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Abstract

In this paper, a new class of almost continuity called almost § gp-continuity
is presented. Characterizations and properties of almost § gp-continuous
functions are discussed.

1 Introduction

The notion of continuity on topological spaces,as significant and fundamental sub-
ject in the study of topology, has been researched by many mathematicians. Several
investigations related to almost continuity which is a generalization of continuity
have been published.The study of almost continuity was initiated by Singal and
Singal [29] in 1968. almost pre-continuous functions were introduced and inves-
tigated by Nasef and Noiri [22]. In this paper, we define and study the notion
of almost dgp-continuous functions which is stronger than the notion of almost
gpr-continuous functions [4]. Also,we obtain various characterizations of almost
dgp-continuous functions and investigate some of their fundamental properties.

Throughout this paper, (X, 7), (Y, o) and (Z,n) (or simply X,Y and Z ) rep-
resent topological spaces on which no separation axioms are assumed unless ex-
plicitly stated and f : (X,7) — (Y,0) or simply f : X — Y denotes a function
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f of a topological space X into a topological space Y. Let M C X, then cI(M) =
N{F : M C F and F° € 7} is the closure of M. Also, [(M) =U{O: 0 C M
and O € 7} is the interior of M.

The class of dgp-open (resp. dgp-closed, open, closed, regular open, regular
closed, d-preopen, §-semiopen, ex-open, preopen, semiopen and S-open) sets of
(X,7) containing a point p€ X is denoted by §GPO(X,p)(resp. §GPC(X,p), O(X,p),
C(X,p), RO(X,p), RC(X,p), SPO(X,p), 6SO(X,p), exO(X,p), PO(X,p), SO(X,p)and
BOX.p)).

2 Preliminaries

Definition 2.1. A ser M C X is called pre-closed [21] (resp. regular-closed [31],
semi-closed [19], B-closed [1]) if cl(int(M)) C M (resp. M = cl(int(M)), int(cl(M))
C M and int(cl(int(M)) C M).

Definition 2.2. A set M C X is called §-closed [35] if M = cls(M) where cls(M) =
{peX:in(cN)"NM+# ¢, NETandp €N }.

Definition 2.3. A set M C X is called §-preclosed [26] (resp. e*-closed [13], J-
semiclosed [25] and a-closed [14)) if cl(ints(M)) C M (resp. int(cl(ints(M)) C M,
int(cls(M)) C M and cl(int(cls(M))) C M).

Definition 2.4. A set M C X is called:

(i)dgp-closed [T)(resp. gpr-closed [17] and gp-closed [20)) if pcl(M) C G whenever
M C G and G is d-open(resp. regular open and open) in X,

(ii) gds-closed [5] if scl(M) C G whenever M C G and G is §-open in X.

The complements of the above mentioned closed sets are their respective
open sets .

Definition 2.5. A function f : X —Yis called:

(i) R-map [9](resp. §-continuous [23], almost continuous [29], almost pre-continuous
[22], almost gp-continuous, almost gpr-continuous [4] and almost gds-continuous
[6]) if the inverse image of every regular open set G of Y is regular open (resp.
d-open, open, pre-open, gp-open, gpr-open and gos-open) in X,

(ii)dgp-continuous [32] if the inverse image of every open set G of Y is dgp-open in
X,
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(iii) almost contra continuous [3|(resp. almost contra super-continuous [11] and
contr R-map [10)) if the inverse image of every regular closed set G of Y is open(resp.
0-open and regular open) in X,

(iv)almost perfectly-continuous [30)) if the inverse image of every regular closed
set G of Y is clopen in X,

(v)almost contra dgp-continuous [34](resp. contra dgp-continuous [33] and dgp-
irresolute [32]) if the inverse image of every regular open(resp. open and dgp-
closed ) set G of Y is dgp-closed in X.

Definition 2.6. A space X is said to be:

(i)preregularT 1 -space [16] if GPRO(X)=PO(X),

(ii) Tsgp-space [7) if SGPO(X)=0(X),

(iii)ogpT1-space [7] if S\GPO(X)=PO(X),

(iv) extrefnely disconnected [16] if the closure of every open subset of X is open,
(v) submaximal [27] if every pre-open set is open,

(vi)strongly irresolvable [15] if every open subspace of X is irresolvable,
(vii)nearly compact 28] if every regular open cover of X has a finite subcover,
(viii) r-T1-space [12] if for each pair of distinct points x and y of X, there exist
regular open sets U and V such that x € U,y ¢Uandx ¢ V,y € V,

(ix) r-To-space [12] if for each pair of distinct points x andy of X, there exist regular
open sets U and V such that x € U, y € V and UNV =¢,

(x) dgp-Ti-space [34] if for any pair of distinct points p and g, there exist G,H
€0GPO(X) such that p € G, q¢ G and q € H, p¢H,

(xi)dgp-Hausdorff space [33] if for each pair of distinct points x and y of X, there
exist G,H €6GPO(X) such that x € G, y € H and GNH =¢,

(xii) dgp-additive [33] if SGPC(X) is closed under arbitrary intersections.

Definition 2.7. [8] A subset M of a space X is said to be N-closed relative to X if
every cover of M by regular open sets of X has a finite subcover.

Theorem 2.1. [33] (i)If A and B are dgp-open subsets of a submaximal space X,
then ANB is dgp-open in X.

(ii) Let X be a dgp-additive space.Then ACX is dgp-closed if and only if dgp-
cl(A)=A.

Definition 2.8. [18] A space X is called locally indiscrete if O(X)=RO(X).
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Lemma 2.1. [24, 33| Let (X,7) be a space and let A be a subset of X. The following
statements are true:

(i) A € PO(X) if and only if scl(A) = int(cl(A)).

(ii) p € dgpcl(A) if and only if U N A # ¢ for every dgp-open set U containing p.

3 Almost /gp-Continuous Functions.

Definition 3.1. A function f: X — Y is called almost dgp-continuous if f~(N) €
0GPC(X) for each regular closed set N of Y.

Theorem 3.1. A function f: X — Y is almost dgp-continuous if and only if the
inverse image of every regular open set of Y is dgp-open in X.

Remark 3.1. From Definitions 2.5 and 3.1,we have the following diagram for a
function f: X —Y :
l1—2—3—4—5—76—77

T
8

Notations:
1- R-map; 2-9-continuity; 3-almost continuity; 4-almost pre continuity;
5- almost gp-continuity; 6-almost dgp-continuity; 7-almost gpr-continuity;
8-6gp-continuous.
None of these implications is reversible.

Example 3.1. Let X = {p,q.5s}=Y, 7 ={X ¢, {p}, {4}, {p.q}, {p.qr}}and o =
{¥. &, {p}. {a}. {p.a}. {p.r}. {p.@.r}}. Define f: (X,7) — (Yo) by fip) = fir) =
q, flg) = p and f(s) = r. Clearly fis almost dgp-continuous but for {q}€ RO(Y),
F*{q}) = {p.r} ¢ GPO(X). Therefore f is not almost gp-continuous. Define g:
(X,7) — (Y,0) by g(p) = p, g(q) = s, g(r) = rand g(s) = q.Then g is almost dgp-
continuous but for {p} € O(Y), g~ ({p}) = {p} ¢ SGPO(X).Therefore g is not
dgp-continuous. Define h: (X,7) — (X,0) by h(p) = h(q) = q, h(r) = p and h(s)
= r.Then h is almost gpr-continuous but for {q} € RO(Y), h"*({q}) = {p.q} ¢
dGPO(Y). Therefore h is not almost dgp-continuous

Theorem 3.2. If f : X — Y is almost dgp-continuous and Y is locally indiscrete
space,then f is §gp-continuous.



A new class of continuous functions via §gp-open sets - - - 107

Proof. Let N be an open set in Y,then N is regular-open in Y. Since f is almost
dgp-continuous, then f~'(N) is dgp-open in X. Hence f is dgp-continuous O

Theorem 3.3. Let X be a locally indiscrete space,then the following properties are
equivalent:

(1) f:X—Y is almost gpr-continuous;

(ii) f:X—Y is almost dgp-continuous;

(ii1) f:X—Y is almost gp-continuous.

Proof. Follows from the Theorem 3.7 of [34] O

Theorem 3.4. (i) If f:X—Y is almost gds-continuous with X as extremely discon-
nected space,then it is almost dgp-continuous.

(ii) If f:X—Y is almost dgp-continuous with X as strongly irresolvable space.Then
it is almost gés-continuous.

Proof. Follows from the Theorem 3.9 of [34]
As a consequence of Lemma 3.10 of [32],we have the following Theorem [

Theorem 3.5. The following statements are equivalent:
i) f: X — Y is almost perfectly continuous;
i1) f: X — Y is almost contra continuous and almost pre-continuous;

iit) f- X — Y is almost contra continuous and almost gp-continuous;

(
(
(
(iv) f: X — Y is almost contra super-continuous and almost dgp-continuous;
(v) f: X — Y is contra R-map and almost gpr-continuous;

(vi) f: X — Yis contra R-map and almost pre-continuous;

(vii) f: X — Y is almost contra super-continuous and almost pre-continuous.
Theorem 3.6. Let X be a (5ng% -space. Then the following are equivalent:

(i) f: X — Y is almost pre-continuous;

(ii) fr X — Y is almost gp-continuous;
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(i) f: X — Y is almost 6gp-continuous.

Theorem 3.7. Let X be a preregularT1-space. Then the following statements are
2

equivalent:
i) f: X — Y is almost pre-continuous;
i1) f: X — Y is almost gp-continuous;

iit) f- X — Y is almost dgp-continuous;

(
(
(
(iv) f: X — Y is almost gpr-continuous.

Theorem 3.8. Let X be a Ts,p,-space. Then the following are equivalent:

i) f- X — Y is almost continuous;

i1) f: X — Y is almost pre-continuous;

(
(
(i) f: X — Y is almost gp-continuous;
(iv) f: X — Y is almost dgp-continuous;
(

v) f: X — Yis almost gpr-continuous.

Theorem 3.9. The following are equivalent:

(i) f: X — Y is almost dgp-continuous and X is dgp-additive;

(ii) for each p € X and each open set N containing f(p), there exists §gp-open set
M containing p such that f{M) C int(cl(N)).

Proof. Obvious [

Theorem 3.10. The following statements are equivalent:

(i) f: X — Y is almost dgp-continuous and X is dgp-additive;

(ii) For each p € X and each NeO(Y,f(p)), there exists M € SGPO(X,p) such that
fiM) C scl(N),

(iii) For each p € X and each HERO(Y,f(p)),there exists G € §GPO(X,p) such that
AG) C H;

(iv) For each p € X and each VESO(Y f(p)),there exists U € 0GPO(X,p) such that
fU)cV;

(v) For each p € X and each VEOC(Yf(p)) there exists U € 0GPC(X,p) such that
AU)C V.
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Proof. (i)—(ii): Let p € X and N be an open set of Y containing f(p). By (i) and
Theorem 3.9, there exists M € dGPO(X,p) such that f(M) C int(cl(N)). Since M is
preopen,then by Lemma 2.1(1), f(M) C scl(N).

(i1)—>(iii): Let p € X and NeRO(Y.f(p)). Then N €O(Y,f(p)). By (ii), there exists
M € 6GPO(X,p) such that f(M) C scl(N). Since H is preopen, then by Lemma
2.13), f{M) C int(cl(N)) = N.

(iii))—(iv): Let p € X and NedO(Y.,f(p)),then there exists M € O(X,f(p)) such
that M C int(cl(M)) C N. Since int(cl(M))€RO(Y,f(p)), by (iii), there exists U €
dGPO(X,p) such that f(U) C int(cl(M)) C N.

(iv)—(1): Let p € X and NeO(Y,f(p)). Then int(cI(N))e5O(Y,f(p)).

By (iv), there exists M € 6GPO(X,p) such that f(M) C int(cl(N)).

Hence f is almost dgp-continuous.

(iv)<>(v): Obvious. L]

Theorem 3.11. Let X be a dgp-additive space.Then M C X is dgp-closed(resp.
dgp-open) if and only if dgp-cl(M)=M (resp. dgp-int(M)=M).

Theorem 3.12. The following statements are equivalent:

(i) f: X — Y is almost dgp-continuous and X is gp-additive;
(i) fldgp-cl(M)) C cls(fiM)) for each M C X;

(iii) dgp-cl(f~(N)) C f~Y(cl5(N)) for each NCY;

(iv) f~Y(G)eSGPC(X) for each GESC(Y);

(v) f~Y(H)edGPO(X) for each HESO(Y).

Proof. (i) — (ii) Suppose that N € 6C(Y) such that f(M) C N. Observe
that N = cls(N) = ({F : N C Fand F € RO(Y)} and so f~1(N) =
({fYF): N C Fand F € RC(Y)}. By (i) and Definition 2.6(xii), we have
fYN) € §GPC(X) and M C f~'(N). Hence dgp-clM) C f~(N), and it
follows that f(dgp-cl(M)) C N. Since this is true for any d-closed set N containing
f(M), we have f(dgp-cl(M)) C cls(f(M)).

(ii)—>(iii) Let D C Y, then f~%(D) C X. By (ii),

f(dgp-cl(f~1(D))) C cls(f(f (D)) C dgp-cl(D). So that dgp-cl(f ~1(D)) C f~(Cls(D)).
(iii)—=(iv) Let G € 6C(Y).Then by (iii), dgp-cl(f~(G)) C f~(cls(G)=f"1(G).
In consequence, dgp-cl(f ~1(G))=f~1(G) and hence by Theorem 3.11, f -1G) e
0GPC(X).

(iv)—(v):Clear.
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(v)—(i): Let N € RO(Y).Then N € §O(Y).By (v),f ~1(N) € 6GPO(X). Hence by
Theorem 3.1, f is almost §gp-continuous O

Theorem 3.13. The following statements are equivalent:

(i) f: X — Y is almost dgp-continuous and X is dgp-additive;
(ii) For every NeO(Y), f ~Y(int(cl(N)eSGPO(X);

(iii) For every MEC(Y), f ~Y(cl(int(M)E6GPC(X);

(iv) For every NeBO(Y),6gpcl(f~Y(N)) C f~Y(cl(N));

(v) For every MEBC(Y), f~Y(int(M)) C Sgpint(f~1(M));

(vi) For every MESC(Y), f ~(int(M)) C Sgpint(f~(M));
(vii) For every NESO(Y),dgpcl(f~Y(N)) C f=(cI(N));

(viii) For every MEPO(Y), f~Y(M) C dgpint(f~ (int(cl(M)).

Proof. (i)«—(ii): Let N € O(Y). Since int(cl(N)) € RO(Y) Then by (i),
F~(int(cl(N)) € §GPO(X). The converse is similar.

(i)—>(iii)It is similar to (i)«—>(ii).

(i)— (iv): Let N € BO(Y),then cI(N) € RC(Y) so by(i),f ' (cl(N)) €6GPC(X).
Since f~1(N) C f~!(cl(N)) which implies dgpcl(f ~1(N)) C f~(cl(N)).

(iv)— (v) and (vi)— (vii):Obvious

(v)— (vi):It follows from the fact that SC(Y) C SC(Y)

(vii)—> (i):1t follows from the fact that RC(Y) C SO(Y).

(1)« (viii): Let N €PO(Y). Since int(cl(N)) € RO(Y),then by (i),
F~Nint(cl(N))) € 6GPO(X) and hence

F~IN) C f~(int(cl(N))) = dgpint(f~*(int(cl(N)))). Conversely,let N € RO(Y).
Since N € PO(Y), f~1(N) C dgp-int(f~!(int(CI(N)))) =6gpint(f ~1(N)),in conse-
quence, dgpint(f~(N))=f"1(N) and by Theorem 3.11, f~1(N) € §GPO(X). O

Theorem 3.14. The following are equivalent:

(i) f: X — Yis almost §gp-continuous and X is dgp-additive;

(ii) For every e*-open set N of Y, f ~(cls(N)) is dgp-closed in X;

(iii) For every §-semiopen subset N of Y, f ~(cls(N)) is dgp-closed set in X;
(iv) For every §-preopen subset N of Y, f ~1(int(cl5(N))) is 6gp-open set in X;
(v) For every open subset N of Y, f~(int(cls(N))) is dgp-open set in X;

(vi) For every closed subset N of Y, f ~Y(cl(ints(N))) is Sgp-closed set in X.

Proof. (i)—(ii):Let N € €*O(Y) Then by Lemma 2.7 of [2], cls(N) € RC(Y).
By (i),f!(cl;(N)) € 6GPC(X).
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(ii)—(iii):Obvious since dSO(Y) C e*O(Y).

(iii)—(@iv):Let N €6PO(Y),then ints(Y\N) € §SO(Y). By (iii),
f~H(cls(ints(Y\N)) € §GPC(X) which implies f~!(int(cl;(N)) € §GPO(X).
(iv)—(v):Obvious since O(Y) C JPO(Y).

(v)—(vi):Clear

(vi)—(i):Let NeRO(Y).Then N=int(cl5(N)) and hence (Y\N) € C(X). By (vi),
FTHYAN) = X\ f~H(int(cls(N)) = £~ (cl(ints(Y\N)) € 6GPC(X).

Thus f~1(N) € §GPO(X). O

Theorem 3.15. The following are equivalent for a function f: X — Y:

(i) fis almost dgp-continuous and X is dgp-additive;

(ii) For every e*-open subset G of Y, f ~Y(a-cl(G)) is §gp-closed set in X;

(iii) For every §-semiopen subset G of Y, f ~1(8-pcl(G)) is dgp-closed set in X;
(iv) For every §-preopen subset G of Y, f ~1(6-scl(G))) is dgp-open set in X.

Proof. Follows from the Lemma 3.1 of [2] O

Theorem 3.16. If f:X — Y is an almost §gp-continuous injective function and Y is
r-T4, then X is 6gp-T1.

Proof. Let (Y,0) be r-Ty and p, q € X with p # q. Then there exist regular open
subsets G, H in Y such that f(p) € G, f(q) ¢ G, f(p) ¢ H and f(q) € H. Since f is
almost dgp-continuous, f~1(G) and f~'(H) € §GPO(X) such that p € f~1(G), q
¢ f~YG),p¢ f~'(H)and q € f~'(H). Hence X is dgp-T; . O

Theorem 3.17. Iff:X — Y is an almost dgp-continuous injective function and Y is
r-To, then X is 6gp-To.

Proof. Similar to the proof of Theorem 3.16 0

Theorem 3.18. Iff,¢:X — Y are almost dgp-continuous with X as submaximal and
dgp-additive and Y is Hausdorff, then the set {x € X : f{x) = g(x)} is dgp-closed in
X.

Proof. LetE = {x € X : f(x) = g(x)} and x ¢ (X\E). Then f(x)# g(x). Since Y is
Hausdorff, there exist open sets V and W of Y such that f(x) € V, g(x)€ Wand VN
W = ¢, hence int(cl(V)) N int(cl(W)) = ¢. Since f and g are almost jgp-continuous,
there exist G,H € §GPO(X,x)) such that f(G) C int(cl(V )) and g(H) C int(cl(W)).
Now, put U = G N H, then U € §GPO(X,x)) and f(U) N g(U) C int(cl(V)) N
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int(cl(W)) =¢. Therefore, we obtain U N E = ¢ and hence x ¢ dgpcl(E) then
E = dgpcl(E). Since X is dgp-additive, E is dgp-closed in X. O

Definition 3.2. A space X is called §gp-compact if every cover of X by dgp-open
sets has a finite subcover.

Definition 3.3. A subset M of a space X is said to be dgp-compact relative to X if
every cover of M by dgp-open sets of X has a finite subcover.

Theorem 3.19. If f:X — Y is almost dgp-continuous and K is dgp-compact relative
to X, then f{K) is N-closed relative to Y.

Proof. Let { Ay: o € Q } be any cover of f(K) by regular open sets of Y . Then
{f71(An):€0} is a cover of K by dgp-open sets of X. Hence there exists a finite
subset €2, of 2 such that K C U{f~1(A4,):a€€, }. Therefore, we obtain f(K) C
{A,: a€Q,}. This shows that f(K) is N-closed relative to Y . d

Corollary 3.1. If /X — Y is an almost dgp-continuous surjection and X is 0gp-
compact and dgp-additive, then Y is nearly compact.

Lemma 3.1. Let X be dgp-compact. If ACX is dgp-closed, then A is dgp-compact
relative to X.

Proof. Let{ B,: a € Q } be a cover of N by dgp-open sets of X. Note that (X-N)
is dgp-open and that the set (X-N) U { B,: a € Q } is a cover of X by dgp-open
sets. Since X is dgp-compact, there exists a finite subset §2, of €2 such that the set
(X-N) U { By: a € Q, } is a cover of X by dgp-open sets in X.

Hence { B,: a € Q, } is a finite cover of N by dgp-open sets in X. O

Theorem 3.20. If the graph function g : X — X XY of f : X — Y, defined
by g(z) = (z, f(z)) for each x € X is almost dgp-continuous Then f is almost
dgp-continuous.

Proof. Let N € RO(Y), then X x V € RO(X x Y). As g is almost dgp-
continuous, f~1(N) = g7 (X x N) € §GPO(X). O

Theorem 3.21. If the graph function g : X — X XY of f : X — Y, defined by
g(z) = (z, f(x)) for each v € X. If X is a submaximal space and dgp-additive,
then g is almost dgp-continuous if and only if f is almost dgp-continuous.
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Proof. We only prove the sufficiency. Let x € X and W €RO(XxY). Then there
exist regular open sets Uy and V in X and Y, respectively such that U; xV C W. If
f is almost dgp-continuous, then there exists a dgp-open set Us in X such that x €
U; and f(U3)CV . Put U = (UsNU,).Then U is dgp-open and g(U) C Uy xV C W.
Thus g is almost dgp-continuous. O

Recall that for a function f:X — Y, the subset G y={(x,f(x)):x €X} C XxY
is said to be graph of f.

Definition 3.4. A graph G of a function f:X — Y is said to be strongly dgp-closed
if for each (p,q) & Gy, there exist UcSGPO(X,p) and VERO(Y,q) such that
(UxV)N Gy = ¢.

Lemma 3.2. For a graph Gy of a function f : X — Y, the following properties
are equivalent:

()G is strongly dgp-closed in X x'Y;

(ii)For each (p,q) & Gy, there exist U € dGPO(X,p) and V € RO(Y,q) such
that fU)NV = ¢.

Theorem 3.22. Let f:X — Y have a strongly dgp-closed graph Gy. If fis injective,
then X is 0gp-T1.

Proof. Let x1,x0€X with x1#x2.Then f(x1)#f(x2) as f is injective so that (x1,f(x2))
¢G 7-Thus there exist Ue6GPO(X,x1) and VERO(Y,f(x2)) such that f(U)NV=¢.
Then f(x2)¢f(U) implies x2¢U and it follows that X is dgp-Tj. O

Theorem 3.23. (i)If f: X — Y is almost dgp-continuous and g: Y — Z is R-map,
then (gof):X — Z is almost dgp-continuous.

(i)If f- X — Y is dgp-continuous and g: Y — Z is almost continuous, then (gof):X
— Z is almost §gp-continuous.

(iii) If f- X — Y is dgp-irresolute and g: Y — Z is almost dgp-continuous,then
(gof):X — Z is almost dgp-continuous.

Proof. (i) Let N € RO(Z). Then g~ '(N) € RO(Y) since g is R-map. The almost
Sgp-continuity of fimplies f~1[g~1(N))] = (g o f)"1((N)) € 6GPO(X).

Hence gof is almost dgp-continuous.

The proofs of (ii) and (iii) are similar to (i). L]

Definition 3.5. [33] A function f: X — Y is called pre dgp-closed if flU)edGPC(Y)
for every UcdGPC(X).
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Theorem 3.24. Iff: X — Y is a pre dgp-open surjection and g:Y — Z is a function
such that gof:X — Z is almost dgp-continuous, then g is almost §gp-continuous.

Proof. Lety € Y and x € X such that f(x) =y. Let G € RO(Z,(gof)(x)). Then there
exists U € §GPO(X,x) such that such that g(f(U))C G. Since f is pre dgp-open in
Y, we have that g is almost dgp-continuous at y.

Let A be a subset of X. Then A is said to be H-closed [35] relative to X if
for every cover { B;: i € 2 } of A by open sets of X, there exists a finite subset €2,
of Q such that A C U{cl(B;) :1 € Q, }. O

Definition 3.6. A function f: X — Y is said to be 6 gp*- continuous if for each p €
X and each NeO(Y f(p)), there exists M € §GPO(X,p) such that f{M) C cl(N).

Theorem 3.25. If f: X — Y is dgp*-continuous and K is dgp-compact relative to
X, then f{K) is H-closed relative to Y.

Proof. Similar to the proof of Theorem 3.19 O

Theorem 3.26. If for each pair of distinct points p and q in a space X, there exists
a function f of X into a Hausdorf{f space Y such that

(i) fip) # flq),

(ii) f is dgp*-continuous at p and

(iii) almost dgp-continuous at q,then X is dgp-Hausdorff.

Proof. Since Y is Hausdorff, there exist open sets W; and W2 of Y such that
f(p)e W1, f(q) € W2 and W1NWy = ¢, hence cl(W1) N int(cl(W2)) = ¢. Since
f is dgp*-continuous at p, there exists Uj€ dGPO(X,p) such that f(U;) C cl(W1).
Since f is almost dgp-continuous at q, there exists Uy €0GPO(X,q) such that f(Us)
C int(cl(W2)). Therefore, we obtain U;N Us = ¢. This shows that X is dgp-
Hausdorff. O
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