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Abstract

A fast, second-order accurate iterative method is proposed for the elliptic interface

problems in a cubic domain in 3D using Cartesian grids for three dimensional ellip-

tic interface problems in which the coefficients, the source term, the solution and its

normal flux may be discontinuous (may have jumps) across an irregular interface. The

idea in our approach is to precondition the differential equation before applying the

immersed interface IIM method proposed by LeVeque and Li [SIAM J. Numer. Anal.,

3l(1994),pp.1019-l044l.InordertotakeadvantageoflhstPoissonsolversonacu-

bic dornain, an intennediate unknowu functiotl of co-dirnensioll two, the jutnp in the

lormal delivative across the interface, is introduced. Our tliscretization is equivalent

to using a second-order diftbrence scheme for a corresponding Poisson equation in

the domain, and a second-order discretization for a Neumann-like interface condition.

Keywords and phrases : 3 D elliptic interface problem, discotrtinuous coefficients, irregulal domain,

Cartesian grids,immersed interface method, Schur complement, GMRES method, preconditioning.

AMS Subject Classification : 65N06, 65N50.



Elgaddafi Elamami

Thus second-order accuracy is guaranteed' Weighted least square method is also pro-

posed to approximate interface quantities from a glitl furrction.Nunrerical experitrleuts

are provided aild analyzed in this paper. The number ol iterations in solving the Schur

complement system appears to be independent of both the jurnp in the coefficient and

the mesh size. The method is designed for interface problems with piecewise constant

coefficient. The method is based on the fast immersed interface method ancl a fast 3D

Poisson solver. The GMRES iterative method is ernployed to solve the Schur comple-

lnent systeul derived tiom the discretization and is olien used to solve the aug-mentgd-.-=-

variable(s) that are only defined along the intel'face o| thc irregular boundary'

1. Introduction

In this paper, we develop a second order fast algorithln to solve three-dimensional elliptic

equations with piecewise constant discontinuous coefficients on a cubic domain' The prob-

lem can be clescribed as follows: Let O be a cubic domaitt in the R3. Consider the following

elliptic problenr o[ the fonn:

v.(B(rr.', y,z)vtt(r,y,z)) + ktL(tc,g,z): f (r,a,z),(r,9,2) e Of, (1'1o)

[,] : t';(s), l7rt,,) : u(s), on l, ( 1.1b)

with a specified boundary condition on 0f), where f (s) is an interface that divides the

domain f into two sub-domains, O+ and, O-, andun: vLt 'n is the normal derivative

along the unit normal direction n. s is the arc length parameterization of f . We use [']

to represent thc jurlp of a quantity across the inteltace f . The coeflicients 0, A;, ancl the

source tenn f tttay be discontinuous across tlte iuterlace I-. We assume thatB(:u, y, z) has a

constant value in each sub-domain,

i.e.,

0(r,v, r) : (1.2)

lf p+ : P- -- p is aconstagt, thel rve have a Poisson equations L u, : t/B tvithtbe

source distribufiorls alolg the interface that corresponds to the jumps in the solution and

dre ffux. The linite clift'erence method obtained from the iuttnersed interthce nrethod [7, 8,

lll yields the standard discrete Laplacian plus some corectiou terms to the righthand side'

Therefore, a fast Poisson solver, for example, the Fishpack [2], can be used to solve the

discrete system of equations. lt 0+ * p-, we can not divide the coefficient B from the

( p*, in 0+

[ ,-, in rt-

2



An Augmented Approach for Solving 3D Elliptic Interface Problems

flux jump condition. The motivation is to introduce an augmented variable so that we can

take advantage of fast Poisson solver for the interface problem with only singular sources.

Our approach is based on finite difference method. It is of second order accuracy and the

algorithm is fast, requiring only O(1/3log l/3) arithmetic operations for a mesh of N grid

points.The immersed interface method in this paper is concerned with numerical analysis

of elliptic interface problems in three-dimensional space. Let O be a simple convex domain

subset of R3 which is divided into two sub-domains by an irregular interface f such that

Q : O+ U O-. Consider the elliptic equation (l.la-b) and (1.2).

Assume that the coefficient B and source term / may be discontinuous across the interface

l, i.e.,

p:

f:

Q+

o-

O+

0-

{

{
ao

p+, in

Ft ln

f+, in

Irln

See Figure 1.1 for illustrations.

61+ F*,f*

Figure I .1: A cubic domain CI with an immersed interface f . The coefficients 0 and the

source term f may have jumps across the interface'

It is crucial for our approach that we have enough a priori knowledge about some inter-

face conditions. The jump conditions in equations ( 1 . t b) can be derived either by physical

reasoning or directly from the differential equation itself'

2.PreconditioningthePDEtoanequivalentproblem.Problem(I)

The problem we are interested in solving is of the form:

v(lvu): f , in Q, (2.1)

3
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lr): ,,

l7un): q,

on l,

on l,

(2.2a)

(2.2b)

with boundary conditions on 0Q. There are two main concenls in solving problem (I) nu-

rurerically. One is how to discretize it to certain accuracy. There are a ferv numerical rnethods

presented in the past few years. Most of these methods can be second order accurate in .L1

or 12 norm, but not in.Loo norm.

The other concern is how to solve the resulting linear system efficiently. Usually the number

of iterations depends on the mesh size. Also, if the jump in the coeffi cient B is large,;$*/'
the resulting linear system is ill-conditioned, and thus the number of iterationJ in solving

such a linear system is large and may also be proportional to the jump in the coefflcient.

Problem (II).

in Q+,

in Q-,

on l,

lun): g, on l,

rvith boundary conditions on 00. The key is how to find g* efficiently. Basically, we

choose an initial guess and then iteratively update it until the flux jurnp condition in (2.2b)

is satisfied-

Notice that g* is only defined along the interface l, so it two-dimensional i1 a three-

dimensional space. Problem (II) is much easier to solve because one jump condition is

given in [u,,] instead of in[Bu.].

In this paper, we are especially interested in the case that B is piecewise constant, so the

corresponding problem becomes a Poisson equation with discontinuous source term and

given jurDp conditions. Wc can then use the stundarcl seven point stencil to discretize the

Ietl-lrand side of (2.3)-(2.4), but just rnodify the righrhand side ro ger a second order finire

difference scheme, see [7,8] for the detail. Thus we can take advantage of fast poisson

solvers for the discrete system.

Here we want to compute up*) to second order accuracy. We also hope that the total cost

in computing g'r' and z1g*) is less than in computingu@*) through the original problem.

vB+Az* p1+.vu:

L,u*'0-.ru:
lJ-

lu):.,

I
p*'

f
p-'

(2.3)

(2.4)

(2.5)

(2.6)

4



An Augmented Approach for Soluing 3D Elliptic Inte.face Problems 5

The key to success is to compute g* efficiently. Now we begin to describe our approach to

determine gx. Once g+ is found, we just need one more fast Poisson solver call to get the

solution z+. As we briefed earlier in Section l, only O(lf3log,n/3) arithmetic operations

for a mesh of N grids points arc required.

3. Discretization. The uniform Cartesian grid on the cube lor, [,r] x[a2,b2) x [o3, b3] where

Problem (I) is defined given by:

rr:at*ih, Aj:az* jh, zp:a3*kh, 0 <i < 1,0< j 1m,O/-k/-n.

Here, for convenience, we assume that the mesh size h is given as

tL: ((h - "r))l(t : ((bz - ae)))lm: ((bs - "i)l(".))
From tlre IIIVI, it is known that the discrete fonn of (2.4) cul be written as

$...
Lnuij*: !:J! * Cij*,

piik
0< z<1,0<j1m,0 1k1n, (3.7)

,t-t*ut ,k+t - 6u

where

L'ijt utjt,
dd ul-t,j,x * u+\j,x * ut -\k + ui l,k + ui

(3 B)

is the discrete Laplace operator using the standard seven point stencil. Note that if a grid

point (z;, ai, zn) happens to be on the interface , then f ii6 and Biip are defined as the lirniting

values from a pre-chosen side of the interface. For regular grid point, the correction term

Ciip is zero. For irregular grid points, Ciip is computed with the IIM. Then, a fast Poisson

solver, for example, a fast Fourier transformation (FFT), or a multigrid solver can be applied

tosolve(3.7).LetthecontrolpointsbeX6:(Xx,Yx,Zx),k:1,2,,D",wheren"isthe

number of the control points. Then any quantity defined on the interface can be discretized.

For example, we denote the discrete vector fomrs of tu, g and .g by

W : (rrrlD2r... ,,t!,r")T,

Q: (qr,Q2,"' ,Qn.)T,

G : (gr,g2,"' ,gn.)T.
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where

wp x w(Xp) : ,(Xt, Y*, Zx),

qx x q(Xt,) : e(Xx,Yx, Zr),

gx x g(Xx) : 9(Xn,Yx, Zx).

The solution U of Problem (II) depends on G and W continuously. When W : 0,G :

0,the discrete linear system for Problem (II) is

AU: F,

rvhich is the staudard discretization of a usual Poisson problem. For non-homogeneous I,7

or G, the discrete linear system of problem (lI), in matrix-vector forrn is

AU+r!(W,G1 :p, (3.e)

where ,lr(W,G) is a mapping fromW and G to Ciip's in (3.9). We also know that ,/,(W,G)

depend on the first and second derivatives of tr,,, and the first derivatives of .9, where the

differentiation is carried out along the interface. At this time we do not know whether

such a mapping is linear or not. However in the discrete case, as we will see later, all the

derivatives are obtained by interpolation values of tu or g on those control points. Therefore,

',1,(W,G) is indeed a linear mapping and can be rvritten as

,/,(W,G):BG-81W,

rvhere B and Bl are two matrices with real entries. So (3.9) becomes

(3.10)

AU+BG:F*BtW:F, (3.11)

where F is defined as -F * BrW.

The solution [/ of the equation above certainly deperrds on G and I'Il rve are interested in

{inding G* which satisfies the discrete forrn of (3.2b)

p+ul(G.) - 0-u;(G-) - e: o. (3.12)

Later on, we will discuss how to use the known jump G, and sometimes also Q, to inter-

polate U to getU; andU[ in detail. As we will see, U; and Uf, depend on(J,G, and Q

linearly, which implies

P*u[ - P-u; - Q : EU + DG +PA - Q

6



An Augmented Approach for Solving 3D Elliptic Interface problems

:EU+DG-PQ. (3.13)

where E,D.P, and P are some matrices, and P - I - P. combining (3.11) and (3.13),

rve obtain the systern of linear equations for U and G

(:; 
) 

(: 
) 

: (
F

PQ
(3.14)

Now the question is how to solve (3.14) efficiently. We will solve for G and U in turn using

the most updated information.

Solving for U is one fast Poisson solver call if B is piecewise constant. The question is how

to solve for G efficiently. Eliminating [/ from (3.l4) gives us a linear system for G

(D - EA-1 B)G : PQ - EA-IF : Q, (3.15)

where @ is detined as PQ - EA-rF. This is an n. x rr" linear system for G, a muclr

smaller system compared to the one for U. The coefficient matrix is the Schur complentent

of D in (3.14). In practice, the matrices A,B,E,D,P and the vectors @,F are never

explicitly formed. They are merely used for theoretical purposes. Therefore an iterative

method is preferred. Especially, note that the Schur complement is not symmetric, then

GMRES iterative rnethod will be employed to solve the Schur complement system.Also

note that if B is continuous, the coefficient rnatrix of (3.15) is invertible since.E : 0 and

D: I.
4. A weighted least square approach for computing interface quantities fronr a grid

function. When we apply the GMRES method to solve the Schur complement system

(3.15), we need to compute U; and U,| with the knowledge of IJ. This turns out to be a

crucial step in solving the system of linear equations. Below we will describe a least square

approach to interpolate U; andU[.

Let u be a piecewise smooth function, with discontinuities only along the interface. For a

given point X : (X,Y,Z) on the interlace, rve war)t to interpolate'u,(ri,?ti,zx),0 < i <
1,0 < j 1 m,0 < k < n,to get the uormal derivatives u;(X) and'u[(X).

The approach is inspired by Peskin,s method [4] in interpolating a velocity field to get the

velocity of the interface using a discrete O-function. The continuous and discrete forms are

the following
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u(x) : I I Iu(x,,?),2)5(x - r)6(y -Y)6(Z - z)clxtlydz, (4.1)

(4.2)u(X) x, h't uiikdy(X - t)61(Y - y)6n(Z - zx),

ijk

where X : (X,Y, Z) is a point on the interface and 6l is a discrete Dirac d-function. A

commonly used one is

if lrl < 2h, 
(4.3)

it lrl2 2h.

Notice that 57r(z) is a smooth function of z. Peskin's approach is very robust and only a

few neighboring grid points near X are involved. However, this approach is only first order

accurate and may smear out the solution near the interface.

Our interpolation formula for un(X), for example, can be written in the following form

u,(X)x I %ixu,iix-C. (4.4)

(i,j,k)eN

where ly' denotes a set of neighboring grid points near X, and C is a correction term which

can be deterrnined orlce ftr'6'S are known. Usually, we choose N starting with those grid

points closest to X. Therefore, expression (4.4) is robust and depends on the grid function

u rj& continuously, one very attractive property of Peskin's formula I I a]. In addition to the

advantages of Peskin's approach, we also have flexibility in choosing the coeflicient 7ir7r's

and the correction term C to achieve second order accuracy [4].

Now we discuss how to use the IIM method to determine the coefficients 1i6's and the

correction term C. They are different from point to point on the interface.

We use the same idea as used in the IIM method [5]. Since one jump condition is given in

the rrormal derivative of the solution, we use the local coordinates at X : (X,l', Z)

(4 5)

where A is defined in [5]. Recall that under such new coordinates, the interface can be

parameterized by

I r1+ng + cosQrr/2h)),
d7r(z) : 1

[0,

(i):,(,i)

€ : X(rt,r) with X(0,0) :),X,7(0,0) : 0, Xr(Q,0) : 0 (4.6)

8



An Augmented Approach for Solving 3D Elliptic Interface Problems 9

provided the interface is smooth at X : (X,Y,Z). lt is easy to check that, when p is

piecewise constant the interface relation in [5] for Problem (II) can be reduced to

a
L.L' :U *W,

1u, : tt , l y.1 ,

Iu;t :'tllt + g|t|

au;:ur+9r,
auir=ur.7-9\qrf1Dqrt
auin : urt\ - glqn -l'tuqr1t

auln:urn-9\rntwrrl,
Iufr: ur, * u\€qr) + wr(,,, * gr,
Iu[, : ur, * unt,r * ur€,, * gr.

,u[e : uie* e(€q,r* (,,) . l$] -,u)rn -,tl,rr.

(4.7)

Let ((;, qj,rk) be the € - q - r coordinates of (16, Aj,zk), then by Taylor series expansion

[5,13], then we get

u(€t, \ j, rp) x u * u q& + u,fl j * u,rp + 7 I 2u aal? + I I 2urrnl * 7 I 2u,,rl * u qr€rrli

* uy€tri * uryWi (4.8)

where + and - sign depends on whether (€i,rb,4r) Iies in the + or - side of the interface f.
Expressing + values by - values and collecting like terms, we get

u;(X) x a1?L la2u+ *atu{ +aau[ *a5u, *a6u[ *a7u; *asuf, *asurr*a1szl,

* arpr, * aeufi * asu,, * asul, * awur, -f a6u{, * asun * a$ufr

* a$urt,-l a2sui, - C + O(h3 max lltixl), (4.9)

where the coefficient oti's can be found in [9]. After using the interface relations in (4.7),

we get

u;(x)= (ar + or)u- * (rs + on)ue * (cs + oa)ri * @z + oe)u, * (ag * a1e)ur, *
(arr + orr)u- * (qrs * ava)u,, * (rrs -f arc)urr* (on + ag)ue, * (ors * a2s)u,, *
a2lul + aa[ue] * a6lu,,l * asfu,] * a1s[ug4] -l ap[u*] ! a1alu,,fa$[ue,) + a1s[u6,] *

a2slu,T)-C +O(h3 max l''ttixD, (4.10)

On the other hand, we know ui : ui . Therefore, we have the system of linear equation



10 Elgaddafi Elamami

for 1i;3's

a1*a2:Q

a3*a4:l

05*46:Q

a7*ag:Q

o9*416:0

a11*ap:Q

413*414:0

415*a16:0

417*a1g:0

419*a2g:0

(4.11)

If the system of linear equations (4.11) has a solution, then we can obtain a second order

approximate to the normal derivative u,"(X) by choosing an appropriate correction term C.

The above linear system has ten equations. So the set ofneighboring grid points N should

be large enough such that at least l0 grid points are included.-Usually we take more than

l0 grid points and the above linear system becomes an underdetermined system which has

an infinite numhr of solutions.

When we get the coefficient 'hjk's we catt compute the atr's From the a6's and (4.10), we

can determine the comection ternt C easily by

C : az[u) + aafuq) * a6lur) * as[u"] * a16[u66] * o,p[urr) * avafu,,] * a6luq)

+ are[zC"] + a2sluq,) : a2u) + a4g *a6w, *asw, + an(9(€q,t * €,,) * -wnq -
wrr) * a12(wrq - g€n) * a14(wr, - 9€rr) * arc(wn€rn * wrtq, * g"ta) * aw(w,t$, *
u,tr, * gpu) * a2s(wtlr - g€rF). (4.12)

Therefore we ale able to conrpute r[(X) to second order accuracy. Similarly we can derive

a lbrmula for uf (X) in exactly the same way, i.e., we may use the following interpolation

fbrmula

"1|x) = I 74tuqn -e . (4.13)

However, with the jump condition u*(X) : u;(X) + g(X), we can write down a second
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order interpolation scheme for uf (X) immediately

"I(,x) t
i,i,k)€

ltixutix-c+g(x),

for Solving 3D Elliptic Interface Problems

where 11i1.'s is the solution we conlptrted for tr" (X)'

The above least squares technique has several nice properties' First of all, it has second

order accuracy with local support. Second, it is robust. The interpolation formulas (4'4)

and (4.14) depend continuously on the location ofthe point X and the grid points involved'

and so does the truncation error for these two interpolation schemes' In other words' we

have a smooth enor distribution. This is very important for moving interface problems

rvhere we do not want to introduce any non-physical oscillations.

4.1 Invertibility of the schur complement system. As mentioned in [5, 9, 13] if B is

continuous, the coefficient matrix of (3.15)is invertible since E : 0 and D : I' For

general cases, we can show that the coefficient matrix D - EA-L B is also invertible if h is

small enough t5,91'

we know the system of linear equations for the jump in the normal derivative G* is implic-

itly defined in the discrete form of the flux jump condition

p+Ul-p-U;-Q:0. (4.1.1)

wirh the least square interpolation (4.4) and (4.14) described earlier, the component of the

equation above at a control point is approximated by

W+ - 0-) t 'lrlrcutix+@+ -(P+ - g-)@a*an(X'n*x")-atzXnn-atLXrr
(''j''/c)€N 

\\n-Ln,oa- ro.tpo- ), (4't'2)
- azoxn))9 * arcgq t a1119' - q - (P+ - P-)C : (

where

e : azw * rr6w, * alwr + arcJf lfl) - tr, - w,r) * ar2lxqn * av(w" - 9r"')

* a6(wr{r, * w,€") + ara(w'l€q' * w'€") | a2slt)r1t ' (4'1'3)

In vector form, it is the second equation in (4'2)

(4.14)

(4.1.4)EU+DG:PQ.

lf P+ : B-,thenwehave the unique solution for G'G : Q I B+'Assuming now p+ + P-'

we prove the following theorem on the invertibility of the Schur complement'
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5. Some details in implementation. The main process of our algorithm is to solve the

schur complement system (3.15) using the GMRES method with an initial guess

6((o)) : {Cltoll, ct(o)), ,"[rr,if

our method is based on irn approach that involves the following steps:

we precondition (l.la-b),(|.2) to get an equivalent problem before using the IIM.

We use the IIM idea to discretize the equivalent problem and derive the Schur com-

plement system.

o We discuss the weighted least squares approach to approximate from the grid func-

tion.

o we propose an efficient preconditioner for the schur complement system.

6. An efficient preconditioner for the Schur complement system. With the augmented

techniques described above, we are able to solve Problem (I) to second order accuracy. In

each iteration, we need to solve a Poisson equation with a modified righrhand side. A fast

Poisson solver using the FFT method, the cyclic reduction, . . . etc, can then be used. Also

we need to solve a Schur complement system. The GMRES method can be used and the

number if iterations depends on the condition number of the Schur complement system, if
rve make use of both (4.4) and (4.14) to compute u;(X) and,uf(X) the coldirion pumber

seems to be proportional to l/h. Therefore, the number of iterations will grow linearly as rve

increase the number of grid points. This is what we do not want to see in the fast augmented

IIM approach.

A sinrple modification in the way of computin g U; and Uj seems to improve the condition

number of the Schur complement system. The idea is simple. We have the jump condition

[8u,"] : r7, which irnplies rhar if U; and tfi are exact, rhen

P+ul-g-u;:q.

We can solve for U; or UI in terms of e, p- , g+ and [t/,] to t ur"

(6.1)

t2

un : (Q _ p+[u"])/(p+ _ p-) (6.2)
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ur : (Q - B-lU,,Dl(0* - 0-) (6.3)

lf rve independently compute t/[ and Uj fiorn (4.4) and (4.14) respectively, due toerrors,

usually they may not satisfy the llux jump conclition. Therefbre, in pnrctice we use one

of tlre formulas (4.4) and (4. 14) to apploximate LI; or U j , and then use (6.2) or (6.3) to

approximate L[[ or U; to force the solution to satisfy the flux jump condition. This is an

acceleration process or a preconditioner for the Schur complement system.

Whether we use the pair (4.4) and (4.14) or the other, (4.14) and (6.2), has only a little

effect on accuracy of the computed solution and the number of iterations. In our numerical

experiment, rve have been using the tbllowing criteria to choose the desired pair

. ( lnterpolation tor UI bV @.14),IfB+<rJ-:l"r I rr- -Q-ltGI urt:;r-i=
(

,. I Interpolation for UI bv @.9,IlJ'>lJ'1 rT--Q-P-c
[ 'n : 7+-g;

7. Numerical Experiments. We have done some numerical experiments here of the 3D

fast IIM approach with different jumps which show second order accuracy of the solution.

The computations are done by using Dell Precision 690 Workstation running RHEL4, OS:

RedHat Enterprise Linux, ws release 4 RHEL4, CPU: I XEON 5160,2 cores ( IlT4 cores),

memory 32G8. We used the gfortrancornpilier. The computational domain is [-l,l]t-1,11[-

l,l.lunless otherwise specified. We also used l=m=n in all computations.

We used the program hw3crt.f (Fishpack)[2]as the 3D fast Poisson solver, and the program

ssvdc.f (Linpack) toper form the singular value decomposition (SVD) which is then used

to solve the undetermined linear system. The present version of hw3crt.f solves the stan-

dards even point finite diff'erence approxintation to the Helmholtz equation Au -i- lcu : I
in Cartesian coordinates.

Example 7.1 Consider problem with a piecewise constant coefficient B and adiscontinuous

source term /. The interface is a sphere 12 + A2 * z2 : ll4. The differential equation is

(0u")" + (/uy)y * (0u")" : f ,
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with

. (ur,-, irr<1,
f (*,y,") : I

I u,l*, if r'> ].
Dirichlet boundary conditions and the jump conditions (2.5) and (2.6) are determined from

the exact solution and the level set function:

( -r'. if r<
u(r,a,r) :t ,r, if r>

l.e .,

[u]:2r3: ll2,

[0u,,): $+ + 0-),

where, : 1/r\ y2 + 12and on f,r : ro : Ll2.

Note that there are jumps in u and pun.

We tested three different cases, no jump case, samall jump case, and a big jump case. The

no jump case is with B- : g* : 1, the small jump case is with P- : 1,0+ : 2 and

the big jump case is with P- : 1,0+ : 2000. We see that the augmented approach

does accurately give the jumps in the solution and in the normal derivative of the solution,

without smearing out the solution.

Table (7.1)-(7.2) show the results of a grid refinement analysis, where l=m=n is the number

of uniform grid points in the x,y, and z directions, respectively. The maximum relative error

over all grid points (the infinity norm) is defined as

ilE"ll.":
max;,i,1, lu(ri, y 3, r*) - u C ij kl

(7.1)
maxi,j,i. lu(r ;, y i, z p)l

where u;,i,1ris the computed approximation of u(r,;,yi,zp).

two successive errors and order of accuracy, respectively, as

We also display the ratio of

i)

Ratio : llE"lllllE2nll, order : log(llE" llllloznll) I togz (7.2)



An Augmented 3D Elliptic Interface Problems

For a first order method, the ratio approaches to 2, and for a second order method, the ratio

approaches to 4. We will use the same notation for other examples in this paper.

We see that an average ratio of 4 indicates that the augmented approach is a second order

accuracy.

0.5

0

-0_5

-1

-1 I

-2
60

Figure 7.1 Plot of a slice of the computed solution -u(t,g, 0) for example (7' 1) with B+ :

2000, P- : 1, and I : m: n:52'

In Figure 7.1. The mesh size is h : 1126. Both the solution and the flux [ptr',,] are

discontinuous across the interface f . The source tenn / is discontinuous across the interface

as well. The interface is a sphere and the computational domain is a unit cube [-1' 1] x

[-1,1] x [-1,1]. The plot of the solution is composed of two pieces' We see that our

method does accurately give the jumps in the solution and in the normal derivative of the

solution, without smearing out the solution. The discontinuity in the solution and the flux

is captured sharply by our numerical method'

_....:a.

: . 'i
. . ..i '. 1
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1.2
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o.8

0.6

04
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o
60

Figure 7.2 Error plot of the slice of the computed solution for example (7.1) with

0+ = 2000,8- : 1, and I = m = n = 52.

In Figure 7.2.The mesh size ish = 7/26. The largest error usually occurs at those

points which are close to the part of the interface which has large curvature. The

errors of the solution obtained by our approach are usually more evenly distributed.

The largest error in magnitude is about 0.8x 10-s.

Table 7.1: The grid refinement analysis for example 7.1. Using Dell Precision

Workstation 690

The coefficient p-in O-is I

Table 7.1 above shows the results of a grid refinement study with errors in the infinity

norm defined over all grid points. The first column is the number of uniform grid

points in the x, y and z directions. The third column is the ratio/order of convergence

as defined in(7.2). We can see clearly an average of 4 which confirms secondorder

accuracy of our method.

n 0*=L 0n =2 B+ =to B+ = 2000

llE,ll- Ratio(order) llE"ll- ratio(order) llE"ll- ratio(order) llE"ll- ratio(order)

26 0. I 558E-2 0.14258-2 0.l39lE-2 0.1375F.-2

52 0.41 628-3 3.743( r.90) 0.3665E-3 3.890( r.e6) 0.35928-3 3.872(r.95) 0.3554E-3 3.868( r .95)

104 0.9919E-4 4.t95(2.0'7) 0.86198-4 4.2s4(2.09) 0.8861E-4 4.0s4(2.02) 0.8892ri-4 3.ee7(r.99)

€
10



Example 7.2 ln this example we consider a problem with a piecewise constant

coefficient p, but variable and discontinuous source term /. The interface is a sphere

x2 + y2 + z2 = 1/4 and the differential equation is

with

i.e.,

lul = o,

P(r,v,r)=l

f(r'v'r)=l

7r<-
2

1r> z

tf

,tf

(Bu,), + (lt"r), + {Bu,), = f ,

1p- ifr < 
z
7

P' ifr>,
76, if r<7

.,1
2or' +'3i, if , >;.

The Dirichlet boundary conditions and the jump conditions (2'5) and (2'6) are

determined from the exact solution and the level set function:

Wu^1 = ari *'ff - 2ro,

where r = .{*' + y' +7 und on I-, r = ro = 1/2" Note that there is no jwnp inu

in rhis example, bttt in the normal derivative there is'

The jump in the coefficient B depends on the choice of the constants p+ and p- '

Again, We tested the different cases, no jump, small jump, and big case' Unlike in

example 7.l, the solution in this example is continuous'

u(x,y,z) =
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0

-1

-)

-3

.4

-5

Figure 7.3 Plot of a slice of the computed solution -u(x,y, 0) for example (7.2) with

F* = L, F- = L,andl = m= n= 52.

In Figure 7.3 The mesh size is /t = 7/26. .The solution is continuous, but the flux

fpunf is not. The source term f is discontinuous across the interface. The interface is

a sphere and the cotnputationaldomain is a unit cube [-1,1]x[-l,l]x[-l,l]. The plot of

the solution is composed as one piece. We see that our method does accurately give

the jumps in the solution and in the normal derivative of the solution, without

smearing out the solution. The discontinuity in the flux is captured sharply by our

numerical method.

-6
60
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Figure 7 .4 Plot of a slice of the computed solution -u(x,y, 0) for example (7.2) with

9+:70, B- =\,andl = m=n:52.

In Figure 7.4 The mesh size is h = 1./26. Ihe solution is continuous, but the flux

[Bur] is not. The source term / is discontinuous across the interface. The interface is

a sphere and the computational domain is a unit cube [-1,1]x[-1,1]x[-1,1].The plot of

the solution is composed as one piece. We see that our method does accurately give

the jumps in the solution and in the normal derivative of the solution, without

smearing out the solution. The discontinuity in the flux is captured sharply by our

numerical method.
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Figure 7.5 Plot of a slice of the computed solution -u(x,y,0) for example (7.2) with

F+ = 2000, F- : 1, and I = m = n -- 52.

In Figure 7.5 The mesh size is h = 1,/26. .The solution is continuous, but the flux

Wu-)is not.'[he source term f is discontinuous across the interface. The interface is

a sphere and the computationaldomain is a unit cube [-l,l]x[-l,l]x[-l,l]. The plot of

the solution is composed as one piece. We see that our method does accurately give

the jumps in the solution and in the normal derivative of the solution, without

smearing out the solution. The discontinuity in the flux is captured sharply by our

numerical method.

.i '

. -a. -'

oo
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1.2

1

U.B

0.6

0.4

0.?

0
60

Figure 7.6 Error plot of the slice of the computed solution for example (4'2) with

0+ = 1,F- = l,and I : m = n = 52'

Figure 7.6 is a plot of the error in the infinity nonn of the slice of the compttted

solution.'fhc mesh size is h = L/26. The largcst error ttsually occurs at those points

which are close to the part of the interface whictr has large cttrvature. Tlte errors of the

solution obrained by our approaclr are usually morc evenly distribrrted. The largest

error in magrritude is abotrt 0.8x 10-3
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:ii:...

Figure 7.7 Error plot of the slice of the computed solution for example (7.1) with

F+ = \0,F- = l,and I : m = n = 52.

Figure 7.7 is a plot of the error in the infinity norm of the slice of the computed

solution. The mesh size is h = 1/26. The largest error usually occurs at those points

which are close to the part of the interface which has large curvature. The errors of the

solution obtained by our approach are usually more evenly distributed. The largest

error in magnitude is about l.3x 10-4
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1.5

1

o.5

0
60

Figure 7.8 Error plot of the slice of the computed solution for example (7.1) with

B+ =2000,F- = 1,and l=m=n=52.

Figure 7.8 is a plot of the error in the infinity norm of the slice o1'the computed

solution. In this Figure where B+ = 2000,0- = L, we see that the error in the

solution drops much more rapidly. This is because the solution in O+ approaches a

constant as p+ becomes large, and it is quadratic in O-. The mesh size is h = l/26.

The largest error in magnitude is about l.5x 10-s.

Table 7 .2: 'fhe gricl refinement analysis for cxampl e (7.2'l,. Using Delt Prccision

Workstation 690.

The coefficicnt p-in O-is l.
Table 7 .2 above shows the results of a grid refinement study with errors in the infinity

norm whelr I = m = tL = 52 as shown in Figure (7.6)-(7.8). Again second order

convergence is verified.

n B*=l 0* =2 p* 10 0+ = 2000

llE"ll- Ratio(order) llE"ll- ratio(order) llEnll- ratio(order) llE,ll- ratio(order)

26 0.5201E-3 0.45328-3 0.82728-3 0.41538-3

52 0. l 402E-3 3.7r0(r.89) 0. l 2288-3 3.69r( r.88) 0. I 9238-3 4.302(2. l r ) 0. I I 72F-3 3.868( I .83 )

101 0.3757t:.-4 3.734(r.99) 0.30'72E-4 3.996( r.99) 0.6094E-4 4. r 03(2.04) 0.3287E-4 3.997( r.83)

'): ':
!r,L,,

:.. '
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8. Summary of the numerical experiments In this paper, based on the IIM proposed by

LeVeque and Li, 1994,U) we have developed our 3D augmented approach which is second

order fast algorithm for elliptic interthce problems with piecewise constant but discontin-

uous coeflicients. Before applying the IIM, rve precondition the PDE first. In order to

take advantage of existing fast Poisson solver on cubic domains, an intermecliate ttnknown

function, the jump in the normal derivative across the interface, is introduced. Then the

GMRES iteration is employed to solve the Schur complement system derived from the dis-

cretization. Numerical experiments showed that the fast algorithm was very successful and

efticient rvhen the coefficients :rre piecewise constant. From the numerical tests we have

already seen that the rugmented approach is second order accurate and can deal rvith large

enough mesh size and large enough junrps in the coefficient.

9. Conclusions In this papeq we described a numerical method for 3D elliptic interface

problems in which the B coefficient, the source term, the solution and its derivatives, have

a discontinuity across the interface f. The fast solver can only be applied to the Poisson

problenrs rvith pieceivise coustant coefficients. Tlte number of iterations is nearly indepen-

dent of the rnesh size and the B coefficients jump. More importantly, lhe compttted nonnal

derivative from each side of the interface I appear to be second order accurate. The fast

solver can be applied to Holmholtz/Poisson problems on irregular domains which may have

many applications as further work. In detail, we have presented the augmented approaches

for solving 3D elliptic interface problems and problems defined on 3D in'e-Qular domains.

Using augmented approaches, one or several augmented variables are introduced along a

co-dimensional irrterlace or boundary. When the augmented variable(s) is knorvtt, we can

solve the governiug PDE efficiently. In the discrete case, this gives a systeln of equations

for the solutiou with given augmented variable(s). Ilorvev.'r, tlte solution that depends the

augmented variable(s) usually do not satisfy all the interfac,: relations or the bor"rndary con-

dition. The discrete interface relation or the boundary conJition forms the second lincar

system of equations for the augmented variable whose dimension is much smaller than that

of the solution to the PDE. Therefore, we can use GMRES iterative method to solve the

Schur complement system for the augmented variable(s).
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Abstract

In the paper we establish some new results depending on the comparative growth properties
of composite entire or meromorphic functions using relative L∗- type and relative L∗-weak
type as compared to their corresponding left and right factors.

1 Introduction, Definitions and Notations.

Let C be the set of all finite complex numbers and f be a meromorphic function defined on
C. We use the standard notations and definitions in the theory of entire and meromorphic
functions which are available in [1] and [4].

The following definition is well known:

Keywords and phrases : Entire function, meromorphic function, composition, growth, relative L∗-order,
relative L∗-lower order, relative L∗-type, relative L∗-weak type, slowly changing function.

AMS Subject Classification : 30D35,30D30,30D20.
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Definition 1 The order ρf and lower order λf of a meromorphic function f are defined as

ρf = lim sup
r→∞

log Tf (r)

log r
and λf = lim inf

r→∞

log Tf (r)

log r
.

Let L ≡ L (r) be a positive continuous function increasing slowly i.e., L (ar) ∼ L (r)
as r → ∞ for every positive constant a. Somasundaram and Thamizharasi [4] introduced
the notions of L-order and L-lower order for entire functions. The more generalised concept
for L-order and L-lower order of a meromorphic functions are L∗-order and L∗−lower
order respectively. Their definitions are as follows:

Definition 2 [4] The L∗-order ρL
∗

f and the L∗-lower order λL∗
f of a meromorphic function

f are defined as

ρL
∗

f = lim sup
r→∞

log Tf (r)

log
[
reL(r)

] and λL∗
f = lim inf

r→∞

log Tf (r)

log
[
reL(r)

] .

For an entire function g, the Nevanlinna’s characteristic function Tg (r) is defined as

Tg (r) = 1
2π

2π∫
0

log+
∣∣g(reiθ)∣∣ dθ where log+ x = max (0, log x) for x > 0.If g is non-

constant then Tg (r) is strictly increasing and continuous and its inverse T−1
g : (Tg (0) ,∞) →

(0,∞) exists and is such that lim
s→∞

T−1
g (s) = ∞.

Lahiri and Banerjee [3] introduced the definition of relative order of a meromorphic
function with respect to an entire function which is as follows:

Definition 3 [3] Let f be meromorphic and g be entire. The relative order of f with respect
to g denoted by ρg (f) is defined as

ρg (f) = inf {µ > 0 : Tf (r) < Tg (r
µ) for all sufficiently large r}

= lim sup
r→∞

log T−1
g Tf (r)

log r
.

The definition coincides with the classical one [3] if g (z) = exp z.
Similarly one can define the relative lower order of a meromorphic function f with

respect to an entire g denoted by λg (f) in the following manner :

λg (f) = lim inf
r→∞

log T−1
g Tf (r)

log r
.

In the line of Somasundaram and Thamizharasi [4] and Lahiri and Banerjee [3] one
may define the relative L∗-order and relative L∗-lower order of a meromorphic function f
with respect to an entire function g in the following manner:

Definition 4 The relative L∗-order ρL
∗

g (f) and the relative L∗-lower order λL∗
g (f) of a

meromorphic function f with respect to an entire function g are defined by

ρL
∗

g (f) = lim sup
r→∞

log T−1
g Tf (r)

log
[
reL(r)

] and λL∗
g (f) = lim inf

r→∞

log T−1
g Tf (r)

log
[
reL(r)

] .
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To compare the relative growth of two meromorphic functions having same non zero
finite relative L∗-order with respect to another entire function, one may introduce the defini-
tions of relative L∗-type and relative L∗-lower type of meromorphic functions with respect
to an entire function in the following manner:

Definition 5 The relative L∗-type and relative L∗-lower type denoted respectively by σL∗
g (f)

and σL∗
g (f) of a meromorphic function f with respect to an entire function g are respec-

tively defined as follows:

σL∗
g (f) = lim sup

r→∞

T−1
g Tf (r)

[r expL (r)]ρ
L∗
g (f)

and

σL∗
g (f) = lim inf

r→∞

T−1
g Tf (r)

[r expL (r)]ρ
L∗
g (f)

, 0 < ρL
∗

g (f) < ∞ .

Analogusly to determine the relative growth of two meromorphic functions having
same non zero finite relative L∗-lower order with respect to another entire function one
may introduce the definition of relative L∗-weak type of a meromorphic functions having
finite positive relative L∗-lower order respect to an entire function in the following way:

Definition 6 The relative L∗-weak type denoted by τL
∗

g (f) of a meromorphic function f
with respect to an entire function g is defined as follows:

τL
∗

g (f) = lim inf
r→∞

T−1
g Tf (r)

[r expL (r)]λ
L∗
g (f)

, 0 < λL∗
g (f) < ∞ .

Also one may define the growth indicator τL
∗

g (f) of a meromorphic function f in the fol-
lowing manner :

τL
∗

g (f) = lim sup
r→∞

T−1
g Tf (r)

[r expL (r)]λ
L∗
g (f)

, 0 < λL∗
g (f) < ∞ .

In the paper we establish some new results depending on the comparative growth prop-
erties of composite entire or meromorphic functions using relative L∗-order, relative L∗-
type and relative pL

∗-weak type as compared to the corresponding left and right factors.

2 Theorems.

In this section we present the main results of the paper.

Theorem 1 If f be a meromorphic function and g,h, k be any three entire functions such
that 0 < σL∗

h (f ◦ g) ≤ σL∗
h (f ◦ g) < ∞, 0 < σL∗

k (f) ≤ σL∗
k (f) < ∞ and ρL

∗
h (f ◦ g) =

ρL
∗

k (f), then

σL∗
h (f ◦ g)
σL∗
k (f)

≤ lim inf
r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤
σL∗
h (f ◦ g)
σL∗
k (f)

≤ lim sup
r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤
σL∗
h (f ◦ g)
σL∗
k (f)

.
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Proof. From the definition of σL∗
k (f) and σL∗

h (f ◦ g), we have for arbitrary positive ε and
for all sufficiently large values of r that

T−1
h Tf◦g (r) ≥

(
σL∗
h (f ◦ g)− ε

)
[r expL (r)]ρ

L∗
h (f◦g) , (1)

and
T−1
k Tf (r) ≤

(
σL∗
k (f) + ε

)
[r expL (r)]ρ

L∗
k (f) . (2)

Now from (1), (2) and the condition ρL
∗

h (f ◦ g) = ρL
∗

k (f) , it follows for all sufficiently
large values of r that,

T−1
h Tf◦g (r)

T−1
k Tf (r)

> σL∗
h (f ◦ g)− ε

σL∗
k (f) + ε

.

As ε (> 0) is arbitrary , we obtain from above that

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

> σL∗
h (f ◦ g)
σL∗
k (f)

. (3)

Again for a sequence of values of r tending to infinity,

T−1
h Tf◦g (r) ≤

(
σL∗
h (f ◦ g) + ε

)
[r expL (r)]ρ

L∗
h (f◦g) (4)

and for all sufficiently large values of r,

T−1
k Tf (r) ≥

(
σL∗
k (f)− ε

)
[r expL (r)]ρ

L∗
k (f) . (5)

Combining (4) and (5) and the condition ρL
∗

h (f ◦ g) = ρL
∗

k (f) , we get for a sequence of
values of r tending to infinity that

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤
σL∗
h (f ◦ g) + ε

σL∗
k (f)− ε

.

Since ε (> 0) is arbitrary, it follows from above that

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤
σL∗
h (f ◦ g)
σL∗
k (f)

. (6)

Also for a sequence of values of r tending to infinity it follows that

T−1
k Tf (r) ≤

(
σL∗
k (f) + ε

)
[r expL (r)]ρ

L∗
k (f) . (7)

Now from (1), (7) and the condition ρL
∗

h (f ◦ g) = ρL
∗

k (f) , we obtain for a sequence of
values of r tending to infinity that

T−1
h Tf◦g (r)

T−1
k Tf (r)

≥
σL∗
h (f ◦ g)− ε

σL∗
k (f) + ε

.
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As ε (> 0) is arbitrary, we get from above that

lim sup
r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

≥
σL∗
h (f ◦ g)
σL∗
k (f)

. (8)

Also for all sufficiently large values of r ,

T−1
h Tf◦g (r) ≤

(
σL∗
h (f ◦ g) + ε

)
[r expL (r)]ρ

L∗
h (f◦g) . (9)

In view of the condition ρL
∗

h (f ◦ g) = ρL
∗

k (f) , it follows from (5) and (9) for all suffi-
ciently large values of r that

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤
σL∗
h (f ◦ g) + ε

σL∗
k (f)− ε

.

Since ε (> 0) is arbitrary, we obtain that

lim sup
r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤
σL∗
h (f ◦ g)
σL∗
k (f)

. (10)

Thus the theorem follows from (3) , (6) , (8) and (10).
The following theorem can be proved in the line of Theorem 1 and so its proof is

omitted.

Theorem 2 If f be a meromorphic function and g,h, k be any three entire functions such
that 0 < σL∗

h (f ◦ g) ≤ σL∗
h (f ◦ g) < ∞, 0 < σL∗

k (g) ≤ σL∗
k (g) < ∞ and ρL

∗
h (f ◦ g) =

ρL
∗

k (g), then

σL∗
h (f ◦ g)
σL∗
k (g)

≤ lim inf
r→∞

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤
σL∗
h (f ◦ g)
σL∗
k (g)

≤ lim sup
r→∞

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤
σL∗
h (f ◦ g)
σL∗
k (g)

.

Theorem 3 If f be a meromorphic function and g,h, k be any three entire functions such
that 0 < σL∗

h (f ◦ g) < ∞, 0 < σL∗
k (f) < ∞ and ρL

∗
h (f ◦ g) = ρL

∗
k (f), then

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤
σL∗
h (f ◦ g)
σL∗
k (f)

≤ lim sup
r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

.

Proof. From the definition of σL∗
k (f) , we get for a sequence of values of r tending to

infinity that

T−1
k Tf (r) ≥

(
σL∗
k (f)− ε

)
[r expL (r)]ρ

L∗
k (f) . (11)

Now from (9), (11) and the condition ρL
∗

h (f ◦ g) = ρL
∗

k (f) , it follows for a sequence of
values of r tending to infinity that

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤
σL∗
h (f ◦ g) + ε

σL∗
k (f)− ε

.
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As ε (> 0) is arbitrary, we obtain that

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤
σL∗
h (f ◦ g)
σL∗
k (f)

. (12)

Again for a sequence of values of r tending to infinity that

T−1
h Tf◦g (r) >

(
σL∗
h (f ◦ g)− ε

)
[r expL (r)]ρ

L∗
h (f◦g) . (13)

So combining (2) and (13) and in view of the condition ρL
∗

h (f ◦ g) = ρL
∗

k (f) , we get for
a sequence of values of r tending to infinity that

T−1
h Tf◦g (r)

T−1
k Tf (r)

> σL∗
h (f ◦ g)− ε

σL∗
k (f) + ε

.

Since ε (> 0) is arbitrary, it follows that

lim sup
r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

> σL∗
h (f ◦ g)
σL∗
k (f)

. (14)

Thus the theorem follows from (12) and (14) .
The following theorem can be carried out in the line of Theorem 3 and therefore we

omit its proof.

Theorem 4 If f be a meromorphic function and g,h, k be any three entire functions with
0 < σL∗

h (f ◦ g) < ∞, 0 < σL∗
k (g) < ∞ and ρL

∗
h (f ◦ g) = ρL

∗
k (g), then

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤
σL∗
h (f ◦ g)
σL∗
k (g)

≤ lim sup
r→∞

T−1
h Tf◦g (r)

T−1
k Tg (r)

.

The following theorem is a natural consequence of Theorem 1 and Theorem 3:

Theorem 5 If f be a meromorphic function and g,h, k be any three entire functions such
that 0 < σL∗

h (f ◦ g) ≤ σL∗
h (f ◦ g) < ∞, 0 < σL∗

k (f) ≤ σL∗
k (f) < ∞ and ρL

∗
h (f ◦ g) =

ρL
∗

k (f), then

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤ min

{
σL∗
h (f ◦ g)
σL∗
k (f)

,
σL∗
h (f ◦ g)
σL∗
k (f)

}
≤ max

{
σL∗
h (f ◦ g)
σL∗
k (f)

,
σL∗
h (f ◦ g)
σL∗
k (f)

}
≤ lim sup

r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

.

Analogously one may state the following theorem without its proof:

Theorem 6 If f be a meromorphic function and g,h, k be any three entire functions with
0 < σL∗

h (f ◦ g) ≤ σL∗
h (f ◦ g) < ∞, 0 < σL∗

k (g) ≤ σL∗
k (g) < ∞ and ρL

∗
h (f ◦ g) =

ρL
∗

k (g), then

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤ min

{
σL∗
h (f ◦ g)
σL∗
k (g)

,
σL∗
h (f ◦ g)
σL∗
k (g)

}
≤ max

{
σL∗
h (f ◦ g)
σL∗
k (g)

,
σL∗
h (f ◦ g)
σL∗
k (g)

}
≤ lim sup

r→∞

T−1
h Tf◦g (r)

T−1
k Tg (r)

.
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Now in the line of Theorem 1, Theorem 3, Theorem 5 and Theorem 2, Theorem 4,
Theorem 6 respectively one can easily prove the following six theorems using the notion
of relative L∗-weak type of a meromorphic function with respect to an entire function and
therefore their proofs are omitted.

Theorem 7 If f be a meromorphic function and g,h, k be any three entire functions such
that 0 < τL

∗
h (f ◦ g) ≤ τL

∗
h (f ◦ g) < ∞, 0 < τL

∗
k (f) ≤ τL

∗
k (f) < ∞ and λL∗

h (f ◦ g) =
λL∗
k (f), then

τL
∗

h (f ◦ g)
τL

∗
k (f)

≤ lim inf
r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤
τL

∗
h (f ◦ g)
τL

∗
k (f)

≤ lim sup
r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤
τL

∗
h (f ◦ g)
τL

∗
k (f)

.

Theorem 8 If f be a meromorphic function and g,h, k be any three entire functions with
0 < τL

∗
h (f ◦ g) < ∞, 0 < τL

∗
k (f) < ∞ and λL∗

h (f ◦ g) = λL∗
k (f), then

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤
τL

∗
h (f ◦ g)
τL

∗
k (f)

≤ lim sup
r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

.

Theorem 9 If f be a meromorphic function and g,h, k be any three entire functions such
that 0 < τL

∗
h (f ◦ g) ≤ τL

∗
h (f ◦ g) < ∞, 0 < τL

∗
k (f) ≤ τL

∗
k (f) < ∞ and λL∗

h (f ◦ g) =
λL∗
k (f), then

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤ min

{
τL

∗
h (f ◦ g)
τL

∗
k (f)

,
τL

∗
h (f ◦ g)
τL

∗
k (f)

}
≤ max

{
τL

∗
h (f ◦ g)
τL

∗
k (f)

,
τL

∗
h (f ◦ g)
τL

∗
k (f)

}
≤ lim sup

r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

.

Theorem 10 If f be a meromorphic function and g,h, k be any three entire functions such
that 0 < τL

∗
h (f ◦ g) ≤ τL

∗
h (f ◦ g) < ∞, 0 < τL

∗
k (g) ≤ τL

∗
k (g) < ∞ and λL∗

h (f ◦ g) =
λL∗
k (g), then

τL
∗

h (f ◦ g)
τL

∗
k (g)

≤ lim inf
r→∞

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤
τL

∗
h (f ◦ g)
τL

∗
k (g)

≤ lim sup
r→∞

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤
τL

∗
h (f ◦ g)
τL

∗
k (g)

.

Theorem 11 If f be a meromorphic function and g,h, k be any three entire functions such
that 0 < τL

∗
h (f ◦ g) < ∞, 0 < τL

∗
k (g) < ∞ and λL∗

h (f ◦ g) = λL∗
k (g), then

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤
τL

∗
h (f ◦ g)
τL

∗
k (g)

≤ lim sup
r→∞

T−1
h Tf◦g (r)

T−1
k Tg (r)

.
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Theorem 12 If f be a meromorphic function and g,h, k be any three entire functions such
that 0 < τL

∗
h (f ◦ g) ≤ τL

∗
h (f ◦ g) < ∞, 0 < τL

∗
k (g) ≤ τL

∗
k (g) < ∞ and λL∗

h (f ◦ g) =
λL∗
k (g), then

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤ min

{
τL

∗
h (f ◦ g)
τL

∗
k (g)

,
τL

∗
h (f ◦ g)
τL

∗
k (g)

}
≤ max

{
τL

∗
h (f ◦ g)
τL

∗
k (g)

,
τL

∗
h (f ◦ g)
τL

∗
k (g)

}
≤ lim sup

r→∞

T−1
h Tf◦g (r)

T−1
k Tg (r)

.

We may now state the following theorems without their proofs based on relative L∗-
type and relative L∗-weak type of a meromorphic fucntion with respect to an entire function:

Theorem 13 If f be a meromorphic function and g,h, k be any three entire functions such
that 0 < σL∗

h (f ◦ g) ≤ σL∗
h (f ◦ g) < ∞, 0 < τL

∗
k (f) ≤ τL

∗
k (f) < ∞ and ρL

∗
h (f ◦ g) =

λL∗
k (f), then

σL∗
h (f ◦ g)
τL

∗
k (f)

≤ lim inf
r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤
σL∗
h (f ◦ g)
τL

∗
k (f)

≤ lim sup
r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤
σL∗
h (f ◦ g)
τL

∗
k (f)

.

Theorem 14 If f be a meromorphic function and g,h, k be any three entire functions with
0 < σL∗

h (f ◦ g) < ∞, 0 < τL
∗

k (f) < ∞ and ρL
∗

h (f ◦ g) = λL∗
k (f), then

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤
σL∗
h (f ◦ g)
τL

∗
k (f)

≤ lim sup
r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

.

Theorem 15 If f be a meromorphic function and g,h, k be any three entire functions such
that 0 < σL∗

h (f ◦ g) ≤ σL∗
h (f ◦ g) < ∞, 0 < τL

∗
k (f) ≤ τL

∗
k (f) < ∞ and ρL

∗
h (f ◦ g) =

λL∗
k (f), then

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤ min

{
σL∗
h (f ◦ g)
τL

∗
k (f)

,
σL∗
h (f ◦ g)
τL

∗
k (f)

}
≤ max

{
σL∗
h (f ◦ g)
τL

∗
k (f)

,
σL∗
h (f ◦ g)
τL

∗
k (f)

}
≤ lim sup

r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

.

Theorem 16 If f be a meromorphic function and g,h, k be any three entire functions such
that 0 < τL

∗
h (f ◦ g) ≤ τL

∗
h (f ◦ g) < ∞, 0 < σL∗

k (f) ≤ σL∗
k (f) < ∞ and λL∗

h (f ◦ g) =
ρL

∗
k (f), then

τL
∗

h (f ◦ g)
σL∗
k (f)

≤ lim inf
r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤
τL

∗
h (f ◦ g)
σL∗
k (f)

≤ lim sup
r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤
τL

∗
h (f ◦ g)
σL∗
k (f)

.
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Theorem 17 If f be a meromorphic function and g,h, k be any three entire functions such
that 0 < τL

∗
h (f ◦ g) < ∞, 0 < σL∗

k (f) < ∞ and λL∗
h (f ◦ g) = ρL

∗
k (f), then

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤
τL

∗
h (f ◦ g)
σL∗
k (f)

≤ lim sup
r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

.

Theorem 18 If f be a meromorphic function and g,h, k be any three entire functions with
0 < τL

∗
h (f ◦ g) ≤ τL

∗
h (f ◦ g) < ∞, 0 < σL∗

k (f) ≤ σL∗
k (f) < ∞ and λL∗

h (f ◦ g) =
ρL

∗
k (f), then

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤ min

{
τL

∗
h (f ◦ g)
σL∗
k (f)

,
τL

∗
h (f ◦ g)
σL∗
k (f)

}
≤ max

{
τL

∗
h (f ◦ g)
σL∗
k (f)

,
τL

∗
h (f ◦ g)
σL∗
k (f)

}
≤ lim sup

r→∞

T−1
h Tf◦g (r)

T−1
k Tf (r)

.

Theorem 19 If f be a meromorphic function and g,h, k be any three entire functions such
that 0 < σL∗

h (f ◦ g) ≤ σL∗
h (f ◦ g) < ∞, 0 < τL

∗
k (g) ≤ τL

∗
k (g) < ∞ and ρL

∗
h (f ◦ g) =

λ (g), then

σL∗
h (f ◦ g)
τL

∗
k (g)

≤ lim inf
r→∞

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤
σL∗
h (f ◦ g)
τL

∗
k (g)

≤ lim sup
r→∞

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤
σL∗
h (f ◦ g)
τL

∗
k (g)

.

Theorem 20 If f be a meromorphic function and g,h, k be any three entire functions with
0 < σL∗

h (f ◦ g) < ∞, 0 < τL
∗

k (g) < ∞ and ρL
∗

h (f ◦ g) = λ (g), then

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤
σL∗
h (f ◦ g)
τL

∗
k (g)

≤ lim sup
r→∞

T−1
h Tf◦g (r)

T−1
k Tg (r)

.

Theorem 21 If f be a meromorphic function and g,h, k be any three entire functions such
that 0 < σL∗

h (f ◦ g) ≤ σL∗
h (f ◦ g) < ∞, 0 < τL

∗
k (g) ≤ τL

∗
k (g) < ∞ and ρL

∗
h (f ◦ g) =

λ (g), then

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤ min

{
σL∗
h (f ◦ g)
τL

∗
k (g)

,
σL∗
h (f ◦ g)
τL

∗
k (g)

}
≤ max

{
σL∗
h (f ◦ g)
τL

∗
k (g)

,
σL∗
h (f ◦ g)
τL

∗
k (g)

}
≤ lim sup

r→∞

T−1
h Tf◦g (r)

T−1
k Tg (r)

.

Theorem 22 If f be a meromorphic function and g,h, k be any three entire functions such
that 0 < τL

∗
h (f ◦ g) ≤ τL

∗
h (f ◦ g) < ∞, 0 < σL∗

k (g) ≤ σL∗
k (g) < ∞ and λL∗

h (f ◦ g) =
ρL

∗
k (g), then

τL
∗

h (f ◦ g)
σL∗
k (g)

≤ lim inf
r→∞

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤
τL

∗
h (f ◦ g)
σL∗
k (g)

≤ lim sup
r→∞

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤
τL

∗
h (f ◦ g)
σL∗
k (g)

.
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Theorem 23 If f be a meromorphic function and g,h, k be any three entire functions such
that 0 < τL

∗
h (f ◦ g) < ∞, 0 < σL∗

k (g) < ∞ and λL∗
h (f ◦ g) = ρL

∗
k (g), then

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤
τL

∗
h (f ◦ g)
σL∗
k (g)

≤ lim sup
r→∞

T−1
h Tf◦g (r)

T−1
k Tg (r)

.

Theorem 24 If f be a meromorphic function and g,h, k be any three entire functions such
that 0 < τL

∗
h (f ◦ g) ≤ τL

∗
h (f ◦ g) < ∞, 0 < σL∗

k (g) ≤ σL∗
k (g) < ∞ and λL∗

h (f ◦ g) =
ρL

∗
k (g), then

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤ min

{
τL

∗
h (f ◦ g)
σL∗
k (g)

,
τL

∗
h (f ◦ g)
σL∗
k (g)

}
≤ max

{
τL

∗
h (f ◦ g)
σL∗
k (g)

,
τL

∗
h (f ◦ g)
σL∗
k (g)

}
≤ lim sup

r→∞

T−1
h Tf◦g (r)

T−1
k Tg (r)

.
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Abstract

There are discussed the two types of norms on bicomplex modules: the norms

with real values and those with values in non-negative hyperbolic numbers. It turns

out that Hyperbolic valued norms are good compatible with the structure of bicomplex
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is considered as the Euclidean norm via positive hyperbolic numbers on bicomplex

space, and then we define and obtain matrix norm, subordinate matrix norm, an oper-

ator norm via positive hyperbolic numbers and some of its results on bicomplex space

BC.

1 Introduction and preliminaries

There exist several ways to generalize complex numbers to higher dimensions. The most

well-known extension is given by the quaternions invented by Hamilton [5] which are

mainly used to represent rotations in three-dimensional space. However, quaternions are

not commutative in multiplication. Another extension was found at the end of the 19th

century by Corrado Segre [16] who described special multidimensional algebras. This type

of number now commonly named a multi complex number. They were studied in details

by Price [12] and Fleury [4]. Bicomplex numbers, just like the quaternions, are a general-

ization of complex numbers to four real dimensions introduced by Segre [16]. These two

number systems differ because: (i) Quaternions which form a division algebra.

While bicomplex numbers do not, and (ii) bicomplex numbers are commutative, whereas

quaternions are not. For such reasons, the bicomplex number system has been shown to be

more attractive (compared to the quaternions).

Division algebras do not have zero divisors, that is, nonzero elements whose prod-

uct are zero. Many believe that any attempt to generalize quantum mechanics to number

systems other than complex numbers should retain the division algebra property. Indeed,

considerable work has been done over the years on bicomplex quantum mechanics [14].

However, in the past few years, it was pointed out that several features of quantum mechan-

ics can be generalized to bicomplex numbers. A generalization of Schrödinger equation for

a particle in one dimension was proposed [14] and self-adjoint operators were defined on

finite-dimensional bicomplex Hilbert spaces [[6],[15]].

In recent and few past years, the theory of bicomplex numbers, bicomplex functions, bi-

complex quantum mechanics, Hilbert space, norms and inner products on bicomplex mod-

ules (BC-modules) has found many applications, see for instance [[8], [13], [14], [3], [10],

[15]]. Bicomplex numbers are a commutative ring with unity which contains the field of

complex numbers and the commutative ring of hyperbolic numbers. Bicomplex (hyper-
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bolic) numbers are unique among the complex (real) Clifford algebras in that they are com-

mutative but not division algebras. In fact, bicomplex numbers generalize (complexity)

hyperbolic numbers.

In this paper, we give an overview of the fundamental theory of Euclidean norm via

positive hyperbolic numbers. A fundamental result and useful properties of this paper is

presented: the unique decomposition of any elements of our free bicomplex module χ into

two elements of a standard (bicomplex) vector space υ in terms of the idempotent basis

the Euclidean bicomplex matrix norm via positive hyperbolic numbers. In particular, if

we take bicomplex matrix A ∈ Mm×n(BC), bicomplex vector space υ and a BC-module

χ, then some of the results of bicomplex Euclidean normed is defined using the results of

bicomplex Hilbert space [8,15,17], and it is most useful to apply a matrix norm on the BC.

Suppose BCm×n be a vector space of dimension mn, then the magnitudes of matrix A in

BC can be measured by employing any vector norm of dimension mn on BC. For example,

by stringing out the entries of A = (apq)m×n in, then suppose

A2,2 =

 1− i1 + i2 + i1i2 1 + 2i1 + i2 − i1i2

1− i1 − 3i2 + i1i2 −1 + i1 + i2 − 4i1i2


Into the four-component vector, the Euclidean norm on R4 via positive hyperbolic numbers

can be applied to writing

∥ A ∥= (22 + (
√
7)2 + (

√
12)2 + (

√
19)2)

1
2 =

√
42.

Whereas if z = x0+x1i1+x2i2+x3i1i2, then on R4 we have ∥ z ∥=
√

x20 + x21 + x22 + x23.

Importantly In this paper, we consider a norm on a BC- module which extends the usual

properties of the Euclidean norm via positive hyperbolic numbers on BC. Another approach

that generalizes the notion of D valued norm on BC will be considered as χ be a BC- module

and let ∥ . ∥ be a norm on χ seen as a real linear space, we say that ∥ . ∥ is a real valued

norm on the BC- module χ if for any ς ∈ BC it is defined as

∥ ςκ ∥≤
√
2 | ς |∥ κ ∥ .

Without assuming any additional relationship between them, the generalizations are impor-

tant, and give rise to large and interesting theories, we believe that there is another even

more appropriate generalization, which so far has not received enough attention.



40 Md. Nasiruzzaman and M. Arsalan Khan

1.1 Bicomplex Number

Definition 1 ([8],[2]). The set of the bicomplex numbers is defined as

BC := {z1 + z2i2 | z1, z2 ∈ C(i1)} (1.1)

where i1, i2 are the imaginary units and governed by the rules

i21 = i22 = −1, i1i2 = i2i1 = ℓ (1.2)

and so,

ℓ2 = 1, i1ℓ = ℓi1 = −i2, i2ℓ = ℓi2 = −i1 (1.3)

Note that we define

C(ik) := {x+ yik | i2k = −1 and x, y ∈ R for k = 1, 2} (1.4)

where C is the set of complex numbers with the imaginary units ik for k = 1, 2. Thus

the bicomplex numbers are complex numbers with complex coefficients, which explain the

name of bicomplex, and there is a deep similarities in properties of complex and bicomplex

numbers.

With the addition and the multiplication of two bicomplex numbers defined in the obvious

way, the set BC makes up a commutative ring. In fact they are the particular case of the so

called multicomplex numbers (denoted by MC ).

Clearly the bicomplex numbers.

BC ∼= ClC(1, 0) ∼= ClC(0, 1) (1.5)

are unique among the complex Clifford algebras in that they are commutative but not divi-

sion algebras. It is also convenient to write the set of bicomplex numbers as

BC := {x0 + x1i1 + x2i2 + x3ℓ | x0, x1, x2, x3 ∈ R} (1.6)

We know the complex conjugation plays an important role for both algebraic and geometric

properties of C. So for bicomplex numbers there are three possibilities of conjugations. Let

z ∈ BC and z1, z2 ∈ C(i1), such that z := z1 + z2i2, then we define the three conjugation

as:

z†1 = (z1 + z2i2)
†i1 = z1 + z2i2 (1.7)
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z†2 = (z1 + z2i2)
†i2 = z1 − z2i2 (1.8)

z†3 = (z1 + z2i2)
†ℓ = z1 − z2i2. (1.9)

These three kinds of conjugation all have some of the standard properties of conjugations,

such as

(z1 + z2)
†k = z†k1 + z†k2 (1.10)

(z†k1 )†k = z1 (1.11)

(z1.z2)
†k = z†k1 .z†k2 . (1.12)

We know that the product of a standard complex number with its conjugate gives the square

of the Euclidean metric in R2. Thus the analogues of this, for bicomplex numbers, are the

following. Let z1, z2 ∈ C(i1) and z := z1 + z2i2 ∈ BC, then we have:

| z |2i1= z.z†i2 = z21 + z22 ∈ C(i1) (1.13)

| z |2i2= z.z†i1 = (| z1 |2 − | z2 |2) + 2Re(z1z2)i2 ∈ C(i2) (1.14)

| z |2ℓ= z.z†3 = (| z1 |2 + | z2 |2)− 2Im(z1z2)ℓ ∈ D (1.15)

Where D is the subalgebra of hyperbolic numbers, and is defined as

D := {x+ yℓ | ℓ2 = 1, x, y ∈ R, } ∼= ClR(0, 1) (1.16)

Note that for z1, z2 ∈ C(i1) and z := z1+ z2i2 ∈ BC, we can define the usual (Euclidean

in R4) norm of z via D+- valued modulus as | z |=
√

| z1 |2 + | z2 |2 =
√

Re(| z |2ℓ). It is

easy to verifying that z. z
†2

|z|2i1
= 1. Hence the inverse of z is given by

z−1 =
z†2

| z |2i1
. (1.17)

Idempotent basis

Bicomplex algebra is considerably simplified by the introduction of two bicomplex numbers
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ι1 and ι2 defined as ι1 = 1+i1i2
2 , ι2 = 1−i1i2

2 . In fact ι1 and ι2 are hyperbolic numbers

(i1i2 = i2i1 = ℓ). They make up the so called idempotent basis of the bicomplex numbers,

and one easily can check that

ι21 = ι1, ι
2
2 = ι2, ι1 + ι2 = 1, ι1.ι2 = 0, ι†3k = ιk (for k = 1, 2). (1.18)

Thus any bicomplex number can be written as

z = z1 + z2i2 = α1ι1 + α2ι2,where α1 = z1 − z2i1, α2 = z1 + z2i1. (1.19)

1.2 BC-Module

Definition 2 ([15]). The set of bicomplex numbers is a commutative ring. So, to define a

kind of vector space over BC, we have to deal with the algebraic concept of modules. We

denote by χ a free BC-Module with the finite BC - basis {m̂ȷ | ȷ ∈ {1, 2, · · ·n} }. Hence

we have

χ =


n∑

ȷ=1

κȷm̂ȷ | κ ∈ BC

 .

And let define

Λ =


n∑

ȷ=1

κȷm̂ȷ | κ ∈ C(i1)

 ⊂ χ.

The set Λ is a free C(i1) - module which depends on a given BC - basis of χ, Λ is a complex

vector space of dimension n with the basis {m̂ȷ | ȷ ∈ {1, 2, · · ·n} }

Theorem 1 ([15]). Let χ̂ =
{∑n

ȷ=1 κȷm̂ȷ | κ ∈ BC ∀ ȷ ∈ {1, 2, · · · , n}
}

. Then there exits

χ̂ι1 , χ̂ι2 ∈ Λ such that χ̂ = χ̂ι1ι1 + χ̂ι2ι2.

1.3 The Euclidean Norm on BC

Definition 3 ([2]). Let BC(i1) = {(z1, z2) | z1 + z2i2 ∈ BC}, BC(i2) = {(z3, z4) |

z3 + z4i1 ∈ BC} or as R4 = {(x0, x1, x2, x3 | x0 + x1i1 + x2i2 + x3ℓ ∈ BC}. Then the

Euclidean norm on BC connected to the properties of bicomplex numbers via D+- valued

modulus as follows:

| z |=
√

x20 + x21 + x22 + x23 =
√

| z1 |2 + | z2 |2 =
√

| z3 |2 + | z4 |2 =
√

Re | z |2ℓ .



Some Results of Matrix Norm on Bicomplex Modules 43

It is easy to prove using the triangle inequality that for any z and ξ in BC

| zξ |≤
√
2 | z || ξ | .

Definition 4 ([2]). Let χ be a BC- module and let ∥ . ∥ be a norm on χ seen as real linear

space. We say that ∥ . ∥ is a real-valued norm on the BC-module χ if for any κ ∈ BC, we

have ∥ κx ∥≤
√
2 | κ | . ∥ x ∥ .

1.4 Bicomplex Hilbert Space

Definition 5 ([2],[6]). Let χ be a free BC-module with finite BC-basis. Let also (.,.) be a

bicomplex scalar product defined on χ. The space {χ, (., .)} is called a BC-inner product

space.

Definition 6 ([2],[6],). A complete BC-inner product space is called a BC - Hilbert space.

Theorem 2 (Bicomplex Schwarz Inequality). Let ℵ1,ℵ2 ∈ χ, then

| (ℵ1,ℵ2) |≤| (ℵ1,ℵ1)
1
2 (ℵ2,ℵ2)

1
2 |≤

√
2 ∥ ℵ1 ∥∥ ℵ2 ∥ .

1.5 Bicomplex Polynomials

Definition 7 ([8]). Let z = z1 + z2i2 = α1ι1 + α2ι2 be a bicomplex number, where α1 =

(z1 − z2i1), α2 = (z1 + z2i1) and ι1, ι2 are idempotent basis and let Pp := δpι1 + γpι2 be

bicomplex coefficients for p = 0, · · · , n. Then f(z) :=
∑n

p=0 Ppz
p is called the bicomplex

polynomial and written as

f(z) :=

n∑
p=0

(δpα
p
1)ι1 +

n∑
p=0

(γpα
p
2)ι2 = f1(α1)ι1 + f2(α2)ι2.

If we denote the set of all r1 and r2 distinct roots of f1(α1) and f2(α2) by ρ1 and ρ2,

and if we denote by ρ the set of all distinct roots of polynomial f(z), then f(z) has (r1.r2)

distinct roots and it is easy to see that ρ := ρ1ι1 + ρ2ι2 and so the structure of the zero set

of a bicomplex polynomial f(z) of degree n is fully described by [2].

1.6 Bicomplex Matrices

Definition 8 ([2]). The set of m × n matrices Mm×n(BC) with bicomplex entries, is de-

noted as A := {(alj), 1 ≤ l ≤ m, 1 ≤ j ≤ n} = A1,i2ι1 + A2,i2ι2 := A1,i1ι1 +
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A2,i1ι2, is called bicomplex matrix, where A1,i2 ,A2,i2 ∈ Mm×n(C(i2)) and A1,i1 ,A2,i1 ∈

Mm×n(C(i1)).

Definition 9 ([2]). let A := {(alj) ∈ Mm×n(BC)} = A1ι1 +A2ι2 and Aυ = λυ which

is equivalent to  A1υ1 = λ1υ1,

A2υ2 = λ2υ2.

Then λ is called the eigenvalue of the bicomplex matrix A corresponding to eigenvector

υ where λ := λ1ι1 + λ2ι2 ∈ BC and υ = υ1ι1 + υ2ι2. If λ is not a zero divisor and

υ1 ̸= 0, υ2 ̸= 0 then λ is an eigenvalue of A if and only if λ1 and λ2 be an eigenvalue of

A1 and A2 corresponding to eigenvector of υ1 and υ2.

2 Main Results

In this section we consider a norm on a bicomplex module which extends the usual prop-

erties of the Euclidean norm via D+- valued normed on BC and we generalize it on matrix

norm via D+- valued normed in bicomplex space BC. Another approach that we generalizes

the notion of subordinate matrix norm on bicomplex space BC. Suppose χ be BC-module

and ∥ . ∥ be a norm on χ, seen as a real linear space, then we know ∥ . ∥ real valued norm

on BC-module χ and for any ς ∈ BC, we have

∥ ςκ ∥≤
√
2 | ς |∥ κ ∥ . (2.1)

And if χ1, χ2 are linear spaces in C(i1) or in C(i2) such as χ = χ1ι1 + χ2ι2, in addition

assume that χ1 and χ2 are normed spaces with respective norms ∥ . ∥1, ∥ . ∥2 . Then for

any ς = ς1ι1 + ς2ι2 ∈ χ, we have

∥ ς ∥χ=
1√
2

√
∥ χ1 ∥21 + ∥ χ2 ∥22. (2.2)

Applying the basic results of above and importantly using the results (2.1) and (2.2) we

do the following definitions and theorems, and give rise to large and interesting results,

which will be vital for future advancements. We believe that there is another even more

appropriate generalization, which so far has not received enough attention.
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Definition 10. Let A = {(A1ι1 +A2ι2) ∈ Mm×n(BC)} be any bicomplex matrix defined

on bicomplex module-χ (BC module- χ), and ∥ . ∥ be a norm on defined on BC → R+. In

addition assume that A1,A2 are normed spaces with respective norms ∥ . ∥1, ∥ . ∥2, then

for any κ = κ1ι1 + κ2ι2 ∈ χ, we define the norm on A as

∥ κ ∥A=
1√
2

√
∥ κ1 ∥21 + ∥ κ2 ∥22. (2.3)

Theorem 3. Let A ∈ Mm×n(BC) be any bicomplex matrix defined on BC module-χ, and

κ = {κ1ι1 + κ2ι2 ∈ χ | κ1,κ2 ∈ χ1 or χ2}. Then for any ζ = {ζ1ι1 + ζ2ι2 ∈ BC |

ζ1, ζ2 ∈ C(i1) or C(i2)} we have

∥ ζκ ∥A≤
√
2 | ζ |∥ κ ∥A (2.4)

Proof. Clearly we have

∥ ζκ ∥A = ∥ (ζ1κ1)ι1 + (ζ2κ2)ι2 ∥A

=
1√
2

√
∥ ζ1κ1 ∥21 + ∥ ζ2κ2 ∥22

=
1√
2

√
| ζ1 |2∥ κ1 ∥21 + | ζ2 |2∥ κ2 ∥22

≤
√
2
√

(| ζ1 |2 + | ζ2 |2) ∥ κ ∥2A

=
√
2 | ζ | . ∥ κ ∥A .

Corollary 1. Let A = {A1ι1 + A2ι2, A1,A2 ∈ Mm×n(C(i1)) or Mm×n(C(i2))} be

any bicomplex matrix on Mm×n(BC) and χ = χ1ι1+χ2ι2 be bicomplex module. Then the

Euclidean norm of A is defined on χ if and only if the Euclidean norms of A1 and A2 are

defined on χ1 and χ2, then we have ∥ A ∥χ= 1√
2

√
∥ A1 ∥2χ1

+ ∥ A2 ∥2χ2
, where ∥ A1 ∥χ1

, ∥ A2 ∥χ2 are as usual Euclidean norm in complex space Mm×nC(i1) or Mm×nC(i2).

Proof. Easily can be do.

Example 1. A =

1 + 2i2 2i2

i1 3 + ℓ

 =

1 + 2i2 2i2

i1 4

 ι1 +

1 + 2i2 2i2

i1 2

 ι2 =

A1ι1 +A2ι2

Clearly we have ∥ A1 ∥χ1=
√
26, ∥ A2 ∥χ2=

√
14, ∥ A ∥χ=

√
20.
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Theorem 4. Let Mn(BC) be BC-module, and let ∥ . ∥ be a norm on Mn(BC) seen

as a real linear space, we say that ∥ . ∥ is a real valued matrix norm on the BC-module

Mn(BC), then for any bicomplex matrix A ∈ Mn(BC) satisfying the following properties.

(i) ∥ A ∥= 0 if and only if A = 0;

(ii) ∥ αA ∥≤
√
2 | α |∥ A ∥ for any α ∈ BC;

(iii) ∥ A+ B ∥≤∥ A ∥ + ∥ B ∥;

(iv) ∥ AB ∥≤
√
2 ∥ A ∥∥ B ∥ .

Proof. (i)

(A,A) = (A1ι1 +A2ι2,A1ι1 +A2ι2)

= (A1ι1 +A2ι2,A1ι1) + (A1ι1 +A2ι2,A2ι2)

= (A1ι1,A1ι1 +A2ι2)
†ℓ + (A2ι2,A1ι1 +A2ι2)

†ℓ

= (A1ι1,A1ι1)
†ℓ + (A1ι1,A2ι2)

†ℓ + (A2ι2,A1ι1)
†ℓ + (A2ι2,A2ι2)

†ℓ

= ι
†ℓ
1 (A1ι1,A1)

†ℓ + ι
†ℓ
2 (A1ι1,A2)

†ℓ + ι†ℓ1 (A2ι2,A1)
†ℓ + ι†ℓ2 (A2ι2,A2)

†ℓ

= ι†ℓ1 ι1(A1,A1)
†ℓ + ι†ℓ2 ι1(A1,A2)

†ℓ + ι†ℓ1 ι2(A2,A1)
†ℓ + ι†ℓ2 ι2(A2,A2)

†ℓ

= ι1(A1,A1)
†ℓ + ι2(A2,A2)

†ℓ

= ι1(A1,A1) + ι2(A2,A2)

| (A,A)
1
2 | = | (A1,A1)

1
2 ι1 | + | (A2,A2)

1
2 ι2 |

∥ A ∥ = ∥ A1 ∥ ι1+ ∥ A2 ∥ ι2.

Clearly if ∥ A ∥= 0, then A = 0, and converse is trivially.
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(ii) Let α = α1+α2i2 | α1, α2 ∈ C(i1), α†ℓ = ᾱ1− ᾱ2i2, α.α
†ℓ =| α |2ℓ , then we have

∥ (αA) ∥ = | (αA, αA)
1
2 |

= | (αα†ℓ(A,A))
1
2 |

= | (| α |2ℓ (A,A))
1
2 |

= | | α |ℓ (A,A)
1
2 |

= | | α |ℓ∥ A ∥ |

≤
√
2 | | α |ℓ| ∥ A ∥

=
√
2 | α | ∥ A ∥

∥ (αA) ∥ ≤
√
2 | α | ∥ A ∥ .

(iii) Let A = A1ι1 +A2ι2, B = B1ι1 + B2ι2

∥ A+ B ∥ = | (A+ B,A+ B)
1
2 |

= | ((A1 + B1)ι1 + (A2 + B2)ι2, (A1 + B1)ι1 + (A2 + B2)ι2)
1
2 |

= | (A1 + B1,A1 + B1)
1
2 | ι1+ | (A2 + B2,A2 + B2)

1
2 | ι2

= | ∥ (A+ B)ι1 ∥ ι1+ ∥ (A+ B)ι2 ∥ ι2 |

= | ∥ Aι1 + Bι1 ∥ ι1+ ∥ Aι2 + Bι2 ∥ ι2 |

=
1√
2
(∥ Aι1 + Bι1 ∥2 ι1+ ∥ Aι2 + Bι2 ∥2 ι2)

1
2

≤ 1√
2
(∥ Aι1 ∥2 + ∥ Bι1 ∥2)ι1 + (∥ Aι2 ∥2 + ∥ Bι2 ∥2 ι2))

1
2

= | (∥ Aι1 ∥ + ∥ Bι1 ∥)ι1 + (∥ Aι2 ∥ + ∥ Bι2 ∥)ι2 |

= | (∥ A1 ∥ ι1+ ∥ A2 ∥ ι2) + (∥ B1 ∥ ι1+ ∥ B2 ∥ ι2) |

= ∥ A ∥ + ∥ B ∥

∥ A+ B ∥ ≤ ∥ A ∥ + ∥ B ∥ .

(iv) From the complex Schwarz inequality in (C(i1),C(i2)), we have

| (A,B) |≤∥ A ∥∥ B ∥, ∀A,B ∈ Mn(C(i1)) or Mn(C(i2)). Therefore if we take
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A,B ∈ Mn(BC), we obtain

| (A,B) | = | (A,B)ι1 + (A,B)ι2 |

= | (A1ι1 +A2ι2,B1ι1 + B2ι2)ι1 + (A1ι1 +A2ι2,B1ι1 + B2ι2)ι2 |

= | (Aι1 ,Bι1)ι1 + (Aι2 ,Bι2)ι2 |

=
1√
2
(| (Aι1 ,Bι1) |2 ι1+ | (Aι2 ,Bι2)ι2 |2)

1
2

≤ 1√
2
(∥ Aι1 ∥2∥ Bι1) ∥2 ι1+ ∥ Aι2 ∥2∥ Bι2) ∥2 ι2)

1
2

=
1√
2
| ∥ Aι1 ∥∥ Bι1 ∥ ι1+ ∥ Aι2 ∥∥ Bι2 ∥ ι2 |

=
1√
2
| (∥ Aι1 ∥ ι1+ ∥ Aι2 ∥ ι2)(∥ Bι1 ∥ ι1+ ∥ Bι2 ∥ ι2) |

=
√
2 | (

∥ Aι1 ∥2 ι1+ ∥ Aι2 ∥2 ι2
2

)
1
2 (
∥ Bι1 ∥2 ι1+ ∥ Bι2 ∥2 ι2

2
)
1
2 |

=
√
2 ∥ A ∥∥ B ∥

∥ AB ∥ ≤
√
2 ∥ A ∥∥ B ∥ .

Theorem 5. Let A,B ∈ Mn(BC) and ∥ . ∥ be norm on Mn(BC), then we have ∥ AB ∥≤
√
2 ∥ A ∥∥ B ∥, if and only if ∥ A1B1 ∥≤∥ A1 ∥∥ B1 ∥ and ∥ A2B2 ∥≤∥ A2 ∥∥ B2 ∥.

Where A = {A1ι1 + A2ι2 | A1,A2 ∈ Mn(C(i1)), or Mn(C(i2))} and B = {B1ι1 +

B2ι2 | B1,B2 ∈ Mn(C(i1)), or Mn(C(i2))}.

Proof. Let ∥ AB ∥≤
√
2 ∥ A ∥∥ B ∥ . Then

∥ AB ∥2 ≤ 2 ∥ A ∥2∥ B ∥2

∥ A1B1 ∥2 ι1+ ∥ A2B2 ∥2 ι2
2

≤ 2(
∥ A1 ∥2 ι1+ ∥ A2 ∥2 ι2

2
)(
∥ B1 ∥2 ι1+ ∥ B2 ∥2 ι2

2
)

∥ A1B1 ∥2 ι1+ ∥ A2B2 ∥2 ι2 ≤ ∥ A1 ∥2∥ B1 ∥2 ι1+ ∥ A2 ∥2∥ B2 ∥2 ι2.

This implies that ∥ A1B1 ∥≤∥ A1 ∥∥ B1 ∥ and ∥ A2B2 ∥≤∥ A2 ∥∥ B2 ∥ .
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Similarly conversely

∥ A1B1 ∥2 ι1+ ∥ A2B2 ∥2 ι2 ≤ ∥ A1 ∥2∥ B1 ∥2 ι1+ ∥ A2 ∥2∥ B2 ∥2 ι2
∥ A1B1 ∥2 ι1+ ∥ A2B2 ∥2 ι2

2
≤ ∥ A1 ∥2∥ B1 ∥2

2
ι1 +

∥ A2 ∥2∥ B2 ∥2

2
ι2

=
(∥ A1 ∥2 ι1+ ∥ A2 ∥2 ι2)(∥ B1 ∥2 ι1+ ∥ B2 ∥2 ι2)

2

= 2
(∥ A1 ∥2 ι1+ ∥ A2 ∥2 ι2)

2

(∥ B1 ∥2 ι1+ ∥ B2 ∥2 ι2)
2

∥ AB ∥2 ≤ 2 ∥ A ∥2∥ B ∥2

∥ AB ∥ ≤
√
2 ∥ A ∥∥ B ∥ .

Proposition 1. Let A ∈ Mn(BC) and ∥ . ∥ be norm on Mn(BC), then we have following

results.

(i) ∥ Ak ∥≤ 2
k−1
2 ∥ A ∥k, ∥ (A−1)

k ∥≤ 2
k−1
2 ∥ A−1 ∥k for k = 2, 3, · · · ;

(ii) If A2 = A, then ∥ A ∥≥ 1√
2
;

(iii) If A is nonsingular, then ∥ A−1 ∥≥ 1√
2
∥ I ∥ ∥ A ∥−1;

(iv) ∥ I ∥k−1≥ 2
1−k
2 , for k = 2, 3, · · · ;

(v) If A is orthogonal, then ∥ A ∥∥ AT ∥≥ 1
2 , where AT denotes the transpose of A.

Proof. (i) Can be prove inductively easily.

(ii) ∥ A ∥=∥ A2 ∥≤
√
2 ∥ A ∥2. This implies that the prove.

(iii) ∥ I ∥=∥ AA−1 ∥≤
√
2 ∥ A ∥∥ A−1 ∥. This implies that the prove.

(iv) Inductively as (i).

(v) Using AAT = I = ATA and ∥ I ∥≥ 1√
2
, then easily can be prove.

Definition 11. Let A = {A1ι1 + A2ι2 | A1,A2 ∈ Mm×n(C(i1)) or Mm×n(C(i2))} be

any bicomplex matrix on Mm×n(BC), and χ be a bicomplex module. Then ∥ A ∥χ is the

smallest real number satisfying the inequality ∥ Aυ ∥≤
√
2 ∥ A ∥∥ υ ∥ for all υ ∈ BC.

This is called the operator norm of A.
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Theorem 6. Let A = {A1ι1+A2ι2 | A1,A2 ∈ Mm×n(C(i1)) or Mm×n(C(i2))} be any

bicomplex matrix on Mm×n(BC). Then the operator norm on A is define iff norm of A1

and A2 are defined. i.e,

∥ Aυ ∥≤
√
2 ∥ A ∥∥ υ ∥⇐⇒∥ A1υ1 ∥≤∥ A1 ∥∥ υ1 ∥, ∥ A2υ2 ∥≤∥ A2 ∥∥ υ2 ∥ .

Proof. We have ∥ A1υ1 ∥≤∥ A1 ∥∥ υ1 ∥, ∥ A2υ2 ∥≤∥ A2 ∥∥ υ2 ∥

∥ A1υ1 ∥2 ι1+ ∥ A2υ2 ∥2 ι2 ≤ ∥ A1 ∥2∥ υ1 ∥2 ι1+ ∥ A2 ∥2∥ υ2 ∥2 ι2
∥ A1υ1 ∥2 ι1+ ∥ A2υ2 ∥2 ι2

2
≤ ∥ A1 ∥2∥ υ1 ∥2 ι1+ ∥ A2 ∥2∥ υ2 ∥2 ι2

2

∥ Aυ ∥2 ≤ 2.(
∥ A1 ∥2 ι1+ ∥ A2 ∥2 ι2

2
)(
∥ υ1 ∥2 ι1+ ∥ υ2 ∥2 ι2

2
)

∥ Aυ ∥2 ≤ 2 ∥ A ∥2∥ υ ∥2

∥ Aυ ∥ ≤
√
2 ∥ A ∥∥ υ ∥ .

Similarly conversely can be do easily.

Theorem 7. Let A,B ∈ Mn(BC) be any bicomplex matrix on bicomplex Hilbert module-

χ, then

|< A,B >|≤
√
2 ∥ A ∥∥ B ∥ . (2.5)

Proof. Let χ is the direct sum of χι1 and χι2 as they are in Mn(C(i1)) or Mn(C(i2)) are

complex Hilbert spaces on C. Then we have

|< A,B >| = |< A1ι1 +A2ι2,B1ι1 + B2ι2 >|

= |< ι1A1, ι1B1 >χι1,i1
ι1+ < ι2A2, ι2B2 >χι2,i1

ι2 |

=
1√
2

√
|< ι1A1, ι1B1 >χι1,i1

|2 + |< ι2A2, ι2B2 >χι2,i1
|2

≤ 1√
2

√
∥ ι1A1 ∥2χι1,i1

. ∥ ι1B1 ∥2χι1,i1
+ ∥ ι2A2 ∥2χι2,i1

. ∥ ι2B2 ∥2χι2,i1

≤ 1√
2

√
2 ∥ A ∥2 (∥ ι1B1 ∥2χι1,i1

+ ∥ ι2B2 ∥2χι2,i1
)

=
√
2 ∥ A ∥∥ B ∥

⇒|< A,B >| ≤
√
2 ∥ A ∥∥ B ∥ .
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Theorem 8. let A,B ∈ Mn(BC) be bicomplex matrices and suppose A satisfying the

inequality of the operator norm as given ∥ Aυ ∥≤
√
2 ∥ A ∥∥ υ ∥. Then for any bicomplex

vectors υ, ϑ ∈ BCn, we have

(i) ∥ A ∥≥ 0, and ∥ A ∥= 0 if and only if A = 0;

(ii) ∥ A+ B ∥≤∥ A ∥ + ∥ B ∥;

(iii) ∥ αA ∥=| α | ∥ A ∥, for α ∈ C(i1) or in C(i2);

(iv) ∥ γA ∥≤
√
2 | γ | ∥ A ∥, for γ ∈ BC;

(v) ∥ A.B ∥≤
√
2 ∥ A ∥∥ B ∥;

(vi) ∥ A ∥=∥ AT ∥.

(vii) ∥ AAT ∥=∥ ATA ∥=∥ A ∥2;

(viii) | (Aυ, ϑ) |≤ 2 ∥ A ∥∥ υ ∥∥ ϑ ∥.

Proof. (i) If ∥ A ∥= 0 then for all υ ∈ BCn we have

∥ Aυ ∥≤
√
2 ∥ A ∥∥ υ ∥= 0

:⇒ Aυ = 0 :⇒ A = 0. And the converse part is trivially.

(ii)

∥ (A+ B)υ ∥ = ∥ Aυ + Bυ ∥≤∥ Aυ ∥ + ∥ Bυ ∥

≤
√
2 ∥ A ∥∥ υ ∥ +

√
2 ∥ B ∥∥ υ ∥

=
√
2(∥ A ∥ + ∥ B ∥) ∥ υ ∥

And we have ∥ (A+ B)υ ∥≤
√
2 ∥ A+ B ∥∥ υ ∥ .

Hence ⇒∥ (A+ B) ∥≤∥ A ∥ + ∥ B ∥ .
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(iii)

∥ (αA) ∥ = | (αA, αA)
1
2 |

= | (αα†i1 (A,A))
1
2 |

= | (| α |2 (A,A))
1
2 |

= || α || | (A,A)
1
2 |

= | α | | (A1ι1 +A2ι2,A1ι1 +A2ι2)
1
2 |

= | α | | (A1,A1)
1
2 ι1 + (A2,A2)

1
2 ι2 |

= | α | (∥ A1 ∥ ι1+ ∥ A2 ∥ ι2)

= | α |∥ A ∥

(iv) We have

∥ (γA)υ ∥≤
√
2 ∥ γA ∥ ∥ υ ∥ (2.6)

And also

∥ (γA)υ ∥ ≤
√
2 ∥ (γA) ∥∥ υ ∥

=
√
2(
∥ γ1A1 ∥2 ι1+ ∥ γ2A2 ∥2 ι2

2
)
1
2 ∥ υ ∥

=
√
2(
| γ1 |2∥ A1 ∥2 ι1+ | γ2 |2∥ A2 ∥2 ι2

2
)
1
2 ∥ υ ∥

= 2(
| γ1 |2 ι1+ | γ2 |2 ι2

2
)
1
2 .(

∥ A1 ∥2 ι1+ ∥ A2 ∥2 ι2
2

)
1
2 ∥ υ ∥

≤ 2 | γ | ∥ A ∥ ∥ υ ∥

∥ (γA)υ ∥≤ 2 | γ | ∥ A ∥ ∥ υ ∥ . (2.7)

From (2.6) and (2.7) we have

∥ γA ∥≤
√
2 | γ | ∥ A ∥ .

(v)

∥ (A.B)υ ∥ = ∥ A(Bυ) ∥

≤
√
2 ∥ A ∥ ∥ Bυ ∥

≤ 2 ∥ A ∥ ∥ B ∥ ∥ υ ∥
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And we have ∥ (AB)υ ∥≤
√
2 ∥ AB ∥ ∥ υ ∥ .

Hence ⇒∥ AB) ∥≤
√
2 ∥ A ∥ ∥ B ∥ .

(vi)

∥ Aυ ∥2 =
1

2
(∥ A1υ1 ∥2 ι1+ ∥ A2υ2 ∥2 ι2)

≤ 1

2
(2 ∥ A1 ∥2∥ υ1 ∥2 ι1 + 2 ∥ A2 ∥2∥ υ2 ∥2 ι2)

= ∥ A1 ∥2∥ υ1 ∥2 ι1+ ∥ A2 ∥2∥ υ2 ∥2 ι2

= | (A1,A1) | | (υ1, υ1) | ι1+ | (A2,A2) | | (υ2, υ2) | ι2

= | (A1υ1,A1υ1) | ι1+ | (A2υ2,A2υ2) | ι2

= | (υ1,AT
1 A1υ1) | ι1+ | (υ2,AT

2 A2υ2) | ι2

≤ ∥ υ1 ∥∥ AT
1 A1υ1 ∥ ι1+ ∥ υ2 ∥∥ AT

1 A1υ2 ∥ ι2

≤
√
2(∥ AT

1 A1 ∥∥ υ1 ∥2 ι1+ ∥ AT
2 A2 ∥∥ υ2 ∥2 ι2)

∥ Aυ ∥ ≤
√√

2 ∥ AT
1 A1 ∥ ∥ υ1 ∥ ι1 +

√√
2 ∥ AT

2 A2 ∥ ∥ υ2 ∥ ι2

≤
√√

2 ∥ ATA ∥ ∥ υ ∥ .

And we have ∥ Aυ ∥≤
√
2 ∥ A ∥∥ υ ∥ .

Therefore :⇒∥ A ∥2≤∥ AT ∥∥ A ∥:⇒∥ A ∥≤∥ AT ∥ .

Similarly if we replace AT by A then we have ∥ AT ∥≤∥ A ∥ .

Hence ∥ A ∥=∥ AT ∥ .

(vii) Since we have

∥ ATAυ ∥≤
√
2 ∥ ATA ∥∥ υ ∥≤ 2 ∥ AT ∥∥ A ∥∥ υ ∥ .

Which implies that

∥ ATA ∥≤
√
2 ∥ AT ∥∥ A ∥ .

Replace A by AT then we have

∥ AAT ∥≤
√
2 ∥ A ∥∥ AT ∥ .

Since we have ∥ A ∥=∥ AT ∥, ∥ A ∥2=∥ AT ∥2.

where

∥ A ∥= 1√
2

√
∥ A1 ∥2 ι1+ ∥ A2 ∥2 ι2, ∥ AT ∥= 1√

2

√
∥ AT

1 ∥2 ι1+ ∥ AT
2 ∥2 ι2.
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∥ A1 ∥=∥ AT
1 ∥, ∥ A2 ∥=∥ AT

2 ∥ .

Then clearly we have ∥ AAT ∥=∥ ATA ∥ .

(viii) By bicomplex Schwarz inequality we have

| (Aυ, ϑ) |=| (υ,ATϑ) |≤
√
2 ∥ υ ∥∥ ATϑ ∥≤ 2 ∥ A ∥∥ υ ∥∥ ϑ ∥ .

Definition 12. Let ∥ . ∥ be any norm on BCn, we define the function ∥ . ∥ on Mn(BC) by

∥ A ∥= sup
υ∈BCn

υ ̸=0

1√
2

∥ Aυ ∥
∥ υ ∥

= sup
υ∈BCn

∥υ∥=1

1√
2
∥ Aυ ∥ .

The function A →∥ A ∥ is called the subordinate matrix norm or operator norm induced

by the norm ∥ . ∥ .

It is easy to check that the function A →∥ A ∥ is indeed a norm, and by definition, it

satisfies the property

∥ Aυ ∥≤
√
2 ∥ A ∥∥ υ ∥, ∀υ ∈ BCn.

This implies that

∥ AB ∥≤
√
2 ∥ A ∥∥ B ∥, ∀A,B ∈ Mn(BCn),

which showing that A →∥ A ∥ is matrix norm.

Theorem 9. The bicomplex subordinate matrix norm is a bicomplex matrix norm and we

have ∥ Aυ ∥≤
√
2 ∥ A ∥∥ υ ∥, ∀υ ∈ BCn.

Proof. We prove the results given in Theorem 4 on subordinate matrix norm on BC.

(i) Firstly we have to show that, ∥ A ∥= 0 if and only if A = 0.

We have ∥ A ∥=∥ A1 ∥ ι1+ ∥ A2 ∥ ι2

sup
υ∈BCn

∥υ∥=1

1√
2
∥ Aυ ∥ = sup

υ1∈Cn

∥υ1∥=1

∥ A1υ1 ∥ ι1 + sup
υ2∈Cn

∥υ2∥=1

∥ A2υ2 ∥ ι2

= sup
υ1∈Cn

∥υ1∥=1

∥ A1 ∥ ∥ υ1 ∥ ι1 + sup
υ2∈Cn

∥υ2∥=1

∥ A2 ∥ ∥ υ2 ∥ ι2

= (∥ A1 ∥ ι1+ ∥ A2 ∥ ι2) sup
υ1,υ2∈Cn

∥υ1∥,∥υ2∥=1

(∥ υ1 ∥ ι1+ ∥ υ2 ∥ ι2).

Clearly if ∥ A ∥= 0, then A = 0, and converse is trivial.
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(ii)

∥ αA ∥ = sup
υ∈BCn

∥υ∥=1

1√
2
∥ (αA)υ ∥

≤ sup
υ∈BCn

∥υ∥=1

∥ (αA) ∥ ∥ υ ∥

≤ sup
υ∈BCn

∥υ∥=1

√
2 | α | ∥ A ∥ ∥ υ ∥

∥ αA ∥ ≤
√
2 | α | ∥ A ∥ .

(iii)

∥ A+ B ∥ = sup
υ∈BCn

∥υ∥=1

1√
2
∥ (A+ B)υ ∥

≤ sup
υ∈BCn

∥υ∥=1

1√
2
(∥ Aυ ∥ + ∥ Bυ ∥)

≤ sup
υ∈BCn

∥υ∥=1

(∥ A ∥∥ υ ∥ + ∥ B ∥∥ υ ∥)

= sup
υ∈BCn

∥υ∥=1

(∥ A ∥ + ∥ B ∥) ∥ υ ∥

∥ A+ B ∥ ≤ ∥ A ∥ + ∥ B ∥ .

(iv)

∥ AB ∥ = sup
υ∈BCn

∥υ∥=1

1√
2
∥ (AB)υ ∥

≤ sup
υ∈BCn

∥υ∥=1

∥ AB ∥∥ υ ∥

≤ sup
υ∈BCn

∥υ∥=1

√
2 ∥ A ∥∥ B ∥∥ υ ∥

∥ AB ∥ ≤
√
2 ∥ A ∥∥ B ∥ .

Theorem 10. Let the norm ∥ . ∥ is a subordinate norm on Mn(BC) and A ∈ Mn(BC)

(i) ∥ I ∥= 1√
2
.
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(ii) If A is invertible, then ∥ A−1 ∥≥ 1
2(∥ A ∥)−1.

(iii) If limn→∞ ∥ An ∥= 0, then limn→∞An = 0.

(iv) (I −A)(I +A+A2 + · · ·+An) = I −An+1.

(v) If ∥ A ∥= ζ < 1, then
∑∞

i=0Ai is convergent.

(vi) If ∥ A ∥= ζ < 1, then (I −A)−1 exits and (I −A)−1 =
∑∞

i=0Ai.

(vii) If A,B ∈ Mn(BC) and A is invertible, then A − ζB is invertible for sufficiently

small | ζ | .

Proof. For (i) we have

∥ I ∥= sup
υ∈BCn

υ ̸=0

1√
2

∥ Iυ ∥
∥ υ ∥

= sup
υ∈BCn

∥υ∥=1

1√
2
∥ Iυ ∥= sup

υ∈BCn

∥υ∥=1

1√
2
∥ υ ∥= 1√

2
.

(ii) We have ∥ AA−1 ∥= I , then

∥ AA−1 ∥ = sup
υ∈BCn

υ ̸=0

1√
2

∥ AA−1υ ∥
∥ υ ∥

≤ sup
υ∈BCn

∥υ∥=1

∥ AA−1 ∥∥ υ ∥

∥ I ∥ ≤ sup
υ∈BCn

∥υ∥=1

√
2 ∥ A ∥∥ A−1 ∥∥ υ ∥

∥ A−1 ∥ ≥ 1

2
(∥ A ∥)−1.

(iii) Suppose for some increasing subsequence of powers nr → ∞, we have

| (Anr)pq |≥ t. Let ek be the standard unit vector, then we have ∥ Anreq ∥≥ t, whence,

∥ Anr ∥≥ t, contradicting the know limit limn→∞ ∥ An ∥= 0. Hence the conclusion

limn→∞An = 0.

(iv) Easily by induction.

(v) Let Sn = I +A+A2 + · · ·+Am + · · ·+An. Then for n > m, we have

Sn − Sm =

n∑
i=m+1

Ai
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Hence

∥ Sn − Sm ∥ = ∥
n∑

i=m+1

Ai ∥

≤
n∑

i=m+1

∥ Ai ∥

≤
n∑

i=m+1

2
i−1
2 ∥ A ∥i {from proposition 1}

=
n∑

i=m+1

2
i−1
2 ζi

= ζm+1
n−m−1∑
p=0

2
m+p

2 ζp.

If ζ < 1, then this implies that, {ζm+1
∑n−m−1

p=0 2
m+p

2 ζp → 0}, as {ζm+1 → 0}.

(vi) Easily as geometric series.

(vii) We have

A− ζB = A(I − ζA−1B).

And

∥ ζA−1B ∥=| ζ |∥ A−1B ∥≤
√
2 | ζ |∥ A−1 ∥∥ B ∥< 1, {as ζ < 1}.

Then this implies that (I − ζA−1B) is invertible. Hence we have

(A− ζB)−1 = (I − ζA−1B)−1A−1.

Definition 13. Let A = A1ι1 + A2ι2 be any bicomplex matrix and det(λI − A) = λn −

trace(A)λn−1+· · ·+(−1)ndet(A) be the characteristic polynomial of the matrix A, where

f(λ) = det(λI − A) = det(λ1I − A1)ι1 + det(λ2I − A2)ι2 = f1(λ1)ι1 + f(λ2)ι2, λ =

λ1ι1 + λ2ι2. If f1(λ1), f2(λ2) having r1, r2 distinct roots then f(λ) has (r1.r2) distinct

roots i.e,

λ11, λ12, · · ·λ1r1 , λ21, λ22, · · ·λ2r2 , · · ·λr11, λr22, · · ·λr1r2 , are the set of all eigenvalues

of matrix A and constitutes the spectrum of A.

We let

ϱ(A) = max
1≤t1≤r1
1≤t2≤r2

| λt1t2 |
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be the largest modulus of the eigenvalues of A, is called the spectral radius of A.

Definition 14. For {i ≥ 1} a sequence of the matrices Ai = Bi,i1ι1 + Ci,i1ι2 is converges

to a limit Ai,1 iff Bi,i1 and Ci,i1 are converges to the limit Bi,1 and Ci,1. And for a matrix

norm ∥ . ∥, we have limi→+∞ ∥ Ai −Ai,1 ∥= 0, we write it limi→+∞Ai = Ai,1 whereas

limi→+∞ ∥ Bi,i1 − Bi,1 ∥= 0 and limi→+∞ ∥ Ci,i1 − Ci,1 ∥= 0 which implies that

limi→+∞ Bi,i1 = Bi,1 and limi→+∞ Ci,i1 = Ci,1.

Proposition 2. Let A be a matrix in Mn(BC) i.e, a bicomplex matrix then the following

conditions are equivalent

(i) limi→+∞Ai = 0;

(ii) limi→+∞Ajυ = 0, ∀υ ∈ BCn;

(iii) ϱ(A) < 1;

(iv) There exits at least one matrix norm such that ∥ A ∥≤ 1.

Proof. (i) ⇒ (ii)

∥ Aiυ ∥≤
√
2 ∥ Ai ∥∥ υ ∥, which implies that limi→+∞Aiυ = 0.

(ii) ⇒ (iii)

If not there would exit λ and vector υ ̸= 0 satisfying Aυ = λυ and we have | λ |= ϱ(A)

which would entail that the sequence Ajυ = λJυ can not converges to zero.

(iii) ⇒ (iv)

Let ∥ . ∥ is some matrix norm and a vector ν (̸= 0) ∈ BCn which implies for any non zero

vector υ, we have υν∗ ̸= 0. And

λυν∗ = Aυν∗

∥ λυν∗ ∥ = ∥ Aυν∗ ∥
√
2 | λ |∥ υν∗ ∥ ≤

√
2 ∥ A ∥∥ υν∗ ∥, {as ∥ λυν∗ ∥≤

√
2 | λ |∥ υν∗ ∥}

ϱ(A) ≤ ∥ A ∥ .

(iv) ⇒ (i)

To this end consider the matrix norm such that ∥ A ∥< 1, and accordingly, ∥ Ai ∥≤∥

A ∥i→ 0 when i → +∞, which proves that Ai → 0.
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Definition 15. Let z = {z1 + z2i2 | z1, z2 ∈ C(i1)} = αι1 + βι2 be a bicomplex number,

and let f(z) : U ⊂ BC → BC be a holomorphic function in U and f(z) =
∑+∞

j=0 ajz
j =∑+∞

j=0 ωjα
jι1 +

∑+∞
j=0 ϖjβ

jι2, where aj = ωjι1 +ϖjι2. Then for any bicomplex matrix

A{∈ Mn(BC)} = A1ι1 +A2ι2, we define the matrix f(A) by

f(A) = f1(A1)ι1 + f2(A2)ι2 =

+∞∑
j=0

ajAj =

+∞∑
j=0

ωjAj
1ι1 +

+∞∑
j=0

ϖjAj
2ι2.

Proposition 3. Let A ∈ Mn(BC), with spectral radius ϱ(A) < 1. Then the matrix (I−A)

is nonsingular and invertible. And we have

(I −A)−1 =

+∞∑
j=0

Aj .

Proof. We have the convergent series (Aj)j≥0. We compute that

(I −A) lim
r→+∞

r∑
j=0

Aj = lim
r→+∞

r∑
j=0

Aj(I −A) = lim
r→+∞

(I −Ar+1) = I.

From Theorem 10 implies that
∑+∞

j=0 Aj = (I −A)−1.

Proposition 4. Let a bicomplex matrix A{∈ Mn(BC)} = A1ι1+A2ι2, where A1,A2 lies

in C(i1) or in C(i2). Then
∑+∞

j=0 Aj = (I −A)−1 if and only if
∑+∞

j=0 A
j
1 = (I −A1)

−1

and
∑+∞

j=0 A
j
2 = (I −A2)

−1.
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Abstract

In this paper we introduce the vector valued sequence spaces w2
∞(∆k, F,Q, p, u, λ),

w2
1(∆

k, F,Q, p, u, λ) and w2
0(∆

k, F,Q, p, u, λ), Sq
u and Sq

0u using a sequence of mod-

ulus functions and the multiplier sequence U = (uk) of non-zero complex numbers.

We give some relations related to these sequence spaces. It is also shown that if a

sequence is strongly ∆kuq-Cesáro summable with respect to the modulus function f

then it is ∆kuq-statistically convergent.

1 Introduction

Let w be the set of all sequences real or complex numbers and l2∞, c2 and c20 be respectively

the Banach spaces of bounded, convergent and null sequences x = (xij) with usual norm

Keywords and phrases : Double sequences, modulus function, strong Cesáro summability, statistical

convergence.
AMS Subject Classification : 40C05, 40H05, 46A45.
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∥x∥ = sup | xij |, where i, j ∈ N , the set of positive integer.

The studies on vector-valued sequence spaces are done by Das and Chaudhary [1], Et [2]

Et at al. [3], Leonard [4], Rath and Srivastava [5], Srivastava and Srivastava [6], Tripathy et

al. [7, 8] and many others.

Let (Eij , qij) be a sequence of semi-normed spaces such that Ei+1,j+1 ⊂ Ei, j for each

i, j ∈ N . We define

w2(E) = {x = (xij) : xij ∈ Eij for each i, j ∈ N} (1.1)

It is easy to verify that w2(E) is a linear space under usual coordinatewise operations de-

fined by x+ y = (xij + yij) and (αx) = (αxij) where α ∈ C.

Throughout the work
∑∑

will denote
∞∑
i=1

∞∑
j=1

and will taken in the sense lim
N→∞

∑
2≤m

∑
+n≤N

.

Let u = (Uij) be a sequence of non-zero scalar then for a sequence space E the multiplier

sequence space E2(U) associated with the multiplier sequence u, is defined as

E2(u) = {(xij ∈ w : (uijxij) ∈ E2}

.

The notion of modulus was introduced by Nakano [9]. We recall that a modulus f is a

function from [0,∞) to [0,∞) such that

(i) f(x) = 0 if and only if x = 0

(ii) f(x+ y) ≤ f(x) + f(y) for x, y ≥ 0

(iii) f is increasing

(iv) f is continuous from the right at 0.

It follows that f must be continuous everywhere [0,∞), Maddox [10] and Ruckle [11] used

a modulus function to construct some sequence spaces. After then some sequence spaces

defined by a modulus function were introduced and studied by Biligin [12], Pehlivan and
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Fisher [13], Wasazk [14], Bharadwaj [15], Altin [16] and many others.

The notion of difference sequence spaces was introduced by Kizmaz [17] and it was gener-

alized by Et and Colak [18]. Let m be a fixed positive integer. Then we have

X(∆k) = {x = (xij) : (∆
kxij) ∈ λ} (1.2)

for X = l2∞, c2 and c20 where m ∈ N ,

∆kx = (∆k−1xij −∆k−1xi−1,j−1)

∆0x = (xij)

and so we have

∆kxij =

k∑
v=0

(−1)v

 k

v

xi+v,j+v (1.3)

2 Main Results

In this section, we prove results involving the sequence spaces w2
0(∆

k, F,Q, p, u),

w2
1(∆

k, F,Q, p, u) and w2
∞(∆k, F,Q, p, u).

Definition 2.1. Let (Eijpij) be a sequence of semi-normed such that Ei+1,j+1 ⊂ Eij for

i, j ∈ N . p = (pij) be a sequence of strictly positive real numbers Q = (qij) be a sequence

of semi-norms. F = (fij) is a sequence of modulus functions and u = (uij) any fixed

sequence of non-zero complex numbers uij .

We define following sequence spaces
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w2
0(∆

k, F,Q, p, u) = {x = (xij : xij ∈ Eij :
1

m+n

∑
2≤i+j

∑
≤m+n[fij

(qij(uij∆
kxij)]

pij → 0 as m+ n → ∞}

w2
1(∆

k, F,Q, p, u) = {x = (xij : xij ∈ Eij :
1

m+n

∑
2≤i+j

∑
≤m+n[fij

(qij(uij∆
kxij − l)]pij → 0 as m+ n → ∞}

w2
∞(∆k, F,Q, p, u) = {x = (xij : xij ∈ Eij : supm,n

1
m+n

∑
2≤i+j

∑
≤m+n[fij(qij(uij∆

kxij)]
pij < ∞}

(2.1)

Throughout the paper z will denote any one of the notation 0, 1, or ∞.

If fij = f and qij = q for all i, j ∈ N , we will write w2
z(∆

k, f, q, p, u) instead of

w2
z(∆

k, F,Q, p, u).

If fx = x and pij = 1 and for all i, j ∈ N , we will write w2
z(∆

k, q, u) instead of

w2
z(∆

k, f, q, p, u).

If x ∈ w2
1(∆

k, f, q, p, u) we say that x is strongly ∆kuq -Ces̀aro summable with respect to

the modulus function f and we will write xij → l2(w2
1(∆

k, f, q, p, u) and l will be called

∆kuq-limit of x with respect to the modulus f .

The proof of following theorems are obtained by using the known standard techniques

therefore we give them without proofs.

Theorem 2.2. Let the sequence (pij) be bounded. Then the spaces w2
z(∆

k, F,Q, p, u) are

linear spaces.

Theorem 2.3. Let f be a modulus function and sequences (pij) be bounded. Then

w2
0(∆

k, f, q, p, u)subsetw2
1(∆

k, f, q, p, u) ⊂ w2
1(∆

k, f, q, p, u) (2.2)
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and the inclusion are strict.

Theorem 2.4. w2
0(∆

k, F,Q, p, u) is a paranormed (need not total paranorm) space with

g∆(x) = sup
m,n

 1

m+ n

∑
2≤i+j

∑
≤m+n

[fij(qij(uij∆
kxij))]

1/M


where M = max(1, sup pij).

Theorem 2.5. Let F = (fij) and G = (gij) be any two sequences of modulus functions.

For any bounded sequences p = (pij) and t = (tij) of strictly positive real numbers and for

any two sequences of semi-norms q = (qij) and r = (rij), we have

(i) w2
z(△k, f,Q, u) ⊂ w2

z(△k, fog,Q, u)

(ii) w2
z(△k, F,Q, p, u) ∩ w2

z(△k, F,R, p, u) ⊂ w2
z(△k, F,Q+R, p, u)

(iii) w2
z(△k, F,Q, p, u) ∩ w2

z(△k, G,Q, p, u) ⊂ w2
z(△k, F +G,Q, p, u)

(iv) if qij is stronger than rij for each i, j ∈ N , then

w2
z(△k, F,Q, p, u) ⊂ w2

z(△k, F,R, p, u)

(v) if qij is equivalent to rij for each i, j ∈ N , then

w2
z(△k, F,Q, p, u) = w2

z(△k, F,R, p, u)

(vi) w2
z(△k, F,Q, p, u) ∩ w2

z(△k, F,R, p, u) ̸= ϕ.

Proof. (i) We will prove (i) for z = 0 and other cases can be proved by using similar

arguments. Let ϵ > 0 and choose δ with 0 < δ < 1 such that f(t) < ϵ for 0 ≤ t ≤ δ and

for all i, j ∈ N . Write yij = g(qij(uij△kxij)) and consider∑∑
2≤i+j≤m+n

[f(yij)] =
∑
1

[f(yij)] +
∑
2

[f(yij)] (2.4)

where the first summation is over yij ≤ δ and second summation is over yij > δ. Since f

is continuous, we have ∑
1

[f(yij)] < nϵ (2.5)
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By the definition of f , we have for yij > δ

f(yij) < 2f(1)
yij
δ
. (2.6)

Hence
1

m+ n

∑
2

[f(yij)] ≤ 2δ−1f(1)
1

m+ n

∑∑
2≤i+j≤m+n

yij . (2.7)

From (2.5) and (2.7), we obtain w2
0(△k, f,Q, u) ⊂ w2

0(△k, fog,Q, u).

The following result is consequence of theorem 2.5 (i).

Corollary 2.6. Let f be modulus function. Then

w2
z(△k, Q, u) ⊂ w2

z(△k, f,Q, u).

Theorem 2.7. 0 < pij ≤ tij and
(
tij
pij

)
be bounded then

w2
z(△k, F,Q, t, u) ⊂ w2

z(△k, F,Q, p, u).

Proof. If we take w2
ij = [fij(qij(uij△kxij))]

tij for all i, j and using the same technique of

Theorem 5 of Maddox [19] it is easy to prove the theorem.

Theorem 2.8. Let f be a modulus function. If lim
t→∞

(
f(t)

t

)
= β > 0 then

w2
1(△k, Q, p, u) = w2

1(△k, f,Q, p, u).

Proof. Omitted.

3 △kUq−Statistical Convergence

The notion of statistical convergence were introduced by Fast [20] and Schoenberg [21]

independently. Over the years and under different names, statistical convergence has been

discussed in the theory of Fourier Analysis, ergodic theory and number theory. Later on

it was further investigated from the sequence space point of view and linked with summa-

bility theory by Šalat [22], Fridy [23], Connor [24]. Mursaleen [25] Işik [26], Malkowsky

and Savas and many others. In recent years generalizations of statistical convergence have
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appeared in the study of strong integral summability and the structure of ideals of bounded

continuous functions on locally compact spaces. Statistical convergence and its generaliza-

tions are also connected with subsets of the Stone-Čech compactifications of natural num-

bers. Moreover statistical convergence is closely related to the concept of convergence in

probability. The notion depends upon the density of subsets of the set N of natural numbers.

A subset E of N is said to be have density positive integers which is defined by δ2(E)

if

δ2(E) = lim
m+n→∞

1

m+ n

∑∑
2≤i+j≤m+n

χ2
E(i, j) exists. (3.1)

where χ2
E is the characteristic function of E. It is clear that any finite subset of N have zero

natural density and

δ2(Ec) = 1− δ(E).

In this section, we introduce △kUq−statistically convergent sequence and gives some

inclusion relations between △kUq−statistically convergent sequences and w2
1(f, q, p, u)−

summable sequences.

Definition 3.1. A sequence x = (xij) is said to be △kUq−statistically convergent to l if

for every ϵ > 0

δ({i, j ∈ N : q(uij△kxij − l) ≥ ϵ}) = 0. (3.2)

In this case, we write xij → l(squ(△k)). The set of all △kuq−statistically convergent

sequence is denoted by squ(△k). In this case l = 0. We will write sq0u(△k) instead of

squ(△k).

Theorem 3.2. Let f be a modulus function, then

(i) if xij → l(w2
1(△k, q, u)) then xk → l(squ(△k))

(ii) if x ∈ l2∞(△kuq) and xij → l2(squ(△k)) then xij → l2(w2
1(△k, q, u))

(iii) squ(△k) ∩ l2∞(△kuq) = w2
1(△k, q, u) ∩ l2∞(△k, uq) where

l2∞(△kuq) = {x ∈ w2(X) : sup
i,j

q(uij△kxij) < ∞}.

Proof. Omitted.
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In the following theorems, we will assume that the sequence p = (pij) is bounded and

0 < l = inf
i,j

pij ≤ pij ≤ sup
i,j

pij = H < ∞.

Theorem 3.3. Let f be a modulus function, then w2
1(△k, f, q, p, u) ⊂ squ(△k).

Proof. Let x ∈ w2
1(△k, f, q, p, u) and let ϵ > 0 be given. Let

∑
1

and
∑
2

denotes the sums

over i+ j ≤ m+ n with q(uij△kxij − l) ≥ ϵ and q(uij△kxij − l) < ϵ respectively. Then

1

m+ n

∑∑
2≤i+j≤m+n

[f(q(uij△kxij − l))]pij

=
1

m+ n

∑
1

[f(q(uij△kxij − l))]pij

≥ 1

m+ n

∑
1

[f(ϵ)]pij

≥ 1

m+ n

∑
1

min([f(ϵ)]h, [f(ϵ)]H) (3.3)

1

m+ n
∥{i+ j ≤ m+ n : q(uij△kxij − l) ≥ ϵ}∥

min([f(ϵ)]h, [f(ϵ)]H).

Hence x ∈ squ(△k).

Theorem 3.4. Let f be bounded, then squ(△k) ⊂ w2
1(△k, f, q, p, u).

Proof. Suppose that f is bounded. Let ϵ > 0 and
∑
1

and
∑
2

be denoted in previous

theorem. Since f is bounded, there exists an integer K such that f(x) < K for all x ≥ 0.

Then
1

m+ n

∑∑
2≤i+j≤m+n

[f(q(uij△kxij − l))]pij

≤ 1

m+ n

(∑
1

[f(q(uij△kxij − l))]pij +
∑
2

[f(q(uij△kxij − l))]pij
)

≤ 1

m+ n

∑
1

max(Kh,KH) +
1

m+ n

∑
2

[f(ϵ)]pij (3.4)

≤ max(Kh,KH)
1

m+ n
∥{i+ j ≤ m+ n : q(uij△kxij − l) ≥ ϵ}∥

+max(f(ϵ)h, f(ϵ)H).

Theorem 3.5. squ(△k) = w2
1(△k, f, q, p, u) if and only if f is bounded.
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Proof. Let f be bounded. By theorem 3.3 and 3.4, we have

squ(△k) = w2
1(△k, f, q, p, u).

Conversely, suppose that f is unbounded. Then there exists a sequence (tij) of positive

numbers with f(tij) = i+ j for i, j = 1, 2, . . ., choose

ui△kxi =

 tij k = i+ j i, j = 1, 2, . . .

0 otherwise.
(3.5)

then, we have

1

m+ n
∥{i+ j ≤ m+ n : |uij△kxij | ≥ ϵ}∥ ≤

√
m+ n

m+ n
(3.6)

for all m,n and so x ∈ squ(△k), but x /∈ w2
1(△k, f, q, p, u) for X = C q(x) = |x| and

pij = 1 for all i, j ∈ N , which contradicts to squ(△k) = w2
1(△k, f, q, p, u).
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Abstract

We use bilateral basic hypergeometric series to obtain some bilateral mock theta

functions and show that these functions are related to the basic hypergeometric se-

ries 8Φ7. Further they satisfy the characteristic property of the mock theta functions

defined by Ramanujan. We also express them in terms of the Lerch transcendental

function f(x, ξ; q, p).

1 Introduction

The mock theta functions were first introduced by Ramanujan [3] in his last letter to G. H.

Hardy in January 1920. He provided a list of seventeen mock theta functions and labelled

them as of third, fifth and seventh order without mentioning the reason for his labelling.

Watson [17] added to this set three more third order mock theta functions.

His general definition of a mock theta function is a function f(q) defined by a q-series

convergent when |q| < 1 which satisfies the following two conditions.

Keywords and phrases : Mock theta functions, bilateral mock theta functions.
AMS Subject Classification : Primary 33D15, Secondry 11B65.
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1. For every root ξ of unity, there exists a theta function∗ θξ(q) such that the difference

between f(q) and θξ(q) is bounded as q → ξ radially.

2. There is no single theta function which works for all ξ i.e. for every theta function

θξ(q) there is some root of unity ξ for which f(q) minus the theta function θξ(q) is

unbounded as q → ξ radially.

Andrews and Hickerson [13] announced the existence of eleven more identities given

in the Lost note book of Ramanujan involving seven new functions which they labelled

as mock theta functions of order six. Y. S. Choi [1] has discovered four functions which

he called the mock theta function of order ten. B. Gordon and R. J. McIntosh [26] have

announced the existence of eight mock theta functions of order eight and R. J. McIntosh [5]

has announced the existence of three mock theta functions of order two.

Hikami [11],[12] has introduced a mock theta function of order two, another of order

four and two of order eight. Very recently Andrews [14] while studying q-orthogonal poly-

nomials found four new mock theta functions and Bringmann et al [10] have also found

two more new mock theta functions but they did not mention the order of their mock theta

functions.

Watson and others have only proved the first assertion 11 and no one has proved the

second assertion 12, Watson attempted to prove 12 too for the third order mock theta func-

tions but could not do it in all its generality. Watson [16],[17], Dragonette [9] and Andrews

and Hickerson [13] have shown that all the mock theta functions defined by Ramanujan, at

least satisfy the boundedness condition 11.

Watson [17] has defined four bilateral series, which he has called the Complete or Bi-

lateral forms for four of the ten mock theta functions of order five. Further he has expressed

them in terms of the transcendental function f(x, ξ; q, p) studied by M. Lerch [7]. S. D.

Prasad [2] in 1970 has defined the Complete or Bilateral forms of the five generalized third

order mock theta functions. The Complete sixth order mock theta functions were stud-

ied by A. Gupta [27]. Bhaskar Srivastava [22],[23],[24],[25] have studied bilateral mock

theta functions of order five, eight, two and new mock theta functions by Andrews [14] and

Bringmann et al [10].
∗When Ramanujan refers to theta functions, he means sums, products, and quotients of series of the form∑
n∈z ϵ

nqan
2+bn with a, b ∈ Q and ϵ = −1, 1.
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N. J. Fine [6] has reduced the third order mock theta function as a limiting case of

2Φ1 and A. Gupta [27] has reduced the mock theta functions of order five and seven as the

limiting cases of 3Φ2 and 4Φ3 respectively. Shukla and Ahmad [18],[19],[20],[21] and M.

Ahmad [8] have obtained bilateral mock theta functions of order “seven”, “nine”, “eleven”

and “thirteen” and reduced them as the limiting cases of a basic hypergeometric series 4Φ3,

5Φ4, 6Φ5 and 7Φ6 respectively on a single base and proved that they satisfy characteristic

property 11 of the mock theta functions defined by Ramanujan.

The paper is divided as follows: In section 2 we list few important definitions. In section

3 we define the following eight functions, namely

f0,7(q) =

∞∑
−∞

(−1)n
q

7n(n−1)
2 qn

(−q; q)n
(1.1)

f1,7(q) =
∞∑
−∞

(−1)n
q

7n(n−1)
2 q2n

(−q; q)n
(1.2)

F0,7(q
2) =

∞∑
−∞

(−1)n
q7n(n−1)q2n

(q; q2)n
(1.3)

F1,7(q
4) =

∞∑
−∞

(−1)n
q7n(2n−2)q8n

(q6; q4)n
(1.4)

Ψ0,7(q) =

∞∑
−∞

(−1)nq3n
2+9n(−q; q)n (1.5)

Φ1,7(q
2) =

∞∑
−∞

(−1)nq6n
2+12n(−q; q2)n (1.6)

Φ0,7(q
2) =

∞∑
−∞

(−1)n
q7n

2

(−q; q2)n
(1.7)

Ψ1,7(q) =

∞∑
−∞

(−1)n+1 q
7n(n+1)

2

2(−q; q)n
(1.8)

In section 4, we have expressed them as the limiting cases of the basic hypergeometric

series 8Φ7 on a single base q, q2 or q4. In section 5, we have shown that these functions

possess the characteristic property 11 of the mock theta functions defined by Ramanujan. In

section 6 we have expressed these functions in terms of the Lerch transcendental function

f(x, ξ; q, p).
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2 Notation and Definitions

We use the following q-notation. Suppose q and z are complex numbers and n is an integer.

If n ≥ 0 we define

(z)n = (z; q)n =

n−1∏
i=0

(1 − qiz) if n ≤ 0 and (z)−n = (z; q)−n = (−z)−nq
n(n+1)

2(
q
z
;q
)
n

and

more generally (z1, z2, · · · , zr; q)n = (z1)n(z2)n · · · (zr)n.

For
∣∣qk∣∣ < 1 let us define (z; qk)n = (1 − z)(1 − zqk) · · · (1 − zqk(n−1)), n ≥ 1

(z; qk)0 = 1 and (z; qk)∞ = limn→∞(z; qk)n =
∏
i≥0

(1− qkiz) and even more generally,

(z1, z2 · · · zr; qk)∞ = (z1; q
k)∞ · · · (zr; qk)∞

A basic hypergeometric series r+1Φr on base qk is defined as

r+1Φr

 a1, a2 · · · ar

b1, b2 · · · br
; qk; z

 =

∞∑
n=0

(a1, a2, · · · , ar; qk)nzn

(qk; qk)n(b1, b2, · · · br; qk)n
, (|z| < 1)

and a bilateral basic hypergeometric series rΨr is defined as

rΨr

 a1, · · · ar

b1, · · · br
; q, z

 =

∞∑
n=−∞

(a1, · · · , ar; q)n zn

(b1 · · · br; q)n
, (

∣∣∣∣ b1 · · · bra1 · · · ar

∣∣∣∣ < |z| < 1)

The Lerch transcendental function f(x, ξ; q, p) is defined by:

f(x, ξ; q, p) =
∞∑
−∞

(pq)n
2
(xξ)−2n

(−pξ−2; p2)n

3 Eight Bilateral Mock Theta Functions

In order to define the functions f0,7(q), f1,7(q), F0,7(q
2), F1,7(q

4),Ψ0,7(q),Φ1,7(q
2),

Φ0,7(q
2),Ψ1,7(q) the following transformation of Slater given on page 142 in [15] between

7Ψ7 has been used

(
b1, . . . , b7,

q
a1
, . . . , q

a7
, dz, q

dz ; q
)
∞(

c1, . . . , c7,
q
c1
, . . . , q

c7
; q
)
∞

7Ψ7[
a1, . . . , a7

b1, . . . , b7
; q; z]

=
q

c1

(
c1
a1
, . . . , c1

a7
, qb1c1 , . . . ,

qb7
c1

, dc1zq , q2

dc1z
; q
)
∞(

c1,
q
c1
, c1c2 , . . . ,

c1
c7
, qc2c1 , . . . ,

qc7
c1

; q
)
∞

7Ψ7

 qa1
c1

, . . . , qa7c1
qb1
c1

, . . . , qb7c1

; q; z


+ idem(c1, . . . , c7) (3.1)
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where d = a1···a7
c1···c7 and | b1···b7a1···a7 | < |z| < 1 and idem (c1, . . . , c7) means that the preceding

expression is repeated with c1, . . . c7 interchanged.

Now taking a1, . . . , a7 → ∞, b1 = −q, b2 = · · · = b7 = 0, z = q
a1···a7 in (3.1) we have

(
− q, q

c1···c7 , c1 · · · c7; q
)
∞(

c1, . . . , c7,
q
c1
, . . . , q

c7
, q
)
∞

∞∑
−∞

(−1)n
q

7n(n−1)
2 qn

(−q; q)n

=
q

c1

(−q2

c1
, 1
c2···c7 , qc2 · · · c7; q

)
∞(

c1,
q
c1
, c1c2 , . . . ,

c1
c7
, qc2c1 , . . . ,

qc7
c1

; q
)
∞

∞∑
−∞

(−1)n
q

7n(n+1)
2 qn

c7n1 (−q2

c1
; q)n

+ idem(c1, . . . , c7) (3.2)

Now taking a1, . . . , a7 → ∞, b1 = −q, b2 = · · · = b7 = 0, z = q2

a1···a7 in (3.1) we have

(
− q, q2

c1···c7 ,
c1···c7

q ; q
)
∞(

c1, . . . , c7,
q
c1
, . . . , q

c7
, q
)
∞

∞∑
−∞

(−1)n
q

7n(n−1)
2 q2n

(−q; q)n

=
q

c1

(−q2

c1
, q
c2···c7 , c2 · · · c7; q

)
∞(

c1,
q
c1
, c1c2 , . . . ,

c1
c7
, qc2c1 , . . . ,

qc7
c1

; q
)
∞

∞∑
−∞

(−1)n
q

7n(n+1)
2 q2n

c7n1 (−q2

c1
; q)n

+ idem(c1, . . . , c7) (3.3)

Now taking a1, . . . , a7 → ∞, b1 = q, b2 = · · · = b7 = 0, z = q2

a1···a7 in (3.1) and base

changed to q2 we have

(
q, q2

c1···c7 , c1 · · · c7; q
2
)
∞(

c1, . . . , c7,
q2

c1
, . . . , q

2

c7
, q2
)
∞

∞∑
−∞

(−1)n
q7n(n−1)q2n

(q; q2)n

=
q2

c1

( q3
c1
, 1
c2···c7 , q

2c2 · · · c7; q2
)
∞(

c1,
q2

c1
, c1c2 , . . . ,

c1
c7
, q

2c2
c1

, . . . , q
2c7
c1

; q2
)
∞

∞∑
−∞

(−1)n
q7n(n+1)q2n

c7n1 ( q
3

c1
; q2)n

+ idem(c1, . . . , c7) (3.4)

Now taking a1, . . . , a7 → ∞, b1 = q6, b2 = · · · = b7 = 0, z = q8

a1···a7 in (3.1) and base
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changed to q4 we have

(
q6, q8

c1···c7 ,
c1···c7
q4

; q4
)
∞(

c1, . . . , c7,
q4

c1
, . . . , q

4

c7
, q4
)
∞

∞∑
−∞

(−1)n
q7n(2n−2)q8n

(q6; q4)n

=
q4

c1

( q10
c1

, q4

c2···c7 , c2 · · · c7; q
4
)
∞(

c1,
q4

c1
, c1c2 , . . . ,

c1
c7
, q

4c2
c1

, . . . , q
4c7
c1

; q4
)
∞

∞∑
−∞

q7n(2n+2)q8n

c7n1 ( q
10

c1
; q4)n

+ idem(c1, . . . , c7) (3.5)

Now taking a1, . . . , a6 → ∞, a7 = −q, b1 = · · · = b7 = 0, z = −q12

a1···a6 in (3.1) we

have(
− 1, q13

c1···c7 ,
c1···c7
q12

; q
)
∞(

c1, . . . , c7,
q
c1
, . . . , q

c7
, q
)
∞

∞∑
−∞

(−1)nq3n
2+9n(−q; q)n

=
q

c1

(−c1
q , q12

c2···c7 ,
c2···c7
q11

; q
)
∞(

c1,
q
c1
, c1c2 , . . . ,

c1
c7
, qc2c1 , . . . ,

qc7
c1

; q
)
∞

∞∑
−∞

(−1)n
q3n

2+15n

c6n1
(−q2

c1
; q)n

+ idem(c1, . . . , c7) (3.6)

Now taking a1, . . . , a6 → ∞, a7 = −q, b1 = · · · = b7 = 0, z = −q18

a1···a6 in (3.1) and

base changed to q2 we have

(
− q, q19

c1···c7 ,
c1···c7
q17

; q2
)
∞(

c1, . . . , c7,
q2

c1
, . . . , q

2

c7
, q2
)
∞

∞∑
−∞

(−1)nq6n
2+12n(−q; q2)n

=
q2

c1

(−c1
q , q17

c2···c7 ,
c2···c7
q15

; q2
)
∞(

c1,
q2

c1
, c1c2 , . . . ,

c1
c7
, q

2c2
c1

, . . . , q
2c7
c1

; q2
)
∞

∞∑
−∞

(−1)n
q6n

2+24n

c6n1
(−q3

c1
; q2)n

+ idem(c1, . . . , c7) (3.7)

Now taking a1, . . . , a7 → ∞, b1 = −q, b2 = · · · = b7 = 0, z = q7

a1···a7 in (3.1) and

base changed to q2 we have

(
− q, q7

c1···c7 ,
c1···c7
q5

; q2
)
∞(

c1, . . . , c7,
q2

c1
, . . . , q

2

c7
, q2
)
∞

∞∑
−∞

(−1)n
q7n

2

(−q; q2)n

=
q2

c1

(−q3

c1
, q5

c2···c7 ,
c2···c7
q2

; q2
)
∞(

c1,
q2

c1
, c1c2 , . . . ,

c1
c7
, q

2c2
c1

, . . . , q
2c7
c1

; q2
)
∞

∞∑
−∞

q7n(n+2)

c7n1 (− q3

c1
; q2)n

+ idem(c1, . . . , c7) (3.8)



Some Bilateral Mock Theta Functions and their Lerch representations 81

Now taking a1, . . . , a7 → ∞, b1 = −1, b2 = · · · = b7 = 0, z = 1
a1···a7 in (3.1) we have

(
− 1, 1

c1···c7 , qc1 · · · c7; q
)
∞(

c1, . . . , c7,
q
c1
, . . . , q

c7
, q
)
∞
(−1)n+1 q

7n(n+1)
2

2(−q; q)n

=
q

c1

(−q
c1
, 1
c2···c7q , q

2c2 · · · c7; q
)
∞(

c1,
q
c1
, c1c2 , . . . ,

c1
c7
, qc2c1 , . . . ,

qc7
c1

; q
)
∞

∞∑
−∞

q
7n(n+1)

2

c7n1 (− q
c1
; q)n

+ idem(c1, . . . , c7) (3.9)

Using Equations (3.2) to (3.9) we define the bilateral mock theta functions given by

Equations (1.1) to (1.8).

4 Bilateral Mock Theta Functions as the limiting case of a 8Φ7

Bilateral mock theta functions defined in Section 3 have the following relation with the

basic hypergeometric series 8Φ7:

f0,7(q) =

∞∑
−∞

(−1)n
q

7n(n−1)
2 qn

(−q; q)n

= lim
t→0

8Φ7

[ −1
t , −1

t , . . . ,−1
t

−q, 0, . . . , 0
; q;−t7q

]

− 2q6 lim
t→0

8Φ7

[ − q
t , . . . ,− q

t , −q,

0, . . . 0, , 0
; q;−t6q6

]

f1,7(q) =
∞∑
−∞

(−1)n
q

7n(n−1)
2 q2n

(−q; q)n

= lim
t→0

8Φ7

[ −1
t , −1

t , . . . ,−1
t

−q, 0, . . . , 0
; q;−t7q2

]

− 2q5 lim
t→0

8Φ7

[ − q
t , . . . ,− q

t , −q,

0, . . . 0, , 0
; q;−t6q5

]
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F0,7(q
2) =

∑∞
−∞(−1)n q7n(n−1)q2n

(q;q2)n

= limt→0 8Φ7(q
2)
[ −1

t , −1
t , . . . ,−1

t

q, 0, . . . , 0
; q2;−t7q2

]

+(q11−q12) limt→0 8Φ7(q
2)
[ − q2

t , . . . ,− q2

t , q3,

0, . . . 0, , 0
; q2; t6q11

]

F1,7(q
4) =

∑∞
−∞(−1)n q7n(2n−2)q8n

(q6;q4)n

= limt→0 8Φ7(q
4)
[ −1

t , −1
t , . . . ,−1

t

q6, 0, . . . , 0
; q4;−t7q8

]

+ (q22 − q20) limt→0 8Φ7(q
4)
[ − q4

t , . . . ,− q4

t , q2,

0, . . . 0, , 0
; q4; t6q22

]

Ψ0,7(q) =
∞∑
−∞

(−1)nq3n
2+9n(−q; q)n

= lim
t→0

8Φ7

[ − q
t , . . . ,− q

t , −q,

0, . . . 0, , 0
; q;−t6q6

]

− 1

2q6
lim
t→0

8Φ7

[ − q
t , − q

t , . . . ,− q
t

−q, 0, . . . , 0
; q;− t7

q6

]

Φ1,7(q
2) =

∑∞
−∞(−1)nq6n

2+12n(−q; q2)n

= limt→0 8Φ7(q
2)
[ − q2

t , . . . ,− q2

t , −q

0, . . . 0, , 0
; q2;−t6q6

]

− 1
q5+q6

limt→0 8Φ7(q
2)
[ − q2

t , − q2

t , . . . ,− q2

t

−q3, 0, . . . , 0
; q2;− t7

q5

]

Φ0,7(q
2) =

∑∞
−∞(−1)n q7n

2

(−q;q2)n

= limt→0 8Φ7(q
2)
[ − q2

t , − q2

t , . . . ,− q2

t

−q, 0, . . . , 0
; q2;− t7

q7

]

−(q6+q7) limt→0 8Φ7(q
2)
[ − q2

t , . . . ,− q2

t , −q3

0, . . . 0, , 0
; q2;−t6q6

]
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Ψ1,7(q) =
∞∑
−∞

(−1)n+1 q
7n(n+1)

2

2(−q; q)n

=
1

2

(
lim
t→0

8Φ7

[ − q
t , − q

t , . . . ,− q
t

−q, 0, . . . , 0
; q;−t7

]

+ lim
t→0

8Φ7

[ − q
t , . . . ,− q

t , −q,

0, . . . 0, , 0
; q;−t6

])

5 Behaviour of the Bilateral Mock Theta Functions in the neigh-

bourhood of the unit circle

The property of a mock theta function which Ramanujan regarded as their characteristic

property was as follows: Corresponding to each “rational point” q = eπi
h
k (with h and

k integers) of the unit circle |q| = 1, there exists a theta function of q whose difference

from the given mock theta function is bounded when q approaches this rational point along

a radius of the circle. The goal of this section is to show that the functions defined by

Equations (1.1) to (1.8) satisfy the characteristic property given by Ramanujan and hence

may be deemed as mock theta functions.

A rational point eπi
h
k on the unit circle is called a point of the first category if h is even

and k is odd, a point of the second category if h and k are both odd and a point of the third

category if h is odd and k is even.

Theorem 1 For approach to |q| = 1 along a radius of the first category Φ0,7(q
2) =

O(1).

Proof. We have,

Φ0,7(q
2) =

∑∞
−∞(−1)n q7n

2

(−q;q2)n

=
∑∞

0 (−1)n q7n
2

(−q;q2)n
+
∑∞

1 (−1)n q7n
2

(−q;q2)−n
=
∑∞

0 (−1)n q7n
2

(−q;q2)n

− (q6 + q7) limt→0 8Φ7(q
2)
[ − q2

t , . . . ,− q2

t , −q3

0, . . . 0, , 0
; q2;−t6q6

]
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Now let

T0,7(q
2) =

∞∑
0

(−1)n
q7n

2

(−q; q2)n

=
∞∑
0

(−1)nq7n
2∏n

r=1(1 + q2r−1)

Let q = ρeπi(
h
k
), R(ρ) > 0 and ρ → 1− so that

T0,7(q
2) =

∞∑
0

(−1)n
ρ7n

2
eπi(

h
k
)7n2∏n

r=1(1 + ρ2r−1eπi(
h
k
)(2r−1))

(5.1)

Putting n = uk + v, we can partition the above sum in the residue classes mod k so

that, we have

T0,7(q
2) =

k−1∑
v=0

∞∑
u=0

(−1)uk+v ρ7(uk+v)2eπi(
h
k
)7(uk+v)2∏uk+v

r=1 (1 + ρ2r−1eπi(
h
k
)(2r−1))

=

k−1∑
v=0

∞∑
u=0

av,u (5.2)

So,

∣∣∣av,u+1

av,u

∣∣∣ = ρ7k(2uk+2v+k)∏uk+k+v
r=uk+v+1

∣∣∣1 + ρ2r−1eπi(
h
k
)(2r−1)

∣∣∣ (5.3)

Next we estimate the denominator of (5.3) using the inequality given by Andrews and

Hickerson [13] for 0 < R′ ≤ R ≤ 1 and |z| = 1 which is |1 +Rz| ≤
√

R
R′ |1 +R′z|.

So,
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uk+k+v∏
r=uk+v+1

∣∣∣1 + ρ2r−1eπi(
h
k
)(2r−1)

∣∣∣ = k∏
r=1

∣∣∣1 + ρ2r+2uk+2v−1eπi(
h
k
)(2r+2uk+2v−1)

∣∣∣
=

k∏
r=1

∣∣∣1 + ρ2r+2uk+2v−1eπi(
h
k
)(2r+2v−1)

∣∣∣
≥

k∏
r=1

ρr+uk−1
∣∣∣1 + ρ2v+1eπi(

h
k
)(2r+2v−1)

∣∣∣
(R′ = ρ2r+2uk+2v−1, R = ρ2v+1)

= ρ
k(2uk+k−1)

2

k∏
r=1

∣∣∣1 + ρ2v+1eπi(
h
k
)(2r+2v−1)

∣∣∣
= ρ

k(2uk+k−1)
2 (1 + ρk(2v+1))

(since 1 + ρ2v+1eπi(
h
k
)(2r+2v−1) runs through

the roots of [(x− 1)k − ρk(2v+1)])

≥ ρ
k
2
(2uk+k−1) (5.4)

Hence from Equations (5.3) and (5.4) we get

∣∣∣av,u+1

av,u

∣∣∣ ≤ ρ7k(2uk+2v+k)

ρ
k(2uk+k−1)

2

≤ ρk(13uk+14v+ 13k
2

+ 1
2
)

≤ ϵ < 1 (5.5)

Hence
∑

u av,u is uniformly convergent.
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|T0,7(q
2)| ≤

k−1∑
v=0

∞∑
u=0

ϵu|av,0|

=
1

1− ϵ

k−1∑
v=0

|av,0|

=

∑k−1
v=0

∣∣∣(−1)vρ7v
2
eπi(

h
k
)7v2
∣∣∣

(1− ϵ)
∏v

r=1

∣∣∣1 + ρ2r−1eπi(
h
k
)(2r−1)

∣∣∣
≤

∑k−1
v=0 ρ

7v2

(1− ϵ)
∏v

r=1

∣∣∣1 + ρ2r−1eπi(
h
k
)(2r−1)

∣∣∣
= O(1) (5.6)

for fixed k as ρ → 1−. Now the second function on the right of the Φ0,7(q
2) in Equation

(??) is a bounded function of q since 8Φ7 is convergent for |q| < 1. Hence Φ0,7(q
2) = O(1)

when q lies on the radius of the first category.

Theorem For approach to |q| = 1 along a radius of second category Φ0,7(−q2) = O(1).

Proof. When q lies on the radius of the second category −q lies on the radius of first cate-

gory. Hence from the proof of Theorem ?? we conclude that Φ0,7(−q2) = O(1).

Similarly it can also be proved that

1. For approach to |q| = 1 along a radius of first category f0,7(q) = O(1), f1,7(q) =

O(1), F0,7(q
2) = O(1), F1,7(q

4) = O(1), Ψ1,7(q) = O(1) and

2. For approach to |q| = 1 along a radius of second category f0,7(−q) = O(1),

f1,7(−q) = O(1), F0,7(−q2) = O(1), F1,7(−q4) = O(1), Ψ1,7(−q) = O(1)

Theorem For approach to |q| = 1 along a radius of third category Φ1,7(q
2) = O(1)

and Ψ0,7(q) = O(1).

Proof. Since on the unit circle if q = ρeπi(
h
k
) with h odd and k even and 0 ≤ ρ ≤ 1, q

approaches the circle along a radius of third category when ρ → 1− hence we give different

treatments to the functions Φ1,7(q
2) and Ψ0,7(q).
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Φ1,7(q
2) =

∑∞
−∞(−1)nq6n

2+12n(−q; q2)n

=
∑∞

0 (−1)nq6n
2+12n(−q; q2)n +

∑∞
1 (−1)nq6n

2−12n(−q; q2)−n

=
∑∞

0 (−1)nq6n
2+12n(−q; q2)n − 1

q5+q6
limt→0 8Φ7(q

2)[ − q2

t , − q2

t , . . . ,− q2

t

−q3, 0, . . . , 0
; q2;− t7

q5

]

Now let

k1,7(q
2) =

∞∑
0

(−1)nq6n
2+12n(−q; q2)n

=

∞∑
0

(−1)nq6n
2+12n

n∏
r=1

(1 + q2r−1)

Let q = ρeπi(
h
k
) and ρ → 1− (where h is odd and k is even) so that

k1,7(q
2) =

∞∑
0

(−1)nρ6n
2+12neπi(

h
k
)(6n2+12n)

n∏
r=1

(1 + ρ2r−1eπi(
h
k
)(2r−1)).

Putting n = 2uk + v, we have

k1,7(q
2) =

∑2k−1
v=0

∑∞
u=0 ρ

6(2uk+v)2+12(2uk+v)eπi(
h
k
)(6(2uk+v)2+12(2uk+v))∏2uk+v

r=1 (1 + ρ2r−1eπi(
h
k
)(2r−1)) =

∑2k−1
v=0

∑∞
u=0 av,u(say)

Therefore

∣∣av,u+1

av,u

∣∣ = ρ24k(2uk+k+v+1) ×
2uk+v+2k∏
r=2uk+v+1

∣∣(1 + ρ2r−1eπi(
h
k
)(2r−1))

∣∣. (5.7)

Further we calculate∏2uk+v+2k
r=2uk+v+1

∣∣(1 + ρ2r−1eπi(
h
k
)(2r−1))

∣∣
=
∏2k

r=1

∣∣1 + ρ(4uk+2v+2r−1)eπi(
h
k
)(4uk+2v+2r−1)

∣∣
=
∏2k

r=1

∣∣1 + ρ(4uk+2v+2r−1)eπi(
h
k
)(2v+2r−1)

∣∣
=
∏2k

r=1

[
1 + 2ρ(4uk+2v+2r−1) cos(2v + 2r − 1)hπk + ρ(8uk+4v+4r−2)

] 1
2 .

Since when β ≤ α ≤ 1 we have

1 + 2α cos θ + α2

α
≤ 1 + 2β cos θ + β2

β
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hence we get,

2k∏
r=1

∣∣1 + ρ(2r+4uk+2v−1)eπi(
h
k
)(2v+2r−1)

∣∣
≤

2k∏
r=1

[
ρ2r−4k

(
1 + 2ρ(4uk+2v+4k−1) cos

hπ

k
(2v + 2r − 1) + ρ(8uk+4v+8k−2)

)] 1
2

= ρ−k(2k−1)
2k∏
r=1

∣∣∣(1 + ρ(4k+4uk+2v−1)eπi(
h
k
)(2v+2r−1)

)∣∣∣
Now as r runs through the values 1, 2, . . . , 2k the points eπi(

h
k
)(2v+2r−1) assume the

positions 1, e
πi
k , e

2πi
k , . . . , e

(2k−1)πi
k respectively.

Hence

2k∏
r=1

∣∣∣(1 + ρ(4k+4uk+2v−1)eπi(
h
k
)(2v+2r−1)

)∣∣∣
=

2k−1∏
r=0

∣∣∣(1 + ρ(4k+4uk+2v−1)ei(
rπ
k
)
)∣∣∣

= 1− ρ2k(4uk+2v−1+4k)

Thus ∣∣av,u+1

av,u

∣∣ ≤ ρ24k(2uk+v+k+1)ρ−k(2k−1)(1− ρ2k(4uk+2v+4k−1)) (5.8)

≤ ρ24k(2uk+v+k+1)ρ−k(2k−1) (5.9)

≤ ρ48uk
2+24vk+22k2+25k (5.10)

≤ ϵ < 1 (5.11)

where 0 < ϵ < 1.

Hence
∑

u avu is uniformly convergent.

Also

|k1,7(q2)| ≤
2k−1∑
v=0

∞∑
u=0

ϵu|av,0| =
1

1− ϵ

2k−1∑
v=0

|av,0|

=
1

1− ϵ

2k−1∑
v=0

∣∣(−1)vρ6v
2+12veπi(

h
k
)(6v2+12v)

∣∣× v∏
r=1

∣∣1 + ρ2r−1eπi(
h
k
)(2r−1)

∣∣
≤ 1

1− ϵ

2k−1∑
v=0

ρ6v
2+12v ×

v∏
r=1

∣∣1 + ρ2r−1eπi(
h
k
)(2r−1)

∣∣ = O(1) (5.12)
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for fixed k as ρ → 1−.

Hence k1,7(q2) is bounded when q lies on the radius of the third category and the second

function on the right of the definition of Φ1,7(q
2) in Equation (??) is a bounded function

of q for |q| < 1. Hence Φ1,7(q
2) is uniformly convergent and bounded when q lies on the

radius of third category.

Similarly it can be proved that Ψ0,7(q) = O(1) for approach to |q| = 1 along the radius

of third category (i.e. h odd and k even).

Thus Theorems 5.1, 5.2 and 5.3 confirm that the bilateral mock theta functions defined

in Section 3 satisfies the characteristics property 11 of mock theta functions defined by

Ramanujan.

6 Representation of Bilateral Mock Theta Functions as Lerch

Transcendants

The Lerch Transcendant is defined by:

f(x, ξ, q, p) =

∞∑
n=−∞

(pq)n
2
(xξ)−2n

(−pξ−2; p2)n

This is also equivalent to

f(x, ξ, q, p) =

∞∑
n=−∞

(−ξ2p; p2)nq
n2
x2n

The bilateral mock theta functions defined in Section 3 can be expressed in terms of the

Lerch transcendent by means of the following lemma.

Lemma For ϵ = ±1,

∞∑
n=−∞

(−1)n
qαn

2
qβn

(ϵqγ ; qδ)n
= f(i(−ϵ)−1/2q

2γ−2β−δ
4 , (−ϵ)1/2q

δ−2γ
4 ; q

2α−δ
2 , q

δ
2 ).

and
∞∑

n=−∞
(−1)n(−q; qγ)nq

αn2
qβn = f(iq

β
2 , q

2−γ
4 ; qα, q

γ
2 ).

Proof. The proof follows from direct substitution and use of basic hypergeometric trans-

formations.
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As an example we note that f0,7(q) =
∑∞

−∞(−1)n q
7n(n−1)

2 qn

(−q;q)n
= f(iq3/2, q−1/4; q3, q1/2)

by taking α = 7/2,β = −5/2, ϵ = −1, γ = δ = 1 in the above lemma. In this way all

other bilateral mock theta functions defined by Equations 1.1 to 1.8 can be expressed in

terms of the Lerch Transcendant.

7 Conclusion

With the above analysis and as per the definition of order of a mock theta function suggested

by Agarwal [4] ”A mock theta function defined in terms of r+1Φr series be labelled as of

order (2r + 1). There may be an additive term with r+1Φr series consisting of θ- products,

since they do not affect the order” it will be rational to label these functions as bilateral

mock theta functions of order ”Fifteen”.Representation of these functions in terms of Lerch

transcendent may be helpful in finding their relations with the theta functions .Alternative

expressions of these functions in terms of Hecke type series may give exciting results.
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Abstract

On the basis of D-closed sets, Das and Rodrigo introduced and studied, D-continuity

and contra-D-continuity in the paper contra-D-continuous functions and strongly-D-

closed spaces[8]. In the present paper we have introduced some new concepts of

continuous functions viz. D-RC-continuous functions and Contra-pre-D-continuous

functions.

We have also established the interrelationships between dift'erent kinds of closed

sets and continuous functions. The ideas of D-open map, D-closed map,
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1 Introduction

Levine 7lU 8l introduced and studied the notions of generalized closed(g-closed sets) and

semiclosed sets in topological spaces. Stone [27], Mashour et. al. [20], Sundarani25)1261

and Das et.al.[8] introduced and studied the concepts of regular closed sets, preclosed

sets, rr-closed sets and D-closed sets respectively. Balchandran et.al. [5], Sheik John [24],

Donchev I I ], Caldas et.al [6], Jafari and Noiri [6]introduced and studied g-continuity, a,r-

continuity, contra-continuity, contra-g-continuity, contra-pre-continuity, contra-semi

-continuity respectively. Redrigo[3]and Das[S]introduced and studied D-continuity and

contra-r-conlinuity via D-closed sets.

The main objective of this paper is to introduce and study the new notion of D-

homeomorphism and some quotient lnaps, along with two new typ€s of generalized contin-

tuous lunctions. The concepts of homeonrorphism has a wide area of application in quantum

physics where the study of the homeomorphic image of the shape has been carried out in

the absence of acceptable original space. Since the class of D-closed is wider than closed

sets ofthe topological space, its D-homeomorphism would generate a better homeomorphic

image of the space.

An overview of intenelationships between differenl kinds of closed sets and continuous

functions and some composite maps has also been discussed.

2 Preliminaries

Throughout this paper (X,r), (Y,o) and (2,7)will always denote topological spaces in

which no separation axioms are assumed, unless otherwise mentioned. If A is a subset of

(X, r) then cl(A), int(A) and pre-cl(A) denote closure of A, interior of .4 and pre-closure

of -4 respectively. Throughout this paper DO(X), DC(X), RO(X), RC(X), PO(X) and

PC(X) denote the collection of D-open subsets, D-closed subsets, regzlol open subsets,

regular closed subsets, preope?z subsets and preclosed subsets of X respectively.

Now we recall the following definitions which are useful in the sequel.

Definition l. Let (X, r) be a topological space. A subset A of the space X is said to be,

L preopen, if A c int(cl(A)) and ?reclosed" if cl(int(A) I A. t20l
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2. sami open, if A e clQnt(A) and semi closed, if int(cl(A)) g e. tlTl "

3. regular open, if' A : i,nt(cl(A)) and regularclosed tf A : cl(int(A). [27]

Definition 2. Let (X,r) be a topological space. A subset Aof the space X is saiel to be,

l. g-closed, if cl(A) C U, whenever A C U and U is open in X. I 18]

2. generalized pre-closed(gp-closed), if pcl(A) e u whenever A e u and u is open

in X. [4]

3. g,eneralizecl pre - regular-c'losed(gpr-closed), if pct(A)'e (J whenever A e (J ancl

U is regular open in X. tl4l 
r

4. u(fi-closed, if cl(A) e (J whenever Ae U andsetU is seni - openin X.tll

5. D-closed, rf pre- cl@) e int(U),whenever Ae U andU isu - openinX.tll

6. fi-closetl, ff cl(A) e U,whenever Ae U andU isopenin X. Il]

7. fig - serni-closed (fgs-closed), if scl(se.nti - closure)(A) q U, whenever A e U

andUis*g-openinX.tll

8. g-closed, if cl(A) e U, whenever A e U and U is lg - semi-open in X. [l]

The complements of above mentioned sets qre called their respective open sets.

Definition 3. tSl, t151, t4l Afunction f , (X,r) -+ (Y,o) iscalletl,

l. g-contittuous, if preirnuge of ever1,- closed set in (Y, o) is g-closecl in (X,r).

2. gp-continuous, if preimage of every closed set in (Y,o) is gp-closed in (X,r).

3. gpr-continuous, dpreimage of every closed set in (Y,o) is gpr-closed in (X,r).

4. u-continuous, d preimage of every closed set in (Y,o) is w-closed in (X,r).

5. D-continurnts, iJ'preimuge of every closed set in (Y,o) is D'closed in (X,r).

6. Q-continuous, if preimage of every closed set in (Y,o) is i-ctosed in (X,r).

7. j-continuous, if preimage of every closed set in (Y,o) is i-closed in (X,r).
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8. perf ectly-continuous, if prcimage of every open set in (Y,o) is clopen in (X,r).

9. D-irresolute, if preimage of every D-closed set in (Y, o) is D-closed in (X,r).

10. supercontinuous, if preimage of every open set in (Y,o) is regular open in (X,r).

I l. contra'continuous, d preimage of every open set in (Y,o) is closed in (x,r).

12. contra-pre-continuous, if preimage of every open set in (y,o) is pre-closed in (X,r).

13. contra-semi-continuous, if preimage of every open set in (y,o) is semi-closed in

(x,r).

14. contra-g-continuous, if preimage of every open set in (y,o) is g-closed in (X,r).

15. conrra-D-continuous, if preimage of every open(closed) set in (y,o) is D-clotsed

(D-open) in (X,r).

16. RC-continuous, if pre-image of every open set in (y,o) is regular closed in (X,r).

Definition 4. tgl A bijective function f : (X,r) -+ (y, o) is called,

l. homeomorphism, if J is both open and continuous.

2. generaliTed homeomorphism (briefly g-homeomorphism), tf f is both g-continuous

and g-open.

3. generalized pre-homeomorphism (briefly gp-homeomorphism), ,f f is both

gp-continuous and gp-open.

4. generalized preregular-homeomorphism (briefly gpr-homeomorphism), if f is both

gpr - conlinuous antl gpl- -open.

5. p-homeomorphism, if f is both p-continuous and p_open.

Lemma 1. For any subset A of x, The foilowing relation hord,

pre-cl(A): AU cl(int(A)). ttl

Lemma 2. Every fi-closed set is u(g)-closed. I I ]
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3 Interrelationship

The following diagram will describe the interrelations among closed sets.

\
p-closed sets

Proposition l. Every g-closed set is w(fi)-closed.

proof. lt follows from the definition. The converse of the above Proposition need not be

true as seen from the following example.

Example l. LetX: {a,b,c,d,} beanyspacewithropology r: {X,Q,{a,b,c},{b,"i,{"}}'

Let a be the set, which is a - closed in X, since cl{a} : {o,d} e {o,b,d} whereas

{r} C {a,b,d,}, {a,b,d} is semi-open set in X. But {"} ^ 
not g-closed since there is no

open set in X, which contains cl{a\ : {o,d}.

tr

Proposition 2, Every g-closed set is D-closed .

Proof. Let (X, r) be a topological space and let A be any subset of the space (X,r), which

is g-closed.

Claim: SerA is D-closed in (X, r). According to the definition of the g-closed set, cl@) e

u, whenever A g U, U is open set in x. Now by using the definition of D-closed set, set

,4 is D-closed, if pre - cl(A) e int(U), whenever A g u,u is u - open in X. By

usingaboveLemma(l),pre-ct(A):Al)cl(int(A))'Nowint(A)cAecl(A)ot
ct(int(A)) e ct@) 9 ct(ct(A)) ot ct(int(A)) e c'(A) : ct(A) orA[J ct(int(A)) I
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Al) cl(A) : cl(A) or pre - "l(A) 
g cl(A) c U =+ pre - cl(A) c U' whenever A ! U,

U is u - open in X. This shows that set A is D-closed. !

The converse of the above Proposition need not be true as can be inferred from the

following example.

Example 2. Let X : {a,b,c,d,} be any space with topology

r : {x,5,{a,b,c}, {a,ai, {a}}.

Let lc| be the set, which is D-closed in X, but it is not g-closed in X, since pre - d{c} :

{c} and there is an open set latblc) in X which is also w open in X such that pre-cl{c} :

{c) c int{a,b,c}, whenever {c} c ic, b, c}.

Claim: Set {c}is no,t g-closed. Since cl{c} = {c, d} and there is no open set containing

{"'dl.
+ Set {c} is not g-closed.

Proposition 3. Every gp-closed set is D-closed set.

Pmof, I*t (X,r) be a topological space and let .4 be any subset of the space (X, z), which

is gp-closed.

Claim: Set,4 is D-closed in (X,r). According to the definition of the gp-closed, set,

pc.l(A) g {/ whenever.4 C [/, Lr is open set in X. SincepcT( A) e U or pd(A) c int(U),

as U is open set. Now since every open set is u - open, so pcl(A) ! U, whenever [/ is

u - apen, which shows that .4 is D-closed. tr

The converse of the above Proposition need not be true as can be inferred from the

following example.

Example 3. 1p1 ){ = {a,b,c,dl be any space with topology

r: {X,5,{a,b,d.}, {A,c}, {a}}. Let {a, c} be a set which is D-ctosed in X, but this is not

a gp-closed in X, because there is tw open set in X, containing {a,c}.

Pmposition 4, Every gpr-closed set is D-closed.

Pmof. L,et (X,r) be a topological space and let A be any subset of the space (X, r), which

is gpr-closed. Claim: Set ,,{ is D-closed in (X, r). According to the definition of the gpr-

closed set, pcJ(.A) C [/, whenever,4. e U, U is regular open set itr X. Since pcl(A) ! U
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or pcl(A) c int(U), as [./ is regular open and every regular open set is open. Now since

every open set is (,r - open, so pd(A) e [/, whenever U is u - open, which shows that .A

is D-closed.

The converse of the above Proposition need not be tme as seen from the following

example.

Example 4. LetX:{a,b,c,d.}beanyspacewithtopology'r:{X'Q'{a'b'c},{b'd}'{b}}.

The set {c} is D-closed but it is not gpr-closed, because there is no regular open set in X,

which containing {c}.

Proposition 5. Every p-closed set is D-closed.

Proof. Let (X, r) be a topological space and let ,4 be any subset of the space (X, 7), which

is p-closed. Claim : Set A is D-closed in (X,r). According to the definition of the p

closed set, pcl(A) c int(U) whenever,4 c (l atd tl is g - open set in X' According to

the Lemma 2, every !-open set is r.,., - open, So the set r{ is D-closed ' D

on the basis of above results we can establish the following results for continuities.

Proposition6.Everyg.continuousfunctionisw-continuous,buttheconverseneednotbe

true.

Proof Proof follows directly from the definitions and Proposition (1)' D

Proposition 7. Every g-continuous function is D-continuous' but the cotverse need not be

true.

Prool Proof follows directly from the deflnitions and Proposition (2)' !

Proposition 8. Every gp-continuous lunction is D-continuous' but the cotverse need not

be true.

Prool Proof follows directly from the definitions and Proposition (3)' tr

Proposition 9. Every gpr-continuous function is D-continuous' but the cowerse need not

be true.

Prool Proof follows directly from the definitions and Proposition (4)' tr
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Proposition 10. Every p-gontinuous function is D-continuous.

Proof. Proof follows directly from the definitions and Proposition (5). tr

The following diagram well illustrates the interrelations that exist among variants of

continuity that already exist in the literature. The following implications are either well

known or follow from definitions.

Here none of the given implications in general is reversible.

4 Some New Continuities

Definition 5. Afunction f : (x,r) -+ (Y,o) is saidtobe D-RC-continuousfunction, if
preimage of every regular closed set in (y, o) is D_closed in (X,r).

Example 5. Let X : {o,b,c,d,} be a space with topology

, : {X,6,{r,b},{b},{o,b,d},{b,d,},{d,}} and a space y : {1, 2,3,4} with topotogy
o : {Y,0,{L,J},{3}, {4}, {1,4}, {1,3,4}, {g,4}}. Then the function f , (X,r) _+

(Y,o) defined by f (a) :1,f (b) : J,f (c) :2 is D-RC-continuous but not continuous.
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Definition 6. Afunction f : (X,r) -+ (Y,o) is said to be contra-D-pre'continuous, if the

preimage of every D-open set in (Y, o) is pre-closed in (X , r).

Example 6. Let X : {a,b,c,d} be a space with topology

t : {X,,1,,{u.b},{t,},{o,b,c},{a}} and a space }' : {1,2,3} with topolog,y o :

{}', d, {1,2}, {1}}. Then the function f : (X,r) -+ (Y,o) deJined by f (") : 2,f (b) : 3,

f (r) : | : .f (d) is contra-pre-D-continuous but not continuous.

5 D-CIosed Maps

Definition 7. A fwtcrion f : (X,r) -+ (Y,o) is said to be D-closed nrup if the image of

every closed set in (X,r) is D-closed in (Y,o).

Example 7. Let X : Y : {a,b,c,d} be the spaces with topologies

, : {X,d,{o,b},{b,c,d},{b}} and o : {Y,Q,{o,b\,{a,c,d},{a}} respectively. A

function f , (X,r) *+ (Y,o) is defined by f(") : b,f(b) : a,f(c) : c and f(d) : d is

D-closed map.

Example 8. Let X : Y : {a,b,c,d} be the spaces with topologies

, : {X,Q,{o,b},{b,c,d},{b\\ and o : {Y,d,{b,"},{o,,c,d},{c}} respectivelv. A

function f , (X,r) -+ (Y,o) is defined as f(a) : c,f(b) : a,lk) : b and f(d) : n.

Then f is not ct D-closed map. since for the closed set (J : {a} in (X.r)f (U) is not

D-closed in (Y,o).

Remark l. Every g-closed map is D-closed map, but converse is not lrue in general. lts

roof follows from the definition and Proposition (2).

: Remark 2, Every gp-closed map is D-closed map, but converse is rtot trtre irt general. Its

- proof follows from the definition and Proposition (3).

. llemark 3. Every gpr-closed map is D-closed map, but converse is not true in general. Its

. proof follows froru the definititm and Proposition (4)'

':
RemAfkr4. Every p-closed map is D-closed map, but converse is not true in generpl. Its

proof follows fram the definition and Proposition (5).
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6 D-open Maps

Definition 8. A function f : (X,r) -+ (Y,o) is said to be D-closed map if the image of

every open set in (X,r) is D-open in (Y,o).

Theorem l. For any bijection map f : (X,r) -+ (Y,o), the following statements are

equivalent,

1. J-r : (Y,o) -+ (X,r) is D-continuous

2. f is a D-open map and

3. J is a D-closed map.

Proof. Let J-r is D-continuous. claim:(l) -+ (2). LetV be n open set of(X, r), by using

assumption, l-1-1V) : /(Iz) is D-open in (Y, a). Therefore / is a D-open map. Now,

let / is a D-open map.

claim:(2) -+ (3). Let [/ be a closed set of (X,r), then Uc (complement of I/) is open set

in (X, r). then by assumption t (Uc) : (/(y))" is D-open in (y, o) and therefore /(t/) is

D-closed in (f,o). Hence / is D-closed map. Let / is a D-closed map.

claim:(3) -+ (1). Let [/ be any closed set in (X,z). According to the assumption /([/) is

D-closed in(Y,o), but J(t/) : (/-t)-1(4 and hence /-1 is D-continuous. tr

7 D-Homeomorphism

We introduce the following new concept of D-homeomorphism.

Definition 9, A bijective function f : (X,r) -+ (y,o) is called D-homeomorphism, if the

function J and f -1 both are D-iresolute.

Proposition ll. Every homeomorphism is a D-homeomorphism but not conversely.

Proof. \t follows from the definitions. The converse of the above proposition need not be

true as seen from the following example. -

Example 9. 21 1: {a,b,c} be the space with topology r = lX,O,{a,b},{a}} and an_

other space y : {1,2,3} with topology o : {y,9,{t,Z}, {2}}. Then the bijeaive func-
tion J : (X,r) -+ (Y,o) defnedby f(a) = Z, /(a) =S,/(c) :1is D-homeomorphism.
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since preimage of every closed set ofY is D-closed set in x. This shows thnt function f

D-continuous and therefore D-irresolute. Similarly under the mapping f-1, preimage of

every closed set of X is D-closed ser inY. This shows thnt function f-r is D-continuous

and rherefore D-irresolute anrl lrcnce function f is D-homeomorphism' Here both the

nnppings I ord f-r are not continuous aru) therefore not iftesolute and therefore J is not

homeomorphism.

Thus the class of D-homeomorphisms properly contains the class of homeomorphisms'

Another definition of D-homeomorphism in terms of D-continuity and D-open map.

Definition 10. A bijective function | : (X,r) -+ (Y,o) is called D-homeomorphism' if the

function f is both D-continuous and D-open'

Example 10. 1s1 1 : {a,b' c} be the space wirh topology r = |X 
' 
O' {a'b} ' \a}} and an-

otlrcrspace y: {1,2,3} with topology o = {Y,0,11,2}, {2)}' fhen the biiective func-

tion f : (X, r) -+ (Y, o) defined by f (a) = z, f (u) = z, I @) = I is D -horneornorphism.

Since pre-image of every closed set inY is D-closed set in X' i'e'The mapping f is D-

continuous and the image of any open set in x is D-open inY, so the mappinS f is D-open

map.

Proposition Li- l,et f : (X, r) -+ (Y,o) be a bijection D-continuous map' Then the

foll,owing staternents are equivalent :

t. f is a D-open yaP.

f is a D -homzomorPhism.

3. f is a D-closed maP.

Prool Proof follows from the Theorem (l) tr

Pmpmition !3. Every g-homeomorphism is a D-homeomorphism but not conversely'

Proof. ltfollows from completely from the Proposition (7)and Remark (2)' that every

g-contbuous map is D-continuous map and every g-open map is D-open map' tr

Proposition 14. Every gp-homeomorphism is a D-homeomorphism but not conversely'
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Proof. rt follows completely from the Proposition (8) and Remark (2), that eyery (tp-

continuous map is D-continuous map and every gp-open map is D-open map. tr

Proposition 15. Every gpr-homeomorphism is a D-homeomorphism but not conversely.

ProoJ. It fbllows completely from the Proposition (9)and Remark (3), that every gpr-

continuous map is D-continuous map and every gpr-open map is D-open map. n

Proposition 16. Every p-homeomorphism is a D-homeomorphism but not conversely.

Proof. It follows completely from the proposition (10) and Remark (4), that every p-

continuous map is D-continuous map and every p.open map is D-open map. tr

8 Different Quotient Maps

we introduce the notion of D-quotient map as a generalization of quotient map.

Definition ll. Let X and Y be wo topological spaces. kt p : X -+ Y be surjective map.

Map p is said to be D-quotient rnap, provided a subset U of Y is D-open iny if and only

if p-l(U) is D-open in X.

There are two special kinds of maps, D-open map and D-closed map.

Definition 12. A map f , x -+ Y is said to be D-open map if for each D-open set (J in

X, the set f (U) is D-open in Y.

Definition 13. A map f : X -+ Y is said to be D-closed map iffor each D-closel set A in
X, the set f (A) is D-closed in Y .

It tbllows from the above definition of D-quotient map that, if p : X -+ y is a sur_

jective D-continuous map that is either D-open or D-closed, then map pis a D-quotient

map. 
; 

.

Lemma 3. The composites of nvo D-quotient maps is a D-quotient map. r! ,j-;.tr, jr,, . ,.

104

The proof of the above lemma is trivially true. -i .,e-:. ;;uiliar;r,
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Theorem 2. Let p : X -+ Y be a D-quotient map.I*t Z be a space and let g : X -+ Ybe a

map thatis constant oneachsetp-r(y)fory e Y.Theng induces amap f :Y -+ Z such

that f o p : ginduces a map f is D-continuous, if and only if g is D-continuous ;f is a

D-quotient map if and only tf g is a D-quotient map.

f

Proof. Foreach y €Y,since g : X -+ Y is aconstant map on each set p-r(A), is aone

pointset in Z.Let,if f (il: S@-r(y)), wehavedefined amap f :Y -+ Z srch thatfor

each r e X,f(p(r)) : S(r). If f is D-continuous then 9 : f o pis D-continuous then

Claim: / is D-continuous. Let V be an D-open setof Z,then 9-1(u) is D-open in X. But

g-r(u) : p-t (/-1(r)). Therefore p-1(/-1(r)) is D-open in X. Since p is a D-quotient

map, it follows that /-1(?r) is D-open in Y. Hence / is D-continuous. Now let / be a

D-quotient map, Claim: 9 is D-quotient map.

Since / : Y -+ Z and p i X -+ Y,tlerefore p-1(/-1(,)) : (/ o p)-l(u) : g-r(u)

i.e. composition of two D-quotient maps g : f o p is again D-quotient map. Conversely,

suppose g is a D-quotient map and now

Claim: / is D-quotient maP.

Since g is a surjective map, therefore / is also a surjective map. Now we show that u is

D-open in Z whenever /-1(u) is D-open in Y.

For, since p is a D-quotient map, set p-1(/-1(r)) is D-open in X and we know that

p-r(f -1@)) : g-'(u) is also a D-open in X and g is a D-quotient map, u is D-open in

Z.
tr

P
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In a similar way we can introduce the concepts of g - quotient map and i,,r-quotient

map.

9 Composite Maps

Theor.em 3. If f : (X,r) -+ (y, o) is contra-pre-D-continu:.ous and g .. (Y,o) -+ (Z,q)

is D-continuous then their composition g o f : (X,r) -+ (Z,q) is contru-pre-continuous.

Proof. Letu be any open setin (2,4). Since g is D-continuous then g-1(u) is D-open in

(Y, o) and since / is contra-pre-D-continuous rhen t-r1n-r(u)) is pre-crosed in (X, r).
Hence g o / is conta-p?'e-continuous.

Theorem 4. If f : (X,r) -+ (Y,o) is conta-pre-D-continuous and g : (y,o) -+ (Z,q)

is contra-D-continuous then their composition g o f i (x,r) -+ (Z,q) is pre-continuous.

Proof. Let U be any closed set in (2, r7). since g is conrra-D-conrinuous rhen 9- 1(t/) is

D-open in (Y, o) and since / is contra-pre-D-continuous then f -, b-, (u)) is pre-closed

in (X, r). Hence g o / is pre-continuous.

Theorem 5. If f : (X,r) -+ (Y,o) is D-irresolute and g : (y,o) -+ (Z,n) is D-RC_

continuous then tlrcir composition g o f i (X,r) -+ (Z,d is D-RC-continuous and also

D-continuous.

Proof. Letu be any regular closed setin (2,4). since g is D-RC-conrinuous then 9-t (u)
is D-closed in (Y, o) and since / is D-inesoiute then f -rk-, (u)) is D-closed in (x, r).
Hence g o / is agun D-RC-continuous and therefore D-continuous. !
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