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Abstract

In this paper, we establish the existence of coupled coincidence points
for mixed monotone operators under new probabilistic φ-contractions in the
setup of ordered Menger PM-spaces with Hadz̆ić type t-norms. Suitable ex-
ample has been given to support the present work.

1 Introduction and Preliminaries

The study of probabilistic metric spaces was initiated by Menger [20] in 1942
which was a generalization of the metric spaces. The notion of a probabilistic
metric space corresponds to the situations in which we do not know exactly the
distance between two points, but we know probabilities of the possible values of
distance between them. In fact, in his theory, Menger [20] replaced the distance
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function d : R×R→ R+ with a distribution function Fp,q : R→ [0, 1] wherein for
any number t, the value Fp,q(t) describes the probability that the distance between
p and q is less than t.

Fixed point theory is a beautiful mixture of analysis, topology and geometry,
having tremendous applications within as well as outside mathematics. The theory
of fixed points in PM-spaces is a part of Probabilistic Analysis, which has been
explored by host of authors including Bocsan [3], Cain and Kasriel [5], Istrăţescu
and Săcuiŭ [16], Sehgal and Bharucha-Reid [22], Sherwood [21] and many others
(for more details, one can also refer to [13, 15, 17, 18]).

In 1987, Guo and Lakshmikantham [11] introduced the notion of coupled fixed
points. Since then, the concept has been of interest to the researchers in metrical
fixed point theory. In 2006, Bhaskar and Lakshmikantham [4] introduced the no-
tion of mixed monotone property and proved some coupled fixed point theorems
for mappings satisfying this property in ordered metric spaces. Lakshmikantham
and Ćirić [19] further extended this notion to the mixed g-monotone property and
proved some coupled coincidence point results. Afterwards, much work has been
done in this direction by different authors. For more details the reader may consult
the references cited as ([1, 2, 6, 7, 9, 12]). Recently, the investigation of coupled
fixed point and coincidence points has been extended from metric spaces to prob-
abilistic metric spaces (see [8, 24, 25]).

Here, we state some allied definitions and results which are required for the
development of the present topic. We denote by R the set of real numbers, by R+

the set of non-negative real numbers and by N the set of positive integers.

Definition 1.1 ([14]). A function f : R→ [0, 1] is called a distribution function if it
is non-decreasing and left-continuous with inf

x∈R
f(x) = 0. If in addition f(0) = 0,

then f is called a distance distribution function. Furthermore, a distance distribu-
tion function f satisfying lim

t→ +∞
f(t) = 1 is called a Menger distance distribution

function.

The set of all Menger distance distribution functions is denoted by
∧+.

Definition 1.2 ([14]). A triangular norm (abbreviated, t-norm) is a binary opera-
tion ∆ on [0, 1], which satisfy the following conditions:

(1) ∆ is associate;

(2) ∆ is commutative;

(3) ∆(a, 1) = a for all a ∈ [0, 1];
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(4) ∆(a, b) ≤ ∆(c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

A t-norm is continuous if it is continuous as a function.

Some examples of the continuous t-norm are ∆p(a, b) = ab and ∆M (a, b) =
min{a, b} for all a, b ∈ [0, 1].

Definition 1.3 ([13]). Let sup
0<t<1

∆(t, t) = 1. A t-norm ∆ is said to be a Hadz̆ić

type t-norm (in short, H-type t-norm) if the family of functions {∆m(t)}∞m=1 is
equicontinuous at t = 1, where

∆1(t) = t, ∆m+1(t) = t∆(∆m(t)), m = 1, 2, . . . , t ∈ [0, 1].

The t-norm ∆M = min is an example of t-norm of H-type.

Remark 1.1. A t-norm ∆ is a H-type t-norm iff for any λ ∈ (0, 1), there exists
δ(λ) ∈ (0, 1) such that ∆m(t) > (1− λ) for all m ∈ N , when t > (1− δ).

Definition 1.4 ([23]). A Menger probabilistic metric space (abbreviated as Menger
PM-space) is a triple (X,F,∆) where X is a nonempty set, ∆ is a continuous t-
norm and F is a mapping from X ×X into

∧+ such that, if Fp,q denotes the value
of F at the pair (p, q), the following conditions hold:

(PM1) Fp,q(t) = 1 for all t > 0 if and only if p = q (p, q ∈ x);

(PM2) Fp,q(t) = Fq,p(t) for all p, q ∈ x and t > 0;

(PM3) Fp,r(t+ s) ≥ ∆(Fp,q(t), Fq,r(s)) for all p, q, r ∈ x and every t, s > 0.

Definition 1.5 ([23]). Let (X,F,∆) be a Menger PM-space. Then,

(i) a sequence {xn} in X is said to be convergent to a point x ∈ X (write
xn → x) if, for any t > 0 and 0 < ε < 1, there exists a positive integer n0
such that Fxn,x(t) > 1− ε, whenever n ≥ n0;

(ii) a sequence {xn} in X is said to be a Cauchy sequence if, for any t > 0 and
0 < ε < 1, there exists a positive integer n0 such that Fxn,xm(t) > 1 − ε,
whenever n,m ≥ n0;

(iii) Menger PM-space (X,F,∆) is said to be complete if and only if every
Cauchy sequence in X is convergent to a point in X .
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Theorem 1.1 ([23]). If (X,F,∆) is a Menger PM-space and {pn} and {qn} are
sequences such that pn → p and qn → q, then lim

n→∞
Fpn,qn(t) = Fp,q(t) for every

continuity point t of Fp,q.

Definition 1.6 ([11]). An element (x, y) ∈ X ×X , is called a coupled fixed point
of the mapping F : X ×X → X if F (x, y) = x and F (y, x) = y.

Definition 1.7 ([4]). Let (X,4) be a partially ordered set. The mapping F :

X ×X → X is said to have the mixed monotone property if F (x, y) is monotone
non-decreasing in x and monotone non-increasing in y.

Definition 1.8 ([19]). Let (X,4) be a partially ordered set and F : X ×X → X

and g : X → X . We say F has the mixed g-monotone property if F (x, y) is
monotone g-nondecreasing in its first argument and is monotone g-nonincreasing
in its second argument.

Definition 1.9 ([19]). The mappings F : X ×X → X and g : X → X are said
to be commutative, if F (gx, gy) = gF (x, y) for all x, y ∈ X .

Definition 1.10 ([19]). An element (x, y) ∈ X×X , is called a coupled coincidence
point of the mappings F : X × X → X and g : X → X if F (x, y) = gx and
F (y, x) = gy.

It is worth mentioning here that, different authors obtained various interesting
results for φ-contractions, where φ assumes any one of the following assumptions:
(a): φ(t) = kt for all t > 0, where k ∈ (0, 1); or

(b):
∞∑
n=1

φn(t) <∞ for all t > 0.

Ćirić [8] pointed out, that the condition (b) is very strong and typical for testing
in practice. Consequently, Ćirić [8] introduced condition (c): φ(0) = 0, φ(t) < t
and lim inf

r→t+
φn(t) < t for all t > 0.

Subsequently, Jachymski [18] presented the condition (d): 0 < φ(t) < t and
lim
n→∞

φn(t) = 0 for all t > 0.

Interestingly, if
∞∑
n=1

φn(t) converges for all t > 0 (written as
∞∑
n=1

φn(t) < +∞,

∀ t > 0), then lim
n→∞

φn(t) = 0 for all t > 0.
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In order to further weaken the condition (d), Fang [10] introduced the condition
(e): for each t > 0 there exists r ≥ t such that lim

n→∞
φn(r) = 0 in the context of

Menger probabilistic metric spaces and fuzzy metric spaces.
Let Φ1 and Φ2 denote the sets of all functions φ : R+ → R+ satisfying the

conditions (d) and (e), respectively.
In their remarkable work, Wang et al. [25] obtained coupled coincidence points

for nonlinear contractive mappings in the setting of partially ordered probabilistic
metric spaces and proved the following important result:

Theorem 1.2 ([25]). Let (X,4) be partially ordered set and (X,F,∆) be a com-
plete Menger PM space under a t-norm ∆ of H-type. Let A : X ×X → X and
h : X → X are two mappings such that A has the mixed h-monotone property on
X and there exist some φ ∈ Φ1 such that

FA(x,y),A(u,v)(φ(t)) ≥ min{Fh(x),h(u)(t), Fh(y),h(v)(t)}, (1.1)

for all t > 0 and all x, y, u, v ∈ X with h(x) < h(u) and h(y) 4 h(v). Suppose
A(X×X) ⊂ h(X), h is continuous and commutes withA and also suppose either

(a) A is continuous, or

(b) X has the following property:

(X1) if a non-decreasing sequence {xn} → x, then xn 4 x, for each n ≥ 1;

(X2) if a non-increasing sequence {yn} → y, then y 4 yn, for each n ≥ 1.

If there exist x0, y0 ∈ X such that h(x0) 4 A(x0, y0) and h(y0) < A(y0, x0),
then A and h have a coupled coincidence point in X .

Inspired by the work of Wang et al. [25], in this communication, we first
introduce the notion of probabilistic symmetric φ-contractions and then establish
some coupled coincidence point results under these contractions in the setup of
ordered Menger PM-spaces with Hadz̆ić type t-norms.

2 Main Results

In order to present our main results, we first introduce some notions as follows:



6 Manish Jain

Definition 2.1. Let (X,F,∆) be a Menger PM space, where ∆ is a continuous
Hadz̆ić type t-norm. Let 4 be a partial order defined on X . A mapping T :

X × X → X is said to be probabilistic symmetric φ-contraction if there exists
φ ∈ Φ2 such that

∆(FT (x,y),T (u,v)(φ(t)), FT (y,x),T (v,u)(φ(t))) ≥ ∆(Fx,u(t), Fy,v(t)), (2.1)

for all x, y, u, v ∈ X , t > 0 with x < u and y 4 v.

Definition 2.2. Let (X,F,∆) be a Menger PM space, where ∆ is a continuous
Hadz̆ić type t-norm. Let 4 be a partial order defined on X . A mapping T :

X × X → X is said to be probabilistic symmetric φ-contraction with respect to
the mapping A : X → X , if there exists φ ∈ Φ2 such that

∆(FT (x,y),T (u,v)(φ(t)), FT (y,x),T (v,u)(φ(t))) ≥ ∆(FA(x),A(u)(t), FA(y),A(v)(t)),

(2.2)

for all x, y, u, v ∈ X , t > 0 with A(x) < A(u) and A(y) 4 A(v).

Now, we give our main results.

Theorem 2.1. Let (X,F,∆) be a Menger PM space, where ∆ is a continuous
Hadz̆ić type t-norm. Let 4 be a partial order defined on X . Let T : X ×X → X

and A : X → X be two mappings such that following conditions hold:

(i) one of the range subspaces T (X ×X) or A(X) is complete;

(ii) T (X ×X) ⊆ A(X);

(iii) T satisfies mixed A monotone property;

(iv) there exist two elements x0, y0 ∈ X such that Ax0 4 T (x0, y0) and Ay0 <

T (y0, x0);

(v) T be the probabilistic symmetric φ-contraction with respect to A.

Also suppose that X satisfy properties (X1) and (X2). Then, A and T have a
coupled coincidence point in X .
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Proof. By (iv), there exist x0, y0 ∈ X such that Ax0 4 T (x0, y0) and Ay0 <

T (y0, x0). Using (ii), we can construct the sequences {xn} and {yn} in X satisfy-
ing A(xn+1) = T (xn, yn) and A(yn+1) = T (yn, xn) for n = 1, 2, . . . .

Again by (iv), Ax0 4 T (x0, y0) = Ax1 and Ay0 < T (y0, x0) = Ay1, then
using condition (iii), we obtain that Ax1 = T (x0, y0) 4 T (x1, y1) = Ax2 and
Ay1 = T (y0, x0) < T (y1, x1) = Ay2. Applying induction, we obtain that

Axn−1 4 Axn and Ayn−1 < Ayn for all n ∈ N. (2.3)

Since ∆ is a Hadz̆ić type t-norm, for any η > 0, there exists an ε > 0 such that

(1− ε)∆(1− ε)∆ . . .∆(1− ε)︸ ︷︷ ︸
k

> 1− η, (2.4)

for all k ∈ N.
By (2.2) and (2.3), for all t > 0, we have

∆(FAxn+1,Axn(φ(t)), FAyn+1,Ayn(φ(t)))

= ∆(FT (xn,yn),T (xn−1,yn−1)(φ(t)), FT (yn,xn),T (yn−1,xn−1)(φ(t)))

≥ ∆(FAxn−1,Axn(t), FAyn−1,Ayn(t))

≥ ∆(FAxn−1,Axn(t), FAyn−1,Ayn(t)).

Then we get inductively, for all t > 0, that

∆(FAxn+1,Axn(φn(t)), FAyn+1,Ayn(φn(t))) ≥ ∆(FAx0,Ax1(t), FAy0,Ay1(t)).

Since lim
t→+∞

Fx,y(t) = 1, for all x, y ∈ X , there exists t0 > 0 such that

FAx0,Ax1(t0) > (1− ε) and FAy0,Ay1(t0) > (1− ε).

Since lim
n→∞

φn(t) = 0 for all t > 0, for δ > 0, there exists N0 ∈ N such that
φn(t0) < δ for n ≥ N0. Thus, for all n ≥ N0, we obtain that

∆(FAxn,Axn+1(δ), FAyn,Ayn+1(δ)) ≥ ∆(FAxn,Axn+1(φn(t0)), FAyn,Ayn+1(φn(t0)))

≥ ∆(FAx0,Ax1(t0), FAy0,Ay1(t0))

> (1− ε)∆(1− ε)

> 1− η. (by (2.4))
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From this, it is easy to conclude that lim
n→∞

[∆(FAxn,Axn+1(t), FAyn,Ayn+1(t))] = 1,
for all t > 0.

Next, we prove that the sequences {A(xn)} and {A(yn)} are Cauchy sequences.
To this end, firstly, we shall show for all k ≥ 1, the following inequality by induc-
tion:

∆(FAxn,Axn+k
(δ), FAyn,Ayn+k

(δ))

≥ ∆k[∆(FAxn,Axn+1(δ − φ(δ)), FAyn,Ayn+1(δ − φ(δ)))]. (2.5)

For k = 1,

∆(FAxn,Axn+1(δ), FAyn,Ayn+1(δ))

≥ ∆(FAxn,Axn+1(δ − φ(δ)), FAyn,Ayn+1(δ − φ(δ))

= ∆(∆(FAxn,Axn+1(δ − φ(δ)), FAyn,Ayn+1(δ − φ(δ))), 1)

≥ ∆(∆(FAxn,Axn+1(δ − φ(δ)), FAyn,Ayn+1(δ − φ(δ))),

∆(FAxn,Axn+1(δ − φ(δ)), FAyn,Ayn+1(δ − φ(δ))))

= ∆1(∆(FAxn,Axn+1(δ − φ(δ)), FAyn,Ayn+1(δ − φ(δ)))).

Thus (2.5) holds for k = 1.

We now assume that (2.5) holds for 1 ≤ k ≤ p, for some p ∈ N. We next prove
that (2.5) holds for k = p+ 1.

When k = p+ 1, using (PM3) we obtain that

∆(FAxn,Axn+p+1(δ), FAyn,Ayn+p+1(δ))

≥ ∆(∆(FAxn,Axn+1(δ − φ(δ)), FAyn,Ayn+1(δ − φ(δ))),

∆(FAxn+1,Axn+p+1(φ(δ)), FAyn+1,Ayn+p+1(φ(δ)))). (2.6)

Also, from (2.2) and (2.3) we obtain that

∆(FAxn+1,Axn+p+1(φ(δ)), FAyn+1,Ayn+p+1(φ(δ)))

= ∆(FT (xn,yn),T (xn+p,yn+p)(φ(δ)), FT (yn,xn),T (yn+p,xn+p)(φ(δ)))

≥ ∆(FAxn,Axn+p(δ), FAyn,Ayn+p(δ)).
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Since (2.5) holds for p ∈ N, we can obtain that

∆(FAxn+1,Axn+p+1(φ(δ)), FAyn+1,Ayn+p+1(φ(δ)))

≥ ∆(FAxn,Axn+p(δ), FAyn,Ayn+p(δ))

≥ ∆p[∆(FAxn,Axn+1(δ − φ(δ)), FAyn,Ayn+1(δ − φ(δ)))]. (2.7)

From (2.6) and (2.7), we have

∆(FAxn,Axn+p+1(δ), FAyn,Ayn+p+1(δ))

≥ ∆p+1[∆(FAxn,Axn+1(δ − φ(δ)), FAyn,Ayn+1(δ − φ(δ)))].

Thus, (2.5) holds for all k ≥ 1.

Again, since ∆ is a Hadz̆ić type t-norm, for ε ∈ (0, 1), there exists λ ∈ (0, 1)

such that for t > 1− λ,

∆n(t) > 1− ε for all n ≥ 1.

On the other hand, by

lim
n→+∞

[∆(FAxn,Axn+1(δ − φ(δ)), FAyn,Ayn+1(δ − φ(δ)))] = 1,

there exists N1(ε, δ) ∈ N, such that

∆(FAxn,Axn+1(δ − φ(δ)), FAyn,Ayn+1(δ − φ(δ))) > 1− λ, for all n > N1(ε, δ).

Thus,

∆(FAxn,Axn+k
(δ), FAyn,Ayn+k

(δ)) > 1− ε, for all k ≥ 1 and n > N1(ε, δ).

This implies that the sequences {A(xn)} and {A(yn)} are Cauchy in A(X).

Without loss of generality assume that the subspace A(X) is complete. Then
by completeness of A(X), there exist x, y ∈ X such that

lim
n→+∞

A(xn) = A(x) and lim
n→∞

A(yn) = A(y).

By condition (vi), Axn 4 Ax and Ayn < Ay for sufficiently large n.
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For such large n, and t > 0,

∆(FAxn+1,T (x,y)(t), FAyn+1,T (y,x)(t))

≥ ∆(FAxn+1,T (x,y)(φ(t)), FAyn+1,T (y,x)(φ(t)))

= ∆(FT (xn,yn),T (x,y)(φ(t)), FT (yn,xn),T (y,x)(φ(t)))

≥ ∆(FAxn,Ax(t), FAyn,Ay(t)),

letting n→ +∞, we have

∆(FAx,T (x,y)(t), FAy,T (y,x)(t)) ≥ ∆(1, 1) = 1, for all t > 0.

It follows that

FAx,T (x,y)(t) = 1, FAy,T (y,x)(t) = 1 for all t > 0.

Hence T (x, y) = Ax and T (y, x) = Ay.

This completes the proof.

Theorem 2.2. Let (X,F,∆) be a Menger PM space, where ∆ is a continuous
Hadz̆ić type t-norm. Let 4 be a partial order defined on X . Let T : X ×X → X

be a mapping such that following conditions hold:

(i) T satisfy mixed monotone property;

(ii) there exist two elements x0, y0 ∈ X such that x0 4 T (x0, y0) and y0 <

T (y0, x0);

(iii) T be the probabilistic symmetric φ-contraction.

Also suppose thatX satisfy properties (X1) and (X2). Then, T has a coupled fixed
point in X .

Proof. Taking A = IX (the identity mapping on X) in Theorem 2.1, we get the
required result.

Taking φ(t) = ct for t > 0, where c ∈ (0, 1) in Theorem 2.2, we have the
following result.
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Corollary 2.1. Let (X,F,∆) be a complete Menger PM space, where ∆ is a
continuous Hadz̆ić type t-norm. Let 4 be a partial order defined on X . Let
T : X ×X → X be a mapping such that following conditions hold:

(i) T satisfy mixed monotone property;

(ii) there exist two elements x0, y0 ∈ X such that x0 4 T (x0, y0) and y0 <

T (y0, x0);

(iii) there exists some c ∈ (0, 1) such that the mapping T satisfies the following
condition:

∆(FT (x,y),T (u,v)(ct), FT (y,x),T (v,u)(ct)) ≥ ∆(Fx,u(t), Fy,v(t)), (2.8)

for all x, y, u, v ∈ X , t > 0 with x < u and y 4 v.

Also suppose thatX satisfy properties (X1) and (X2). Then, T has a coupled fixed
point in X .

Theorem 2.3. Let (X,F,∆) be a Menger PM space, where ∆ is a continuous
Hadz̆ić type t-norm. Let 4 be a partial order defined on X . Let T : X ×X → X

and A : X → X be two mappings such that following conditions hold:

(i) one of the range subspaces T (X ×X) or A(X) is complete;

(ii) T (X ×X) ⊆ A(X);

(iii) T satisfy mixed A-monotone property;

(iv) there exist two elements x0, y0 ∈ X such that Ax0 4 T (x0, y0) and Ay0 <

T (y0, x0);

(v) A and T satisfies the following condition:

∆(FT (x,y),T (u,v)(ϕ(t)), FT (y,x),T (v,u)(ϕ(t)))

≥ ∆(FA(x),A(u)(t), FA(y),A(v)(t)), (2.9)

for all x, y, u, v ∈ X , t > 0 with A(x) < A(u) and A(y) 4 A(v) and the function

ϕ : R+ → R+ be defined such that ϕ(t) < t and
∞∑
n=1

ϕn(t) converges for all t > 0.
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Also suppose that X satisfy properties (X1) and (X2). Then, A and T have a
coupled coincidence point in X .

Proof. Since ϕ(t) < t and
∞∑
n=1

ϕn(t) converges for all t > 0, it follows that ϕ ∈ Φ,

then, by condition (2.9) the mapping T will become the probabilistic symmetric φ-
contraction with respect to the mapping A. Hence, the result follows immediately
by applying Theorem 2.1.

We now give an example in support of the present work.

Example 2.1. Let (X,4) be the partially ordered set with X = (−1, 1] and
the natural ordering ≤ of the real numbers as the partial ordering 4. Let F
be a mapping from X × X into

∧+ defined by Fx,y(t) = H(t − |x − y|) =0, if t ≤ |x− y|

1, if t > |x− y|
for x, y ∈ X . Then, (X,F,∆M ) is a Menger PM-space.

Let us define the mappings A : X → X and T : X × X → X respectively by
Ax = x2 and T (x, y) = y2− x2+1

8 for x, y ∈ X . Clearly, the mappings T and
A are not compatible. The mapping A is neither monotonically increasing nor
monotonically decreasing on X . The mapping T satisfies the mixed A-monotone
property. Clearly, A(x) = [0, 1] is complete and T (X × X) ⊆ A(X). Also, for
x0 = 0.2 and y0 = 0.7, we have Ax0 4 T (x0, y0) and Ay0 < T (y0, x0). We
define the function φ : R+ → R+ by φ(t) = t

4 for t ≥ 0.

Now, we verify inequality (2.2). For, t > 0 and x, y, u, v ∈ X with Ax 4 Au

and Ay < Av, the inequality (2.2) takes the following form:

min{H(φ(t)− |T (x, y)− T (u, v)|), H(φ(t)− |T (y, x)− T (v, u)|)}

≥ min{H(t− |A(x)−A(u)|), H(t− |A(y)−A(v)|)},

that is,

min

{
H

(
t

4
−
∣∣∣∣(y2 − x2)− (v2 − u2)

8

∣∣∣∣) , H ( t4 −
∣∣∣∣(x2 − y2)− (u2 − v2)

8

∣∣∣∣)}
≥ min{H(t− |x2 − u2|), H(t− |y2 − v2|)},
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that is,

H

(
t

4
−
∣∣∣∣(x2 − y2)− (u2 − v2)

8

∣∣∣∣) ≥ min{H(t− |x2− u2|), H(t− |y2− v2|)}.

By the definition of H , we only need to verify that

|(x2 − y2)− (u2 − v2)| < 2t, (2.10)

if |x2 − u2| < t and |y2 − v2| < t. (2.11)

Now, by (2.11), we have

|(x2 − y2)− (u2 − v2)| = |(x2 − u2)− (y2 − v2)| ≤ (|x2 − u2|+ |y2 − v2|) < 2t.

Therefore, inequality (2.2) holds. Thus, all the conditions of Theorem 2.1 are sat-
isfied. On applying Theorem 2.1, we obtain that

(
1

2
√
2
, 1
2
√
2

)
is a coupled coinci-

dence point of the mappings T and A.
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