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Abstract

A fast, second-order accurate iterative method is proposed for the elliptic interface
problems in a cubic domain in 3D using Cartesian grids for three dimensional ellip-
tic interface problems in which the coefficients, the source term, the solution and its
normal flux may be discontinuous (may have jumps) across an irregular interface. The
idea in our approach is to precondition the differential equation before applying the
immersed interface IIM method proposed by LeVeque and Li [SIAM J. Numer. Anal.,
31(1994), pp. 1019-1044]. In order to take advantage of fast Poisson solvers on a cu-
bic domain, an intermediate unknown function of co-dimension two, the jump in the
normal derivative across the interface, is introduced. Our discretization is equivalent
to using a second-order difference scheme for a corresponding Poisson equation in

the domain, and a second-order discretization for a Neumann-like interface condition.

Keywords and phrases : 3 D elliptic interface problem, discontinuous coefficients, irregular domain,

Cartesian grids,immersed interface method, Schur complement, GMRES method, preconditioning.
AMS Subject Classification : 65N06, 65N50.
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Thus second-order accuracy is guaranteed. Weighted least square method is also pro-
posed to approximate interface quantities from a grid function.Numerical experiments
are provided and analyzed in this paper. The number of iterations in solving the Schur
complement system appears to be independent of both the jump in the coefficient and
the mesh size. The method is designed for interface problems with piecewise constant
coefficient. The method is based on the fast immersed interface method and a fast 3D

Poisson solver. The GMRES iterative method is employed to solve the Schur comple-

ment system derived from the discretization and is often used to solve the augmented-—— .~

variable(s) that are only defined along the interface or the irregular boundary.

1. Introduction

In this paper, we develop a second order fast algorithm to solve three-dimensional elliptic
equations with piecewise constant discontinuous coefficients on a cubic domain. The prob-
lem can be described as follows: Let §2 be a cubic domain in the R3. Consider the following

elliptic problem of the form:
v - (B(x,y,2)Vu(z,y, 2)) + ku(z,y, 2) = f(2,9,2), (2,9, 2) € QT (1.1a)

[u] = w(s), [Bun] = v(s), onT, (1.1b)

with a specified boundary condition on OS2, where I'(s) is an interface that divides the
domain T into two sub-domains, Q% and, 27, and up, = Vu - nis the normal derivative
along the unit normal direction 7. s is the arc length parameterization of I'. We use [-]
to represent the jump of a quantity across the intertace T. The coefficients 3, k, and the
source term J may be discontinuous across the interface I'. e assume that8(x,y, z) has a

constant value in each sub-domain,

ie.,
gt, in QF,
B(z,y,7) = . (1.2)
3=, in 7,
It 3t = B~ = B is a constant, then we have a Poisson equations & u = [/ B with the

source distributions along the interface that corresponds to the jumps in the solution and
the flux. The finite difference mé:thod obtained from the immersed interface method [7, 8,
11] yields the standard discrete Laplacian plus some correction terms to the right hand side.
Therefore, a fast Poisson solver, for example, the Fishpack [2], can be used to solve the

discrete system of equations. If Bt # B~, we can not divide the coefficient B from the
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flux jump condition. The motivation is to introduce an augmented variable so that we can
take advantage of fast Poisson solver for the interface problem with only singular sources.
Our approach is based on finite difference method. It is of second order accuracy and the
algorithm is fast, requiring only O(N3 log N®) arithmetic operations for a mesh of N grid
points. The immersed interface method in this paper is concerned with numerical analysis .
of elliptic interface problems in three-dimensional space. Let {2 be a simple convex domain
subset of R® which is divided into two sub-domains by an irregular interface I" such that
Q = Q1T U Q™. Consider the elliptic equation (1.1a-b) and (1.2).

Assume that the coefficient 3 and source term f may be discontinuous across the interface

I ie.,

ﬂ+7 in Q+)
g = .
B, in Q7,
ft, in QF,
f= _
s in £,
See Figure 1.1 for illustrations. EI0)

ar B*.f*

Figure 1.1: A cubic domain 2 with an immersed interface I'. The coefficients 3 and the

source term f may have jumps across the interface.

It is crucial for our approach that we have enough a priori knowledge about some inter-

face conditions. The jump conditions in equations (1.1b) can be derived either by physical
reasoning or directly from the differential equation itself.
2. Preconditioning the PDE to an equivalent problem. Problem (I)

The problem we are interested in solving is of the form:

v(Bvuw) =f,  in % (2.1)
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[u] = w, on T, (2.2a)
[Bun) =g,  onT, (2.2b)

with boundary conditions on 9€2. There are two main concerns in solving problem (I) nu-
merically. One is how to discretize it to certain accuracy. There are a few numerical methods
presented in the past few years. Most of these methods can be second order accurate in L
or Ly norm, but not in L, norm.

The other concern is how to solve the resulting linear system efficiently. Usually the number
of iterations depends on the mesh size. Also, if the jump in the coefficient j is large’,_ then~
the resulting linear system is ill-conditioned, and thus the number of iterations in solving
such a linear system is large and may also be proportional to the jump in the coefficient.

Problem (II).

Au—i—v’TB: Vu:BJ;, in QF, (2.3)
Au+% Vu:Ef:, in Q7 (2.4)
[u] = w, on T, (2.5)
[un] = g, on T, (2.6)

with boundary conditions on 0. The key is how to find g* efficiently. Basically, we
choose an initial guess and then iteratively update it until the flux jump condition in (2.2b)
1s satisfied.

Notice that g* is only defined along the interface I', so it two-dimensional in a three-
dimensional space. vProblem (II) is much easier to solve because one jump condition is
given in [u,,] instead of in [Bu,)].

In this paper, we are especially interested in the case that 3 is piecewise constant, so the
corresponding problem becomes a Poisson equation with discontinuous source term and
given jump conditions. We can then use the stundard seven point stencil to discretize the
left-hand side of (2.3)-(2.4), but just modify the right-hand side to get a second order finite
difference scheme, see [7,8] for the detail. Thus we can take advantage of fast Poisson
solvers for the discrete system.

Here we want to compute u(g*) to second order accuracy. We also hope that the total cost

in computing g* and u(g*) is less than in computing u(g*) through the original problem.
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The key to success is to compute g« efficiently. Now we begin to describe our approach to
determine gx. Once gx is found, we just need one more fast Poisson solver call to get the
solution ux. As we briefed earlier in Section 1, only O(N?log N3) arithmetic operations
for a mesh of IV grids points are required.

3. Discretization. The uniform Cartesian grid on the cube a1, b1] x [a2, ba] X [a3, b3] where

Problem (I) is defined given by:
Ti=a1+th, yj=ax+jh, zx=a3+kh, 0<i<0,0<;<m,0<k<n.
Here, for convenience, we assume that the mesh size h is given as
ho=((b1 —a1))/(l = ((b2 — a(2)))/m = ((b3 — a3))/(n.))

From the IIM, it is known that the discrete form of (2.4) can be written as

Lhuijk=—£i+cz]k, 0<i<,0<j<m,0<k<n, (3.7)
ik
where
def i1k T Uitljk + Uij—1k + Uigrik + Uijk—1 + Uijkt1 — Ouyk
Lijruwir = 52 :

(3.8)
is the discrete Laplace operator using the standard seven point stencil. Note that if a grid
point (z;, y;, zx) happens to be on the interface, then fijk and B;jy, are defined as the limiting
values from a pre-chosen side of the interface. For regular grid point, the correction term
Ci;ji 1s zero. For irregular grid points, Cjj, is computed with the IIM. Then, a fast Poisson
solver, for example, a fast Fourier transformation (FFT), or a multigrid solver can be applied
to solve (3.7).Let the control points be Xy = (Xk, Yi, Zx),k = 1,2,,n., where n. is the
number of the control points. Then any quantity defined on the interface can be discretized.

For example, we denote the discrete vector forms of w, ¢ and g by

bl

W = (’LU]_,'UJQ, T 7wllc>T

Q = (CIIJIZ,' o aqnc)T

.}

G = (91,92;‘ o )gnc)T
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where

wy, = w(Xy) = w(Xp, Y, Zi),
ak ~ q(Xi) = (X, Yk, Z1),
9k = 9(Xk) = 9(Xk, Yk, Zk).
The solution U of Problem (II) depends on G and W continuously. When W = 0,G =
0,the discrete linear system for Problem (II) is
AU =F,
which is the standard discretization of a usual Poisson problem. For non-homogeneous W

or G, the discrete linear system of problem (II), in matrix-vector form is
AU +¢y(W,G) = F, (3.9)

where (W, G) is a mapping from W and G to Cji’s in (3.9). We also know that (W, G)
depend on the first and second derivatives of w, and the first derivatives of g, where the
differentiation is carried out along the interface. At this time we do not know whether
such a mapping is linear or not. However in the discrete case, as we will see later, all the
derivatives are obtained by interpolation values of w or g on those control points. Therefore,

Y(W, G) is indeed a linear mapping and can be written as
Y(W,G) = BG — B,W, (3.10)
where B and B; are two matrices with real entries. So (3.9) becomes
AU+ BG=F +B W =F, (3.11)

where F is defined as F + B;W.
The solution U of the equation above certainly depends on G and 1/ we are interested in

finding G* which satisfies the discrete form ot (3.2b)
BYUS(G) - B7U, (G*)-Q =0, (3.12)

Later on, we will discuss how to use the known jump G, and sometimes also @, to inter-
polate U to get U,; and U, in detail. As we will see, U,; and U, depend on U, G, and Q

linearly, which implies

BtUf -B U, —Q=FEU+DG+PQ-Q
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— EU + DG - PQ. (3.13)

where E, D, P, and P are some matrices, and P = [ — P. Combining (3.11) and (3.13),
we obtain the system of linear equations for U and G

A B U F

= (3.14)

E D G PQ
Now the question is how to solve (3.14) efficiently. We will solve for G and U in turn using
the most updated information.
Solving for U is one fast Poisson solver call if 3 is piecewise constant. The question is how

to solve for G efficiently. Eliminating U from (3.14) gives us a linear system for G
(D—-EA™'B)G =PQ-EA"'F =0, (3.15)

where @ is defined as PQ) — EA~'F. This is an n. X n. linear system for G, a much
smaller system compared to the one for U. The coefficient matrix is the Schur complement
of D in (3.14). In practice, the matrices A, B, E, D, P and the vectors @, F are never
explicitly formed. They are merely used for theoretical purposes. Therefore an iterative
method is preferred. Especially, note that the Schur complement is not symmetric, then
GMRES iterative method will be employed to solve the Schur complement system.Also
note that if 5 is continuous, the coefficient matrix of (3.15) is invertible since £ = 0 and
D=1

4. A weighted least square approach for computing interface quantities from a grid
function. When we apply the GMRES method to solve the Schur complement system
(3.15), we need to compute U,; and U,S with the knowledge of U. This turns out to be a
crucial step in solving the system of linear equations. Below we will describe a least square
approach to interpolate U,;” and U,}.

Let u be a piecewise smooth function, with discontinuities only along the interface. For a
given point X = (X,Y, Z) on the interface, we want to interpolate u(z;, y;, 2x),0 < 7 <
[,0 < j <m,0 <k < n,to get the normal derivatives u,, (X) and u; (X).

The approach is inspired by Peskin,s method [14] in interpolating a velocity field to get the

velocity of the interface using a discrete 0-function. The continuous and discrete forms are

the following
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a X ) = ///u(:r,y,z)é(X —x)0(y — Y)I(Z — z)dxdydz, (4.1)

u(X) ~ h3 Y wirbn(X — 20)6n(Y - y5)0n(Z — 2x), (4.2)
ijk
where X = (X,Y, Z) is a point on the interface and ¢y, is a discrete Dirac ¢-function. A

commonly used one is

b (2) = 1/4h(1 + cos(wz/2h)), if |z| < 2h, (4.3)
0, if |z| > 2h.
Notice that dp,(x) is a smooth function of x. Peskin’s approach is very robust and only a
few neighboring grid points near X are involved. However, this approach is only first order
accurate and may smear out the solution near the interface.
Our interpolation formula for u,; (X'), for example, can be written in the following form
u, (X) =~ Z Yoty == Cs (4.4)
(¢,7,k)eN
where IV denotes a set of neighboring grid points near X, and C' is a correction term which
can be determined once ~;;x’s are known. Usually, we choose N starting with those grid
points closest to X. Therefore, expression (4.4) is robust and depends on the grid function
u;;; continuously, one very attractive property of Peskin’s formula [14]. In addition to the
advantages of Peskin’s approach, we also have flexibility in choosing the coefficient «;;x’s
and the correction term C' to achieve second order accuracy [4].
Now we discuss how to use the IIM method to determine the coefficients ;;;.’s and the
correction term C'. They are different from point to point on the interface.
We use the same idea as used in the IIM method [5]. Since one jump condition is given in

the normal derivative of the solution, we use the local coordinates at X = (X,Y, Z)

¢ z—X
n | =A| y-Y (4.5)
T z2—7Z

where A is defined in [5]. Recall that under such new coordinates, the interface can be

parameterized by

£ =x(n,7) with x(0,0) =), x,(0,0) =0,x-(0,0) =0 (4.6)
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provided the interface is smooth at X = (X,Y,Z). It is easy to check that, when S is
piecewise constant the interface relation in [5] for Problem (II) can be reduced to

ut =u" 4w,

ug = ug + 9,

Ut = uy + gy,

uf =ur +gr,

+ — —
Upr = Upr — ggm- = Wyt

Uspy = Uy = &y + Wan,
uj:n = u;n - gé-ﬂ? + Wrn, (47)

ug;l = “gn + w77£7l77 & wanT + gn,
ug_T = uﬁ_T + wnéur + waT‘r + 9-,
,uzfg = ug€ + g(ém; + 57‘7‘) + [%:I = Wy — Wrr.

Let (&;,n;, ) be the £ — n — 7 coordinates of (x;,y;, zx), then by Taylor series expansion

[5,13], then we get

w(&isnj, Tk) R w A+ ugki + uyn; + U, Tk + 1/2u££§i2 + 1/2Um;77]2' +1/2u,. 78 + Ug, &Ml
+U§T£i7—j + Uy 1i T (4.8)
where + and - sign depends on whether (&;,7);, 73,) lies in the + or - side of the interface I".

Expressing + values by - values and collecting like terms, we get

u, (X) ~ aju™ +agu™ + azug + a4ug’ +asu, +asu,; +aru; +aguf + agUge + amug6

n

+ an1Uyy + a12u, + a13uy, +anguf + a15Ug, + ‘116U§+,7 +airug, + algug

+ a19u,, + agoty, — C + O(h® max [y |), (4.9)

where the coefficient aj’s can be found in [9]. After using the interface relations in (4.7),
we get

Uy (X) = (a1 + az2)u™ + (ug + aa)ug + (as + ag)u, + (a7 + ag)uy + (a0 + ato)uge +

(a11 + a12)uy, + (@13 + ara)ur; + (a15 + a16)ug, + (a17 + a1s)ug, + (a19 + a20)uy, +

aglu] + asfue] + agluy) + as[ur] + aroluge] + ar2{um] + a14[urrlais(uey) + aisluer] +

ago[tyr] — C +O(h® max |yijkl), (4.10)

On the other hand, we know u,, = u, . Therefore, we have the system of linear equation
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for%jk’s

4

a1 +ay =0

az+ag =1

as+ag =0

a7+ag =0

ag+ap=0

QT (4.11)

a1 +a;e =0
a3 +ay =0
ajs +aie =0

a7 +aig =0

ayg+ag =0

If the system of linear equations (4.11) has a solution, then we can obtain a second order
approximate to the normal derivative u;, (X) by choosing an appropriate correction term C'.
The above linear system has ten equations. So the set of neighboring grid points /N should
be large enough such that at least 10 grid points are included. -Usually we take more than
10 grid points and the above linear system becomes an underdetermined system which has

an infinite number of solutions.

When we get the coefficient +;jk’s we can compute the a;’s From the a;’s and (4.10), we
can determine the correction term C' easily by

C = aalu] + aslug] + as[ug] + aslur] + aioluge] + arzfuny] + arafurr] + aigfug)
+ aislugr] + agolunr] = aw + agg + aswr + agwr + a10(9(&pm + &rr) + —wyy —
Wrr) + a12(wyy — 9€ny) + @14(Wrr — 9Err) + a16(Wném + Wrénr + geta) + ars(wnyr +
Wrrr + graw) + azo(wyr — 9&yr)- (4.12)
Therefore we are able to compute u;, (X) to second order accuracy. Similarly we can derive
a formula for w; (X) in exactly the same way, i.e., we may use the following interpolation

formula

Uy (X) ~ Zﬂjkuijk -C. (4.13)

However, with the jump condition u;f (X) = u,, (X) + g(X), we can write down a second
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order interpolation scheme for u;} (X) immediately

ut (X) Z Yijruijk — C + 9(X), (4.14)
(i,j,k)EN

where 7;51’s is the solution we computed for u,, (X).

The above least squares technique has several nice properties. First of all, it has second
order accuracy with local support. Second, it is robust. The interpolation formulas (4.4)
and (4.14) depend continuously on the location of the point X and the grid points involved,
and so does the truncation error for these two interpolation schemes. In other words, we
have a smooth error distribution. This is very important for moving interface problems
where we do not want to introduce any non-physical oscillations.

4.1 Invertibility of the Schur complement system. As mentioned in [5, 9, 13] if 3 is
continuous, the coefficient matrix of (3.15)is invertible since E = 0 and D = I. For
general cases, we can show that the coefficient matrix D — EA~! B is also invertible if h is
small enough [5,9].

We know the system of linear equations for the jump in the normal derivative G* is implic-

itly defined in the discrete form of the flux jump condition
BrUr -pU;, —Q=0. (4.1.1)

With the least square interpolation (4.4) and (4.14) described earlier, the component of the

equation above at a control point is approximated by

(BT =B7) D vijkUik T (B = (BT — B7)(as + aro(Xmm + Xrr) — Q12X — B14Xr7
(i,3,k)EN

—ag0Xnr))g+a16gn+a189r —q— (3t-8-)C =0, (4.1.2)

where
C = asw + wewy + agwr + ar([f/B] — wm — Wrr) + a12Wny + 014(Wrr — 9%rr)
+ a6 (wnémgn + wrlrr) + a18(wn&yr + wrkrr) + A20Wyr- (4.1.3)

In vector form, it is the second equation in 4.2)
EU + DG = PQ. (4.1.4)

If 3+ = 3~ then we have the unique solution for G, G = Q/B™. Assuming now Btk g,

we prove the following theorem on the invertibility of the Schur complement.
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S. Some details in implementation. The main process of our algorithm is to solve the

Schur complement system (3.15) using the GMRES method with an initial guess

0
G((O)) e {Gg( ))’ Gg(o)), . ’GES:,)))}

Our method is based on an approach that involves the following steps:

e We precondition (1.1a-b),(1.2) to get an equivalent problem before using the IIM.

e We use the IIM idea to discretize the equivalent problem and derive the Schur com-

plement system.

e We discuss the weighted least squares approach to approximate from the grid func-

tion.

e We propose an efficient preconditioner for the Schur complement system.

6. An efficient preconditioner for the Schur complement system. With the augmented
techniques described above, we are able to solve Problem (D) to second order accuracy. In
each iteration, we need to solve a Poisson equation with a modified right-hand side. A fast
Poisson solver using the FFT method, the cyclic reduction, - - - etc, can then be used. Also
we need to solve a Schur complement system. The GMRES method can be used and the
number if iterations depends on the condition number of the Schur complement system, if
we make use of both (4.4) and (4.14) to compute u;; (X) and w7 (X) the condition number
seems to be proportional to 1/h. Therefore, the number of iterations will grow linearly as we
increase the number of grid points. This is what we do not want to see in the fast augmented
IIM approach.

A simple modification in the way of computing U, and U,} seems to improve the condition
number of the Schur complement system. The idea is simple. We have the jump condition

[Bun] = ¢, which implies that if U, and U;" are exact, then
BUF - 87U =8 (6.1)
We can solve for U,;” or U,f in terms of Q, =, % and [U,,] to have

Uy = (Q - B*[Un))/ (8% — ) (6.2)
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or
U;_ = (Q - ‘/3«[(]71,])/(5_‘_ - /B—) (63)

If we independently compute U,; and U, from (4.4) and (4.14) respectively, due to errors,
usually they may not satisfy the flux jump condition. Therefore, in practice we use one

of the formulas (4.4) and (4.14) to approximate U, or U,! , and then use (6.2) or (6.3) to

n °
approximate U,f or U, to force the solution to satisfy the flux jump condition. This is an
acceleration process or a preconditioner for the Schur complement system.

Whether we use the pair (4.4) and (4.14) or the other, (4.14) and (6.2), has only a little

effect on accuracy of the computed solution and the number of iterations. In our numerical

experiment, we have been using the following criteria to choose the desired pair

Interpolation for  U," by (4.14),

Ifpt < B~ "
' - g9
Un = %‘%@T
i +
£ 5+ > 6 - Interpolation for U, by (4.4),
U- = 98¢
n 6+_,5—

7. Numerical Experiments. We have done some numerical experiments here of the 3D
fast [IM approach with different jumps which show second order accuracy of the solution.
The computations are done by using Dell Precision 690 Workstation running RHEL4, OS:
RedHat Enterprise Linux, ws release 4 RHEL4, CPU: 1 XEON 5160, 2 cores ( HT4 cores),
memory 32GB. We used the gfortrancompilier. The computational domain is [-1,1]{-1,1]{-

1,1] unless otherwise specified. We also used I=m=n in all computations.

We used the program hw3crt.f (Fishpack)[2]as the 3D fast Poisson solver, and the program
ssvde.f (Linpack) toper form the singular value decomposition (SVD) which is then used
to solve the undetermined linear system. The present version of hw3crt.f solves the stan-
dards even point finite difference approximation to the Helmholtz equation Au + ku = f

in Cartesian coordinates.

Example 7.1 Consider problem with a piecewise constant coefficient 3 and a discontinuous

source term f. The interface is a sphere 22 + y% + 2% = 1/4. The differential equation is

(ﬂuw)w + (,BUy)y +'(ﬁuz)z = f7
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with
Bt ifr<i,
ﬁ(I’y7z): . 2
g, ifr> %
68, if r<3i,
f(:vv?/’z) = o 2

68T, if r> %
Dirichlet boundary conditions and the jump conditions (2.5) and (2.6) are determined from

the exact solution and the level set function:

-2, if r< i,

= r2, if r> —;—

Le.,
[u] =2r2 = 12,
[Bun] = (8% + B7),
where r = \/mand onl;r =g =1/2
Note that there are jumps in u and Suy,.
We tested three different cases, no jump case, samall jump case, and a big jump case. The
no jump case is with 3~ = B+ = 1, the small jump case is with 3~ = 1,8t = 2 and
the big jump case is with 3~ = 1,81t = 2000. We see that the augmented approach
does accurately give the jumps in the solution and in the normal derivative of the solution,
without smearing out the solution.
Table (7.1)-(7.2) show the results of a grid refinement analysis, where 1=m=n is the number
of uniform grid points in the x,y, and z directions, respectively. The maximum relative error
over all grid points (the infinity norm) is defined as
max; j k |u(zs, 5, 2k) — u C ijk|

max; ;i k [u(Ti, Y;, 2k)|

| Enlloo = : (7.1)

where wu; j x, is the computed approximation of u(z;,;, 2x). We also display the ratio of

two successive errors and order of accuracy, respectively, as

Ratio = ||E,||/||E2n|, order = log(||En||/||E2n|)/log 2 (7.2)
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For a first order method, the ratio approaches to 2, and for a second order method, the ratio
approaches to 4. We will use the same notation for other examples in this paper.
We see that an average ratio of 4 indicates that the augmented approach is a second order

accuracy.

Figure 7.1 Plot of a slice of the computed solution —u(x,y, 0) for example (7.1) with B =
2000, 3~ =1,and [ = m =n = 52.

In Figure 7.1. The mesh size is h = 1 /26. Both the solution and the flux [Bun] are
discontinuous across the interface I'. The source term f is discontinuous across the interface
as well. The interface is a sphere and the computational domain is a unit cube [—1,1] X
[-1,1] x [~1,1]. The plot of the solution is composed of two pieces. We see that our
method does accurately give the jumps in the solution and in the normal derivative of the
solution, without smearing out the solution. The discontinuity in the solution and the flux

is captured sharply by our numerical method.
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gz ..

Figure 7.2 Error plot of the slice of the computed solution for example (7.1) with

Bt =2000,~ =1,andl =m =n = 52.

In Figure 7.2. The mesh size is h = 1/26. The largest error usually occurs at those
points which are close to the part of the interface which has large curvature. The
errors of the solution obtained by our approach are usually more evenly distributed.

The largest error in magnitude is about 0.8x 1073,

Table 7.1: The grid refinement analysis for example 7.1. Using Dell Precision

Workstation 690

n B =1 B =2 B =10 B+ = 2000
[1Enloo Ratio(order) IExll | ratio(order) llEnllo | ratio(order) |Exlle | ratio(order)
26 0.1558E-2 0.1425E-2 0.1391E-2 0.1375E-2

52 0.4162E-3 | 3.743(1.90) | 0.3665E-3 | 3.890(1.96) | 0.3592E-3 | 3.872(1.95) | 0.3554E-3 | 3.868(1.95)

104 | 0.9919E-4 | 4.195(2.07) | 0.8619E-4 | 4.254(2.09) | 0.8861E-4 | 4.054(2.02) | 0.8892E-4 | 3.997(1.99)

The coefficient B~ in Q7is 1

Table 7.1 above shows the results of a grid refinement study with errors in the infinity
norm defined over all grid points. The first column is the number of uniform grid
points in the x, y and z directions. The third column is the ratio/order of convergence
as defined in (7.2). We can see clearly an average of 4 which confirms second order

accuracy of our method.
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Example 7.2 In this example we consider a problem with a piecewise constant
coefficient 8, but variable and discontinuous source term f. The interface is a sphere

x2 + y? + z? = 1/4 and the differential equation is

(BiLe)y + (ﬂuy)y + (Bug)z = f,

with
1
ﬁ_ l'fT'<§
Bx,y,z) = 1
gt ifrzs
2
6 [ <1
B if r 5
f(x»y;z)— 1
20r2 + 282 ifr>s.

The Dirichlet boundary conditions and the jump conditions (2.5) and (2.6) are

determined from the exact solution and the level set function:

2

F 1
F, l'.f e < 'i
ulx,y.z) = 1 1 :
r* + log(2r) N > @ B
R S
Le.,
[l =0, [Bun] =48+ —2n,,
[\]

where 7 = /x2 + y2+z2andonT, r =1y = 1/2.. Note that there is no jump inu

in this example, but in the normal derivative there is.

The jump in the coefficient § depends on the choice of the constants f* and 7.
Again, We tested the different cases, no jump, small jump, and big case. Unlike in

example 7.1, the solution in this example is continuous.
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Figure 7.3 Plot of a slice of the computed solution —u(x, y, 0) for example (7.2) with
pt=1 B =1landl=m=n=>52.

In Figure 7.3 The mesh size is h = 1/26. .The solution is continuous, but the flux
[Bu,] is not. The source term f is discontinuous across the interface. The interface is
a sphere and the computational domain is a unit cube [-1,1]X[-1,1]X[-1,1]. The plot of
the solution is composed as one piece. We see that our method does accurately give
the jumps in the solution and in the normal derivative of the solution, without
smearing out the solution. The discontinuity in the flux is captured sharply by our

numerical method.
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Figure 7.4 Plot of a slice of the computed solution —u(x,y, 0) for example (7.2) with
Bt =10, B~ =1,andl=m =n=52.

In Figure 7.4 The mesh size is h = 1/26..The solution is continuous, but the flux
[Bu,] is not. The source term f is discontinuous across the interface. The interface is
a sphere and the computational domain is a unit cube [-1 ,11%[-1,11%[-1,1]. The plot of
the solution is composed as one piece. We see that our method does accurately give
the jumps in the solution and in the normal derivative of the solution, without
smearing out the solution. The discontinuity in the flux is captured sharply by our

numerical method.
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Figure 7.5 Plot of a slice of the computed solution —u(x, y, 0) for example (7.2) with
Bt =2000, B~ =1,andl =m =n =52

In Figure 7.5 The mesh size is h = 1/26. .The solution is continuous, but the flux
[Bu,] is not. The source term f is discontinuous across the interface. The interface is
a sphere and the computational domain is a unit cube [-1,1]x[-1,1]x[-1,1]. The plot of
the solution is composed as one piece. We see that our method does accurately give
the jumps in the solution and in the normal derivative of the solution, without
smearing out the solution. The discontinuity in the flux is captured sharply by our

numerical method.
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X 10

Figure 7.6 Error plot of the slice of the computed solution for example (4.2) with

B* =18 =1landl=m=n=>52.

Figure 7.6 is a plot of the error in the infinity norm of the slice of the computed
solution. The mesh size is h = 1/26. The largest error usually occurs at those points
which are close to the part of the interface which has large curvature. The errors of the
solution obtained by our approach are usually more evenly distributed. The largest

error in magnitude is about 0.8% 1073
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Figure 7.7 Error plot of the slice of the computed solution for example (7.1) with

p* =10, =1,andl =m =n = 52.

Figure 7.7 is a plot of the error in the infinity norm of the slice of the computed
solution. The mesh size is h = 1/26. The largest error usually occurs at those points
which are close to the part of the interface which has large curvature. The errors of the
solution obtained by our approach are usually more evenly distributed. The largest

error in magnitude is about 1.3x 107*
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Figure 7.8 Error plot of the slice of the computed solution for example (7.1) with

BY=2000," =1,and l=m=mn=52,

Figure 7.8 is a plot of the error in the infinity norm of the slice of the computed
solution. In this Figure where f* = 2000, = 1, we see that the error in the
solution drops much more rapidly. This is because the solution in Q* approaches a
constant as S+ becomes large, and it is quadratic in Q~. The mesh size is h = 1/26.

The largest error in magnitude is about 1.5x 107>,

Table 7.2: The grid refinement analysis for cxample (7.2). Using Dell Precision

Workstation 690.

7 B =1 Bt =2 B = 10 B+ = 2000
lExlle | Ratio(order) lEnlls | ratio(order) [IEnlle | ratio(order) [|Exlle | ratio(order)
26 0.5201E-3 0.4532E-3 0.8272E-3 0.4153E-3

52 0.1402E-3 | 3.710(1.89) | 0.1228E-3 | 3.691(1.88) | 0.1923E-3 | 4.302(2.11) | 0.1172E-3 | 3.868(1.83)

104 | 0.3757LE-4 | 3.734(1.99) | 0.3072E-4 | 3.996(1.99) | 0.6094E-4 | 4.103(2.04) | 0.3287E-4 3.997(1.83)ﬂ

The coefficient #7in Q7is 1.
Table 7.2 above shows the results of a grid refinement study with errors in the infinity
norm when [ = m =n = 52 as shown in Figure (7.6)-(7.8). Again second order

convergence is verified.
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8. Summary of the numerical experiments In this paper, based on the IIM proposed by
LeVeque and Li, 1994,[7] we have developed our 3D augmented approach which is second
order fast algorithm for elliptic interface problems with piecewise constant but discontin-
uous coefficients. Before applying the IIM, we precondition the PDE first. In order to
take advantage of existing fast Poisson solver on cubic domains, an intermediate unknown
function, the jump in the normal derivative across the interface, is introduced. Then the
GMRES iteration is employed to solve the Schur complement system derived from the dis-
cretization. Numerical experiments showed that the fast algorithm was very successful and
efficient when the coefficients are piecewise constant. From the numerical tests we have
already seen that the augmented approach is second order accurate and can deal with large

enough mesh size and large enough jumps in the coefficient.

9. Conclusions In this paper, we described a numerical method for 3D elliptic interface
problems in which the /3 coefficient, the source term, the solution and its derivatives, have
a discontinuity across the interface I'. The fast solver can only be applied to the Poisson
problems with piecewise constant coefficients. The number of iterations is nearly indepen-
dent of the mesh size and the /3 coefficients jump. More importantly, the computed normal
derivative from each side of the interface I" appear to be second order accurate. The fast
solver can be applied to Holmholtz/Poisson problems on irregular domains which may have
many applications as further work. In detail, we have presented the augmented approaches
for solving 3D elliptic interface problems and problems defined on 3D irregular domains.
Using augmented approaches, one or several augmented variables are introduced along a
co-dimensional interface or boundary. When the augmented variable(s) is known, we can
solve the governing PDE efficiently. In the discrete case, this gives a system of equations
for the solution with given augmented variable(s). Howev.r, the solution that depends the
augmented variable(s) usually do not satisfy all the interfac:: relations or the boundary con-
dition. The discrete interface relation or the boundary condition forms the second linear
system of equations for the augmented variable whose dimension is much smaller than that
of the solution to the PDE. Therefore, we can use GMRES iterative method to solve the

Schur complement system for the augmented variable(s).
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Abstract

In the paper we establish some new results depending on the comparative growth properties
of composite entire or meromorphic functions using relative L*- type and relative L*-weak
type as compared to their corresponding left and right factors.

1 Introduction, Definitions and Notations.

Let C be the set of all finite complex numbers and f be a meromorphic function defined on
C. We use the standard notations and definitions in the theory of entire and meromorphic
functions which are available in [1] and [4].

The following definition is well known:

Keywords and phrases : Entire function, meromorphic function, composition, growth, relative L*-order,
relative L™ -lower order, relative L*-type, relative L*-weak type, slowly changing function.
AMS Subject Classification : 30D35,30D30,30D20.
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Definition 1 The order py and lower order \; of a meromorphic function f are defined as

log T' log T'
pr= limsupm and \y = liminfo(r) .

r—00 log r r—oo  logr

Let L = L (r) be a positive continuous function increasing slowly i.e., L (ar) ~ L (r)
as 7 — oo for every positive constant a. Somasundaram and Thamizharasi [4] introduced
the notions of L-order and L-lower order for entire functions. The more generalised concept
for L-order and L-lower order of a meromorphic functions are L*-order and L*—lower
order respectively. Their definitions are as follows:

Definition 2 [4] The L*-order pjfz* and the L*-lower order /\Jé* of a meromorphic function
f are defined as

. log Tf (r) o . logTy(r)
L* _ f L* _ f
p§ = hTrp supIog [T@L(T)} and Xy = hgn 1nf10g [reL(’”)] .

For an entire function g, the Nevanlinna’s characteristic function 7}, () is defined as
2w
Ty(r) = %{; log™ |g(re)| df where log™ 2 = max (0,logz) for z > 0.If g is non-
constant then T} (r) is strictly increasing and continuous and its inverse T, ! : (T (0) , 00) —
(0, 00) exists and is such that lim Tg_1 (s) = oc.
S5—00

Lahiri and Banerjee [3] introduced the definition of relative order of a meromorphic
function with respect to an entire function which is as follows:

Definition 3 /3] Let f be meromorphic and g be entire. The relative order of f with respect
to g denoted by py (f) is defined as

pg (f) = inf{u>0:Tf(r)<Ty(r") forall sufficiently large r}
log T, YT (r
= limsup—g J f( ) .

r—o00 10g r

The definition coincides with the classical one [3] if g (2) = exp z.
Similarly one can define the relative lower order of a meromorphic function f with
respect to an entire g denoted by A, (f) in the following manner :

log T, YT (r
A (f) = liminfgg—f() :
r—00 log r
In the line of Somasundaram and Thamizharasi [4] and Lahiri and Banerjee [3] one
may define the relative L*-order and relative L*-lower order of a meromorphic function f
with respect to an entire function ¢ in the following manner:

Definition 4 The relative L*-order pé* (f) and the relative L*-lower order /\5* (f) of a
meromorphic function f with respect to an entire function g are defined by

. log T, 1T (r) \ log T, 1T (r)
L BT oTg "IN L — liminf——¢ -7 * 7
pg (f )—hrnf;jp log [rel(] and Ay (f) = lim inf log [rel(n)]
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To compare the relative growth of two meromorphic functions having same non zero
finite relative L*-order with respect to another entire function, one may introduce the defini-
tions of relative L*-type and relative L*-lower type of meromorphic functions with respect
to an entire function in the following manner:

Definition 5 The relative L*-type and relative L*-lower type denoted respectively by 05 ()
and Eg* (f) of a meromorphic function f with respect to an entire function g are respec-
tively defined as follows:

. T, Ty (r)
L o /
oy (f) = llggp[rexp];( D
1
L (f) = liminf Ty Tp (r) ,0< plT(f) <o0

r—00 [’I“ exp L (r)]PgL* )

Analogusly to determine the relative growth of two meromorphic functions having
same non zero finite relative L*-lower order with respect to another entire function one
may introduce the definition of relative L*-weak type of a meromorphic functions having
finite positive relative L*-lower order respect to an entire function in the following way:

Definition 6 The relative L*-weak type denoted by TQL* (f) of a meromorphic function f
with respect to an entire function g is defined as follows:

. 71T
TgL (f) = liminf 7 f(Az* ,
7—00 [7, exp L ( )] (f)

0< AV (f) <.

Also one may define the growth indicator 7'5 (f) of a meromorphic function f in the fol-
lowing manner :

. T Ty (r
?5 (f) = limsup g Tr(r)

r—oo [rexp L (r)])‘é* ()

L*
, 0< Ay (f) <o0.

In the paper we establish some new results depending on the comparative growth prop-
erties of composite entire or meromorphic functions using relative L*-order, relative L*-
type and relative , L*-weak type as compared to the corresponding left and right factors.

2 Theorems.

In this section we present the main results of the paper.

Theorem 1 If f be a meromorphic function and g,h, k be any three entire functions such
that0 <ot (fog) <ok (fog) < o0, 0<TE (f) <ok (f) < ocand pt (fog) =
pi” (f), then

9% J°9) Ty Tyog (r) _ 7 (fog)
o () T oo T (r) T o ()

1Ty, L+
< lim sup h,lf g(r) < JfLLEng)
T—00 Tk Tf (7“) O'k, (f)
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Proof. From the definition of o~ (f) and 7% (f o g), we have for arbitrary positive ¢ and
for all sufficiently large values of r that

Ty Tyeg (r) 2 (k" (fo9) —¢) [rexp L(n]h U9, (1)

and
Ty () < (oF (f) +¢) rexp L(n)F ) o)

Now from (1), (2) and the condition p~™ (f o g) = pL™ (f), it follows for all sufficiently
large values of r that,

Ty Tyeg (r) 74 (fog)—¢
Tk_le (r) = o (f)+e

As e (> 0) is arbitrary , we obtain from above that

lim inf > 3

PR ) C of () *

Again for a sequence of values of r tending to infinity,

— —L* L* o]
Ty oy (r) < (74 (f o) +2) [rexp L (r))F 9 )
and for all sufficiently large values of r,
— _I* L*

LTy () = (o () =€) rep L) O )

Combining (4) and (5) and the condition p~” (f o g) = p£” (f), we get for a sequence of
values of r tending to infinity that

Ty Tyog (1) _ T (fog)+e
T Ty (r) — o (f)—e

Since € (> 0) is arbitrary, it follows from above that

Ty, i
lim inf 2_fe9 () 7l 09) ©6)
rooe T Ty (r) ar (f)
Also for a sequence of values of r tending to infinity it follows that
* L*
77y () < (o () +¢) rep L(PE D )

Now from (1), (7) and the condition p=™ (f o g) = p£” (f), we obtain for a sequence of
values of r tending to infinity that

T, ' Trog (1) S o (fog) —e
T, ' Ty (r) — o8 (f)+e
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As e (> 0) is arbitrary, we get from above that

T, Tyey (1) _ 7 (f09)

lim su - 8
el Ty () © oF (f) ®
Also for all sufficiently large values of r ,
Ty ey (1) < (of (Fog) +2) [rexp L (r))Ph U°9) . ©)

In view of the condition pL” (f o g) = pL” (f), it follows from (5) and (9) for all suffi-
ciently large values of r that

Ty Trog (r) _ o (fog)+e
T, Ty (r) — op () -«

Since € (> 0) is arbitrary, we obtain that

limsupTh_leog (r) < % (fog)
r—00 T,;le (’l“) B Eé* (f)

(10)

Thus the theorem follows from (3), (6), (8) and (10).
The following theorem can be proved in the line of Theorem 1 and so its proof is
omitted.

Theorem 2 If f be a meromorphic function and g,h, k be any three entire functions such
thLa*IO <TE (fog) <ol (fog) < oo, 0<aE (9) <ol (9) < ccandpt™ (fog)=
px (9), then

i T L
Zh MO0 L(;fog) < lim inf 2/ (r) < UfL(*fog)
o (g) o0 Tk Tg (7") g (g)
1T, L*
< lim sup h,lf g(r) < J}LL(*fog)
r—oo Ty Ty (1) a; (9)

Theorem 3 If f be a meromorphic function and g,h, k be any three entire functions such
that 0 < oF (fog) < oo, 0 < k™ (f) < occand pt™ (f o g) = pE” (f), then

T 1Ty, L T 1Ty,
lim inf h71 fog (7) < T Lgf °9) < limsup%g(r) .
T—00 Tk Tf (T’) Oy (f) r—00 Tk Tf (T‘)

Proof. From the definition of a,f* (f), we get for a sequence of values of r tending to
infinity that

7y (1) = (of (F) =) rexp L(PE O (n

Now from (9), (11) and the condition p~” (f o g) = p£™ (f), it follows for a sequence of
values of r tending to infinity that

Ty Tyog (r) _ of (fog) +e
Tk_le(r) — ol (f)—¢
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As € (> 0) is arbitrary, we obtain that
T Ty () _ o (fo9)

lim inf 2 S 12
PR T ) o () 2
Again for a sequence of values of r tending to infinity that
— * L* o
T oy (r) > (o (f 0 g) —2) [rexp L (r)]h U9 (13)

So combining (2) and (13) and in view of the condition p£™ (f o g) = p=™ (f), we get for
a sequence of values of r tending to infinity that

Ty Tyog (r) _ ok (fog)—¢

T, Ty (r) o (f) +e
Since € (> 0) is arbitrary, it follows that
T, 'Tyo L
T T () ok (00)

T—>00 Tk Tf (7’) [ (f)

Thus the theorem follows from (12) and (14).

The following theorem can be carried out in the line of Theorem 3 and therefore we
omit its proof.

(14)

Theorem 4 If f be a meromorphic function and g,h, k be any three entire functions with
0<of (fog)<oo 0<al (g9)<ocoandpl” (fog)=pE (g), then

T, L* 7T,
lim inf hilf g(r) < Th L(*fog) < limsupihilf g(r)
T—00 Tk Tg (T‘) Oy (g) r—00 Tk Tg (1")

The following theorem is a natural consequence of Theorem 1 and Theorem 3:

Theorem 5 If f be a meromorphic function and g,h, k be any three entire functions such
that0 <L (fog) <ol (fog) < o0, 0<TE (f) <ok (f) < ocand pt (fog) =
pi (f), then
T, ' To L L
lim inf h_l fog (T) < min { O-}LLEf o g)’ Oh L(*f © g) }
roo T Ty (r) oy (f) o (f)
—L* L*
< maX{JL(*f o 9)’ oy, L(*f o 9)} < lim sup—2—
2 (f) O (f) r—00 Tk Tf (7“)

Analogously one may state the following theorem without its proof:

Th_leOg (1)

Theorem 6 If f be a meromorphic function and g,h, k be any three entire functions with
0 <7 (fog) <oy (fog) < o0 0 <y (9) <ai (9) < coand p (fog) =

pE (g), then
71Ty, L L*
lim infw < min { UiL(*f ° 9)7 o L(*f ° g)}
r—oo T T, (r) ok (9) oL (g)
< max {Uﬁ* (Fo9) 05* (Fog) } < limsupm
a Ek* (9) ‘71%* (9) T rooco T,;ng (r)
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Now in the line of Theorem 1, Theorem 3, Theorem 5 and Theorem 2, Theorem 4,
Theorem 6 respectively one can easily prove the following six theorems using the notion
of relative L*-weak type of a meromorphic function with respect to an entire function and
therefore their proofs are omitted.

Theorem 7 If f be a meromorphic function and g,h, k be any three entire functions such
that0 < 7F" (fog) <7TL (fog) < oo, 0 < 7L (f) <TE (f) < ccand \E" (fog) =
)\E (f), then

77—’%* (Fog) < lim infTh_leOg (r) < i (fog)
) T e TR () T T ()
—1 —L*
im0 (1) _ T (f09)
r—00 Tk: Tf (T) Tk (f)

Theorem 8 If f be a meromorphic function and g,h, k be any three entire functions with
0<7L (fog)<oo,0<TE (f) <ooand \E" (f o g) = AE™ (f), then

T T 7L* T
lim inf h_lf g(r) < T}LL(*fog) < limsupih_lf g (r) .
r—00 Tk Tf (7”) Ty (f) r—00 Tk Tf (T’)

Theorem 9 If f be a meromorphic function and g,h, k be any three entire functions such
that 0 < 7" (fog) <7 (fog) < oo, 0 <7 (f) <7 (f) < ocand N (fog) =
A" (f), then

o ig L Lreg (1) _ min{ThL* (fog) & (fo g)}
e Ty (r) B )
< {09 T (290 T, Moy (1)

- N o < limsup—*—
TkL (f) Tﬁ (f) r—00 Tk 1Tf (7’)

Theorem 10 If f be a meromorphic function and g,h, k be any three entire functions such
that 0 < 7" (fog) <TE (fog) < o0, 0 < 7E (9) < 7L (9) < 00 and N\ (fog) =
M (g), then

T (foyg)

Ty "Tyog (r) _ T (fo9)

— [* (
g)

r—00 Tk_ng (7") B T,

Theorem 11 If f be a meromorphic function and g,h, k be any three entire functions such
that0 < 7L (fog) < o0, 0 <TL (g9) < coand \E™ (f o g) = AL (g), then

71T, FL* T Ty,
lim inf hflf J (r) < T}LL(*f °9) < limsupihflf g (r)
T—00 Tk Tg (T‘) T (g) r—00 Tk Tg (’I“)
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Theorem 12 If f be a meromorphic function and g,h, k be any three entire functions such
that 0 < 7" (fog) <7 (fog) < o0, 0 <7 (9) <TL (9) < ocoand N (fog) =
M (g), then

T, Ty, L* I
liminf%g(r) < min{Th L(*f og), T}LL(*f ° 9)}
r—oo T Ty (r) T (9) 7L (g)
< maX{ThL* (fog) i (foy) } < limsupw
B TlgL* (9) ’ ?i* (9) T rooo Tk_ng (r)

We may now state the following theorems without their proofs based on relative L*-
type and relative L*-weak type of a meromorphic fucntion with respect to an entire function:

Theorem 13 If f be a meromorphic function and g,h, k be any three entire functions such
that0 <L (fog) <ol (fog) <o, 0 <7E (f) <TL (f) < coand pE (fog) =
N (f), then

=L* -1 —L*
70’1Lgfog) < hminfTh_leog () % L(*fo‘q)
T (f) roo Ty Ty (r) 7 (f)
T, L
< lim sup jh,_ljj: g((;) < g L(*f(;)g)
r—00 L f T Tk

Theorem 14 If f be a meromorphic function and g,h, k be any three entire functions with
0<of (fog)<oo 0<TE (f)<ocand pt (fog)=AE"(f), then

T 1Ty, L* T 1Ty,
lim inf h_l fog (r) < U}LLEf °9) < limsupih_1 fog (r) .
7—>00 Tk Tf (T‘) Tk (f) r—00 Tk: Tf (T‘)

Theorem 15 If f be a meromorphic function and g,h, k be any three entire functions such
that0 <G (fog) <ol (fog) < oo, 0 <TE (f) <TL (f) < coand pE (fog) =
A" (f), then

T e (1) {UL* (fog) of (fog)}
R ) ST A )
—L* L* -1
o, (fog) o (fog)} . T}, Tyog (r)
< max{ TkL* 7 7? G < limsup—'— .

r—00 Tk: Tf (T)
Theorem 16 If f be a meromorphic function and g,h, k be any three entire functions such
that 0 < 7" (fog) <7E (fog) <00, 0<TE (f) <ol (f)<oocand \t" (fog) =
pi (f), then

Tff (f g) .. h_leog(T) T]f (ng)
(SR ) S T ()
< lim sup h_Leo 1) T (fo9)
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Theorem 17 If f be a meromorphic function and g,h, k be any three entire functions such
that0 < 7L (fog) <00, 0 <ok (f) <ocoand \E™ (f o g) = p&~ (f), then

1Ty, 7L 1Ty,
lim inf h_l Jog (r) < Th L(*f °9) < limsupih_1 Jog (r)
r—00 Tk Tf (7") 0y (f) r—o00 Tk Tf (7“)

Theorem 18 If f be a meromorphic function and g,h, k be any three entire functions with
0 <7 (fog) <T) (fog) < 00, 0 <T (f) < of () < coand N (fog) =
P (f). then
T, Ty L 7L
lim inf h_l fog (T) < min{TL(*f Og)’ Th L(*f % g)}
roo T Ty (r) oy (f) o (f)
L 7L T, ' Tyo
< maX{TL(*f og)7 i L(*f og)} < hmsup%g(r)

o (f) o (f) r—oo Ty Ty (1)

Theorem 19 If f be a meromorphic function and g,h, k be any three entire functions such

that 0 <E£* (fog)galf* (fog)<oo,0<7',f* (9) §F£* (9) < ooandpﬁ* (fog) =
A(g), then

—L* T —L*
J;LLgfog) < limint Th_Lfo (r) < T L(*fog)
7 (9) r—oo T Ty (1) 7 (9)
_]_ L*
T Tea (1) _ ok (Fog).
r—oo Ty Ty (1) T (9)

Theorem 20 If f be a meromorphic function and g,h, k be any three entire functions with
0<of (fog)<oo 0<TE (9) < ocandpt™ (fog)=\(g), then
 Trog (1) _ of (fog) Ty Treg (1)

2 < limsu
e T, ()  7E (9) s T VT, (1)

Theorem 21 If f be a meromorphic function and g,h, k be any three entire functions such
that 0 <G (fog) <ok (fog) < oo, 0 <7t (9) <TE (g9) < coand pL™ (fog) =
A(g), then

T 1Ty, SL* L*
liminf%g(r) < min{ah L(*f ° 9)’ UiL(*f Og)}
roo Ty Ty (r) 7 (9) 7 (9)
7L* L* T_lT i
< max{a L(*f Og), UiL(*f Og)} < 1imsup%9(r)
Tk (g) Tk (g) r—00 Tk Tg ('r')

Theorem 22 If f be a meromorphic function and g,h, k be any three entire functions such
thLa*IO <TE (fog) <TE (fog) < o0, 0<TE (9) <ol (9) < ccand \E™ (fog) =
P (9). then

09 g Th Do () T (£ 09)

o (9) reoo T, (r) = T (g)

T, 7L
< lim sup h,lf g (7) < T}LL(*fog)
r—oo Ty Ty (1) o (9)
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Theorem 23 If f be a meromorphic function and g,h, k be any three entire functions such
that0 < 7L (fog) < o0, 0 <ok (9) < ccand \L™ (f o g) = p£” (g), then

71T, FL* T 1Ty,
lim inf —2 J g(r) < Th (fog) < limsupih / g(T) .

rooo ToTy(r) = of (g) r—oo T VT, (1)

Theorem 24 If f be a meromorphic function and g,h, k be any three entire functions such
thLa*IO <TE (fog) <TE (fog) < o0, 0<TE (9) <ol (9) < ccand \E™ (fog) =
P (9). then

o T T (r) {nf* (fog) & (fog)}
R ) ST R ) oF )
< max {n%* (fog) T (fog)} T ey ()

—7~ ) : < lim sup——
Ué (9) 0';];' (9) r—oo T} ng (r)
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Abstract

There are discussed the two types of norms on bicomplex modules: the norms
with real values and those with values in non-negative hyperbolic numbers. It turns
out that Hyperbolic valued norms are good compatible with the structure of bicomplex
modules. In particularly, the bicomplex valued inner products generate in a usual way:
hyperbolic, not real Valued norms. We construct bicomplex matrix norm and some

of its results as using the hyperbolic and bicomplex Hilbert spaces. In particular, it
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is considered as the Euclidean norm via positive hyperbolic numbers on bicomplex
space, and then we define and obtain matrix norm, subordinate matrix norm, an oper-
ator norm via positive hyperbolic numbers and some of its results on bicomplex space

BC.

1 Introduction and preliminaries

There exist several ways to generalize complex numbers to higher dimensions. The most
well-known extension is given by the quaternions invented by Hamilton [5] which are
mainly used to represent rotations in three-dimensional space. However, quaternions are
not commutative in multiplication. Another extension was found at the end of the 19"
century by Corrado Segre [16] who described special multidimensional algebras. This type
of number now commonly named a multi complex number. They were studied in details
by Price [12] and Fleury [4]. Bicomplex numbers, just like the quaternions, are a general-
ization of complex numbers to four real dimensions introduced by Segre [16]. These two
number systems differ because: (i) Quaternions which form a division algebra.

While bicomplex numbers do not, and (ii) bicomplex numbers are commutative, whereas
quaternions are not. For such reasons, the bicomplex number system has been shown to be
more attractive (compared to the quaternions).

Division algebras do not have zero divisors, that is, nonzero elements whose prod-
uct are zero. Many believe that any attempt to generalize quantum mechanics to number
systems other than complex numbers should retain the division algebra property. Indeed,
considerable work has been done over the years on bicomplex quantum mechanics [14].
However, in the past few years, it was pointed out that several features of quantum mechan-
ics can be generalized to bicomplex numbers. A generalization of Schrédinger equation for
a particle in one dimension was proposed [14] and self-adjoint operators were defined on
finite-dimensional bicomplex Hilbert spaces [[6],[15]].

In recent and few past years, the theory of bicomplex numbers, bicomplex functions, bi-
complex quantum mechanics, Hilbert space, norms and inner products on bicomplex mod-
ules (BC-modules) has found many applications, see for instance [[8], [13], [14], [3], [10],
[15]]. Bicomplex numbers are a commutative ring with unity which contains the field of

complex numbers and the commutative ring of hyperbolic numbers. Bicomplex (hyper-
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bolic) numbers are unique among the complex (real) Clifford algebras in that they are com-
mutative but not division algebras. In fact, bicomplex numbers generalize (complexity)
hyperbolic numbers.

In this paper, we give an overview of the fundamental theory of Euclidean norm via
positive hyperbolic numbers. A fundamental result and useful properties of this paper is
presented: the unique decomposition of any elements of our free bicomplex module y into
two elements of a standard (bicomplex) vector space v in terms of the idempotent basis
the Euclidean bicomplex matrix norm via positive hyperbolic numbers. In particular, if
we take bicomplex matrix A € M, (BC), bicomplex vector space v and a BC-module
X, then some of the results of bicomplex Euclidean normed is defined using the results of
bicomplex Hilbert space [8,15,17], and it is most useful to apply a matrix norm on the BC.
Suppose BC,,, «x., be a vector space of dimension mn, then the magnitudes of matrix A in
BC can be measured by employing any vector norm of dimension mn on BC. For example,
by stringing out the entries of A = (apq)mxn in, then suppose

11—y +ig+4102 1420 +ip —d1i2
Az =
11— —3ig+ 4100 —1+ 10 +i9 —4igin
Into the four-component vector, the Euclidean norm on R* via positive hyperbolic numbers

can be applied to writing

1A= 22+ (VT)? + (V12)? + (V19)?)% = Va2.

Whereas if z = zg+21i1+29ia+73i12, then on R* we have | 2 |= /23 + 27 + 23 + 22,
Importantly In this paper, we consider a norm on a BC- module which extends the usual
properties of the Euclidean norm via positive hyperbolic numbers on BC. Another approach
that generalizes the notion of D valued norm on BC will be considered as y be a BC- module
and let || . || be a norm on x seen as a real linear space, we say that || . || is a real valued

norm on the BC- module x if for any ¢ € BC it is defined as
o IS V2 sl ]l

Without assuming any additional relationship between them, the generalizations are impor-
tant, and give rise to large and interesting theories, we believe that there is another even

more appropriate generalization, which so far has not received enough attention.
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1.1 Bicomplex Number
Definition 1 ([8],[2]). The set of the bicomplex numbers is defined as
BC := {Zl + 2919 | 21,29 € C(’Ll)} (1.1)

where i1, 12 are the imaginary units and governed by the rules

2 =2 = —1,i1iy = igiy =4 (1.2)
and so,
0 =1,i10 = liy = —ig, il = lig = —iy (1.3)
Note that we define
Clig) := {x +yiy, | i2 = —land x,y € R fork = 1,2} (1.4)

where C is the set of complex numbers with the imaginary units iy for k = 1,2. Thus
the bicomplex numbers are complex numbers with complex coefficients, which explain the
name of bicomplex, and there is a deep similarities in properties of complex and bicomplex
numbers.

With the addition and the multiplication of two bicomplex numbers defined in the obvious
way, the set BC makes up a commutative ring. In fact they are the particular case of the so
called multicomplex numbers (denoted by MC ).

Clearly the bicomplex numbers.
BC = Cl¢(1,0) = Cle(0,1) (1.5)

are unique among the complex Clifford algebras in that they are commutative but not divi-

sion algebras. It is also convenient to write the set of bicomplex numbers as
BC := {xo + x191 + Tt + x34 ’ X0, T1,T2,T3 € R} (1.6)

We know the complex conjugation plays an important role for both algebraic and geometric
properties of C. So for bicomplex numbers there are three possibilities of conjugations. Let
z € BC and z1, z9 € C(i1), such that z := z1 + 2212, then we define the three conjugation

as.:

2= (2‘1 + ZQiQ)JHl =Z1 + z219 (L.7)
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ZT2 = (21 -+ ZQiQ)Ti? = z1 — 2219 (1.8)

ZT?’ = (Zl + ZQ’iQ)Te = Z1 — Z9l9. (1.9)

These three kinds of conjugation all have some of the standard properties of conjugations,

such as
(21 + 29) Tk = 2% + 2Jr (1.10)
()1r = 2 (1.11)
(21.29) T = 2f% 2", (1.12)

We know that the product of a standard complex number with its conjugate gives the square
of the Euclidean metric in R?. Thus the analogues of this, for bicomplex numbers, are the

following. Let z1,z9 € C(i1) and z := z1 + 2219 € BC, then we have:

| 2 | = 22T = 27 + 25 € C(in) (1.13)
| 2 |122: 2.2t = (| 21 |2 — | 29 ]2) + 2Re(z1Z2)io € C(ig) (1.14)
| z |§: 2218 = (| 21 ]2 + | 29 |2) —2Im(z122) €D (1.15)

Where D is the subalgebra of hyperbolic numbers, and is defined as
D:={z+yl| > =12,y €R,} = Clg(0,1) (1.16)

Note that for z1, zo € C(i1) and z := z1 + 2912 € BC, we can define the usual (Euclidean

in R*) norm of z via D™ - valued modulus as | z |= \/| z1 |2 + | z2 |> = \/Re(| 2 |?). It is

s t . .
easy to verifying that z. ‘z |22 = 1. Hence the inverse of z is given by
i1

ZTZ
z

(1.17)

=T
| 2 |i1
Idempotent basis

Bicomplex algebra is considerably simplified by the introduction of two bicomplex numbers
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t1 and 1o defined as 11 = #, Lo = l—sz In fact 11 and 12 are hyperbolic numbers
(i1ia = 911 = £). They make up the so called idempotent basis of the bicomplex numbers,

and one easily can check that

B =11, = 19,01+t =1,11.10 = 0, LE = (fork =1,2). (1.18)
Thus any bicomplex number can be written as
z = 21 + 2900 = a1 + Qialg, Where ap = z1 — 2911, iy = 21 + 2211. (1.19)

1.2 BC-Module

Definition 2 ([15]). The set of bicomplex numbers is a commutative ring. So, to define a
kind of vector space over BC, we have to deal with the algebraic concept of modules. We
denote by x a free BC-Module with the finite BC - basis {m, | 3 € {1,2,---n} }. Hence
we have
n
X = Z%]mj | 22 € BC
1=1
And let define
n
A= szm] | € C(i1) p C x.
1=1
The set A is a free C(i1) - module which depends on a given BC - basis of x, A is a complex

vector space of dimension n with the basis {m, | 3 € {1,2,---n} }

Theorem 1 ([15]). Let x = {Z;L:1 wym, | x € BCVjye{l,2,--- ,n}} Then there exits
X117X22 € A such that X = XALl L1+ XALQ L2.

1.3 The Euclidean Norm on BC

Definition 3 ([2]). Let BC(Zl) = {(21,22) | Z1 + 2919 € BC}, BC(ZQ) = {(Z3,Z4) ’
23 + 2411 € BC} or as R* = {(xg, 21,22, 23 | T0 + 2141 + T2is + 230 € BC}. Then the
Euclidean norm on BC connected to the properties of bicomplex numbers via DT - valued

modulus as follows:

lzl= 3+t taitad=VIa Pt laP=vI=P = /Re|z
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It is easy to prove using the triangle inequality that for any z and & in BC

|2 (< V2] 2] €].
Definition 4 ([2]). Let x be a BC- module and let || . || be a norm on x seen as real linear
space. We say that || . || is a real-valued norm on the BC-module x if for any k. € BC, we

have | ke |< V2| k|| 2]

1.4 Bicomplex Hilbert Space

Definition 5 ([2],[6]). Let x be a free BC-module with finite BC-basis. Let also (.,.) be a
bicomplex scalar product defined on x. The space {x, (.,.)} is called a BC-inner product

space.
Definition 6 ([2],[6],). A complete BC-inner product space is called a BC - Hilbert space.

Theorem 2 (Bicomplex Schwarz Inequality). Let N1, No € ¥, then

| (Re, Re) [<] (R, R1)Z (Re, Ro)Z [< V2 || Ry | Ra || -

1.5 Bicomplex Polynomials

Definition 7 ([8]). Let z = z1 + 29i9 = a1 + aiaty be a bicomplex number, where oy =
(21 — 2211), g = (21 + 2241) and vy, 1o are idempotent basis and let Py, := 6pt1 + Ypt2 be
bicomplex coefficients forp =0, --- ,n. Then f(z) := Zzzo PpzP is called the bicomplex

polynomial and written as

n n

f(z) = Z(époﬁ)bl + Z(’Ypag)m = fi(a1)u + fa(az)ea.

p=0 p=0
If we denote the set of all v\ and ro distinct roots of f1(a1) and fa(az) by p1 and pa,
and if we denote by p the set of all distinct roots of polynomial f(z), then f(z) has (r1.72)
distinct roots and it is easy to see that p := p1t1 + pato and so the structure of the zero set

of a bicomplex polynomial f(z) of degree n is fully described by [2].

1.6 Bicomplex Matrices

Definition 8 ([2]). The set of m x n matrices M, x,(BC) with bicomplex entries, is de-

noted as A = {(alj),l <l <m1< 35 < TL} = .,4171'2/,1 + AQ’iZLQ = Al,ilbl +
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A i, Lo, is called bicomplex matrix, where Ay i, , A2.i, € Mpmxn(C(i2)) and Ay iy, A2y €
Mnsn(C(i1)).

Definition 9 ([2]). let A := {(aij) € Muxn(BC)} = Ai1 + Aato and Av = \v which
is equivalent to

Arvr = Aoy,

Aovg = Agvs.
Then X is called the eigenvalue of the bicomplex matrix A corresponding to eigenvector
v where \ := Ait1 + Aoty € BC and v = vyt + vate. If X is not a zero divisor and
vy # 0,v9 #£ 0 then X is an eigenvalue of A if and only if \y and )2 be an eigenvalue of

A1 and Ay corresponding to eigenvector of v1 and vs.

2  Main Results

In this section we consider a norm on a bicomplex module which extends the usual prop-
erties of the Euclidean norm via D - valued normed on BC and we generalize it on matrix
norm via D - valued normed in bicomplex space BC. Another approach that we generalizes
the notion of subordinate matrix norm on bicomplex space BC. Suppose x be BC-module
and || . || be a norm on x, seen as a real linear space, then we know || . || real valued norm

on BC-module x and for any ¢ € BC, we have
lso < V2 |l 5|l 2.1

And if x1, x2 are linear spaces in C(i1) or in C(iz) such as x = x1t1 + X2t2, in addition
assume that x1 and y2 are normed spaces with respective norms || . |[1,|| . ||2 . Then for

any ¢ = G1¢1 + Sate € X, we have

1
I the= 5/l I+ xe 1 2

Applying the basic results of above and importantly using the results (2.1) and (2.2) we
do the following definitions and theorems, and give rise to large and interesting results,
which will be vital for future advancements. We believe that there is another even more

appropriate generalization, which so far has not received enough attention.
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Definition 10. Ler A = {(A111 + Ast2) € Myxn(BC)} be any bicomplex matrix defined
on bicomplex module-x (BC module- x), and || . || be a norm on defined on BC — R*. In

addition assume that Ay, As are normed spaces with respective norms || . ||1, 9, then
for any »x = 3111 + 919 € X, we define the norm on A as
I 3¢ la= =/l 20 12+ 1 222 1. 23)
\/5 1 2

Theorem 3. Let A € My, (BC) be any bicomplex matrix defined on BC module-x, and
= {5011 + 910 € X | 51,500 € x1 0r X2}. Then for any ¢ = {111 + (ate € BC |
C1,C2 € C(i1) or C(iz)} we have

| o la< V2 C || 5 [la (2.4)

Proof. Clearly we have

[ Colla = | (Cire)er + (Cosea)ea [l 4

1
= Vlam i+l I3

1
= SVIG P R+ 16 B

< VIJIGR+IGR I
= VE[C]

O]

Corollary 1. Let A = {A1t1 + Azto, A1, As € Miypun(C(i1)) or Myxn(Cl(iz))} be
any bicomplex matrix on M, (BC) and x = x1t1+ Xat2 be bicomplex module. Then the
Euclidean norm of A is defined on x if and only if the Euclidean norms of Ay and Ao are
defined on x1 and X2, then we have || A ||,= %\/H Av |12, + | Az [I2,, where || A Iy,

X2’

|| A2 ||y, are as usual Euclidean norm in complex space My, xnC(i1) or My xnC(i2).

Proof. Easily can be do. O
1+ 2 2i 1+ 249 24 1+ 2i0 24
Example 1. A = 2 2 = 2 ? L1+ ? 2 Ly =
11 3+7 11 4 11 2
.Al L1 + .AQLQ

Clearly we have || Ay ||y, = v26, || A2 ||y.= V14, | A= V20.
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Theorem 4. Let M,,(BC) be BC-module, and let || . || be a norm on M,,(BC) seen
as a real linear space, we say that || . || is a real valued matrix norm on the BC-module

M, (BC), then for any bicomplex matrix A € M,,(BC) satisfying the following properties.

(i) || A |l=0ifand only if A = 0;

(i) | A< V2| al|l Al forany o € BC;

(iii) |

() | ABl<vV2 ANl Bl
Proof. (i)

(AA) = (A + Aseg, A + Aag)
= (A + Ao, Arer) + (Arer + Aaig, Aseo)
(Avr, A + Azeo)™ + (Agtg, Arer + Azig) ™
(A1L1 Ar)¥ 4 (Arn, Azeo) T + (Agig, An)T + (Agig, Aain)™
= A0 A, AT+ e (A, AT 00 (Agig, AT+ 0 (Agig, Ag)Te
= LleLl(Al,Al)“ + LQ fu1( A, Ag)Te + Ly LQ(A2,A1)“ + LQ ‘19(As, Ag)Te
= 1 (Ar AT+ (A, Ag)T
= (A, A1) + 2(Az, A2)
[(AA? | = [ (AL A)a | + ] (Ar Az |
A AL et [ Az || e

Clearly if || A ||= 0, then A = 0, and converse is trivially.
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1) Leta = a1 +ag12 | a1, an € C(11), a'* = o — asia, a.a't =| a |7, then we have

@A) || = | (aA ad) |
= [ (aal(4,A))z |
= [(laf? (A A) |
= | Jal (447
= | Jald Al |
< V2| Jall A
= V2lal [|A]

@A) || < V2lal [|A].

(iii) Let A = Ajt1 + Agte, B = Byt + Bats

|A+B| = |(A+B,A+B): |
= | ((A1 + Bi)uy + (As + Bo)ia, (A1 + Bi)ug + (As + By)io)? |
(Ay + Bi, A1+ B2 | e+ | (As + B, Ag + B2)2 | 1a
| (A+B), || v+ || (A+B), || 12|
| Ay + By || at | A +Buy || 2|
1

1
= 5l A.+B, 12 t14 || Ay, + By, ||? 12)2

S

< %(I! Auy [P+ 1 Buy [Py + () Asy 12+ 1 By (12 12))2
= | (P A T+ 1Biy e+ (A |+ 11 By (e |
= | (M A et ([ A2 [ e2) + (I By | et [ B | e2) |
= [[Al+18B]
lA+Bl < [A[l+I[B].

(iv) From the complex Schwarz inequality in (C(i1), C(i2)), we have

| (A,B) [<|| A|lll B, VA,B € M, (C(i1)) or M,,(C(iz)). Therefore if we take
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A, B € M,,(BC), we obtain

[ (A,B)| =

A, B)y + (A, B)is |

L1 Ll)Ll + (ALZ’BLQ)[’2 ’
1
= (| (AL17BL1) ‘ L+ | (AL278L2)52 |2)2

(
(A1L1 + Asgto, Bit1 + BQLQ)Ll + (.A1L1 + Aogto, Byt + BQLQ)LQ |
(A
1

S

1
(H A P Bo) 7 at I A 121 Bio) 17 02)2

| A I Buy [ eat (A (I Bis ] 2 |

Sl =SSl

| (A (et 1A T e2)( Buy [ eat [ Bus ] e2) |

V3 (II A 2 at 1A, P Lz)%(H B I a+t || By |12 22

. . )2 |
= V2| AlllB|

IAB| < V2 AllB] .

Theorem 5. Let A, B € M,,(BC) and || . || be norm on M,,(BC), then we have || AB ||<
V2 LAl B |l if and only if || AiBy [|<]| A [l By || and || AsBs [I<]] A2 [[| B |l
Where A = {Aj11 + Aata | A1, Ay € M, (C(i1)), or Mp(C(i2))} and B = {Bit1 +
Bato | By, Ba € M, (C(i1)), or M, (C(i2))}.

Proof. Let| AB||[< V2| All|| B . Then

|AB|? < 2[A|*B|?
| A1By |12 11+ || AoBo ||? 12 - 2(|| Ap |1 o+ || Az |2 L2)(|| By | v+ || By |2 ‘2
2 - 2 2

| ABy 1P a4 || AeBe [P < | Ad [P By |12 et || Az 1P Be |f? ce.

This implies that || AyBy [|<|| Ay [|]| By || and || A2Bs [|<]| Az [l Bz | -
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Similarly conversely

| ABL 2t || AeBe P2 < | AL P By 1P a+ [ Az [IP]] Bz |1 e
| A1By |12 11+ || AoBo ||? 12 | Av 2] By H2L N | Az |1?]| Bo ||2L2

<
2 = 2 ! 2
_ (MALP et A2 [P e2) (Ul By | eat | Ba |I? e2)
2
_ LA 12 01+ || Az |17 w2) (|| By ||? e+ || Ba |2 t2)
9 2
|AB|? < 2[A|*B|?
|AB| < V2| A||B].

O

Proposition 1. Let A € M, (BC) and || . || be norm on M,,(BC), then we have following

results.

(@) A< 2% AR, A <2 AT F fork=2,3,- -

(ii) If A2 = A, then || A ||> %

(iti) If A is nonsingular, then | A™* ||> % W) Al

(i) | 11> 2% fork =23,

(v) If Ais orthogonal, then || A ||| AT ||> L, where AT denotes the transpose of A.
Proof. (i) Can be prove inductively easily.

(i) || A |=]l A% ||< V2 || A ||?. This implies that the prove.

(i) || I|=]| AA" < V2] All|| A~" ||. This implies that the prove.

(iv) Inductively as (i).

(v) Using AAT =T = AT Aand || I ||> %, then easily can be prove.
O

Definition 11. Let A = {A11 + Aova | A1, Az € Mipysen(C(41)) or Mipxn(C(i2))} be
any bicomplex matrix on My, xn(BC), and x be a bicomplex module. Then || A ||, is the
smallest real number satisfying the inequality || Av |< V2 || A |||| v || for all v € BC.

This is called the operator norm of A.
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Theorem 6. Let A = {Aj11+ Azta | A1, Az € Mysn(C(i1)) or Mopxn(C(i2))} be any
bicomplex matrix on My, (BC). Then the operator norm on A is define iff norm of Ay
and As are defined. i.e,

I Av < V2 Al v =l Avor [I<IAL Tl I Asve 1Az (] o2 |-

Proof. We have || Ajvy [|<|[ A1 [[[| v1 [, || Agva [|<]] A2 [|[| vz ||
| Aoy |2 a+ [ Az [P e < AP o 1P at [ Az 7] oz 12 e
| Avoy [|2 e+ || Agvs ||? 02 < A 12 v1 12 o1+ || Az [12]] 2 || 02
2 - 2
AP at [ Az [P 2y o 1Pt [l o2 |12 e
| Av|? < 2 ) )
2 2
[Av|? < 2 AP v|?
[Av] < V2 A|lv] -
Similarly conversely can be do easily. O

Theorem 7. Let A, B € M,,(BC) be any bicomplex matrix on bicomplex Hilbert module-
X, then

[<AB><V2IANIB] . (2.5)

Proof. Let  is the direct sum of x,, and y,, as they are in M,,(C(i1)) or M,,(C(i2)) are

complex Hilbert spaces on C. Then we have

|<.A,B>| = ‘<A1L1+A2L2,B1L1+82L2 >’

= [<udAL,ubBl >y, ut <l B>y, |

1
= ﬁ\/k 1AL, 1By > i |2 + |< 19 A2, 1982 >XL271.1 |2

XLl,il XLl,il XLQ,il XLQ,il

1
S ﬁ\/ﬂ wAL 2 uBi ]2 A 2| 2B |2

1
_ 2 2 2
< SV2IAR (B, + 105 R,,)
= V2l A[lB]
Sl<AB>| < VE[A|IB.
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Theorem 8. let A, B € M, (BC) be bicomplex matrices and suppose A satisfying the
inequality of the operator norm as given || Av ||< /2 || A |||| v ||. Then for any bicomplex

vectors v, € BC", we have

(i) I A]|>0,and || A ||=0ifand only if A = 0;

@) [ A+BIl<[ Al + B

>

@iii) [| A ||=[ | || A

, for a € C(iy) or in C(ig);

@) v A< VZIy] A

, for v € BC;

v) I AB < V2| AllB

’

(vi) I A=l AT |l

(vid) || AAT [|=|| ATA =] A

2.

(viii) | (Av,0) [< 2| Al[| v [[[[ 9]

Proof. (i) If || A ||= 0 then for all v € BC" we have
lAv < V2| Alllv]=0

:= Av = 0 := A = 0. And the converse part is trivially.

(i)

I(A+B)v| = [[Av+Buv <[ Av | + || Bv |
< V2 Alllv +V2 I Bl vl
= V2(l A+ B [vll

And we have || (A+B)v | V2| A+B]|v] -
Hence =| (A+B) |[<|| A+ B .
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(iii)

(iv)

I(@A) | = | (aA ad)? |

= | (aat(4,4)
= [’ (A.A)

N

[NIES

= ]l |(A.4):z |

= | 07 | | (A1L1 +A2L2,A1L1 —{—AZLQ)% |
= Ja| | (AL A7 + (Ag, As) 20 |

= ol (A a+ [ Az || e2)
= [alllAl

We have

I (A < V2IvAT (vl

And also

T v < V2 (A Il vl

2

A ||? v+ As |12 121
\/Q(HVl 1” 1 H72 2” 2)§||UH

2

u+ | v

2
% 10

)2.(

| Ap |2 e+ || A2 |12 to

|71 PILAL Pt 92 Pl A2 |2 020
vV2( )2 vl

2
< 2y| Al

(v Av (<2~

From (2.6) and (2.7) we have

v Al V2Iv] LA

I (A-B)v ||

o]l

IN

IN

A

I A(Bo) ||
V2|l All | Bu|

21 Al

1B

2

ol

[l

)7 || v

(2.6)

2.7
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(vii)

And we have || (AB)v |[< V2| AB || ||v] -
Hence ={| AB) [< V2| A [ B]l.

1
| Av|? = §(|| Aoy |2 o+ || Aova || 12)

1
@I AP on [+ 2 [ A [P v |17 12)

= A P or [P et || Az 1P] vz |7 2
= | (A, A1) | | (v1,01) | at | (A2, A2) || (v, 02) | e2
= | (Avr, A1v1) | u+ | (Agvg, Agvg) | L2

| (v, AT Avr) | u+ | (v2, A Aaw) | 12

< o IFAT Avor [ et [Foz [l AT Avos || ez
< V2( AT AL o1 |17 ek AT Az 1] vz (1P 02)
TAv | < YV2IATAL I on e+ 3/ V2 AT Az | ]| oz | e
< V2 ATA v
And we have | Av |[< V2] Al v -

Therefore := || A [|P<[| AT ||| A [l:==[| A <] AT |-
Similarly if we replace A7 by A then we have || AT [|<|| A || .
Hence || A [|=[| A" || .

Since we have
| AT Av [< V2 | ATA o< 2| AT ([ ANl vl -

Which implies that
TATA < V2 ATl AT

Replace A by A7 then we have
TAAT < V2 Al AT

Since we have || A [|=]| AT ||, || A [P=] AT ||

where

1 1
I A= ZVIAR ut T Az ooy AT 1= \/NH AT (2 04 [ AT |12 0o
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A= AT I Az lI=1AZ -
Then clearly we have || AAT ||=|| ATA | .
(viii) By bicomplex Schwarz inequality we have
| (Av,9) |=| (0, A7) [ V2 o Il AT 1< 2 | Al o Il 9] -
O

Definition 12. Let || . || be any norm on BC", we define the function || . || on M, (BC) by

1 || Av || 1
Al= sup —= = sup —= || Av ||.
Il veBC V2 vl vercn v2 I A
0#0 [v]|=1

The function A —|| A || is called the subordinate matrix norm or operator norm induced
by the norm || . || .
It is easy to check that the function A —|| A || is indeed a norm, and by definition, it
satisfies the property

I Av [[< V2] Afllv ], Yo eBC"

This implies that
IAB (< V2| Al B, YA B € My (BC"),
which showing that A —|| A || is matrix norm.

Theorem 9. The bicomplex subordinate matrix norm is a bicomplex matrix norm and we

have || Av |[< V2 || Al v ||, Yo € BC™
Proof. We prove the results given in Theorem 4 on subordinate matrix norm on BC.

(i) Firstly we have to show that, || A ||= 0 if and only if A = 0.
We have [| A [|= Ay [| eat [ Az [| 22

1
sup — || Av || = sup |[Avr ]+ sup || A0z || 2
veBC™ \/§ v €C™ v €C™
llvll=1 [lvil=1 [luz]]=1
= sup Al [lvillex+ sup [[ A2 | [[v2] 2
v €C™ v €C™
lu1l|=1 llvz|l=1
= ([ Al | A2 [l e2)  sup (o || o+ || w2 || e2).

v1,02€C
llosll,[lvz[|=1

Clearly if || A ||= 0, then A = 0, and converse is trivial.
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Al = sup — | (aA)v |

A
n
o

o

)

R

<

IN

sup V2| A |ull
veBC™
llvll=1

I Al V2lal [[A]l.

IN

(i)

1
A+B|| = sup —
| | veBC" V2

[[vll=1

I (A+ B |

1
sup —
veEBC™ Vﬁi

[[ofl=1

sup ([ All[[v [+ I B[l v )
veBC™
lvll=1

= sup ([[A|+[BI) vl
veBC™
loll=1

[A+B[ < [Al+]B]-

IN

(I Av [ + [ Bu )

IN

I AB ||

I (AB)v |

I
w
e
o

IN

sup || AB ||| v ||
veEBC™
lvll=1
sup V2 | Al Bl v |
veEBC™

[[vll=1

IAB| < V2l AlIB] .

IN

Theorem 10. Let the norm || . || is a subordinate norm on M,,(BC) and A € M,,(BC)

i) 1= 25
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(ii) If Ais invertible, then || A% ||> (|| A|))~L.

(iii) Iflim, o0 || A™ ||= 0, then lim,, o0 A™ = 0.

() I-A)IT+A+ A2+ + AY) =1 — AL,

) If|| All=¢ < 1, then 332, A® is convergent.

i) If|| A l|l=¢ < 1, then (I — A)~ exits and (I — A)~' =322 A%

(vii) If A,B € M,,(BC) and A is invertible, then A — (B is invertible for sufficiently
small | ¢ | .

Proof. For (i) we have

1) LI Tv] L) L= 2
= sup — = sup — ||Iv||= sup —=||v|=—.
vEBC™ \/5 | vl vEBC™ \/5 veBC™ V2 V2
v#£0 lv]|=1 lv]|=1
(ii) We have || AA™! ||= I, then
1 || AA4L
[ AAT = sp A
veBC"\@ | vl
v#0
< sup | A4l
vEBC™
lv]|=1
IT] < sup VEZIAIA o]
vEBC™
lv]|=1
-1 1 -1
A > S AD™

(iii)) Suppose for some increasing subsequence of powers n, — co, we have

| (A™)pq |> t. Let ey, be the standard unit vector, then we have || A" e, ||> ¢, whence,
| A" ||> t, contradicting the know limit lim,,_,~ || A™ ||= 0. Hence the conclusion
lim,, o0 A™ = 0.

(iv) Easily by induction.

(v) Let S, =T+ A+ A%+ ..+ A™ 4 ... 4+ A" Then for n > m, we have

Sn— Sm = zn: Al

i=m+1
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Hence

ISn=Sml = I D>, A
i=m-+1
n

> A

i=m+1

IN

n
< Z 2% | A|l" {from proposition 1}
i=m-+1
n .
= Y 25 ¢
i=m+1

n—m—1
_ Cerl Z 2mT+p<p

p=0

If ¢ < 1, then this implies that, {1 Z;‘;gl*l QMTJFPCP — 0}, as {¢™+! — 0},
(vi) Easily as geometric series.
(vil) We have

A—(B=A(I-CA'B).

And
ICAT B = CIITATBI< V2 [ ¢ AT BlI<1,  {as¢ <1}
Then this implies that (I — (A~!B) is invertible. Hence we have
(A—CB)t=T-CcAIB)TAL
O

Definition 13. Let A = Ajt1 + Aaiy be any bicomplex matrix and det(\] — A) = \"* —
trace(A)AN" "L+ ..+ (—1)"det(A) be the characteristic polynomial of the matrix A, where
f(A) = det(\] — A) = det(M1 — A1)y +det(Aa — Az)ia = fi(M)u + fA2)i2, A =
A1 + Aato. If fi(A1), fa(A2) having ri,ro distinct roots then f(\) has (r1.r2) distinct
roots i.e,
A1, A12, 5 Al A215A22, = A2pgy = Apy1s Arp2, - - Apy g, are the set of all eigenvalues
of matrix A and constitutes the spectrum of A.
We let

o(A) = max | Ay, |

1<t1<m
1<t2<rs
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be the largest modulus of the eigenvalues of A, is called the spectral radius of A.

Definition 14. For {i > 1} a sequence of the matrices A; = Bii 1 + Ci g L2 is converges

to a limit A; 1 iff B;;, and C;;, are converges to the limit B; 1 and C; 1. And for a matrix

norm || . ||, we have lim;_, 1 || Ai — Ai ||= 0, we write it lim;_, { o A; = A; 1 whereas
lm; si00 || Biiy, — Big ||= 0 and lim;_ oo || Cisy — Ci1 ||= O which implies that
lim; s y oo Bijiy = Bij1 and lim; o C; iy = Ci1.

Proposition 2. Let A be a matrix in M, (BC) i.e, a bicomplex matrix then the following

conditions are equivalent
(i) lim;_s 400 A' = 0;
(if) lim;_y100 A/v =0, Vv € BC";
(iii) o(A) < 1;
(iv) There exits at least one matrix norm such that || A || < 1.

Proof. (i) = (ii)

| Av || < V2 || A ||| v ||, which implies that lim;_, 1 o, A’v = 0.

(i1) = (i)

If not there would exit A and vector v # 0 satisfying Av = Av and we have | A |= o(A)
which would entail that the sequence A’v = A\’v can not converges to zero.

(7i1) = (iv)

Let || . || is some matrix norm and a vector v(# 0) € BC" which implies for any non zero

vector v, we have vv* # 0. And

Aot = Avv®
Aov® || = || Avr™ ||
V2IA o | < V2 Ao |l {as (| dov® [ V2 A or” |1}
o(A) < [[A].

(iv) = (i)
To this end consider the matrix norm such that || A [|< 1, and accordingly, || A" ||<||

A ||*— 0 when i — 400, which proves that A — 0. O
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Definition 15. Let z = {z1 + 2212 | 21,22 € C(i1)} = auq + B be a bicomplex number,
and let f(z) : U C BC — BC be a holomorphic function in U and f(z) = jzog ajzl =
;;08 wjadiy + Z;r:og @19, where aj = wjty + wjta. Then for any bicomplex matrix

A{e M,,(BC)} = Aju1 + Aagig, we define the matrix f(A) by

+00 “+oo “+o0o
FIA) = fi(ADu + fo(A2)ia = Y aj Al = wjdln + Y @A,
j=0 j=0

=0
Proposition 3. Ler A € M,,(BC), with spectral radius o(A) < 1. Then the matrix (I — A)

is nonsingular and invertible. And we have
~+00 '
(I-A)=>A
j=0

Proof. We have the convergent series (A”)j>0. We compute that

T

T=A) L 3 A= lm D NI =)= L (T A™H =1
Jj= Jj=

From Theorem 10 implies that Zj:og Al =(T—- AL O
Proposition 4. Let a bicomplex matrix A{€ M,,(BC)} = Aji1 + Aata, where Ay, As lies
in C(i1) or in C(ia). Then Zj:og Al = (I — A)~L ifand only ifz;og Al = (I — Ayt
and 720 Al = (I — Ay)~L.
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Abstract

In this paper we introduce the vector valued sequence spaces w2 (A*, F, Q, p, u, \),
wi(A* F,Q,p,u, \) and w3 (A* F,Q, p,u, \), S and S{, using a sequence of mod-
ulus functions and the multiplier sequence U = (uy) of non-zero complex numbers.
We give some relations related to these sequence spaces. It is also shown that if a
sequence is strongly Akuq -Cesaro summable with respect to the modulus function f

then it is Akuq—statistically convergent.

1 Introduction

Let w be the set of all sequences real or complex numbers and /2., ¢? and 0(2) be respectively

the Banach spaces of bounded, convergent and null sequences = (x;;) with usual norm

Keywords and phrases : Double sequences, modulus function, strong Cesdro summability, statistical

convergence.
AMS Subject Classification : 40C05, 40HO05, 46A45.
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||| = sup | xi; |, where 4, j € N, the set of positive integer.

The studies on vector-valued sequence spaces are done by Das and Chaudhary [1], Et [2]
Et at al. [3], Leonard [4], Rath and Srivastava [5], Srivastava and Srivastava [6], Tripathy et

al. [7, 8] and many others.

Let (E;j,qi;) be a sequence of semi-normed spaces such that F; 1 ;41 C Ei,j for each

1,7 € N. We define

w?(E) = {x = (v;;) : v;; € E;j foreachi,j € N} (1.1)

It is easy to verify that w?(E) is a linear space under usual coordinatewise operations de-

fined by x +y = (x;; + ;) and (ax) = (auw;j) where o € C.

[e.9] oo
Throughout the work > >~ will denote Z Z and will taken in the sense lim Z Z .

: : N—o0
i=1 j=1 2<mtn<N

Let u = (Uj;) be a sequence of non-zero scalar then for a sequence space E the multiplier

sequence space F?(U) associated with the multiplier sequence w, is defined as

F?(u) = {(zij € w1 (wijz45) € E?}

The notion of modulus was introduced by Nakano [9]. We recall that a modulus f is a

function from [0, co) to [0, co) such that
(i) f(z) =0ifandonlyifx =0
(i) f(z+y) < flz)+ fy) forz,y >0
(iii) f is increasing
(iv) f is continuous from the right at 0.

It follows that f must be continuous everywhere [0, c0), Maddox [10] and Ruckle [11] used
a modulus function to construct some sequence spaces. After then some sequence spaces

defined by a modulus function were introduced and studied by Biligin [12], Pehlivan and
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Fisher [13], Wasazk [14], Bharadwaj [15], Altin [16] and many others.

The notion of difference sequence spaces was introduced by Kizmaz [17] and it was gener-

alized by Et and Colak [18]. Let m be a fixed positive integer. Then we have

X(AF) = {z = (zy) : (AFzy) € A} (1.2)

for X =12, c? and c2 where m € N,

Afy = (AF 1z — ARy )
Az = ()
and so we have
b k
Ay = Z(—l)v . Titov,j+v (1.3)
v=0

2 Main Results

In this section, we prove results involving the sequence spaces wg(Ak,F,Q, p,u),

wi(AF, F,Q, p,u) and w2 (AF, F,Q,p, u).

Definition 2.1. Let (E;;p;;) be a sequence of semi-normed such that F; 1 j11 C Ej; for
i,7 € N. p = (pi;) be asequence of strictly positive real numbers () = (g;;) be a sequence
of semi-norms. F = (f;;) is a sequence of modulus functions and v = (u;;) any fixed

sequence of non-zero complex numbers ;.

We define following sequence spaces
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w(Q)(Ak7F7 Q7p> U) = {$ = (xij - Lij € Eij : #m Z2§i+j2§m+n[fij
(qij(uijAkxij)]pij —0asm+n— OO}

wi(AF F,Q,p,u) = {z = (i 255 € Bij - 73 0cis D inlfis

(2.1)
(qij(uijAkxij — l)]pij —0asm+n— OO}

wgo(Aka)Qapvu) = {l’ = ('I’L] P Ly € EZ] : Supm,n

A it <man L fig (@i (uig AFz5) P < oo}

Throughout the paper z will denote any one of the notation 0, 1, or co.

If f;j = fand g;; = g foralli,57 € N, we will write w?(AF, f,q,p,u) instead of
wg(Ak7 F’ Q’p’ u)'

If fy = xwand p;; = 1 and for all i,j € N, we will write w?(AF, g, u) instead of
w2 (AR, f,q,p,u).

Ifz e w%(Ak, f,q,p,u) we say that z is strongly Akuq -Cesaro summable with respect to
the modulus function f and we will write z;; — [?(w?(AF, f, ¢, p,u) and 1 will be called

Akuq—limit of x with respect to the modulus f.

The proof of following theorems are obtained by using the known standard techniques

therefore we give them without proofs.

Theorem 2.2. Let the sequence (p;;) be bounded. Then the spaces wg(Ak, F,Q,p,u) are

linear spaces.

Theorem 2.3. Let f be a modulus function and sequences (p;;) be bounded. Then

wi (A, f,q,p, u)subsetwi(AF, f,q,p,u) C wi(AF, f,q,p,u) (2.2)
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and the inclusion are strict.

Theorem 2.4. w%(Ak, F,Q,p,u) is a paranormed (need not total paranorm) space with

gA(x) = sup L Z Z [fii (i (uig AF )M

m—+n
o 2<itj<m+n

where M = max(1,sup p;;).

Theorem 2.5. Let F' = (f;;) and G = (g,;) be any two sequences of modulus functions.
For any bounded sequences p = (p;;) and t = (t;;) of strictly positive real numbers and for

any two sequences of semi-norms ¢ = (g;;) and r = (r;;), we have
Q) w (AR f,Q,u) C w(AF, fog,Q, )
(i) w2(AF, F,Q, p,u) Nw?(A*, F,R,p,u) C w(AF,F,Q + R,p,u)
(iii) w(A*, F,Q,p,u) Nwi(AF, G, Q,p,u) Cwl(AF, F +G,Q.p,u)

(iv) if g;; is stronger than r;; for each i, 7 € IV, then

wz(Ak7F7 Q?p7 u) C wz(Ak7F7 R7p7u)

(v) if g;; is equivalent to r;; for each ¢, j € IV, then

wg(AkauQapa U) = wz(Akaa R7p7 U)
(Vl) w§<Ak7F7 Q7p7 'LL) N wg(Ak7F7 Rap7u) 7é ¢

Proof. (i) We will prove (i) for z = 0 and other cases can be proved by using similar
arguments. Let e > 0 and choose J with 0 < § < 1 such that f(¢) < efor0 < ¢ < ¢ and
forall 4,5 € N. Write y;; = g(q;;(uijAFz;;)) and consider

SN i)l =D _[F i)l + > _[f (iy)] (2.4)
2

2<i+j<m+n 1

where the first summation is over y;; < d and second summation is over y;; > J. Since f

is continuous, we have

S ()] < e (2.5)

1
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By the definition of f, we have for y;; >

Flg) <2015 (2.6)

Hence

m—+n m—+n
+ + 2<i4-j<m4n

LS <) —— Y (2.7)
2

From (2.5) and (2.7), we obtain wg(Ak, f,Q,u) C w%(Ak, fog,Q,u).
The following result is consequence of theorem 2.5 (i).

Corollary 2.6. Let f be modulus function. Then

wHAF, Q,u) C WA, f,Q,u).
t“
Theorem 2.7. 0 < p;; < t;; and <”> be bounded then
Pij

wg(Ak7F7Q7t’ U) C wg(Ak7F7 Q7p7u)‘

Proof. If we take w?j = [fij(qij(ui; N*x45))]b9 for all 4, § and using the same technique of

Theorem 5 of Maddox [19] it is easy to prove the theorem.

t
Theorem 2.8. Let f be a modulus function. If tlim (fi)) = > 0 then
— 00

wi(AF,Q,p,u) = wi (AR £,Q,p, ).

Proof. Omitted.

3 AFU,—Statistical Convergence

The notion of statistical convergence were introduced by Fast [20] and Schoenberg [21]
independently. Over the years and under different names, statistical convergence has been
discussed in the theory of Fourier Analysis, ergodic theory and number theory. Later on
it was further investigated from the sequence space point of view and linked with summa-
bility theory by Salat [22], Fridy [23], Connor [24]. Mursaleen [25] Isik [26], Malkowsky

and Savas and many others. In recent years generalizations of statistical convergence have
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appeared in the study of strong integral summability and the structure of ideals of bounded
continuous functions on locally compact spaces. Statistical convergence and its generaliza-
tions are also connected with subsets of the Stone-Cech compactifications of natural num-
bers. Moreover statistical convergence is closely related to the concept of convergence in

probability. The notion depends upon the density of subsets of the set /V of natural numbers.

A subset E of N is said to be have density positive integers which is defined by 62(F)
if
2 : 1
0“(F)= lim

m4n—o0o m +n

DY xBlig) exists. (3.1)

2<i4j<m+n
where XQE is the characteristic function of E. It is clear that any finite subset of NV have zero
natural density and

§3(E%) =1-6(E).

In this section, we introduce AkUq—statistically convergent sequence and gives some
inclusion relations between AkUq—statistically convergent sequences and w%( fra,pyu)—
summable sequences.

Definition 3.1. A sequence x = (z;;) is said to be AkUq—statistically convergent to [ if
forevery e > 0

5({i,j € N : q(uijAfzi; —1) > €}) = 0. (3.2)

In this case, we write x;; — [(sf(A¥)). The set of all AFu,—statistically convergent

sequence is denoted by s (AF). In this case | = 0. We will write s{, (AF) instead of

sL(AR).
Theorem 3.2. Let f be a modulus function, then
(i) if 35 — L(w?(AF, q,u)) then zp — I(s§(AF))
(ii) if z € 12, (AFu,) and 25 — 12(sh(AF)) then z;; — 2(w?(AF, ¢, u))
(iii) sL(AF) NIZ (AFuy) = wH AR, q,u) N2 (AF, u,) where

12 (APuy) = {z € w(X) : sup q(ui; AFxij) < oo}
0,

Proof. Omitted.
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In the following theorems, we will assume that the sequence p = (p;;) is bounded and

0 <l =infp;; < pij <suppyj = H < 0.
irj irj

Theorem 3.3. Let f be a modulus function, then w? (AF, f, q, p,u) C sk(AF).

Proof. Let x € w?(AF, f,q,p,u) and let € > 0 be given. Let 3 and > denotes the sums
1 2

over i+ j < m+ n with q(u;; A*z;; — 1) > e and q(u;jAFz;; — 1) < e respectively. Then

m :- n Z Z [f(Q(UijAkxij —1))|Pi
2<itj<m+n
~m i_ n Z[f(CI(Uszkxij —1))|Pi
1
1 ..
= m+n zlj{f(ﬁ)]p”
= m:-n > min([f(e)]", [f(e)]7) (3.3)
1

TTLl-f-n’{l +i<m+n: q(UijAkxij —1) > e}l
min([£()]", [f(€)]").

Hence z € si,(AF).

Theorem 3.4. Let f be bounded, then si(AF) C w?(AF, f,q,p, u).
Proof. Suppose that f is bounded. Let e > 0 and }_ and ) be denoted in previous
1 2
theorem. Since f is bounded, there exists an integer K such that f(z) < K for all z > 0.

Then

m :- n Z Z [f(q(uij AFxy; —1))]Pis
2<i+j<m+n
=m :- n (Z[f(q(uijﬁkmij — D)+ [f(g(ug Aray — l))]p“>
! 2

< max(K", KM —— i+ < mo+ 7 alugSbas; — 1) 2
Fmax(£(9", (")

Theorem 3.5. si,(AF) = w?(AF, f, q, p,u) if and only if f is bounded.
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Proof. Let f be bounded. By theorem 3.3 and 3.4, we have

sL(AF) = wi (A, f,q.p,w).

Conversely, suppose that f is unbounded. Then there exists a sequence (t;;) of positive
numbers with f(t;;) =i+ j fori,j =1,2,..., choose
tij k=i+ji,j=12,...

wi Nz, = (3.5)
0 otherwise.

then, we have

vm+n

m-+n

I{i +5 <m+n:fugdiayl > e} < (3.6)

m-+n

for all m,n and so € s&L(AF), but x ¢ w?(AF, f,q,p,u) for X = C ¢(z) = |=| and
pij = 1 foralli,j € N, which contradicts to sE(AR) = wi(AF, f,q,p,u).
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Abstract

We use bilateral basic hypergeometric series to obtain some bilateral mock theta
functions and show that these functions are related to the basic hypergeometric se-
ries g®7. Further they satisfy the characteristic property of the mock theta functions

defined by Ramanujan. We also express them in terms of the Lerch transcendental

function f(z,&;q,p).

1 Introduction

The mock theta functions were first introduced by Ramanujan [3] in his last letter to G. H.
Hardy in January 1920. He provided a list of seventeen mock theta functions and labelled
them as of third, fifth and seventh order without mentioning the reason for his labelling.
Watson [17] added to this set three more third order mock theta functions.

His general definition of a mock theta function is a function f(q) defined by a g-series

convergent when |g| < 1 which satisfies the following two conditions.

Keywords and phrases : Mock theta functions, bilateral mock theta functions.
AMS Subject Classification : Primary 33D15, Secondry 11B65.
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1. For every root £ of unity, there exists a theta function® f¢(q) such that the difference

between f(q) and ¢ (q) is bounded as ¢ — ¢ radially.

2. There is no single theta function which works for all £ i.e. for every theta function
0¢(q) there is some root of unity £ for which f(¢) minus the theta function 6¢(q) is

unbounded as ¢ — £ radially.

Andrews and Hickerson [13] announced the existence of eleven more identities given
in the Lost note book of Ramanujan involving seven new functions which they labelled
as mock theta functions of order six. Y. S. Choi [1] has discovered four functions which
he called the mock theta function of order ten. B. Gordon and R. J. McIntosh [26] have
announced the existence of eight mock theta functions of order eight and R. J. Mclntosh [5]
has announced the existence of three mock theta functions of order two.

Hikami [11],[12] has introduced a mock theta function of order two, another of order
four and two of order eight. Very recently Andrews [14] while studying g-orthogonal poly-
nomials found four new mock theta functions and Bringmann et al [10] have also found
two more new mock theta functions but they did not mention the order of their mock theta
functions.

Watson and others have only proved the first assertion 11 and no one has proved the
second assertion 12, Watson attempted to prove 12 too for the third order mock theta func-
tions but could not do it in all its generality. Watson [16],[17], Dragonette [9] and Andrews
and Hickerson [13] have shown that all the mock theta functions defined by Ramanujan, at
least satisfy the boundedness condition 11.

Watson [17] has defined four bilateral series, which he has called the Complete or Bi-
lateral forms for four of the ten mock theta functions of order five. Further he has expressed
them in terms of the transcendental function f(x,¢;q,p) studied by M. Lerch [7]. S. D.
Prasad [2] in 1970 has defined the Complete or Bilateral forms of the five generalized third
order mock theta functions. The Complete sixth order mock theta functions were stud-
ied by A. Gupta [27]. Bhaskar Srivastava [22],[23],[24],[25] have studied bilateral mock
theta functions of order five, eight, two and new mock theta functions by Andrews [14] and

Bringmann et al [10].

*When Ramanujan refers to theta functions, he means sums, products, and quotients of series of the form

Y ones e"q“"2+b" witha,b € Q ande = —1, 1.
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N. J. Fine [6] has reduced the third order mock theta function as a limiting case of
o®; and A. Gupta [27] has reduced the mock theta functions of order five and seven as the
limiting cases of 3P, and 4P3 respectively. Shukla and Ahmad [18],[19],[20],[21] and M.
Ahmad [8] have obtained bilateral mock theta functions of order “seven”, “nine”, “eleven”
and “thirteen” and reduced them as the limiting cases of a basic hypergeometric series 4Ps3,
5P4, 6P5 and 7Pg respectively on a single base and proved that they satisfy characteristic
property 11 of the mock theta functions defined by Ramanujan.

The paper is divided as follows: In section 2 we list few important definitions. In section

3 we define the following eight functions, namely

00 Inn-1)

for(a) = Z(—l)"q(_(ij (L.1)
oo 7”(721*1> n
fiz(e) = Z(—l)”ﬁ (1.2)
> mn(n—1) 2n
For(g®) =Y (-1)m? @ qQ)Z (1.3)
i~ m(2n—2) 8n
Fir(g) =Y (-2 e q4)j (14)
Vor(q) = Y (=1)"¢™ " (—g; ) (15)
®17(¢%) =Y (1" (—gi ) (1.6)
oo 7TL2
®o,7(¢%) = Z<—1)”7(_2; . (1.7)
0 Tn(n+1)
_ _1\n+1 qg 2
Uy 7(g) = ;( D (1.8)

In section 4, we have expressed them as the limiting cases of the basic hypergeometric
series g®7 on a single base ¢, ¢® or ¢*. In section 5, we have shown that these functions
possess the characteristic property 11 of the mock theta functions defined by Ramanujan. In

section 6 we have expressed these functions in terms of the Lerch transcendental function

f(z,&q,p).
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2 Notation and Definitions

We use the following g-notation. Suppose ¢ and z are complex numbers and n is an integer.

If n > 0 we define

n—1 n n(n+1)
(z)n:(z;q)n:H(l—qz)zfn < 0and (2)_p = (z; ),n:%and
i—0 24 "

)y =
more generally (21,22, , 2; Q)n = (21)n(22)n - (2 )n-
For ‘qk’ < 1 let us define (z;q )n =(1-2(1-=2q ) (1 — 2q (”_1)), n>1

(2:¢")0 = 1 and (2; ¢") oo = limy, 00 (2;¢%)n = [T (1 — ¢*2) and even more generally,
i>0

(21)2’2 Tt Zry qk)oo = (Zl; qk)oo T (Zr; qk)oo

A basic hypergeometric series 1P, on base ¢* is defined as

o0 k
ai,az - ap (ar,a2, -+, ar;q")n2"
1@ poqhe| = ,(lz] < 1)
T b by nz:% (4% ¢%)n (b1, b2, - brs gF)n
and a bilateral basic hypergeometric series , ¥, is defined as
ai, - Qr 2 (ar, @ Q)n 2" by b
i\ 4,2 = E 7 = a( <|Z|<1)
by, --- b, = (b b a---ap

The Lerch transcendental function f(x,&; g, p) is defined by:

00 n? z&)~2n
f(x,&4,p) :Z%

3 Eight Bilateral Mock Theta Functions

In order to define the functions fo.7(q), f1.7(q), Fo.7(¢?), Fi7(¢%), Yo .7(q), ®1.7(¢?),
®0.7(¢?), U1 7(q) the following transformation of Slater given on page 142 in [15] between

7~ has been used

q q
(bl,...,b7,a,...,?7 dz ’dz’q) a, ... ,ar
7 77| ) q; 2]
(Cla-'->c7vaa"'757Q)oo bl, ,b7
(cl e gh gbr deiz _¢P ) qai qar
a1’ ""tar’ e’ 1’ g ’dclz7q N} cy1? ° e q
= TET » 45
4 a € gc gcr b b
“ (01701702 Tt er? c17""cl’q) qu17 ,%17

+ idem(cy,...,c7) (3.1)
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where d = 107 and | bibi| < |z| < 1andidem (cy, . .., c7) means that the preceding

ay--ar

expression is repeated with ¢y, . . . ¢7 interchanged.

Now taking a1, ...,a7 = 00,by = —q,bo =---=b7 =0,z = alga? in (3.1) we have
7n(n 1)
( 4 e c1- C7 C1---C75q OO qn
(c1,. .. N ..,q,qOO — (—:n

—qg2 1 Tn(n+1)
_ q (%,62_“67,6102"'67;(])00 i(_l n q 2 qTL

q9 < c1 gc2 qcr —a?
c1(1,a,a ..,g,j,-..,cl,Q)oo =~ cZ”(%;q)n
+ idem(cy,...,c7) (3.2)
. 2 .
Now taking ai,...,a7 — 00, b1 = —q,bg =+ =b; =0,z = al({_a? in (3.1) we have
q c1---C 00 Tn(n—1)
(_q7 c1-cr) lq 77q)oo Z(—l)nq 2 q2n
(Cla---,c'?a%a"'v%’qoo,m (_q’q)n
_ .2 n(n+1)
q q . 00 Tn(n+1)
i i ( ) )02...07562"'67’(])00 Z(—]_ n 4 2 q2"
_C(C 4 a o g2 €1 q) Tn(=q>.
L e e a0 g Yoo o = (TaQ)n
+ idem(cy,...,c7) (3.3)
Now taking a1,...,a7 = 00, b1 = q,bg =--- =by =0,z = in (3.1) and base

changed to g2 we have

2

q 2 _
(q,m,cl..'@ﬁq )OO i(_l)nq'ﬁl(n 1)q2n
2 2 .2
(Cl""’c7’%""’%’q2)m*00 (CLQ)n
@ 1 2 2
B qu (a7 62”.67,(] Cco - .07’q )oo i(_l 7n(n+1)q2n
o q? g% g*cr. 2 o7
a (01737%7"‘7%7 0127"'7 0177 )OO_OO n(017Q)
+ idem(cy,...,c7) (3.4)
Now taking a1, ...,a7 = 00,by = ¢%,by =---=b; =0,2 = a1q8a7 in (3.1) and base
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changed to ¢* we have

8

6 _4°  cier. 4 _
(q et LCT . g ) 00 ( 1)nq7n(2n 2)q8n
D ) e —
(01,...,07,a,...,a,q4)oo_Oo (@%q*)n
10 4
4 T T e g? > 7Tn(2n+2) ,8
qf (cl ’cz~~~c7’c2 €75 q )oo q n(2n+ )q "
- 4 4 4
c ¢ a a ¢te gter. 4 ™
Lo, &8, g e T gt) S (Cl (g
+ idem(cy,...,c7) (3.5)
Now taking a1,...,a6 — 00, a7 = —q,by = --- = by =0,z = ards in (3.1) we
have
13
(_1, q 01'“07.q) 00
cier’ ¢l2 7100 2: n_3n24+9n )
q q (_1) q (_Q7Q)n
(Cla"',c'?aaa"'ag?q)oo —00
12
—<c _49 c2--C7. 00 2
. g ( q ' cger? gil »Q)Oo (71)nq3n +15n(7q72‘ )
_01( 4 ca c1 gc2 €. o) §: o Cl’qn
’c1’c2""’c7’c1"”761’qoo—oo 1
+ idem(cy,...,c7) (3.6)
. _ 18
Now taking a1, ...,ag — 00, a7 = —q,by = --- = by = 0,2 = al-?a@ in (3.1) and
base changed to ¢ we have
( Qa Cl 7 17 ’q o' >
n 6n +12n L2
o E (=¢:¢")n
(Cla'- 67’01 '-7c7vq
17
2 —a 4 02 o0 6n2+24 3
_ qf ( q ’coer? ’q ) § :(_1)nq e n(_i.q2)
1 (Cl j a a q2C2 q cr. 2) C(lin Cl’ n
Ye1dtea? tther? e 0 er ) oo —00
+ idem(cy,...,c7) (3.7)
. T
Now taking aq,...,a7 — 00, by = —q,by = -+ =b; = 0,2 = a1(~]~-a7 in (3.1) and
base changed to ¢ we have
7
_g 4 M n2
( Q’ Cl“'C7’ ’ OO Z
2 (—a a2)
q
(Cl,...,C7,a, ..,07,(] )n
- q5 oy, o0
¢ Ghgte %t >oo S
N ¢ a o g’ q?cr. 2 Tn(_a®. 2
€1 (01761762""7077 cL ' g ! )OO —00 Cl (_61761 )’rL

+ idem(cy,...,c7) (3.8)
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Now taking aj,...,a7 = 00,by = —1,bpo =---=b; =0,2 = al}m in (3.1) we have
1 7n(n+1)

( -1, cl~~07’qcl €754 ) )n+1 q 2

q .
(017"‘767787"‘7(:7’ ) 2( q,q)n

g _1 7"(”+1>
9 (Cl ) o c7q7q C2 Ccr5 4 Z
T o q ¢ c1 g¢2 qC7 i
Cl(claaaé "75)?7"'701aq cl’q)

+ idem(cy,...,c7) (3.9)
Using Equations (3.2) to (3.9) we define the bilateral mock theta functions given by
Equations (1.1) to (1.8).
4 Bilateral Mock Theta Functions as the limiting case of a 3P~

Bilateral mock theta functions defined in Section 3 have the following relation with the

basic hypergeometric series g®7:

%) q7n(72b—l)q
forl@) =) (=1)"———
; (=@ Dn
S S . |
—limg®r[ T gy
—q, 07 70
q 4 g
72(] 11m8¢7[ t ’ b ’ ;45 t6q6:|
0 0, 0, .0
00 Tn(n—1) o
qg 2 q
firl@) =) (-)'"———+—
; (=@ Dn
S S R |
=limgdr[ T T g
—-q, 0, ... ,0
q 4
_2q 11H68(p7|: v ’ v 7 3 45 t6q5:|
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82
n(n—1) 2n
F0,7(q2) =25 (=1 (q;q2)5
1 1 _1
=limy05®7(¢?)| Y Y e e
Q’ 07 ’0
_a _a e
+ (g™ qu)IimHos%(qQ)[ ot ot ;qz;t6q11]
4N ) _1\n 77L(27L72)q8n
Fl,7(Q)—Z_oo( 1) @5 n
_1 o1 1
= limos®r(g)| " gt 1Y
¢, 0, ... 0
_a L2
+(q22—q2°)limmos®7(q4)[ ! ! ;q4;t6q22}
0, ... 0, |,
>0 2
Tor(q) =Y (1" " (—g;q)n
—0oQ
-4 ... =1 —q
:hm8@7|: t t y 45 thG]
=0 0, ... 0, ,0
1 e T
——limgq)7|: ’ ’ 345 —
2¢5 t—0 ¢, 0, .0
2
P17(q?) = D2 (=) T2 (—q; ¢*)n
a q
. ) s T T —q
=11mt—>08(1>7(q2)[ ¢ ¢ ;q2;—t6q6}
0, ... 0, ,0
ﬁhmtﬁo 8<I)7(q2)[ _q3 0 0 5 q S_fjﬁs
P 2\ e ¢ —1)" q7n2
07(6) = X (~1)"
q q? a
. R - s T TF 7
:hmt—>08q)7(q2)[ ! v "iq ;—%}
—q, Oa 70
_¢ _ ¢ —§
—(¢%+4¢") limy_y0 s®7(q?) ¢ ¢
0, 0, ;0
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00 7n(n+1)
q 2
Wir(g) = Y (-1
@ ;,2( ) 2(=¢; q)n
1 _Q’ _Q’ ’_Q
= { limger[ gt
2\ t=0 —q, 07 ,0
_4 _4g —q
+hm8<I>7[ v Tv ’ 545 _t6:|
t—0 O7 07 70

S Behaviour of the Bilateral Mock Theta Functions in the neigh-

bourhood of the unit circle

The property of a mock theta function which Ramanujan regarded as their characteristic
property was as follows: Corresponding to each “rational point” ¢ = etk (with h and
k integers) of the unit circle |g| = 1, there exists a theta function of ¢ whose difference
from the given mock theta function is bounded when g approaches this rational point along
a radius of the circle. The goal of this section is to show that the functions defined by
Equations (1.1) to (1.8) satisfy the characteristic property given by Ramanujan and hence

may be deemed as mock theta functions.

A rational point ™% on the unit circle is called a point of the first category if h is even
and k is odd, a point of the second category if i and k are both odd and a point of the third

category if h is odd and £ is even.

Theorem 1 For approach to |¢| = 1 along a radius of the first category ®¢ 7(q?) =
O(1).

Proof. We have,

) n 7n2
(1’0,7((12) = Zfoo(—l) (_qq;qz)n
0o n q7n2 oo n q7"2 oo n q7"2
=20 (=1) (—¢:3%)n +227 (=) —aa)-n 20 (1) (—:4%)n
_a a2 3
ra ' T

—(¢% + ¢") limy—0 s®7(q?)
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Now let

o0 7712
n 9
To,7(q%) = -1
(@) ZO:( )(_Q;q2)n
e
0 )
Letq = pe”i(%), R(p) > 0and p — 1— so that
o0 2 mi(2)7n?
p'" ek
To7(¢?) = —1)" : (5.1)
0,7(¢) Zo:( )H?:1(1+p2r_lem(%)(2r_1))

Putting n = uwk + v, we can partition the above sum in the residue classes mod & so

that, we have

k—1 oo 7(uk+v)? Wi(ﬁ)7(u/€+v)2
P e™\ %
To 7(q2) = E E (_1)uk:+v ‘
) - : . ; _

v=0 u=0 H;L:Tv(l + p2r le i(3)(2r 1))
k—1 oo

) o (5.2)
v=0 u=0

So,
Goutl | _ prHE 2D (5.3)
o [t |1+ pQTfle“i(%)(%fl)‘

Next we estimate the denominator of (5.3) using the inequality given by Andrews and

Hickerson [13] for 0 < R’ < R < 1and |z| = 1 whichis |1 + Rz| < /& |1 + R'z|.

So,
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uk+k+v k
H ‘1 i p2r—167ri(%)(27‘—1)‘ _ H ‘1 i p2r+2uk+2v—1€ﬂi(%)(2r+2uk+2v—1))
r=uk+v+1 r=1

k
— H ‘1 X p2r+2uk+2v71em’(%)(2r+2’ufl)‘

r=1

k
> Hpr+uk—1’1 +p2v+1€ﬂi(%)(2r+2v—1)‘
r=1

(R/ _ p27"+2uk+2v—1’ R= p21)+1)
k
_ pw H ‘1 n p2v+1€ﬂ'i(%)(27’+2v71)‘

r=1
kE(2uk+k—1)

(since 1 + p2”+1eﬂi(%)(2r+2v—1)

runs through
the roots of [(z — 1)* — pFZv+1)))

> pg(zuk+ks—1) (5.4)

Hence from Equations (5.3) and (5.4) we get

p7k(2uk+2v+k)

Ay | p

Ay u+1

k(uk+k—1)
2

< pk(lguk+14u+%+§)

IN

e<1 (5.5

Hence ), a,, is uniformly convergent.
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k—1 oo

Tor (@) <D “lavl

v=0u=0
LS
= Qy,0
1_61):0

Aot |1y emibn

- IL [ e
- Yoo ™

(=TI [+ e

=0(1) (5.6)

for fixed k as p — 1—. Now the second function on the right of the <I>0,7(q2) in Equation
(??) is a bounded function of g since g®7 is convergent for |q| < 1. Hence ® 7(¢%) = O(1)

when ¢ lies on the radius of the first category. O
Theorem For approach to || = 1 along a radius of second category ®¢ 7(—¢*) = O(1).

Proof. When ¢ lies on the radius of the second category —q lies on the radius of first cate-

gory. Hence from the proof of Theorem ?? we conclude that ®¢ 7(—q?) = O(1). O
Similarly it can also be proved that

1. For approach to |g| = 1 along a radius of first category fo7(q) = O(1), fi7(¢q) =
O(1), For(g?) = O(1), Fiz(q") = O(1), ¥17(q) = O(1) and

2. For approach to |¢q| = 1 along a radius of second category fo7(—¢q) = O(1),
fia(=q) = 0Q1), For(=¢*) = O(1), Fiz(—=¢") = O(1), ¥17(—q) = O(1)

Theorem For approach to |q| = 1 along a radius of third category ®; 7(¢?) = O(1)
and ¥y 7(q) = O(1).

Proof. Since on the unit circle if ¢ = pe”(%) with h odd and k evenand 0 < p < 1, ¢
approaches the circle along a radius of third category when p — 1— hence we give different

treatments to the functions ®1 7(¢*) and ¥ 7(q).
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®17(¢%) = Ziooo(—l)”q(i”Q*lQ”(—Q' @*)n
— Zo ( )n 6n? +12n( ) +Zl (_ )n 6n2 —12n( Q;QQ)—n

= S (=)o 12 (—g; ¢2) — s limy 0 807(g)

_§7 _§7 s 7_q7 7
o e
—-q°, 0, ... ,0
Now let
> 2
krr(@®) = (1) P (— g5 4°)
0
0o n
2
— Z(_l)nqﬁn +12n H(l + q27~—1)

0 r=1

Let ¢ = pe™ mi(%) and p — 1— (where h is odd and k is even) so that

0o n
k177(q2) — Z(_l)np6n2+12nem'( )(6n2+12n) H 1 +p2r 1omi %)(27‘71))‘
0 r=1

Putting n = 2uk + v, we have
h
kl,?( ) ZQk 1 Zu 0P 6(2uk—+v)? +12(2uk+v)eﬂ'z(E)(G(Zuk+v)2+l2(2uk+v))

T[22+ (1 4 p2r = emi(B) -1y = SISy (say)

Therefore
a 2uk+v+2k n
‘%ﬂ‘ _ p24k(2uk+k+v+1) % H ’(1 +p2r—167rl(g)(2r—1))" (5.7)
v, r=2uk+v+1

Further we calculate

|
_ H ‘1 +p (4uk+2v4+2r—1) ﬂz(%)(4uk+2v+2r—l)‘

71 ’1 +p 4uk+2v+2r—1)6m(%)(2v+2r71)’

_ Hiil [1 + 2p(4uk+2v+2r—l) cos(2v + 2r — 1)% + p(Suk+4v+4r—2)]%'

Since when 5 < o < 1 we have

1+ 2acosf + a? < 1+ 2B cosf + B>
o B B
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hence we get,

2k
H ‘1 +p(2r+4uk+2v—1)ewi(%)(2v+2r—1)‘
r=1
2k L )
< H [p2r—4k(1 n 2p(4uk+2v+4k—l) oS j(zv +or—1)+ p(8uk+4v+8k—2))] 3
- k
r=1
2k
:p—k(%—l) H ‘(1 +p(4k+4uk+2v—1)em‘(%)(2v+2r—1))‘
r=1
Now as r runs through the values 1,2, ..., 2k the points emi(E)2v2r=1) asqume the
.. s T (2k—1)mi .
positions 1, 67,627, co,€ 3 respectively.
Hence
2%k
H ’(1 +p(4k+4uk+2v71)ewi(%)(2v+2r71)))
r=1
2k—1
_ H ‘(1+p(4k+4uk+2v—1)ei(%))‘
r=0
—1— p2k(4uk+21)—1+4k)
Thus

‘av,qul‘ < p24k(2uk+v+k+1)

Qy,u

where 0 < e < 1.
Hence ), ay, is

Also

P

< pPAkQuktvkt) )

< p48uk2+24vk+22k2+25k

—k(2k—1)

<e<l1

uniformly convergent.

—k(2k-1) (1 _ p2k(4uk+2v+4k—1))

(5.8)

(5.9)
(5.10)
5.11)

(5.12)

for@ < 33 ool = 3 ol
s > v, 1—¢ v,0
v=0 u=0 v=0
1 2k—1 v
_ Z ‘(_1)vp6v2+12vem'(%)(6v2+12v)‘ % H |1 +p2rfle7ri(%)(2r71)‘
1—e v=0 r=1
1 2k—1 v ,
6v2+12v 2r—1 _mi(2)(2r—1)| _
Sl—ezp xH‘l—l—p €™k |=0(1)

v=0 r=1
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for fixed kas p — 1—.

Hence k1 7(¢?) is bounded when g lies on the radius of the third category and the second
function on the right of the definition of @177((12) in Equation (??) is a bounded function
of ¢ for |q| < 1. Hence ®; 7(¢?) is uniformly convergent and bounded when g lies on the
radius of third category.

Similarly it can be proved that ¥ 7(q) = O(1) for approach to |¢| = 1 along the radius
of third category (i.e. h odd and k even). O

Thus Theorems 5.1, 5.2 and 5.3 confirm that the bilateral mock theta functions defined
in Section 3 satisfies the characteristics property 11 of mock theta functions defined by

Ramanujan.

6 Representation of Bilateral Mock Theta Functions as Lerch

Transcendants

The Lerch Transcendant is defined by:

= (pg)™ (w€) 2"

f(xaquap) = Z 9. 92
L (=pEE PP
This is also equivalent to
> 2
f@,&ap)= > (&pip*)ng" 2™
n=—o00

The bilateral mock theta functions defined in Section 3 can be expressed in terms of the
Lerch transcendent by means of the following lemma.

Lemma For e = +1,

3 _ 2vy—28—46 6—2~v 2a—4 3
> S e AU V27 (=0 2T g T L q2).
n=—o0 ! n
and
R 2 . B 2=y x
> (D" (—q; g™ 7" = fiq2 477 5%, q7).
n=—oo

Proof. The proof follows from direct substitution and use of basic hypergeometric trans-

formations. O
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n(n—1)
As an example we note that fo 7(q) = 5% (~1)" L = [(ig*2, 474 ¢, q')
by taking « = 7/2,5 = —5/2, ¢ = —1, v = § = 1 in the above lemma. In this way all
other bilateral mock theta functions defined by Equations 1.1 to 1.8 can be expressed in

terms of the Lerch Transcendant.

7 Conclusion

With the above analysis and as per the definition of order of a mock theta function suggested
by Agarwal [4] ”A mock theta function defined in terms of , ;1 ®, series be labelled as of
order (2r + 1). There may be an additive term with , 1 P, series consisting of 6- products,
since they do not affect the order” it will be rational to label these functions as bilateral
mock theta functions of order "Fifteen”.Representation of these functions in terms of Lerch
transcendent may be helpful in finding their relations with the theta functions .Alternative

expressions of these functions in terms of Hecke type series may give exciting results.
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Abstract

On the basis of D-closed sets, Das and Rodrigo introduced and studied, D-continuity
and contra- D-continuity in the paper contra- D-continuous functions and strongly-D-
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1 Introduction

Levine [17][18] introduced and studied the notions of generalized closed(g-closed sets) and
semiclosed sets in topological spaces. Stone [27], Mashour et. al. [20], Sundaram[25][26]
and Das et.al.[8] introduced and studied the concepts of regular closed sets, preclosed
sets, w-closed sets and D-closed sets respectively. Balchandran et.al. [5], Sheik John [24],
Donchev [11], Caldas et.al [6], Jafari and Noiri [16]introduced and studied g-continuity, w-
continuity, contra-continuity, contra-g-continuity, contra-pre-continuity, contra-sems
-continuity respectively. Redrigo[3]and Das[8]introduced and studied D-continuity and
contra-D-continuity via D-closed sets.
The main objective of this paper is to introduce and study the new notion of D-
homeomorphism and some quotient maps, along with two new types of generalized contin-
uous functions. The concepts of homeomorphism has a wide area of application in quantum
physics where the study of the homeomorphic image of the shape has been carried out in
the absence of acceptable original space. Since the class of D-closed is wider than closed
sets of the topological space, its D-homeomorphism would generate a better homeomorphic
image of the space.

An overview of interrelationships between different kinds of closed sets and continuous

functions and some composite maps has also been discussed.

2 Preliminaries

Throughout this paper (X, 7), (Y, o) and (Z,~)will always denote topological spaces in
which no separation axioms are assumed, unless otherwise mentioned. If A is a subset of
(X, 7) then cl(A), int(A) and pre-cl(A) denote closure of A, interior of A and pre-closure
of A respectively. Throughout this paper DO(X), DC(X), RO(X), RC(X), PO(X) and
PC(X) denote the collection of D-open subsets, D-closed subsets, regular open subsets,

regular closed subsets, preopen subsets and preclosed subsets of X respectively.

Now we recall the following definitions which are useful in the sequel.
Definition 1. Let (X, T) be a topological space. A subset A of the space X is said to be,

1. preopen, if A C int(cl(A)) and preclosed, if cl(int(A) C A. [20]
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2. semi open, if A C cl(int(A) and semi closed, if int(cl(A)) C A. [17]

3. regular open, if A = int(cl(A)) and regularclosed if A = cl(int(A). [27]
Definition 2. Let (X, T) be a topological space. A subset A of the space X is said to be,

1. g-closed, if cl(A) C U, whenever A C U and U is open in X. [18]

2. generalized pre-closed(gp-closed), if pcl(A) € U whenever A C U and U is open
in X. [4]

3. generalized pre — regular-closed(gpr-closed), if pcl(A) € U whenever A € U and
U is regular open in X. [14]

4. w(§)-closed, if cl(A) C U whenever A C U and set U is semi — open in X. [1]
5. D-closed, if pre — cl(A) C z'vnt(U), whenever A C U and U is w — open in X. [1]
6. g-closed, if cl(A) C U, whenever AC U and U is openin X. [1]

7. g — semi-closed (fgs-closed), if scl(semi — closure)(A) C U, whenever A C U
and U is xg — open in X. [1]

8. g-closed, if cl(A) C U, whenever A C U and U is g — semi-open in X. [1]
The complements of above mentioned sets are called their respective open sets.
Definition 3. /8], [15], [4] A function f : (X,7) — (Y, 0) is called,

1. g-continuous, if preimage of every closed set in (Y,0) is g-closed in (X, T).

2. gp-continuous, if preimage of every closed set in (Y, o) is gp-closed in (X, T).

3. gpr-continuous, if preimage of every closed set in (Y, o) is gpr-closed in (X, T).

4. w-continuous, ‘if preimage of every closed set in (Y, 0) is w-closed in (X, T).

5. D-continuous, if preimage of every closed set in (Y, o) is D-closed in (X, T).

6. §-continuous, if preimage of every closed set in ’(Y, o) is g-closed in (X, T).

7. §-continuous, if preimage of every closed set in (Y,0) is g-closed in (X, T).
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10.

11.

12.

13.

14.

15.

16.

per fectly-continuous, if preimage of every open set in (Y, 0) is clopen in (X, 7).
D-irresolute, if preimage of every D-closed set in (Y, o) is D-closed in (X, 7).
supercontinuous, if preimage of every open set in (Y, o) is regular open in (X, ).
contra-continuous, if preimage of every open set in (Y, 0) is closed in (X, T).
contra-pre-continuous, if preimage of every open set in (Y, o) is pre-closed in (X, 7).

contra-semi-continuous, if preimage of every open set in (Y, o) is semi-closed in

(X, 7).
contra-g-continuous, if preimage of every open set in (Y, o) is g-closed in (X, 7

contra-D-continuous, if preimage of every open(closed) set in (Y,0) is D-closed

(D-open) in (X, T).

RC'-continuous, if pre-image of every open set in (Y, 0) is regular closed in (X, 7).

Definition 4. [9] A bijective function f : (X, 1) — (Y, 0) is called,

1.

5.

homeomorphism, if f is both open and continuous.

generalized homeomorphism (briefly g-homeomorphism), if f is both g-continuous
and g-open.
generalized pre-homeomorphism (briefly gp-homeomorphism), if f is both

gp-continuous and gp-open.

generalized preregular-homeomorphism (briefly gpr-homeomorphism), if f is both

gpr-continuous and gpr-open.

p-homeomorphism, if f is both p-continuous and p-open.

Lemma 1. For any subset A of X, The following  relation  hold,
pre-cl(A) = AJcl(int(A)). [1]

Lemma 2. Every §-closed set is w(§)-closed. [1]



A Study on D-Homeomorphism and Some Quotient Maps 97

3 Interrelationship

The following diagram will describe the interrelations among closed sets.

- r..
g-closed &p =
— 5 closed — flosed

/ SetS Sets\ Sets

Closed A(hat)g)-
Sets ' Closed Sets D-Closed SBts

N

p-closed sets
Proposition 1. Every g-closed set is w(g)-closed.

Proof. 1t follows from the definition. The converse of the above Proposition need not be

true as seen from the following example.

Example 1. Let X = {a,b, c,d} be any space withtopology T = {X,$,{a,b,c}, {b,c}, {c}}-
Let a be the set, which is w — closed in X, since cl{a} = {a,d} C {a,b,d} whereas
{a} C {a,b,d}, {a,b,d} is semi-open set in X. But {a} is not g-closed since there is no

open set in X, which contains cl{a} = {a,d}.

Proposition 2. Every g-closed set is D-closed .

Proof. Let (X, ) be a topological space and let A be any subset of the space (X, 7), which
is g-closed.

Claim: SetA is D-closed in (X, 7). According to the definition of the g-closed set, cl(A) C
U, whenever A C U, U is open set in X. Now by using the definition of D-closed set, set
A is D-closed, if pre — cl(A) C int(U), whenever A C U,U is w — open in X. By
using above Lemma (1), pre — cl(4) = AU cl(int(A)). Now int(A) € A C cl(A) or
cl(int(A)) C cl(A) C dl(cl(A)) or cl(int(A)) C cl(A) = cl(A) or AUcl(int(A)) C



98 Purushottam Jha and Manisha Shrivastava

AlJcl(A) = cl(A) or pre — cl(A) C el(A) C U = pre — cl(A) C U, whenever A C U,
U is w — open in X. This shows that set A is D-closed. O

The converse of the above Proposition need not be true as can be inferred from the

following example.

Example 2. Let X = {a,b,c,d} be any space with topology
T = {X,¢,{a,b,c},{a,b}, {b}}.
Let {c} be the set, which is D-closed in X, but it is not g-closed in X, since pre — cl{c} =
{c} and there is an open set {a, b, c} in X which is also w open in X such that pre—cl{c} =
{c} C int{a,b, c}, whenever {c} C {a,b,c}.

Claim: Set {c}is not g-closed. Since cl{c} = {c,d} and there is no open set containing
{c,d}.

= Set {c} is not g-closed.
Proposition 3. Every gp-closed set is D-closed set.

Proof. Let (X, T) be a topological space and let A be any subset of the space (X, ), which
is gp-closed.

Claim: Set A is D-closed in (X, 7). According to the definition of the gp-closed, set,
pcl(A) € U whenever A C U, U is open set in X. Since pcl(A) C U or pcl(A) C int(U),
as U is open set. Now since every open set is w — open, so pcl(A) C U, whenever U is

w — open, which shows that A is D-closed. O

The converse of the above Proposition need not be true as can be inferred from the

following example.

Example 3. Let X = {a, b, c,d} be any space with topology
T ={X,¢,{a,b,d},{b,c}, {b}}. Let {a,c} be a set which is D-closed in X, but this is not

a gp-closed in X, because there is no open set in X, containing {a, c}.
Proposition 4. Every gpr-closed set is D-closed.

Proof. Let (X, ) be a topological space and let A be any subset of the space (X, 7), which
is gpr-closed. Claim: Set A is D-closed in (X, 7). According to the definition of the gpr-
closed set, pcl(A) C U, whenever A C U, U is regular open set in X. Since pcl(A) C U
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or pcl(A) C int(U), as U is regular open and every regular open set is open. Now since
every open set is w — open, so pcl(A) C U, whenever U is w — open, which shows that A

is D-closed. 0

The converse of the above Proposition need not be true as seen from the following

example.

Example 4. Let X = {a, b, c, d} be any space with topology T = {X, ¢,{a, b, c}, {b, d}, {b}}.
The set {c} is D-closed but it is not gpr-closed, because there is no regular open set in X,

which containing {c}.
Proposition 5. Every p-closed set is D-closed.

Proof. Let (X, T) be a topological space and let A be any subset of the space (X, 7), which
is p-closed. Claim . Set A is D-closed in (X, 7). According to the definition of the p-
closed set, pcl(A) C int(U) whenever A C U and U is g — open set in X. According to

the Lemma 2, every j-open set is w — open, So the set A is D-closed . O
On the basis of above results we can establish the following results for continuities.

Proposition 6. Every g-continuous function is w-continuous, but the converse need not be

true.
Proof. Proof follows directly from the definitions and Proposition (1). 0O

Proposition 7. Every g-continuous function is D-continuous, but the converse need not be

frue.

Proof. Proof follows directly from the definitions and Proposition (2). O

Proposition 8. Every gp-continuous function is D-continuous, but the converse need not

be true.
Proof. Proof follows directly from the definitions and Proposition (3). O

Proposition 9. Every gpr-continuous function is D-continuous, but the converse need not

be true.

Proof. Proof follows directly from the definitions and Proposition (4). O
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Proposition 10. Every p-continuous function is D-continuous.
Proof. Proof follows directly from the definitions and Proposition (5). O

The following diagram well illustrates the interrelations that exist among variants of
continuity that already exist in the literature. The following implications are either well

known or follow from definitions.

Perfect continuity
¥
Super continuity RC-continuity
¥
¥ +
o continuity Contra-continuity
v

y 3 y
Contra-g- Contra-pre- Contra-semi- Contra-D-
me__’ i continuity J |_continuity J|__continuity |

y y

¥

g-continuity ©-continuity || D- continuity

A 4

D-irresolute

Here none of the given implications in general is reversible.

4 Some New Continuities

Definition S. A function f : (X, 7) = (Y,0) is said to be D-RC-continuous Sunction, if

preimage of every regular closed set in (Y,0) is D-closed in (X, 7).

Example 5. Let X = {a,b,¢,d} be a space with topology

7 = {X, $,{a,b},{b}, {a,b,d}, {b, d},{d}} and a space Y = {1,2,3,4} with topology
o = {Y,¢,{1,3},{3}, {4},{1,4}, {1,3,4},{3,4}}. Then the Junction f : (X,7) —
(Y,0) defined by f(a) = 1,f (b) = 3,f(c) = 2 is D-RC-continuous but not continuous.
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Definition 6. A function f : (X,7) — (Y, 0) is said to be contra-D-pre-continuous, if the

preimage of every D-open set in (Y, 0) is pre-closed in (X, T).

Example 6. Ler X = {a,b, c,d} be a space with topology
T = {X,¢,{a,b},{b},{a,b,c},{a}} and a space Y = {1,2,3} with topology o =
{Y,¢,{1,2},{1}}. Then the function f : (X,7) — (Y, 0) defined by f(a) = 2,f(b) = 3,

f(c) =1 = f(d) is contra-pre-D-continuous but not continuous.

5 D-Closed Maps

Definition 7. A function f : (X,7) — (Y,0) is said to be D-closed map if the image of
every closed set in (X, 1) is D-closed in (Y, o).

Example 7. Let X =Y = {a,b,c,d} be the spaces with topologies

r = {X, ¢,{a,b},{b,c,d},{b}} and 0 = {Y,¢,{a,b},{a,c,d},{a}} respectively. A
function f : (X,7) — (Y,0) is defined by f(a) = b,f(b) = a,f(c) = cand f(d) = d is
D-closed map.

Example 8. Let X =Y = {a, b, c,d} be the spaces with topologies

T = {X,6,{a,b},{b,c,d},{b}} and 0 = {Y,¢,{b,c},{a,c,d},{c}} respectively. A
function f = (X,7) — (Y,0) is defined as f(a) = ¢.f(b) = a,f(c) = band f(d) = a
Then f is not a D-closed map. Since for the closed set U = {a} in (X,7)f(U) is not
D-closed in (Y, 0).

Remark 1. Every g-closed map is D-closed map, but converse is not true in general. Its

roof follows from the definition and Proposition (2).

Remark 2. Every gp-closed map is D-closed map, but converse is not true in general. Its

proof follows from the definition and Proposition (3).

Remark 3. Every gpr-closed map is D-closed map, but converse is not true in general. Its

proof follows from the definition and Proposition (4).

Remark 4. Every p-closed map is D-closed map, but converse is not true in general. Its

proof follows from the definition and Proposition (5).
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6 D-open Maps

Definition 8. A function f : (X,7) — (Y,0) is said to be D-closed map if the image of
every open set in (X, 1) is D-open in (Y, o).
Theorem 1. For any bijection map f : (X,7) — (Y,0), the following statements are
equivalent,

1. f71:(Y,0) = (X, 1) is D-continuous

2. fisa D-open map and

3. fisa D-closed map.
Progf. Let f~1is D-continuous. claim:(1) — (2). Let V' be an open set of (X, 7), by using
assumption, f ‘lﬁl(V) = f(V') is D-open in (Y, o). Therefore f is a D-open map. Now,
let f is a D-open map.
claim:(2) — (3). Let U be a closed set of (X, 7), then U° (complement of U) is open set
in (X, 7). then by assumption f(U¢) = (f(V))° is D-open in (Y, &) and therefore f(U) is
D-closed in (Y, o). Hence f is D-closed map. Let f is a D-closed map.

claim:(3) — (1). Let U be any closed set in (X, 7). According to the assumption f(U) is
D-closed in (Y, o), but f(U) = (f~1)~"1(U) and hence f~! is D-continuous. O

7 D-Homeomorphism

We introduce the following new concept of D-homeomorphism.

Definition 9. A bijective function f : (X,7) — (Y,0) is called D-homeomorphism, if the

function f and f~! both are D-irresolute.
Proposition 11. Every homeomorphism is a D-homeomorphism but not conversely.

Proof. 1t follows from the definitions. The converse of the above Proposition need not be

true as seen from the following example. O

Example 9. Let X = {a,b,c} be the space with topology T = {X,¢,{a,b},{a}} and an-
other space Y = {1,2,3} with topology o = {Y, $,{1,2},{2}). Then the bijective func-
tion f : (X,7) — (Y, 0) defined by f(a) = 2, f(b) = 3,f(c) = 1is D-homeomorphism.
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Since preimage of every closed set of Y is D-closed set in X. This shows that function f
D-continuous and therefore D-irresolute. Similarly under the mapping f -1 preimage of
every closed set of X is D-closed set in' Y. This shows that function f~! is D-continuous
and therefore D-irresolute and hence function [ is D-homeomorphism. Here both the
mappings f and f=' are not continuous and therefore not irresolute and therefore f is not

homeomorphism.

Thus the class of D-homeomorphisms properly contains the class of homeomorphisms.

Another definition of D-homeomorphism in terms of D-continuity and D-open map.

Definition 10. A bijective function f : (X,7) — (Y,0) is called D-homeomorphism, if the

function f is both D-continuous and D-open.

Example 10. Let X = {a,b, c} be the space with topology T = {X,¢,{a,b},{a}} and an-
other space Y = {1,2,3} with topology 0 = {Y,$,{1,2},{2}}. Then the bijective func-
tion f : (X,7) = (Y,0) defined by f(a) = 2, f(b) = 3,f(c) = 1 is D-homeomorphistn.
Since pre-image of every closed set in Y is D-closed set in X, i.e.The mapping f is D-
continuous and the image of any open set in X is D-openinY’, so the mapping f is D-open

map.

Proposition 12. Ler f : (X,7) — (Y, o) be a bijection D-continuous map. Then the

following statements are equivalent:

1. fisa D-open map.

2. fis a D-homeomorphism.

3. fisa D-closed map.
Proof. Proof follows fron the Theorem (1). O
Proposition 13. Every g-homeomorphism is a D-homeomorphism but not conversely.

Proof. Tt follows from completely from the Proposition (7)and Remark (2), that every

g-continuous map is D-continuous map and every g-open map is D-open map. )

Proposition 14. Every gp-homeomorphism is a D-homeomorphism but not conversely.
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Proof. 1t follows completely from the Proposition (8) and Remark (2), that every gp-

continuous map is D-continuous map and every gp-open map is D-open map. O
Proposition 15. Every gpr-homeomorphism is a D-homeomorphism but not conversely.

Proof. 1t follows completely from the Proposition (9)and Remark (3), that every gpr-

continuous map is D-continuous map and every gpr-open map is D-open map. O
Proposition 16. Every p-homeomorphism is a D-homeomorphism but not conversely.

Proof. It follows completely from the Proposition (10) and Remark (4), that every p-

continuous map is D-continuous map and every p-open map is D-open map. |

8 Different Quotient Maps

We introduce the notion of D-quotient map as a generalization of quotient map.

Definition 11. Let X and Y be two topological spaces. Let p: X =Y be surjective map.
Map p is said 1o be D-quotient map, provided a subset U of Y is D-open in'Y if and only
ifp~Y(U) is D-open in X.

There are two special kinds of maps, D-open map and D-closed map.

Definition 12. A map f : X — Y is said to be D-open map if for each D-open set U in
X, the set f(U) is D-openinY.

Definition 13. A map f : X — Y is said to be D-closed map if for each D-closed set A in
X, the set f(A) is D-closed inY.

It follows from the above definition of D-quotient map that, if P : X — Y is a sur-
Jective D-continuous map that is either D-open or D-closed, then map p is a D-quotient

map.
Lemma 3. The composites of two D-quotient maps is a D-quotient map. ORI T

The proof of the above lemma is trivially true. - i nwllieoy



A Study on D-Homeomorphism and Some Quotient Maps 105

Theorem 2. Let p : X — Y be a D-quotient map.Let Z be a space and let g : X — Ybe a
map that is constant on each set p~'(y) fory € Y.Then g induces amap f : Y — Z such
that f o p = ginduces a map f is D-continuous, if and only if g is D-continuous ; f is a

D-quotient map if and only if g is a D-quotient map.

A4

Proof. Foreachy € Y, since g : X — Y is a constant map on each set p~1(y), is a one
point set in Z. Let, if f(y) = g(p~'(y)), we have defined amap f : Y — Z such that for
eachz € X ,f(p(x)) = g(z). If f is D-continuous then g = f o p is D-continuous then
Claim: f is D-continuous. Let V be an D-open set of Z, then g~ !(v) is D-open in X. But
g '(v) = p~1(f ' (v)). Therefore p~Y(f~!(v)) is D-open in X. Since p is a D-quotient
map, it follows that f~'(v) is D-open in Y. Hence f is D-continuous. Now let f be a
D-quotient map, Claim: g is D-quotient map.
Since f : Y — Zandp : X — Y, therefore p Y f W) = (fop)Hv) = g 1 (v)
i.e. composition of two D-quotient maps g = f o pis again D-quotient map. Conversely,
suppose g is a D-quotient map and now
Claim: f is D-quotient map.
Since ¢ is a surjective map, therefore f is also a surjective map. Now we show that v is
D-open in Z whenever f~!(v) is D-open in Y.
For, since p is a D-quotient map, set p~1(f~!(v)) is D-open in X and we know that
p~'(f~'(v)) = g~} (v) is also a D-open in X and g is a D-quotient map, v is D-open in
Z.

a
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In a similar way we can introduce the concepts of g — quotient map and w-quotient

map.

9 Composite Maps

Theorem 3. If f : (X,7) — (Y,0) is contra-pre-D-continuous and g : (Y,0) — (Z,n)

is D-continuous then their composition g o f : (X, 7) — (Z,n) is contra-pre-continuous.

Proof. Let U be any open set in (Z, ). Since g is D-continuous then g~!(U) is D-open in
(Y, 0) and since f is contra-pre-D-continuous then f~1(g~1(U)) is pre-closed in (X, 7).

Hence g o f is contra-pre-continuous. O

Theorem 4. If f : (X,7) — (Y,0) is contra-pre-D-continuous and g : (Y, o) — (Z, n)

is contra-D-continuous then their composition g o f : (X, 7) — (Z,n) is pre-continuous.

Proof. Let U be any closed set in (Z,7). Since g is contra-D-continuous then ¢~ (U) is
D-open in (Y, o) and since f is contra-pre-D-continuous then f~1(g~'(U)) is pre-closed

in (X, 7). Hence g o f is pre-continuous. O

Theorem 5. If f : (X,7) — (Y,0) is D-irresolute and g : (Y,0) — (Z,n) is D-RC-
continuous then their composition g o f : (X, 1) — (Z,n) is D-RC-continuous and also

D-continuous.

Proof. LetU be any regular closed set in (Z, 7). Since g is D-RC-continuous then g~ U)
is D-closed in (Y, o) and since f is D-irresolute then f~!(g~1(U)) is D-closed in (X, 7).

Hence g o f is again D-RC'-continuous and therefore D-continuous. O
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