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Abstract

The purpose of this work is to find some multi figurate numbers. Find
positive solutions of various Pell equations and show that these solutions are
in terms of generalized Fibonacci and Lucas numbers.

1 Introduction and Motivation

Figurate numbers or n-gonal numbers are a sequence of positive integers that stand
for regular geometric forms. Polygonal numbers (i.e., triangular numbers, square
numbers, heptagonal numbers) and centered polygonal numbers (i.e., centered tri-
angular numbers, centered square numbers) are such figurate numbers. The study
of figurate numbers is an interesting subject of number theory since contributions
have been made by many famous mathematicians who have revolutionized their
work since ancient times. For more information about figurate numbers, see [4]
and [13].

Multi figurate numbers are numbers that can simultaneously be different figu-
rate numbers. For example, 36 is simultaneously a triangular and a square number.
That’s why the number 36 is called a triangular square number. There are many
such multi figurate numbers, for example, heptagonal triangular numbers, square
centered square numbers, etc.

Keywords and phrases: Polygonal numbers, centered polygonal numbers, Pell equation, sim-
ple continued fraction.
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There are many methods for determining multi figurate numbers. One of the
methods used is to find the solution of Diophantine equations (Pell equations). Pell
equation is in the form of x2 − dy2 = N where d is not a square positive integer.
If N = 1, then it’s called a classical Pell equation and it always has a solution on
N. If N ̸= 1, then the Pell equation might not have a natural number solution. For
more details about Pell equation, see [1], [2], [7], [8], [9], [10] and [14].

In [4], E. Deza and M. M. Deza, gave the general definition of figurate num-
bers and the properties of these numbers in detail. They also explained how to find
the indices of two or more figurate numbers that give the terms that are equal to
each other. In [12], R. Keskin and M. G. Duman, developed an unusual method
while investigating the natural number solutions of various Pell equations. Using
the method they developed, they solved many Pell equations in terms of general-
ized Fibonacci and Lucas numbers. While investigating the solutions of the multi
figurate numbers defined in [4], it was observed that the terms of the multi figurate
numbers were not examined with regard to Generalized Fibonacci and Lucas num-
bers. Inspired by [4] and [12], the motivation of this work is to investigate multi
figurate numbers whose terms are generalized Fibonacci and Lucas numbers.

In section 2, we will mention the fundamentals of figurate numbers. We divide
section 3 in three subsections, namely triangular square numbers, square centered
square numbers and triangular heptagonal numbers.

2 Preliminaries

Let µ and τ be two nonzero integers and let µ2 − 4τ > 0. The integer sequences
Un (µ, τ) which is called generalized Fibonacci sequence, is defined by

Un+1 (µ, τ) = µUn (µ, τ)− τUn−1 (µ, τ) (2.1)

with initial U0 (µ, τ) = 0 and U1 (µ, τ) = 1, for n ≥ 1. Similarly, the integer
sequence Vn (µ, τ) which is called generalized Lucas sequence, is defined by

Vn+1 (µ, τ) = µVn (µ, τ)− τVn−1 (µ, τ) (2.2)

with initial V0 (µ, τ) = 2 and V1 (µ, τ) = µ, for n ≥ 1. If one takes µ = 1
and τ = −1, then the sequences Un (1,−1) and Vn (1,−1) are called Fibonacci
and Lucas sequences indicated by Fn and Ln, respectively. If one takes µ = 2
and τ = −1, then the sequences Un (2,−1) and Vn (2,−1) are called Pell and
Pell-Lucas sequences indicated by Pn and Qn, respectively.
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Let α and β be the roots of the characteristic quadratic equation x2−µx+τ =
0. Then generalized Fibonacci sequences can be symbolized in the Binet form
which is,

Un (µ, τ) =
αn − βn

α− β

for n ≥ 0. Likewise Lucas sequences can be symbolized in the Binet form which
is,

Vn (µ, τ) = αn + βn

for n ≥ 0. Obviously, α + β = µ, α − β =
√
µ2 − 4τ and αβ = τ . Recall that,

from (2.1) and (2.2),

Un (1,−1) = Fn, Fibonacci numbers [16, A000045],
Vn (1,−1) = Ln, Lucas numbers [16, A000032],
Un (2,−1) = Pn, Pell numbers [16, A000129],
Vn (2,−1) = Qn, Pell- Lucas numbers [16, A002203].

For further information, see [3], [5], [6], [12] and [15].
Pell equation is of the form x2 − dy2 = N where d is square free positive

integer. If N ̸= 1, then the Pell equation may not always have a natural number
solution. If N = 1, then it’s called a classical Pell equation and it always has a
natural number solution. The least natural number solution of the Pell equation
x2 − dy2 = 1 is called the fundamental solution and denoted by (x1, y1) or x1 +
y1
√
d. The other natural number solutions of the Pell equation x2 − dy2 = 1

are derived with the help of the fundamental solution (x1, y1). If (x1, y1) is the
fundamental solution of x2 − dy2 = 1, then all the other positive integer solution
(xn, yn) of x2 − dy2 = 1 are given by (see in [11])

xn + yn
√
d =

(
x1 + y1

√
d
)n

(2.3)

for n ≥ 1. There are many different methods available in order to find the fun-
damental solution. In this study, we will use the continued fraction expansion of√
d, which is the most well-known method. Let the continued fraction expansion

of
√
d be

[
a0; a1, a2, ..., al−1, al = 2a0

]
, in which l is the length of the period of

this expansion and a0 = ⌊d⌋. The continued fraction algorithm is given by;

α0 =
√
d, ak = ⌊αk⌋ , αk+1 =

1

αk − ak
, k ≥ 0, k ∈ Z. (2.4)

The mth convergent of
√
d is given by,
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pm
qm

= [a0, a1, a2, ..., am−1, am] (2.5)

where (pm, qm) = 1 and for m ≥ 0.
A polygonal number is a sequence of natural numbers and for n ∈ N, m ≥ 3,

the nth m-gonal numbers is denoted by Sm (n). Algebraically Sm (n) is acquired
as the sum of the first n elements of the sequence, which are 1, 1 + (m− 2),
1 + 2 (m− 2),..., 1 + (n− 1) (m− 2). Precisely,

Sm (n) = 1 + 1 + (m− 2) + 1 + 2 (m− 2) + ...+ 1 + (n− 1) (m− 2)

= n+ (m− 2) (1 + 2 + ...+ (n− 1))

= n+ (m− 2)
(n− 1)n

2

=
(m− 2)n2 − (m− 4)n

2
,

(see [4]). In particular,
if m = 3, then S3 (n) is called triangular number and S3 (n) =

n(n+1)
2 ,

if m = 4, then S4 (n) is called square number and S4 (n) = n2,
if m = 5, then S5 (n) is called pentagonal number and S5 (n) =

n(3n−1)
2 ,

if m = 6, then S6 (n) is called hexagonal number and = S6(n) = n(2n− 1),
if m = 7, then S7 (n) is called heptagonal number and S7 (n) =

n(5n−3)
2 .

A centered polygonal number is a sequence of natural numbers and for n ∈
N, m ≥ 3, the nth centered m-gonal numbers is denoted by CSm (n). Alge-
braically CSm (n) is acquired as the sum of the first n elements of the sequence,
which are 1, m, 2m,..., (n− 1)m. One can calculate that,

CSm (n) = 1 +m+ 2m+ 3m+ ...+ (n− 1)m

= 1 +m (1 + 2 + ...+ (n− 1))

= 1 +m
(n− 1)n

2

=
mn2 −mn+ 2

2
.

(see [4]). Particularly,
if m = 3, then CS3 (n) is called centered triangular number and CS3 (n) =
3n2−3n+2

2 ,



Some multi figurate numbers in terms of generalized· · · 111

if m = 4, then CS4 (n) is called centered square number and CS4 (n) = 2n2 −
2n+ 1,
if m = 5, then CS5 (n) is called centered pentagonal number and CS5 (n) =
5n2−5n+2

2 .

3 Some Multi Figurate Numbers

In this section, we will discuss some particular multi figurate numbers and obtain
the main results of the paper.

3.1 Triangular Square Numbers

In this part of the article, it will be investigated exactly which numbers are both
triangular numbers and square numbers. While investigating these numbers, Pell
equation, Pell and Pell-Lucas sequences will be used. Firstly, S3 (u) and S4 (v)
equations are equated to obtain the diophantine equation

u (u+ 1)

2
= v2. (3.1)

We can rewrite equation (3.1) as

(2u+ 1)2 − 2(2v)2 = 1. (3.2)

If we take x = 2u+ 1 and y = 2v, then we obtain the Pell equation

x2 − 2y2 = 1. (3.3)

To find the positive solutions of the Pell equation (3.3), the following theorem in [8]
should be given.

Theorem 3.1. Let l be the period length of continued fraction expansion of
√
d.

When l is even, the positive solutions of the Pell equation x2 − dy2 = 1 are x =

pjl−1, y = qjl−1, j = 1, 2, 3, ... When l is odd, the positive solutions of the Pell
equation x2 − dy2 = 1 are x = p2jl−1, y = q2jl−1, j = 1, 2, 3, ...

In order to find the fundamental solution of the Pell equation (3.3), the follow-
ing Lemma 3.1 and Lemma 3.2 will be given. Also, these lemmas can be found in
many basic textbooks.
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Lemma 3.1. The continued fraction expansion of
√
2 is

[
1; 2
]
.

Proof. We use the continued fraction algorithm from (2.4).
Let d =

√
2, α0 =

√
2 and a0 =

⌊√
2
⌋
= 1,

α1 =
1

α0−a0
= 1√

2−1
=

√
2 + 1. So a1 =

⌊√
2 + 1

⌋
= 2,

α2 =
1

α1−a1
= 1

(
√
2+1)−2

=
√
2 + 1. So a2 =

⌊√
2 + 1

⌋
= 2.

If it continues in the same way, it seen that an = 2. Hence we get
√
2 = [1; 2, 2, ...

, 2, 2 ] =
[
1; 2
]
.

Lemma 3.2. The fundamental solution of the Pell equation x2 − 2y2 = 1 is
(x1, y1) = (3, 2) .

Proof. From Lemma 3.1 we know that
√
2 =

[
1; 2
]

and from here the period
length l is 1, that is, l is odd. From Theorem 3.1 the fundamental solution of
x2 − 2y2 = 1 is x1 = p2l−1 and y1 = q2l−1. So (x1, y1) = (p1, q1) . From (2.5)
we have p1

q1
= a0 +

1
a1

= 1 + 1
2 = 3

2 . Thus,(x1, y1) = (p1, q1) = (3, 2). Indeed,
x21 − 2y21 = 32 − 2.22 = 9− 8 = 1.

Now, a method for finding all positive integer solutions of the Pell equation
x2 − 2y2 = 1 will be given.

From equation (2.3), if (x1, y1) is the minimum solution of x2 − dy2 = 1,
then the other solutions of this equation are (xn, yn), in which xn + yn

√
d =(

x1 + y1
√
d
)n

. From lemma 3.2 and equation (2.3) we can obtain some solutions

of x2 − 2y2 = 1. (x1, y1) = (3, 2) , and so

x2 + y2
√
2 =

(
3 + 2

√
2
)2

= 17 + 12
√
2 ⇒ (x2, y2) = (17, 12) ,

x3 + y3
√
2 =

(
3 + 2

√
2
)3

= 99 + 70
√
2 ⇒ (x3, y3) = (99, 70) ,

x4 + y4
√
2 =

(
3 + 2

√
2
)4

= 577 + 408
√
2 ⇒ (x4, y4) = (577, 408) ,

x5 + y5
√
2 =

(
3 + 2

√
2
)5

= 3363 + 2378
√
2 ⇒ (x5, y5) = (3363, 2378) ,

x6 + y6
√
2 =

(
3 + 2

√
2
)6

= 19 601 + 13860
√
2 ⇒ (x6, y6) = (19 601, 13860) .

If some solutions of this equation are examined carefully, it will be seen that its
solutions are related to Pell and Pell-Lucas Numbers.

(x1, y1) = (3, 2) =
(
6
2 , 2

)
=
(
Q2

2 , P2

)
,

(x2, y2) = (17, 12) =
(
34
2 , 12

)
=
(
Q4

2 , P4

)
,
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(x3, y3) = (99, 70) =
(
198
2 , 70

)
=
(
Q6

2 , P6

)
,

(x4, y4) = (577, 408) =
(
1154
2 , 408

)
=
(
Q8

2 , P8

)
,

(x5, y5) = (3363, 2378) =
(
6726
2 , 2378

)
=
(
Q10

2 , P10

)
,

(x6, y6) = (19601, 13860) =
(
39202

2 , 13860
)
=
(
Q12

2 , P12

)
.

Now we can give the following Theorem which gives us the solutions of equa-
tion x2 − 2y2 = 1 in terms of Pell and Pell-Lucas numbers.

Theorem 3.2. All positive integer solutions of the equation x2−2y2 = 1 are given
by

(xn, yn) =

(
Q2n

2
, P2n

)
for n ≥ 1.

Proof. If the Pell and Pell-Lucas sequences are written in the form of the Binet’s
formula, we get, for n ≥ 1,

P2n = α2n−β2n

α−β and Q2n = α2n + β2n

where α = 2+
√
8

2 = 1 +
√
2 and β = 2−

√
8

2 = 1−
√
2. Obviously, we can obtain

α+ β = 2, α− β =
√
8 and αβ = −1.

x2 − 2y2 =

(
Q2n

2

)2

− 2(P2n)
2

=

(
α2n + β2n

2

)2

− 2

(
α2n − β2n

α− β

)2

=

(
α2n + β2n

2

)2

− 2

(
α2n − β2n

√
8

)2

=

(
α4n + 2α2nβ2n + β4n

4

)
− 2

(
α4n − 2α2nβ2n + β4n

8

)
=

4α2nβ2n

4

= (αβ)2n

= 1.
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Using relations x = 2u+ 1 and y = 2v, we have

un = xn−1
2 =

Q2n
2

−1

2 and vn = yn
2 = P2n

2 ,

n ∈ N. One gets the sequence (1,1), (8,6), (49,35), (288,204), (1681,1189), ...
which consist of all the positive integer solutions (un, vn) of the diophantine equa-
tion (3.1).

Finally, the following corollary will tell us for which (un, vn) terms the dio-
phantine equation S3 (u) = S4 (v) is valid.

Corollary 3.1. Let u and v be a positive integer. Then S3 (u) = S4 (v)if and only
if

(un, vn) =

(
Q2n − 2

4
,
P2n

2

)
for n ≥ 1.

3.2 Square Centered Square Numbers

In this subsection, we consider exactly which numbers are both square numbers
and centered square numbers. While investigating these numbers, Pell equation,
Pell and Pell-Lucas sequences will be used.

Firstly, CS4 (v) and S4 (u) equations are equated to obtain the diophantine
equation

1 + 4
v (v − 1)

2
= u2. (3.4)

If both sides of the equation (3.4) multiplied by 16, then we have,

(4u)2 − 8(2v − 1)2 = 8. (3.5)

If we take x = 4u and y = 2v − 1, then we obtain the Pell equation

x2 − 8y2 = 8. (3.6)

Now we can give the following lemma which gives us the fundamental solution of
equation (3.6), see in [13].

Lemma 3.3. The fundamental solution of the Pell equation x2 − 8y2 = 8 is
(x1, y1) = (4, 1) .
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Proof. y1 = 1 is the minimal positive integer number. So, x21 − 8y21 = 8 ⇒
x21 − 8.12 = 8 ⇒ x1 = 4. Hence, (x1, y1) = (4, 1) is the fundamental solution of
x2 − 8y2 = 8.

In the following theorem, a method to find all natural number solutions of the
Pell equation x2 − 8y2 = 8 will be given.

Theorem 3.3. Let (xm, ym) be any solution of x2 − 8y2 = 8. Then the other
solutions of this equation are (xn, yn), where(

xn

yn

)
=

(
3

1

8

3

)n(
xm

ym

)
for n ≥ 1.

Proof. By using the method of mathematical induction on n, we can prove this
theorem. Let (xm, ym) be any solution of x2 − 8y2 = 8. That is xm2 − 8ym

2 = 8.
For n = 1, we get(

x1

y1

)
=

(
3

1

8

3

)(
xm

ym

)
=

(
3xm + 8ym

xm + 3ym

)
.

We have, x1 = 3xm + 8ym and y1 = xm + 3ym. Also,

x1
2 − 8y1

2 = (3xm + 8ym)2 − 8(xm + 3ym)2

= (3xm)2 + 2 (3xm8ym) + (8ym)2 − 8(xm)2 − 2.8. (xm3ym)− 8(3ym)2

= xm
2
(
32 − 8

)
− 8ym

2
(
32 − 8

)
= xm

2 − 8ym
2

= 8.

Now we assume that (xn−1, yn−1) is a solution of x2 − 8y2 = 8. That is,
xn−1

2 − 8yn−1
2 = 8.
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(
xn

yn

)
=

(
3

1

8

3

)n(
xm

ym

)

=

(
3

1

8

3

)(
3

1

8

3

)n−1(
xm

ym

)

=

(
3

1

8

3

)(
xn−1

yn−1

)

=

(
3xn−1 + 8yn−1

xn−1 + 3yn−1

)
.

So, we get xn = 3xn−1 + 8yn−1 and yn = xn−1 + 3yn−1. If we substitute these
two equations in the Pell equation x2 − 8y2 = 8, then we have

xn
2 − 8yn

2 = (3xn−1 + 8yn−1)
2 − 8(xn−1 + 3yn−1)

2

= (3xn−1)
2 + 2 (3xn−18yn−1) + (8yn−1)

2

− 8(xn−1)
2 − 2.8. (xn−13yn−1)− 8(3yn−1)

2

= x2n−1

(
32 − 8

)
− 8y2n−1

(
32 − 8

)
= x2n−1 − 8y2n−1

= 8.

Thus, (xn, yn) is solution of x2 − 8y2 = 8.

The following theorem is given in [13] and therefore we skip its proof. The
statement of this theorem is important because it serves to find two consecutive
positive integer solutions of this equation. In other words, this theorem states that
there is no other integer solution between two consecutive integers.

Theorem 3.4. The consecutive solutions (xn−2, yn−2) , (xn−1, yn−1)and (xn, yn)

satisfy the recurrence relations, xn = 6xn−1 − xn−2 and yn = 6yn−1 − yn−2, for
n ≥ 3.

From lemma 3.3, we know that the fundamental solution of x2 − 8y2 = 8 is
(4, 1). From the proof of theorem 3.3, we can obtain some solutions of x2−8y2 =
8.
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x2 = 3x1 + 8y1 = 3.4 + 8.1 = 20,
y2 = x1 + 3y1 = 4 + 3.1 = 7,

x3 = 3x2 + 8y2 = 3.20 + 8.7 = 116,
y3 = x2 + 3y2 = 20 + 3.7 = 41,

x4 = 3x3 + 8y3 = 3.116 + 8.41 = 676,
y4 = x3 + 3y3 = 116 + 3.41 = 239,

x5 = 3x4 + 8y4 = 3.676 + 8.239 = 3940,
y5 = x4 + 3y4 = 676 + 3.239 = 1393,

x6 = 3x5 + 8y5 = 3.3940 + 8.1393 = 22964,
y6 = x5 + 3y5 = 3940 + 3.1393 = 8119.

If some solutions of this equation are examined carefully, it will be seen that its
solutions are related to Pell and Pell-Lucas Numbers.

(x1, y1) = (4, 1) =
(
4.1, 22

)
=
(
4P1,

Q1

2

)
,

(x2, y2) = (20, 7) =
(
4.5, 142

)
=
(
4P3,

Q3

2

)
,

(x3, y3) = (116, 41) =
(
4.29, 822

)
=
(
4P5,

Q5

2

)
,

(x4, y4) = (676, 239) =
(
4.169, 4782

)
=
(
4P7,

Q7

2

)
,

(x5, y5) = (3940, 1393) =
(
4.985, 27862

)
=
(
4P9,

Q9

2

)
,

(x6, y6) = (22964, 8119) =
(
4.5741, 162382

)
=
(
4P11,

Q11

2

)
.

Now we can use the following Theorem which provides us the solutions of
equation (3.6) in terms of Pell and Pell-Lucas numbers.

Theorem 3.5. All positive integer solutions of the equation x2−8y2 = 8 are given
by

(xn, yn) =

(
4P2n−1,

Q2n−1

2

)
for n ≥ 1.

Proof. If the Pell and Pell-Lucas sequences are written in the form of the Binet’s
formula, for n ≥ 1, we get
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P2n−1 =
α2n−1−β2n−1

α−β and Q2n−1 = α2n−1 + β2n−1

where α = 2+
√
8

2 = 1 +
√
2 and β = 2−

√
8

2 = 1−
√
2. Obviously, we can obtain

α+ β = 2, α− β =
√
8 and αβ = −1.

x2 − 8y2 = (4P2n−1)
2 − 8

(
Q2n−1

2

)2

=

(
4
α2n−1 − β2n−1

α− β

)2

− 8

(
Q2n−1

2

)2

=

(
4
α2n−1 − β2n−1

√
8

)2

− 8

(
α2n−1 + β2n−1

2

)2

= 2
(
α4n−2 − 2α2n−1β2n−1 + β4n−2

)
− 2

(
α4n−2 + 2α2n−1β2n−1 + β4n−2

)
= −8α2n−1β2n−1

= −8(αβ)2n−1

= 8.

Using the relations x = 4u and y = 2v − 1, we have

un = xn
4 = 4P2n−1

4 = P2n−1 and vn = yn+1
2 =

Q2n−1
2

+1

2 ,

n ∈ N. One gets the sequence (1, 1), (5, 4), (29, 21), (169, 120), (985, 607), ...
which are all natural number solutions (un, vn) of the diophantine equation (3.4).

Finally, the following corollary will tell us for which (un, vn) terms the dio-
phantine equation S4 (u) = CS4 (v) is satisfied.

Corollary 3.2. Let u and v be a positive integer. Then S4 (u) = CS4 (v) if and
only if

(un, vn) =

(
P2n−1,

Q2n−1 + 2

4

)
for n ≥ 1.

3.3 Triangular Heptagonal Numbers

In this final subsection, it will be proved exactly which numbers are both triangular
numbers and heptagonal numbers (i.e. triangular heptagonal numbers). While
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researching these numbers, Pell equation, Fibonacci and Lucas sequences will be
used. Note that, we use Fibonacci and Lucas sequences for the first time in this
article.

Firstly, S3 (v) and S7 (u) equations are equated to obtain the diophantine equa-
tion

1

2
v (v + 1) =

1

2
u (5u− 3) . (3.7)

Heptagonal triangular numbers match the natural number solutions of the diophan-
tine equation (3.7). From equation (3.7) we find,

(10u− 3)2 − 5(2v + 1)2 = 4. (3.8)

If we take x = 10u− 3 and y = 2v + 1, then we obtain the Pell equation

x2 − 5y2 = 4. (3.9)

In the following Theorem 3.6 and Theorem 3.7, a method for finding all pos-
itive integer solutions of the Pell equation x2 − dy2 = 4 will be given from [7],
[12], [1] and [2] respectively.

Theorem 3.6. Let x1 + y1
√
d be the fundamental solution of x2 − dy2 = 4. Then

all positive integer solutions to the equation x2 − dy2 = 4 are given by

xn + yn
√
d =

(x1+y1
√
d)

n

2n−1

with n ≥ 1, see in [7] and [12].

Theorem 3.7. If (x1, y1) is the fundamental solution of the Pell equation x2 −
Dy2 = 4, then

xn = x1xn−1+Dy1yn−1

2 and yn = y1xn−1+x1yn−1

2

with n ≥ 2, see in [1] and [2].

Now we can give the following lemma 4 which gives us the fundamental solu-
tion of equation (3.9).

Lemma 3.4. The fundamental solution of the Pell equation x2 − 5y2 = 4 is
(x1, y1) = (3, 1).
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Proof. y1 = 1 is the minimal positive integer number. So, x21 − 5y21 = 4 ⇒
x21 − 5.12 = 4 and here x1 = 4. Hence, (x1, y1) = (4, 1) is the fundamental
solution of x2 − 5y2 = 4.

From lemma 3.4, we know that the fundamental solution of x2 − 5y2 = 4 is
(3, 1). Also from theorem 3.7 we can obtain some solutions of x2 − 5y2 = 4.

x2 =
x1x1+5y1y1

2 = 3.3+5.1.1
2 = 7,

y2 =
y1x1+x1y1

2 = 1.3+3.1
2 = 3,

x3 =
x1x2+5y1y2

2 = 3.7+5.1.3
2 = 18,

y3 =
y1x2+x1y2

2 = 1.7+3.3
2 = 8,

x4 =
x1x3+5y1y3

2 = 3.18+5.1.8
2 = 47,

y4 =
y1x3+x1y3

2 = 1.18+3.8
2 = 21,

x5 =
x1x4+5y1y4

2 = 3.47+5.1.21
2 = 123,

y5 =
y1x4+x1y4

2 = 1.47+3.21
2 = 55.

These solutions can also be found by using Theorem 3.6. But it may take more
time to make this calculations. If some solutions of this equation are observed care-
fully, it will be seen that its solutions are related to Lucas and Fibonacci Numbers.

(x1, y1) = (3, 1) = (L2, F2),
(x2, y2) = (7, 3) = (L4, F4),
(x3, y3) = (18, 8) = (L6, F6),
(x4, y4) = (47, 21) = (L8, F8),
(x5, y5) = (123, 55) = (L10, F10).

One can make a lucky gues that this harmony is always true. In fact, we can give
the following Theorem which gives us the solutions of equation (3.9) in terms of
Lucas and Fibonacci numbers.

The following theorem is given in [10]. But we will give the proof of the
following theorem using the binet’s formula.

Theorem 3.8. All positive integer solutions of the equation x2−5y2 = 4 are given
by
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(xn, yn) = (L2n, F2n),

for n ≥ 1.

Proof. If the Lucas and Fibonacci sequences are written in the form of the Binet’s
formula, we get,

F2n = α2n−β2n

α−β and L2n = α2n + β2n

for n ≥ 1, where α = 1+
√
5

2 and β = 1−
√
5

2 . Obviously, we can obtain α + β =

1, α− β =
√
5 and αβ = −1.

x2 − 5y2 = (L2n)
2 − 5(F2n)

2

=
(
α2n + β2n

)2 − 5

(
α2n − β2n

α− β

)2

=
(
α2n + β2n

)2 − 5

(
α2n − β2n

√
5

)2

= α4n + 2α2nβ2n + β4n − 5

(
α4n − 2α2nβ2n + β4n

5

)
= 4α2nβ2n

= 4(αβ)2n

= 4.

Using relations x = 10u− 3 and y = 2v + 1, we have

un = xn+3
10 = L2n+3

10 and vn = yn−1
2 = F2n−1

2 ,

n ∈ N. One gets the sequence (1, 1), (2110 ,
7
2), (5, 10), (

126
10 , 27), (

325
10 ,

143
2 ), (84610 , 188),

(221, 493), ... which are the positive solutions (un, vn) of the diophantine equa-
tion (3.7). But not all elements of this sequence are positive integers. From [16,
A046193 and A039835 ] the positive integer solutions of the diophantine equation
(3.7) are given by (1, 1), (5, 10), (221, 493), (1513, 3382), (71065, 158905), ...

In order to determine triangular heptagonal numbers in term of Fibonacci and
Lucas numbers, we need the following lemma, (see in [6]).
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Lemma 3.5. (Parity Lemma) Suppose µ is positive integer and |τ | = 1. If µ is
even: Vn (µ, τ) is even if 2 | n . If µ is odd: Vn (µ, τ) ≡ Un (µ, τ) (mod 2) ,

and Vn (µ, τ) and Un (µ, τ) are even if 3 | n .

From Lemma 3.5, the following corollary can be given.

Corollary 3.3. Suppose |τ | = 1. If µ = 1, then

3 |n ⇔ 2 |Fn ⇔ 2 |Ln .

Finally, from Theorem 3.8, Lemma 3.5 and Corollary 3.3 we can give the fol-
lowing corollary which will tell us for which indices of triangular numbers are also
heptagonal.

Corollary 3.4. Let u and v be a positive integer. Then

S7 (u) = S3 (v)

if and only if un and vn are given by

(un, vn) =

(
L2n + 3

10
,
F2n − 1

2

)
where n ≥ 1, L2n ≡ 7 (Mod 10), F2n is odd and 2n ̸≡ 0 (Mod 3).
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