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Abstract

In this writing, we give some theorem in metric space under cyclic

coupled Hardy-Rogers contractive conditions. Also, we o�er a di�erent

perspective on this condition in metric space involving a graph.

1 Introduction and Preliminaries

Banach (1922) [1] established a noted �xed point theorem (viz., Banach Con-
traction Principle (or, in short, BCP) which is the most noteworthy results of
nonlinear analysis and declared the main source of metric �xed point theory.
Later, in 1973, Hardy and Rogers [2] investigated some �xed point theorems
to improve and generalize the BCP. Since then, a great number of researchers
have utilized various types of Hardy-Rogers contractive to attain �xed point
results. Kirk et al. (2003) [3] established the concepts of cyclic maps in a
complete metric space (or, in short, CMS), also introduced some �xed point
theorems in Banach space.

De�nition 1.1. [3] Let N ̸= ∅ ⊆ W , M ̸= ∅ ⊆ W . A map f : W → W is

a cyclic (w.r.t. N and M) if N ⊇ f (M) and M ⊇ f (N).
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For T : W ×W → W , the conception of a coupled �xed point (a, b) ∈
W×W such that T (a, b) = a, T (b, a) = b was initially presented by Bhaskar
and Lakshmikantham [4]. Furthermore, the existence and uniqueness of a
coupled �xed point for such a map provides the mixed monotone property on
a partially ordered metric space were attempted. Hereat, several of papers
in this subject have been dedicated to extensions and generalizations; see,
for instance, [ [5]- [13]] and the references therein.

Lately, Choudhury and Maity [14] de�ned notion of cyclic coupled Kan-
nan type contraction, also gave some �xed point theorem in CMS.

De�nition 1.2. [14] (i) Let W ̸= ∅. An element (a, a) ∈ W ×W is called

to be strong coupled �xed point if a = T (a, a).

(ii) Let N ̸= ∅ ⊆ W and M ̸= ∅ ⊆ W . We say any function T :

W ×W → W such that T (a, b) ∈ M if a ∈ N , b ∈ M and T (a, b) ∈ N if

a ∈ M , b ∈ N a cyclic mapping w.r.t. N , M .

Udo-utun [15] instantly extended the work of [14] for Ciric-Type map-
pings. Thereafter, best proximity consequences for generalized cyclic coupled
maps were �rst deduced by Kadwin and Marudai [16]. Erelong, Ansari et
al. [17] gave improvement and generalization results established in [16] under
C−class functions.

Inspired and motivated these facts, we propose a new concept, cyclic
coupled Hardy-Rogers contractive conditions. We search the existence of
strong coupled �xed point for such a map that enable us to generalize many
well-known deductions in the litterateur. More precisely, our main results
improve and unify the several �xed point results in CMS. Besides, we consider
an example to illustrate our result. After all, we o�er a di�erent perspective
on this condition in metric space involving a graph.

2 Fixed Point Theorem

De�nition 2.1. (Cyclic coupled Hardy-Rogers contractive condition) Let

N ̸= ∅ ⊆ W and M ̸= ∅ ⊆ W . We call a map T : W × W → W a

cyclic coupled Hardy-Rogers contractive condition w.r.t. N and M if T is

cyclic w.r.t. N and M satisfying, for a, a
′ ∈ N , b, b

′ ∈ M , the following
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condition

d
(
T (a, b) , T

(
b
′
, a

′
))

+ d
(
T (b, a) , T

(
a
′
, b

′
))

≤ γ1 [d (T (a, b) , a) + d (T (b, a) , b)]

+γ2

[
d
(
T
(
b
′
, a

′
)
, b

′
)
+ d

(
T
(
a
′
, b

′
)
, a

′
)]

+γ3

[
d
(
T
(
b
′
, a

′
)
, a
)
+ d

(
T
(
a
′
, b

′
)
, b
)]

+γ4

[
d
(
T (a, b) , b

′
)
+ d

(
T (b, a) , a

′
)]

+γ5

[
d
(
a, b

′
)
+ d

(
b, a

′
)]

(2.1)

owns, here i = 1, 5; γi ∈ R+ such that
∑5

i=1 γ < 1.

Theorem 2.1. Let N ̸= ∅, M ̸= ∅ be two closed subsets of CMS (W,d).

Let T : W × W → W a cyclic coupled Hardy-Rogers contractive condition

w.r.t. N and M and N ∩M ̸= ∅. Then T holds a strong coupled �xed point

in N ∩M.

Proof. Let a0 ∈ N , b0 ∈ M . We construct sequences {an}, {bn} as follows

T (bn, an) = an+1, T (an, bn) = bn+1 for ∀n ≥ 0. (2.2)

Let ϑn = d (an−1, bn) + d (bn−1, an). We have to prove that ϑn → 0 as

n → ∞.

By (2.1), (2.2), we hold

d (an, bn+1) + d (bn, an+1)

≤ γ1 [d (T (bn−1, an−1) , bn−1) + d (T (an−1, bn−1) , an−1)]

+γ2 [d (T (an, bn) , an) + d (T (bn, an) , bn)]

+γ3 [d (T (an, bn) , bn−1) + d (T (bn, an) , an−1)]

+γ4 [d (T (bn−1, an−1) , an) + d (T (an−1, bn−1) , bn)]

+γ5 [d (bn−1, an) + d (an−1, bn)]

≤ γ1 [d (an, bn−1) + d (bn, an−1)]

+γ2 [d (bn+1, an) + d (an+1, bn)]

+γ3 [d (bn+1, an) + d (an, bn−1) + d (an+1, bn) + d (bn, an−1)]

+γ5 [d (bn−1, an) + d (an−1, bn)] , (2.3)
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or,

ϑn+1 ≤ γ1ϑn + γ2ϑn+1 + γ3 (ϑn + ϑn+1) + γ5ϑn, (2.4)

equivalently,

ϑn+1 ≤ ξϑn, (2.5)

where, ξ = {γ1 + γ3 + γ5} /1 − {γ2 + γ3}. Repeating the aforementioned

procedure, we enjoy

ϑn+1 ≤ ξϑn ≤ ξ2ϑn−1 ≤ · · · ≤ ξn+1ϑ0, (2.6)

where, by hypothesis about coe�cients γi, i = 1, 5, 0 ≤ ξ < 1; herefrom,

ϑn → 0 as n → ∞. (2.7)

By (2.1) and (2.2), we get

d (an, bn) + d (bn, an)

≤ γ1 [d (T (bn−1, an−1) , bn−1) + d (T (an−1, bn−1) , an−1)]

+γ2 [d (T (an−1, bn−1) , an−1) + d (T (bn−1, an−1) , bn−1)]

+γ3 [d (T (an−1, bn−1) , bn−1) + d (T (bn−1, an−1) , an−1)]

+γ4 [d (T (bn−1, an−1) , an−1) + d (T (an−1, bn−1) , bn−1)]

+γ5 [d (bn−1, an−1) + d (an−1, bn−1)]

≤ γ1 [d (an, bn−1) + d (bn, an−1)] + γ2 [d (bn, an−1) + d (an, bn−1)]

+γ3 [d (bn, an) + d (an, bn−1) + d (an, bn) + d (bn, an−1)]

+γ4 [d (an, bn) + d (bn, an−1) + d (bn, an) + d (an, bn−1)]

+γ5

[
d (bn−1, an) + d (an, bn) + d (bn, an−1)

+d (an−1, bn) + d (bn, an) + d (an, bn−1)

]
, (2.8)

or,

κϑn ≥ d (an, bn) + d (bn, an) , (2.9)

where, κ = {γ1 + γ2 + γ3 + γ4 + 2γ5} / {1− γ3 − γ4 − γ5} < 1.

Next, from (2.7) and (2.9), we have

d (an, an+1) + d (bn, bn+1)

≤ d (an, bn) + d (bn, an) + d (bn, an+1) + d (an, bn+1)

→ 0 as n → ∞. (2.10)
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This testi�es that {an}, {bn} are Cauchy sequences, thus are convergent.

As N and M be two closed subsets, {an} ⊆ N , and {bn} ⊆ M , we have

an → a ∈ N , bn → b ∈ M as n → ∞. (2.11)

By (2.9), d (an, bn) → 0 as n → ∞. Thusly, from (2.11),

a = b. (2.12)

Herefrom a ∈ N ∩M ̸= ∅.
Now, by (2.1), (2.2), we obtain

d (a, T (a, b)) + d (b, T (b, a))

≤ d (a, an+1) + d (an+1, T (a, b)) + d (b, bn+1) + d (bn+1, T (b, a))

≤ d (T (bn, an) , T (a, b)) + d (T (an, bn) , T (b, a))

+d (a, an+1) + d (b, bn+1)

≤ γ1 [d (T (bn, an) , bn) + d (T (an, bn) , an)]

+γ2 [d (T (a, b) , a) + d (T (b, a) , b)]

+γ3 [d (T (a, b) , bn) + d (T (b, a) , an)]

+γ4 [d (T (bn, an) , a) + d (T (an, bn) , b)]

+γ5 [d (bn, a) + d (an, b)]

+d (a, an+1) + d (b, bn+1) . (2.13)

Letting n → ∞, by (2.12), T (a, a) = a; videlicet, we own a strong coupled

�xed point of T.

Corollary 2.1. Let N ̸= ∅, M ̸= ∅ be two closed subsets of CMS (W,d).

Let T : W × W → W a cyclic coupled contractive condition w.r.t. N and

M if T is cyclic w.r.t. N and M satisfying, for a, a
′ ∈ N , b, b

′ ∈ M , the

following condition

d
(
T (a, b) , T

(
b
′
, a

′
))

+ d
(
T (b, a) , T

(
a
′
, b

′
))

≤ γ5

(
d
(
a, b

′
)
+ d

(
b, a

′
))

holds, where γ5 ∈ R+such that γ5 < 1 and N ∩ M ̸= ∅. Then T holds a

strong coupled �xed point in N ∩M.
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Proof. To verify the above corollary it su�ces to get γi = 0, i = 1, 4 in

Theorem 2.1.

Remark 2.1. (i) In Berinde's coupled �xed point consequences [18] for

mixed monotone mapping on partially ordered metric spaces, it is assumed

that T is a cyclic coupled contractive condition w.r.t. N and M and N∩M ̸=
∅.

(ii) The previous corollary further can be used to generalize, enhance and

�ourish the results of [4], [19] and [20] under the same conditions.

(iii) In Theorem 2.1, we can easily see that cyclic coupled Chatterjea

type contraction map and cyclic coupled Kannan type contraction map [14]

is improved and extended.

Next, we furnish an illustrative example of cyclic coupled Hardy-Rogers
contractive condition de�ned on CMS. The following instance is inspired by
[ [14], Example 6].

Example 2.1. Let W = R and the metric d : W ×W → R described by ∀a,
b ∈ W ; d (a, b) = |a− b|. Let M = [0, π] and N = [−π, 0]. N ̸= ∅, M ̸= ∅
thereupon are closed subsets ofW and d (N,M) = 0. De�ne T : W×W → W

by

T (a, b) =


−1

5

∣∣b sin 1
b

∣∣ , if (a, b) ∈ M ×N,

0, if (a, b) ∈ N ×M,

3, otherwise.

Let γi = i/1000 , i = 1, 5.

It is facilely to observe that overall circumstances of Theorem 2.1 are

veri�ed. Using Theorem 2.1, we may infer that T own a strong coupled �xed

point on W . In the circumstances, T holds a �xed point as (0, 0).

3 A di�erent point of view on coupled Hardy-Rogers

contractive condition

Next, we present the existence for coupled �xed point of Hardy-Rogers con-
dition by using Bhaskar&Lakshmikantham's de�nition in CMS via G.

Let ∆ be a diagonal of W ×W , G be a graph with no parallel edges such
that the set V (G) of its vertices overlaps via W , ∆ ⊆ E (G), here E (G)
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is the set of the edges of G. Nominately, G is described by (V (G) , E (G)).
Farther, express by G−1 derived from G by overturning the direction of the
edges in G. Consequently, E

(
G−1

)
= {(a, b) ∈ W ×W : (b, a) ∈ E (G)} .

De�nition 3.1. [21] T : W ×W → W is edge-preserving if
(
a, b

′
)
∈ E (G) ,(

b, a
′
)
∈ E

(
G−1

)
implies

(
T (a, b) , T

(
b
′
, a

′
))

∈ E (G),
(
T (b, a) , T

(
a
′
, b

′
))

∈ E
(
G−1

)
.

Theorem 3.1. Let (W,d) be CMS via G, F : W × W → W be edge-

preserving and assume that the following features belong:

1. there exists a0, b0 ∈ W such that (a0, T (a0, b0)) ∈ E (G) and

(b0, T (b0, a0)) ∈ E
(
G−1

)
;

2. W holds the below feature:

(i) if any sequence {an} ⊆ W such that for ∀n ∈ N ; an → a, (an, an+1) ∈
E (G), then ∀n ∈ N ; (an, a) ∈ E (G) ,

(ii) if any sequence {bn} ⊆ W such that ∀n ∈ N ; bn → b, (bn, bn+1) ∈
E
(
G−1

)
, then ∀n ∈ N ; (bn, b) ∈ E

(
G−1

)
;

3. there exists γi, i = 1, 5 with
∑5

i=1 γi < 1 such that

d
(
T (a, b) , T

(
b
′
, a

′
))

+ d
(
T (b, a) , T

(
a
′
, b

′
))

≤ γ1 [d (T (a, b) , a) + d (T (b, a) , b)]

+γ2

[
d
(
T
(
b
′
, a

′
)
, b

′
)
+ d

(
T
(
a
′
, b

′
)
, a

′
)]

+γ3

[
d
(
T
(
b
′
, a

′
)
, a
)
+ d

(
T
(
a
′
, b

′
)
, b
)]

+γ4

[
d
(
T (a, b) , b

′
)
+ d

(
T (b, a) , a

′
)]

+γ5

[
d
(
a, b

′
)
+ d

(
b, a

′
)]

for all a
′
, b

′
, a, b ∈ W with

(
a, b

′
)
∈ E (G),

(
b, a

′
)
∈ E

(
G−1

)
.

Then there exist a, b ∈ W such that a = T (a, b), b = T (b, a) .

Proof. Let K = W ×W . It is facilely to infer that the map υ : K ×K →
[0,∞) identi�ed by

υ
(
(a, b) ,

(
b
′
, a

′
))

= d
(
a, b

′
)
+ d

(
b, a

′
)
, for all (a, b) ,

(
b
′
, a

′
)
∈ K,
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is a complete metric on K. Next, determine the map F : K → K by

F (a, b) = (T (a, b) , T (b, a)) , for all (a, b) ∈ K.

Let GK be a directed graph given by GK = (V (GK) , E (GK)), hereby

V (GK) = K and

E (GK) =
{(

(a, b) ,
(
b
′
, a

′
))

:
(
a, b

′
)
∈ E (G) and

(
b, a

′
)
∈ E

(
G−1

)}
.

Let (a, b) ,
(
b
′
, a

′
)
∈ K such that

(
(a, b) ,

(
b
′
, a

′
))

∈ E (GK). Then,
(
a, b

′
)
∈

E (G) and
(
b, a

′
)

∈ E
(
G−1

)
. Because T is edge-preserving, we enjoy(

T (a, b) , T
(
b
′
, a

′
))

∈ E (G), (T (b, a) , T
(
a
′
, b

′
)
∈ E

(
G−1

)
. Accordingly,(

(T (a, b) , T (b, a)) ,
(
T
(
b
′
, a

′
)
, T

(
a
′
, b

′
)))

∈ E (GK). Thusly (F (a, b) ,(
F
(
b
′
, a

′
))

∈ E GK). Due to (1), we hold ((a0, b0) , (T (a0, b0) , T (b0, a0))) ∈
E (GK). Thereby ((a0, b0) , F (a0, b0)) ∈ E (GK). Now, by hypothesis (3),

we get for all α = (a, b) and β =
(
b
′
, a

′
)
,υ (F (α) , F (β)) ≤ γ1υ (F (α) , α)+

γ2υ (F (β) , β) + γ3υ (F (β) , α) + γ4υ (F (α) , β) + γ5υ (α, β) ,for ∀
(
a, b

′
)
∈

E (G),
(
b, a

′
)
∈ E

(
G−1

)
. Ultimately, by any sequence (an, bn) in (K, υ),

here if (an, bn)n∈N → (a, b), ((an, bn) , (an+1, bn+1))n∈N ∈ E (GK), then

an → a, bn → b, (an, an+1) ∈ E (G), (bn, bn+1) ∈ E
(
G−1

)
. From (2),

(an, a) ∈ E (G), (bn, b) ∈ E
(
G−1

)
, ((an, bn) , (a, b)) ∈ E (GK) for ∀n ∈ N .

Herewith, we can see that all states of Theorem 3.1.

Corollary 3.1. [ [22], Theorem 4.3] Let (W,d) be CMS via G, and let

F : W ×W → W be edge-preserving and assume that the following features

belong:

1. there exists a0, b0 ∈ W such that (a0, T (a0, b0)) ∈ E (G) and

(b0, T (b0, a0)) ∈ E
(
G−1

)
;

2. W holds the below features:

(i) if any sequence {an} ⊆ W such that for ∀n ∈ N ; an → a, (an, an+1) ∈
E (G), then ∀n ∈ N ; (an, a) ∈ E (G) ,

(ii) if any sequence {bn} ⊆ W such that for ∀n ∈ N ; bn → b, (bn, bn+1) ∈
E
(
G−1

)
, then ∀n ∈ N ; (bn, b) ∈ E

(
G−1

)
,
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3. there exists γ3, γ4 and γ5 with γ3 + γ4 + γ5 < 1 such that

d
(
T (a, b) , T

(
b
′
, a

′
))

+ d
(
T (b, a) , T

(
a
′
, b

′
))

≤ γ3

[
d
(
T
(
b
′
, a

′
)
, a
)
+ d

(
T
(
a
′
, b

′
)
, b
)]

+ γ4

[
d
(
T (a, b) , b

′
)
+ d

(
T (b, a) , a

′
)]

+ γ5

[
d
(
a, b

′
)
+ d

(
b, a

′
)]

for ∀a, b, a′
, b

′ ∈ W with
(
a, b

′
)
∈ E (G),

(
b, a

′
)
∈ E

(
G−1

)
.

Then there exist a, b ∈ W such that T (a, b) = a, T (b, a) = b.

Corollary 3.2. Let (W,d) be CMS via G, and let F : W × W → W be

edge-preserving and assume that the below features belong:

1. there exists a0, b0 ∈ W such that (a0, T (a0, b0)) ∈ E (G) and

(b0, T (b0, a0)) ∈ E
(
G−1

)
;

2. W holds the below features:

(i) if any sequence {an} ⊆ W such that for ∀n ∈ N ; an → a and

(an, an+1) ∈ E (G), then ∀n ∈ N ; (an, a) ∈ E (G),

(ii) if any sequence {bn} ⊆ W such that for ∀n ∈ N ; bn → b and

(bn, bn+1) ∈ E
(
G−1

)
, then ∀n ∈ N ; (bn, b) ∈ E

(
G−1

)
,

3. there exists 0 ≤ γ5 < 1 such that

d
(
T (a, b) , T

(
b
′
, a

′
))

+d
(
T (b, a) , T

(
a
′
, b

′
))

≤ γ5

[
d
(
ra, b

′
)
+ d

(
b, a

′
)]

for all a, b, a
′
, b

′ ∈ W with
(
a, b

′
)
∈ E (G),

(
b, a

′
)
∈ E

(
G−1

)
.

Then there exist a, b ∈ W such that T (a, b) = a, T (b, a) = b.

Conclusion 3.1. In this study advance, enrich and generalize some cou-

pled �xed point consequences presented by Berinde (2011), Alaeidizaji and

Parvaneh (2012), Radenovi¢ (2013), Choudhury and Maity (2014) and Kla-

narong and Suantai (2015). Withinside the future extent of the opinion,
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reader can demostrate some existence and uniqueness consequences for cou-

pled coincidence point and common �xed point of the condition (2.1) endowed

with a graph.
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