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Abstract

In this paper, a new class of almost continuity called almost δ gp-continuity
is presented. Characterizations and properties of almost δ gp-continuous
functions are discussed.

1 Introduction

The notion of continuity on topological spaces,as significant and fundamental sub-
ject in the study of topology, has been researched by many mathematicians. Several
investigations related to almost continuity which is a generalization of continuity
have been published.The study of almost continuity was initiated by Singal and
Singal [29] in 1968. almost pre-continuous functions were introduced and inves-
tigated by Nasef and Noiri [22]. In this paper, we define and study the notion
of almost δgp-continuous functions which is stronger than the notion of almost
gpr-continuous functions [4]. Also,we obtain various characterizations of almost
δgp-continuous functions and investigate some of their fundamental properties.

Throughout this paper, (X, τ), (Y, σ) and (Z, η) (or simply X,Y and Z ) rep-
resent topological spaces on which no separation axioms are assumed unless ex-
plicitly stated and f : (X, τ) → (Y, σ) or simply f : X → Y denotes a function
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f of a topological space X into a topological space Y. Let M ⊆ X , then cl(M) =
∩{F : M ⊆ F and F c ∈ τ} is the closure of M. Also,

∫
(M) = ∪{O : O ⊆ M

and O ∈ τ} is the interior of M.

The class of δgp-open (resp. δgp-closed, open, closed, regular open, regular
closed, δ-preopen, δ-semiopen, e∗-open, preopen, semiopen and β-open) sets of
(X,τ ) containing a point p∈X is denoted by δGPO(X,p)(resp. δGPC(X,p), O(X,p),
C(X,p), RO(X,p), RC(X,p), δPO(X,p), δSO(X,p), e∗O(X,p), PO(X,p), SO(X,p)and
βO(X,p)).

2 Preliminaries

Definition 2.1. A set M ⊆ X is called pre-closed [21] (resp. regular-closed [31],
semi-closed [19], β-closed [1]) if cl(int(M)) ⊆ M (resp. M = cl(int(M)), int(cl(M))
⊆ M and int(cl(int(M)) ⊆ M).

Definition 2.2. A set M ⊆ X is called δ-closed [35] if M = clδ(M) where clδ(M) =
{ p ∈ X :int(cl(N)) ∩ M 6= φ, N ∈ τ and p ∈ N }.

Definition 2.3. A set M ⊆ X is called δ-preclosed [26] (resp. e∗-closed [13], δ-
semiclosed [25] and a-closed [14]) if cl(intδ(M)) ⊆ M (resp. int(cl(intδ(M)) ⊆ M,
int(clδ(M)) ⊆ M and cl(int(clδ(M))) ⊆ M).

Definition 2.4. A set M ⊆ X is called:
(i)δgp-closed [7](resp. gpr-closed [17] and gp-closed [20]) if pcl(M)⊆ G whenever
M ⊆ G and G is δ-open(resp. regular open and open) in X,
(ii) gδs-closed [5] if scl(M) ⊆ G whenever M ⊆ G and G is δ-open in X.

The complements of the above mentioned closed sets are their respective
open sets .

Definition 2.5. A function f : X →Y is called:
(i) R-map [9](resp. δ-continuous [23], almost continuous [29], almost pre-continuous
[22], almost gp-continuous, almost gpr-continuous [4] and almost gδs-continuous
[6]) if the inverse image of every regular open set G of Y is regular open (resp.
δ-open, open, pre-open, gp-open, gpr-open and gδs-open) in X,
(ii)δgp-continuous [32] if the inverse image of every open set G of Y is δgp-open in
X,
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(iii) almost contra continuous [3](resp. almost contra super-continuous [11] and
contr R-map [10]) if the inverse image of every regular closed set G of Y is open(resp.
δ-open and regular open) in X,
(iv)almost perfectly-continuous [30]) if the inverse image of every regular closed
set G of Y is clopen in X,
(v)almost contra δgp-continuous [34](resp. contra δgp-continuous [33] and δgp-
irresolute [32]) if the inverse image of every regular open(resp. open and δgp-
closed ) set G of Y is δgp-closed in X.

Definition 2.6. A space X is said to be:
(i)preregularT 1

2
-space [16] if GPRO(X)=PO(X),

(ii) Tδgp-space [7] if δGPO(X)=O(X),
(iii)δgpT 1

2
-space [7] if δGPO(X)=PO(X),

(iv) extremely disconnected [16] if the closure of every open subset of X is open,
(v) submaximal [27] if every pre-open set is open,
(vi)strongly irresolvable [15] if every open subspace of X is irresolvable,
(vii)nearly compact [28] if every regular open cover of X has a finite subcover,
(viii) r-T1-space [12] if for each pair of distinct points x and y of X, there exist
regular open sets U and V such that x ∈ U, y /∈U and x /∈ V, y ∈ V,
(ix) r-T2-space [12] if for each pair of distinct points x and y of X, there exist regular
open sets U and V such that x ∈ U, y ∈ V and U∩V =φ,
(x) δgp-T1-space [34] if for any pair of distinct points p and q, there exist G,H
∈δGPO(X) such that p ∈ G, q/∈ G and q ∈ H, p/∈H,
(xi)δgp-Hausdorff space [33] if for each pair of distinct points x and y of X, there
exist G,H ∈δGPO(X) such that x ∈ G, y ∈ H and G∩H =φ,
(xii) δgp-additive [33] if δGPC(X) is closed under arbitrary intersections.

Definition 2.7. [8] A subset M of a space X is said to be N-closed relative to X if
every cover of M by regular open sets of X has a finite subcover.

Theorem 2.1. [33] (i)If A and B are δgp-open subsets of a submaximal space X,
then A∩B is δgp-open in X.
(ii) Let X be a δgp-additive space.Then A⊆X is δgp-closed if and only if δgp-
cl(A)=A.

Definition 2.8. [18] A space X is called locally indiscrete if O(X)=RO(X).
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Lemma 2.1. [24, 33] Let (X,τ ) be a space and let A be a subset of X. The following
statements are true:
(i) A ∈ PO(X) if and only if scl(A) = int(cl(A)).
(ii) p ∈ δgpcl(A) if and only if U ∩ A 6= φ for every δgp-open set U containing p.

3 Almost δgp-Continuous Functions.

Definition 3.1. A function f: X→ Y is called almost δgp-continuous if f−1(N) ∈
δGPC(X) for each regular closed set N of Y.

Theorem 3.1. A function f: X → Y is almost δgp-continuous if and only if the
inverse image of every regular open set of Y is δgp-open in X.

Remark 3.1. From Definitions 2.5 and 3.1,we have the following diagram for a
function f : X → Y :

1 −→ 2 −→ 3 −→ 4 −→ 5 −→ 6 −→ 7

↑
8

Notations:
1- R-map; 2-δ-continuity; 3-almost continuity; 4-almost pre continuity;
5- almost gp-continuity; 6-almost δgp-continuity; 7-almost gpr-continuity;
8-δgp-continuous.

None of these implications is reversible.

Example 3.1. Let X = {p,q,r,s}=Y, τ = {X, φ, {p}, {q}, {p,q}, {p,q,r}} and σ =
{Y, φ, {p}, {q}, {p,q}, {p,r}, {p,q,r}}. Define f: (X,τ ) → (Y,σ) by f(p) = f(r) =
q , f(q) = p and f(s) = r. Clearly f is almost δgp-continuous but for {q}∈ RO(Y),
f−1({q}) = {p,r} /∈ GPO(X). Therefore f is not almost gp-continuous. Define g:
(X,τ ) → (Y,σ) by g(p) = p, g(q) = s, g(r) = r and g(s) = q.Then g is almost δgp-
continuous but for {p} ∈ O(Y), g−1({p}) = {p} /∈ δGPO(X).Therefore g is not
δgp-continuous. Define h: (X,τ ) → (X,σ) by h(p) = h(q) = q, h(r) = p and h(s)
= r.Then h is almost gpr-continuous but for {q} ∈ RO(Y), h−1({q}) = {p,q} /∈
δGPO(Y). Therefore h is not almost δgp-continuous

Theorem 3.2. If f : X → Y is almost δgp-continuous and Y is locally indiscrete
space,then f is δgp-continuous.
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Proof. Let N be an open set in Y,then N is regular-open in Y. Since f is almost
δgp-continuous, then f−1(N) is δgp-open in X. Hence f is δgp-continuous

Theorem 3.3. Let X be a locally indiscrete space,then the following properties are
equivalent:

(i) f:X→Y is almost gpr-continuous;

(ii) f:X→Y is almost δgp-continuous;

(iii) f:X→Y is almost gp-continuous.

Proof. Follows from the Theorem 3.7 of [34]

Theorem 3.4. (i) If f:X→Y is almost gδs-continuous with X as extremely discon-
nected space,then it is almost δgp-continuous.
(ii) If f:X→Y is almost δgp-continuous with X as strongly irresolvable space.Then
it is almost gδs-continuous.

Proof. Follows from the Theorem 3.9 of [34]

As a consequence of Lemma 3.10 of [32],we have the following Theorem

Theorem 3.5. The following statements are equivalent:

(i) f: X→ Y is almost perfectly continuous;

(ii) f: X→ Y is almost contra continuous and almost pre-continuous;

(iii) f: X→ Y is almost contra continuous and almost gp-continuous;

(iv) f: X→ Y is almost contra super-continuous and almost δgp-continuous;

(v) f: X→ Y is contra R-map and almost gpr-continuous;

(vi) f: X→ Y is contra R-map and almost pre-continuous;

(vii) f: X→ Y is almost contra super-continuous and almost pre-continuous.

Theorem 3.6. Let X be a δgpT 1
2
-space. Then the following are equivalent:

(i) f: X→ Y is almost pre-continuous;

(ii) f: X→ Y is almost gp-continuous;
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(iii) f: X→ Y is almost δgp-continuous.

Theorem 3.7. Let X be a preregularT 1
2
-space. Then the following statements are

equivalent:

(i) f: X→ Y is almost pre-continuous;

(ii) f: X→ Y is almost gp-continuous;

(iii) f: X→ Y is almost δgp-continuous;

(iv) f: X→ Y is almost gpr-continuous.

Theorem 3.8. Let X be a Tδgp-space. Then the following are equivalent:

(i) f: X→ Y is almost continuous;

(ii) f: X→ Y is almost pre-continuous;

(iii) f: X→ Y is almost gp-continuous;

(iv) f: X→ Y is almost δgp-continuous;

(v) f: X→ Y is almost gpr-continuous.

Theorem 3.9. The following are equivalent:
(i) f: X→ Y is almost δgp-continuous and X is δgp-additive;
(ii) for each p ∈ X and each open set N containing f(p), there exists δgp-open set
M containing p such that f(M) ⊂ int(cl(N)).

Proof. Obvious

Theorem 3.10. The following statements are equivalent:
(i) f: X→ Y is almost δgp-continuous and X is δgp-additive;
(ii) For each p ∈ X and each N∈O(Y,f(p)), there exists M ∈ δGPO(X,p) such that
f(M) ⊂ scl(N);
(iii) For each p ∈ X and each H∈RO(Y,f(p)),there exists G ∈ δGPO(X,p) such that
f(G) ⊂ H;
(iv) For each p ∈ X and each V∈δO(Y,f(p)),there exists U ∈ δGPO(X,p) such that
f(U) ⊂ V;
(v) For each p ∈ X and each V∈δC(Y,f(p)),there exists U ∈ δGPC(X,p) such that
f(U) ⊂ V.
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Proof. (i)−→(ii): Let p ∈ X and N be an open set of Y containing f(p). By (i) and
Theorem 3.9, there exists M ∈ δGPO(X,p) such that f(M) ⊂ int(cl(N)). Since M is
preopen,then by Lemma 2.1(i), f(M) ⊂ scl(N).
(ii)−→(iii): Let p ∈ X and N∈RO(Y,f(p)). Then N ∈O(Y,f(p)). By (ii), there exists
M ∈ δGPO(X,p) such that f(M) ⊂ scl(N). Since H is preopen, then by Lemma
2.1(i), f(M) ⊂ int(cl(N)) = N.
(iii)−→(iv): Let p ∈ X and N∈δO(Y,f(p)),then there exists M ∈ O(X,f(p)) such
that M ⊂ int(cl(M)) ⊂ N. Since int(cl(M))∈RO(Y,f(p)), by (iii), there exists U ∈
δGPO(X,p) such that f(U) ⊂ int(cl(M)) ⊂ N.
(iv)−→(i): Let p ∈ X and N∈O(Y,f(p)). Then int(cl(N))∈δO(Y,f(p)).
By (iv), there exists M ∈ δGPO(X,p) such that f(M) ⊂ int(cl(N)).
Hence f is almost δgp-continuous.
(iv)↔(v): Obvious.

Theorem 3.11. Let X be a δgp-additive space.Then M ⊆ X is δgp-closed(resp.
δgp-open) if and only if δgp-cl(M)=M (resp. δgp-int(M)=M).

Theorem 3.12. The following statements are equivalent:
(i) f: X→ Y is almost δgp-continuous and X is δgp-additive;
(ii) f(δgp-cl(M)) ⊂ clδ(f(M)) for each M ⊆ X;
(iii) δgp-cl(f−1(N)) ⊂ f−1(clδ(N)) for each N⊆Y;
(iv) f−1(G)∈δGPC(X) for each G∈δC(Y);
(v) f−1(H)∈δGPO(X) for each H∈δO(Y).

Proof. (i) −→ (ii) Suppose that N ∈ δC(Y ) such that f(M) ⊂ N . Observe
that N = clδ(N) =

⋂
{F : N ⊂ F and F ∈ RC(Y )} and so f−1(N) =⋂

{f−1(F ) : N ⊂ F and F ∈ RC(Y )}. By (i) and Definition 2.6(xii), we have
f−1(N) ∈ δGPC(X) and M ⊂ f−1(N). Hence δgp-cl(M) ⊂ f−1(N), and it
follows that f(δgp-cl(M)) ⊂ N. Since this is true for any δ-closed set N containing
f(M), we have f(δgp-cl(M)) ⊂ clδ(f(M)).
(ii)−→(iii) Let D ⊂ Y, then f−1(D) ⊂ X. By (ii),
f(δgp-cl(f−1(D)))⊂ clδ(f(f−1(D)))⊂ δgp-cl(D). So that δgp-cl(f−1(D))⊂ f−1(Clδ(D)).
(iii)−→(iv) Let G ∈ δC(Y).Then by (iii), δgp-cl(f−1(G)) ⊂ f−1(clδ(G))=f−1(G).
In consequence, δgp-cl(f−1(G))=f−1(G) and hence by Theorem 3.11, f−1(G) ∈
δGPC(X).
(iv)−→(v):Clear.
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(v)−→(i): Let N ∈ RO(Y).Then N ∈ δO(Y).By (v),f−1(N) ∈ δGPO(X). Hence by
Theorem 3.1, f is almost δgp-continuous

Theorem 3.13. The following statements are equivalent:
(i) f: X→ Y is almost δgp-continuous and X is δgp-additive;
(ii) For every N∈O(Y),f−1(int(cl(N)∈δGPO(X);
(iii) For every M∈C(Y),f−1(cl(int(M)∈δGPC(X);
(iv) For every N∈βO(Y),δgpcl(f−1(N)) ⊂ f−1(cl(N));
(v) For every M∈βC(Y),f−1(int(M)) ⊂ δgpint(f−1(M));
(vi) For every M∈SC(Y),f−1(int(M)) ⊂ δgpint(f−1(M));
(vii) For every N∈SO(Y),δgpcl(f−1(N)) ⊂ f−1(cl(N));
(viii) For every M∈PO(Y),f−1(M) ⊂ δgpint(f−1(int(cl(M)).

Proof. (i)←→(ii): Let N ∈ O(Y). Since int(cl(N)) ∈ RO(Y) Then by (i),
f−1(int(cl(N)) ∈ δGPO(X). The converse is similar.
(i)←→(iii)It is similar to (i)←→(ii).
(i)−→ (iv): Let N ∈ βO(Y),then cl(N) ∈ RC(Y) so by(i),f−1(cl(N)) ∈δGPC(X).
Since f−1(N) ⊂ f−1(cl(N)) which implies δgpcl(f−1(N)) ⊂ f−1(cl(N)).
(iv)−→ (v) and (vi)−→ (vii):Obvious
(v)−→ (vi):It follows from the fact that SC(Y) ⊂ βC(Y)
(vii)−→ (i):It follows from the fact that RC(Y) ⊂ SO(Y).
(i)←→ (viii): Let N ∈PO(Y). Since int(cl(N)) ∈ RO(Y),then by (i),
f−1(int(cl(N))) ∈ δGPO(X) and hence
f−1(N) ⊂ f−1(int(cl(N))) = δgpint(f−1(int(cl(N)))). Conversely,let N ∈ RO(Y).
Since N ∈ PO(Y), f−1(N) ⊂ δgp-int(f−1(int(Cl(N)))) =δgpint(f−1(N)),in conse-
quence, δgpint(f−1(N))=f−1(N) and by Theorem 3.11, f−1(N) ∈ δGPO(X).

Theorem 3.14. The following are equivalent:
(i) f : X→ Y is almost δgp-continuous and X is δgp-additive;
(ii) For every e∗-open set N of Y,f−1(clδ(N)) is δgp-closed in X;
(iii) For every δ-semiopen subset N of Y,f−1(clδ(N)) is δgp-closed set in X;
(iv) For every δ-preopen subset N of Y,f−1(int(clδ(N))) is δgp-open set in X;
(v) For every open subset N of Y,f−1(int(clδ(N))) is δgp-open set in X;
(vi) For every closed subset N of Y,f−1(cl(intδ(N))) is δgp-closed set in X.

Proof. (i)→(ii):Let N ∈ e∗O(Y) Then by Lemma 2.7 of [2], clδ(N) ∈ RC(Y).
By (i),f−1(clδ(N)) ∈ δGPC(X).
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(ii)→(iii):Obvious since δSO(Y) ⊂ e∗O(Y).
(iii)→(iv):Let N ∈δPO(Y),then intδ(Y\N) ∈ δSO(Y). By (iii),
f−1(clδ(intδ(Y\N)) ∈ δGPC(X) which implies f−1(int(clδ(N)) ∈ δGPO(X).
(iv)→(v):Obvious since O(Y) ⊂ δPO(Y).
(v)→(vi):Clear
(vi)→(i):Let N∈RO(Y).Then N=int(clδ(N)) and hence (Y\N) ∈ C(X). By (vi),
f−1(Y\N) = X\f−1(int(clδ(N))) = f−1(cl(intδ(Y\N)) ∈ δGPC(X).
Thus f−1(N) ∈ δGPO(X).

Theorem 3.15. The following are equivalent for a function f: X→ Y:
(i) f is almost δgp-continuous and X is δgp-additive;
(ii) For every e∗-open subset G of Y,f−1(a-cl(G)) is δgp-closed set in X;
(iii) For every δ-semiopen subset G of Y,f−1(δ-pcl(G)) is δgp-closed set in X;
(iv) For every δ-preopen subset G of Y,f−1(δ-scl(G))) is δgp-open set in X.

Proof. Follows from the Lemma 3.1 of [2]

Theorem 3.16. If f:X→ Y is an almost δgp-continuous injective function and Y is
r-T1, then X is δgp-T1.

Proof. Let (Y,σ) be r-T1 and p, q ∈ X with p 6= q. Then there exist regular open
subsets G, H in Y such that f(p) ∈ G, f(q) /∈ G, f(p) /∈ H and f(q) ∈ H. Since f is
almost δgp-continuous, f−1(G) and f−1(H) ∈ δGPO(X) such that p ∈ f−1(G), q
/∈ f−1(G), p /∈ f−1(H) and q ∈ f−1(H). Hence X is δgp-T1 .

Theorem 3.17. If f:X→ Y is an almost δgp-continuous injective function and Y is
r-T2, then X is δgp-T2.

Proof. Similar to the proof of Theorem 3.16

Theorem 3.18. If f,g:X→ Y are almost δgp-continuous with X as submaximal and
δgp-additive and Y is Hausdorff, then the set {x ∈ X : f(x) = g(x)} is δgp-closed in
X.

Proof. Let E = {x ∈ X : f(x) = g(x)} and x /∈ (X\E). Then f(x)6= g(x). Since Y is
Hausdorff, there exist open sets V and W of Y such that f(x) ∈ V, g(x)∈W and V ∩
W = φ, hence int(cl(V)) ∩ int(cl(W)) = φ. Since f and g are almost δgp-continuous,
there exist G,H ∈ δGPO(X,x)) such that f(G) ⊆ int(cl(V )) and g(H) ⊆ int(cl(W)).
Now, put U = G ∩ H, then U ∈ δGPO(X,x)) and f(U) ∩ g(U) ⊆ int(cl(V)) ∩
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int(cl(W)) =φ. Therefore, we obtain U ∩ E = φ and hence x /∈ δgpcl(E) then
E = δgpcl(E). Since X is δgp-additive, E is δgp-closed in X.

Definition 3.2. A space X is called δgp-compact if every cover of X by δgp-open
sets has a finite subcover.

Definition 3.3. A subset M of a space X is said to be δgp-compact relative to X if
every cover of M by δgp-open sets of X has a finite subcover.

Theorem 3.19. If f:X→ Y is almost δgp-continuous and K is δgp-compact relative
to X, then f(K) is N-closed relative to Y.

Proof. Let { Aα: α ∈ Ω } be any cover of f(K) by regular open sets of Y . Then
{f−1(Aα):α∈Ω} is a cover of K by δgp-open sets of X. Hence there exists a finite
subset Ωo of Ω such that K ⊂ ∪{f−1(Aα):α∈Ωo }. Therefore, we obtain f(K) ⊂
{Aα: α∈Ωo}. This shows that f(K) is N-closed relative to Y .

Corollary 3.1. If f:X → Y is an almost δgp-continuous surjection and X is δgp-
compact and δgp-additive, then Y is nearly compact.

Lemma 3.1. Let X be δgp-compact. If A⊂X is δgp-closed, then A is δgp-compact
relative to X.

Proof. Let { Bα: α ∈ Ω } be a cover of N by δgp-open sets of X. Note that (X-N)
is δgp-open and that the set (X-N) ∪ { Bα: α ∈ Ω } is a cover of X by δgp-open
sets. Since X is δgp-compact, there exists a finite subset Ωo of Ω such that the set
(X-N) ∪ { Bα: α ∈ Ωo } is a cover of X by δgp-open sets in X.
Hence { Bα: α ∈ Ωo } is a finite cover of N by δgp-open sets in X.

Theorem 3.20. If the graph function g : X → X × Y of f : X → Y ,defined
by g(x) = (x, f(x)) for each x ∈ X is almost δgp-continuous Then f is almost
δgp-continuous.

Proof. Let N ∈ RO(Y ), then X × V ∈ RO(X × Y ). As g is almost δgp-
continuous, f−1(N) = g−1(X ×N) ∈ δGPO(X).

Theorem 3.21. If the graph function g : X → X × Y of f : X → Y , defined by
g(x) = (x, f(x)) for each x ∈ X . If X is a submaximal space and δgp-additive,
then g is almost δgp-continuous if and only if f is almost δgp-continuous.
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Proof. We only prove the sufficiency. Let x ∈ X and W ∈RO(X×Y). Then there
exist regular open sets U1 and V in X and Y, respectively such that U1×V ⊂W. If
f is almost δgp-continuous, then there exists a δgp-open set U2 in X such that x ∈
U2 and f(U2)⊂V . Put U = (U2∩U2).Then U is δgp-open and g(U) ⊂ U1×V ⊂W.
Thus g is almost δgp-continuous.

Recall that for a function f:X→ Y, the subset Gf={(x,f(x)):x ∈X} ⊂ X×Y
is said to be graph of f.

Definition 3.4. A graph Gf of a function f:X→ Y is said to be strongly δgp-closed
if for each (p,q) /∈ Gf , there exist U∈δGPO(X,p) and V∈RO(Y,q) such that
(U×V)∩ Gf = φ.

Lemma 3.2. For a graph Gf of a function f : X → Y , the following properties
are equivalent:
(i)Gf is strongly δgp-closed in X × Y ;
(ii)For each (p, q) /∈ Gf , there exist U ∈ δGPO(X, p) and V ∈ RO(Y, q) such
that f(U)∩V = φ.

Theorem 3.22. Let f:X→ Y have a strongly δgp-closed graph Gf . If f is injective,
then X is δgp-T1.

Proof. Let x1,x2∈X with x1 6=x2.Then f(x1) 6=f(x2) as f is injective so that (x1,f(x2))
/∈Gf .Thus there exist U∈δGPO(X,x1) and V∈RO(Y,f(x2)) such that f(U)∩V=φ.
Then f(x2)/∈f(U) implies x2 /∈U and it follows that X is δgp-T1.

Theorem 3.23. (i)If f: X→ Y is almost δgp-continuous and g: Y→ Z is R-map,
then (g◦f):X→ Z is almost δgp-continuous.
(ii)If f: X→ Y is δgp-continuous and g: Y→ Z is almost continuous, then (g◦f):X
→ Z is almost δgp-continuous.
(iii) If f: X → Y is δgp-irresolute and g: Y → Z is almost δgp-continuous,then
(g◦f):X→ Z is almost δgp-continuous.

Proof. (i) Let N ∈ RO(Z). Then g−1(N) ∈ RO(Y) since g is R-map. The almost
δgp-continuity of f implies f−1[g−1(N))] = (g ◦ f)−1((N)) ∈ δGPO(X).
Hence g◦f is almost δgp-continuous.
The proofs of (ii) and (iii) are similar to (i).

Definition 3.5. [33] A function f: X→ Y is called pre δgp-closed if f(U)∈δGPC(Y)
for every U∈δGPC(X).
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Theorem 3.24. If f: X→ Y is a pre δgp-open surjection and g:Y→ Z is a function
such that g◦f:X→ Z is almost δgp-continuous, then g is almost δgp-continuous.

Proof. Let y ∈ Y and x ∈ X such that f(x) = y. Let G ∈ RO(Z,(g◦f)(x)). Then there
exists U ∈ δGPO(X,x) such that such that g(f(U))⊂ G. Since f is pre δgp-open in
Y, we have that g is almost δgp-continuous at y.

Let A be a subset of X. Then A is said to be H-closed [35] relative to X if
for every cover { Bi: i ∈ Ω } of A by open sets of X, there exists a finite subset Ωo

of Ω such that A ⊂ ∪{cl(Bi) : i ∈ Ωo }.

Definition 3.6. A function f: X→ Y is said to be δgp∗- continuous if for each p ∈
X and each N∈O(Y,f(p)), there exists M ∈ δGPO(X,p) such that f(M) ⊂ cl(N).

Theorem 3.25. If f: X→ Y is δgp∗-continuous and K is δgp-compact relative to
X, then f(K) is H-closed relative to Y.

Proof. Similar to the proof of Theorem 3.19

Theorem 3.26. If for each pair of distinct points p and q in a space X, there exists
a function f of X into a Hausdorff space Y such that
(i) f(p) 6= f(q),
(ii) f is δgp∗-continuous at p and
(iii) almost δgp-continuous at q,then X is δgp-Hausdorff.

Proof. Since Y is Hausdorff, there exist open sets W1 and W2 of Y such that
f(p)∈ W1, f(q) ∈ W2 and W1∩W2 = φ, hence cl(W1) ∩ int(cl(W2)) = φ. Since
f is δgp∗-continuous at p, there exists U1∈ δGPO(X,p) such that f(U1) ⊂ cl(W1).
Since f is almost δgp-continuous at q, there exists U2 ∈δGPO(X,q) such that f(U2)
⊂ int(cl(W2)). Therefore, we obtain U1∩ U2 = φ. This shows that X is δgp-
Hausdorff.
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