , b = a + b − a ∈ S. It is a contradiction to our assumption
that b ∈ M\S. Therefore, GTS(S) and GTS(M\S) are disjoint. Since GTS(S) is
a complete graph, GTS(S) is a connected graph.

We give more results of GTS(M\S) in the following proposition.

Proposition 2.2. Let M be a module over a commutative ring R and S a semiprime
submodule of M . Then the following assertions hold:

1. Suppose that G is an induced subgraph of GTS(M\S) and let m and m′ be
distinct vertices of G that are connected by a path in G. Then there exists
a path in G of length 2 between m and m′. In particular, if GTS(M\S) is
connected, then diam(GTS(M\S)) ≤ 2.

2. Let m and m′ be distinct elements of GTS(M\S) that are connected by a
path. If m + m′ /∈ S then m ∼ (−m) ∼ m′ and m ∼ (−m′) ∼ m′ are
paths of length 2 between m and m′ in GTS(M\S).

Proof. 1. Let m1,m2,m3 and m4 are distinct vertices of G. It suffices to show
that there is a path m1 ∼ m2 ∼ m3 ∼ m4 from m1 to m4, then m1 and m4

are adjacent. Now, m1 +m2,m2 +m3,m3 +m4 ∈ S. Then, we get

m1 +m4 = (m1 +m2)− (m2 +m3)− (m3 +m4) ∈ S.

Thus, m1 and m4 are adjacent. If GTS(M\S) is connected, then
diam(GTS(M\S)) ≤ 2.

2. Since m,m′ /∈ S and m +m′ /∈ S, there exists w ∈ GTS(M\S) such that
m ∼ w ∼ m′ is a path of length 2 by part (1). Thus, w +m,w +m′ ∈ S

and m−m′ = (m+w)− (w+m′) ∈ S. Since m,m′ /∈ S, m ̸= −m′ and
m′ ̸= −m′. Thus, m ∼ (−m′) ∼ m′ is a path from m to m′ in GTS(M\S).

As we can see in Figure 1, an induced subgraph with vertex set M\S of total
graph of module with respect to multiplicative-semiprime subset is not always a
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connected graph. In the following proposition, we give the necessary and sufficient
condition such that GTS(M\S) is a connected graph.

Proposition 2.3. Let M be a module over a commutative ring R and S a semiprime
submodule of M . Then the following statements are equivalent:

1. GTS(M\S) is a connected graph.

2. Either m+m′ ∈ S or m−m′ ∈ S(but not both) for all m,m′ ∈ M\S.

3. Either m+m′ ∈ S or m+ 2m′ ∈ S for all m,m′ ∈ M\S. In particular, if
(3) is satisfied, then either 2m ∈ S or 3m ∈ S for all m ∈ M\S.

Proof. (1) ⇒ (2) Take any m,m′ ∈ M\S such that m +m′ /∈ S. We prove that
m−m′ ∈ S. If m = m′, then m−m′ = 0 ∈ S. If m ̸= m′, then by Proposition
2.2 (2) we get that m ∼ (−m′) ∼ m′ is a path from m to m′. Then m−m′ ∈ S.

(2) ⇒ (3) Take any distinct elements m,m′ ∈ M\S such that m +m′ /∈ S.
Then (m+m′)+m′ ∈ S or (m+m′)−m′ ∈ S by assumption. If (m+m′)+m′ ∈
S, then m ∈ S, that is a contradiction. Therefore, (m+m′)+m′ = m+2m′ ∈ S.
In particular, m +m = 2m ∈ S or m + 2m = 3m ∈ S for all m ∈ M\S. Both
2m and 3m can not be in S, since m = 3m − 2m ∈ S. It contradicts with our
assumption that m /∈ S.

(3) ⇒ (1) Let m,m′ ∈ M\S be distinct elements of M such that m+m′ /∈ S.
By hypothesis m+ 2m′ ∈ S and we get 2m′ /∈ S. Thus 3m′ ∈ S by assumption.
Moreover, since m+m′ ∈ S and 3m′ ∈ S, m ̸= 2m′. Therefore m ∼ (2m′) ∼ m′

is a path from m to m′ in GTS(M\S). Thus GTU (M\S) is connected.

Let M be a module over a commutative ring R, U is a multiplicative-prime
subset of M , and S is a multiplicative-semiprime subset of M . If 2 /∈ (U : M),
then for all m ∈ M\U we get 2m /∈ U . This is true since U is a multiplicative
prime-subset. It means, if U is a multiplicative-prime subset of M then the set
{m ∈ M\U |2m ∈ U} is always an empty set. However, this condition is not
necessarily true for S as a multiplicative-semiprime subset. If 2 /∈ (S : M), then
the set {m ∈ M\S|2m ∈ S} is not always empty. In the following theorem, we
provide the result regarding the type of graph formed by this graph, depending on
whether 2 is an element of (S : M) or not and whether the set m ∈ M\S|2m ∈ S
is empty or not.
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Theorem 2.1. Let M be a module over a commutative ring R and S be a semiprime
submodule of M . Let A = {m ∈ M\S|2m ∈ S}, |S| = α, |M/S| = β, and
|{m+ S|m ∈ A}| = γ.

1. If 2 ∈ (S : M), then GTS(M\S) is the union of β − 1 disjoint Kα′s.

2. (a) If 2 /∈ (S : M) and A = ∅, then GTS(M\S) is the union of β−1
2

disjoint Kα,α′s.

(b) If 2 /∈ (S : M) and A ̸= ∅, then GTS(M\S) is the union of β−1−γ
2

disjoint Kα,α′s and γ disjoint Kα′s.

Proof. 1. Note that m+S ⊆ M\S for all m /∈ S. Let m+n1,m+n2 ∈ m+S.
Since 2 ∈ (S : M) and S a submodule of M , 2m+(n1+n2) ∈ S. So, each
coset m+ S induces a complete subgraph of GTS(M\S). Moreover, every
distinct coset of S form disjoint induced subgraph of GTS(M\S). Suppose
that m+ S and m′ + S are two distinct coset but there is a vertex in m+ S

that adjacent to a vertex in m′+S. Let m+n and m′+n′ are adjacent where
n, n′ ∈ S. Then m+ n+m′ + n′ ∈ S. We get that m+m′ = (m+ n) +

(m′ + n′)− (n+ n′) ∈ S. Consequently, m−m′ = (m+m′)− 2m ∈ S.
In other words m + S = m′ + S. It contradicts with our assumption that
m + S and m′ + S are two distinct coset. It means, every coset of S form
disjoint induced subgraph of GTS(M\S). Since |M/S| = β, then

M/S = {S,m1 + S, . . . ,mβ−1 + S}.

Therefore, GTS(M\S) is union of β − 1′s induced subgraph mi + S, i ∈
{1, . . . , β − 1}, where each subgraph is complete subgraph with cardinality
of vertex set is α.

2. (a) Let m ∈ M\S. Assume that 2 /∈ (S : M) and A = ∅. We show
that no two distinct elements in m + S are adjacent. Suppose there
are two distinct elements of m + S are adjacent, i.e., m + m1 and
m + m2 for some m1,m2 ∈ S. Then (m + m1) + (m + m2) =

2m + m1 + m2 ∈ S. Since m1,m2 ∈ S and S is a submodule of
M , 2m = 2m+m1 +m2 − (m1 +m2) ∈ S. It contradicts with our
assumption that A = ∅. So, (m+S)∪(−m+S) is a complete bipartite
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subgraph of GTS(M\S). Moreover, if m+ x1 is adjacent to m′ + x2

for some m,m′ ∈ M\S and x1, x2 ∈ S, then m+ x1 +m′ + x2 ∈ S.
Hence, m + m′ = m + x1 + m′ + x2 − (x2 + x2) ∈ S. Therefore,
m + S = −m + S. Thus, GTS(M\S) is the union of β−1

2 disjoint
subgraph (m+S)∪(−m+S), each subgraph is Kα,α, i.e., a complete
bipartite subgraph with cardinality of vertex set is α where α = |S| =
|m+ S|.

(b) Let m ∈ M\S. Assume that 2 /∈ (S : M) and A ̸= ∅. We show that
no two distinct elements of m+S where m /∈ A are adjacent. Suppose
there are two distinct adjacent elements in m + S, i.e. m + m1 and
m + m2 for some m1,m2 ∈ S. Hence, (m + m1) + (m + m2) =

2m+m1 +m2 ∈ S. Since m1,m2 ∈ S and S is a submodule of M ,
2m = 2m + m1 + m2 − (m1 + m2) ∈ S. Moreover, since S is a
submodule of M , 2m ∈ S for all m ∈ S. Therefore, for all m ∈ M

we get 2m ∈ S or equivalently 2 ∈ (S : M). It contradicts with
our hypothesis that 2 /∈ (S : M). Thus (m + S) ∪ (−m + S) with
m,−m /∈ A is a complete bipartite induced subgraph of GTS(M\S).
Let m ∈ A. We show that each elements of m + S are adjacent. Let
m+ n1,m+ n2 ∈ m+ S. Since m ∈ A and S is a submodule of M ,
2m+(n1+n2) ∈ S. So, each coset m+S induces a complete subgraph
of GTS(M\S). Moreover, every distinct coset m + S where m ∈
(M\S)\A form a disjoint induced subgraph of GTS(M\S). Suppose
that m + S and m′ + S are two distinct coset but there is a vertex in
m+ S that adjacent to a vertex in m′ + S. Let m+ n and m′ + n′ are
adjacent where n, n′ ∈ S. Then m + n + m′ + n′ ∈ S. We get that
m+m′ = (m+n)+(m′+n′)−(n+n′) ∈ S. Consequently, m−m′ =

(m+m′)− 2m ∈ S. In other words m+ S = m′ + S. It contradicts
with our assumption that m + S and m′ + S are two distinct coset. It
means, every distinct coset m+S where m ∈ (M\S)\A form disjoint
induced subgraph of GTS(M\S). Since |{m+ S|m ∈ A}| = γ, then
GTS(M\S) is union of disjoint β−1−γ

2

′
s induced complete bipartite

subgraph Kα,α and γ′s induced complete subgraph Kα.
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Figure 2: GT{0}(Z15).

Example 2.2. 1. Let Z15 be a module over Z15 and S = {0} a multiplicative-
semiprime subset of Z15. Since there is no m ∈ Z15\{0} such that 2m ∈
{0}, then A = ∅ and 2 /∈ (S : M). In Figure 2, GTS(M\S) is the union of
a complete bipartite graphs as stated in Theorem 2.1 (2)(a).

2. Let Z18 be a module over Z18 and S = {0, 6, 12} a multiplicative-semiprime
subset of Z18. It is easy to see that 2 /∈ (S : M). We get that A = {3, 9, 15}.
In Figure 3, we show that induced subgraph with vertex set A forms com-
plete subgraph and the rest form complete bipartite subgraphs as stated in
Theorem 2.1 (2)(b).

As we can see induced subgraph GTS(M\S) in Figure 2 and Figure 3 is nei-
ther a complete graph nor a connected graph. In the following theorem, we give
some necessary and sufficient conditions of induced subgraphs GTS(M\S) to be
a connected graph or a complete graph.
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Figure 3: GT{0,6,12}(Z18).
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Theorem 2.2. Let M be a module over a commutative ring R and S a semiprime
submodule of M . Then

1. GTS(M\S) is a complete graph if and only if |M/S| = 2 or |M/S| =

|M | = 3.

2. GTS(M\S) is a connected graph if and only if |M/S| = 2 or |M/S| = 3.

3. GTS(M\S) (and hence GTS(S) and GTS(M)) is totally disconnected if
and only if S = {0} and 2 ∈ (S : M).

Proof. 1. (⇒) Let GTS(M\S) be a complete subgraph of GTS(M). Then by
Theorem 2.1, GTS(M\S) is single Kα or K1,1. If GTS(M\S) is Kα, then
β − 1 = 1. Hence, β = 2 and |M/S| = 2. If GTS(M\S) is K1,1, then
β−1
2 = 1 and α = 1. Thus, β = 3 and α = 1. Therefore, |M/S| = 3 and

S = {0}. Hence, |M/S| = |M | = 3.

(⇐) Let |M/S| = 2 and M/S = {S, x+ S} where x /∈ S. Then x + S =

−x + S and we get 2x ∈ S. Thus, 2 ∈ (S : M). Next we show that
GTS(M\S) is a complete graph. Let m,m′ ∈ M\S. Then m + m′ =

(m + x) + (m′ + x) − 2x ∈ S. Thus GTS(M\S) is a complete graph.
Let |M/S| = |M | = 3. In this case, we show that 2 /∈ (S : M). Suppose
2 ∈ (S : M). Then 2m ∈ S for all m ∈ M . Thus, we get 2(m+S) = 0M/S

for all m ∈ M . It is a contradiction since we assume M/S is a cyclic group
with order 3. So, 2 /∈ (S : M). By Theorem 2.1, GTS(M\S) is a union of
3−1
2 = 1 disjoint K1,1’s. Then every case leads to GTS(M\S) is a complete

graph.

2. (⇒) Let GTS(M\S) be a connected graph. By Theorem 2.1, GTS(M\S)
is single Kα or Kα,α. If 2 ∈ (S : M), by Theorem 2.1 β − 1 = 1. Then
|M/S| = 2. If 2 /∈ (S : M), then β−1

2 = 1. Thus |M/S| = 3.

(⇐) By point 1 above, we assume that |M/S| = 3. We will show that
2 /∈ (S : M). Suppose that 2M ⊆ S and M/S = {S, x+ S, y + S} where
x, y /∈ S. Since M/S is a cyclic group with order 3, then x+ y ∈ S. Thus,
x is adjacent to y. It contradicts with the statement that GTS(M\S) is a
union of two disjoint subgraph, x + S and y + S. Hence, 2 /∈ (S : M).
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By Theorem 2.1, we get GTS(M\S) is union of 3−1
2 = 1 disjoint Kα,α’s.

Therefore, GTS(M\S) is a connected graph.

3. GTS(M\S) is totally disconnected if and only if it is a disjoint union of
K1’s. So, by Theorem 2.1, GTS(M\S) is totally disconnected if and only if
2 ∈ (S : M), |S| = 1, and |M/S| = 1.

Now, we give some results on the diameter of GTS(M\S).

Proposition 2.4. Let M be a module over a commutative ring R and S a semiprime
submodule of M . Then diam(GTS(M\S)) = 0, 1, 2,∞. In particular, if GTS

(M\S) is a connected graph, then

diam(GTS(M\S)) ≤ 2.

Proof. Let GTS(M\S) be a connected graph. Then GTS(M\S) is a complete
graph or complete bipartite graph by Theorem 2.1. If GTS(M\S) is a complete
graph, then diam(GTS(M\S)) = 1 or diam(GTS(M\S)) = 0. If GTS(M\S)
is a complete bipartite graph, then diam(GTS(M\S)) = 2. Hence, if GTS(M\S)
is a connected graph, then diam(GTS(M\S)) ≤ 2. If GTS(M\S) is not a con-
nected graph, then diam(GTS(M\S)) = ∞.

Theorem 2.3. Let M be a module over a commutative ring R and S a semiprime
submodule of M .

1. diam(GTS(M\S)) = 0 if and only if S = {0} and |M | = 2.

2. diam(GTS(M\S)) = 1 if and only if either

(a) S ̸= {0} and |M/S| = 2, or

(b) |S| = {0} and |M | = 3.

3. diam(GTS(M\S)) = 2 if and only if S ̸= {0} and |M/S| = 3.

4. Otherwise, diam(GTS(M\S)) = ∞.

Proof. The results follow from Theorem 2.1 and Theorem 2.2.
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We give some properties of the girth GTS(M\S).

Proposition 2.5. Let M be a module over a commutative ring R and S a semiprime
submodule of M . Then gr(GTS(M\S)) = 3, 4,∞. In particular, gr(GTS(M\S))
≤ 4 if GTS(M\S) contains a cycle.

Proof. If GTS(M\S) contains a cycle, then by Theorem 2.1, GTS(M\S) is a
union of complete graphs or complete bipartite graphs with complete graphs. It
means GTS(M\S) contains either 3−cycle or 4−cycle. Thus, gr(GTS(M\S) ≤
4. If GTS(M\S) contains no cycle, then gr(GTS(M\S)) = ∞.

Theorem 2.4. Let M be a module over a commutative ring R, S a semiprime
submodule of M and A = {m ∈ M\S|2m ∈ S}.

1. (a) gr(GTS(M\S)) = 3 if and only if either

i. 2 ∈ (S : M) and |S| ≥ 3, or

ii. 2 /∈ (S : M), A ̸= ∅, and |S| ≥ 3.

(b) gr(GTS(M\S)) = 4 if and only if 2 /∈ (S : M), |S| ≥ 2, and A = ∅.

(c) Otherwise, gr(GTS(M\S)) = ∞.

2. (a) gr(GTS(M)) = 3 if and only if |S| ≥ 3.

(b) gr(GTS(M)) = 4 if and only if 2 /∈ (S : M), A = ∅, and |S| = 2.

(c) Otherwise, gr(GTS(M)) = ∞.

Proof. The results follow from Proposition 2.1, Theorem 2.1, and Proposition 2.5.

3 CONCLUSION

The connectedness and completeness of total graph of module with respect to
multiplicative-semiprime subset is related to the cardinality of its module or its
factor module. Since the set A = {m ∈ M\S|2m ∈ S} is not always an empty
set, induced subgraph with vertex set A is not always a null graph. It means the
type of graph GTS(M\S) is not only a complete graph or bipartite graph but also
can be both. We have shown in Theorem 2.3 that the diameter has an impact on the
cardinality of the module or factor module. The girth of this graph not only has an
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impact on the cardinality of the module or factor module but also on the cardinality
of A as shown in Theorem 2.4.
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