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Abstract

The aim of the present paper is to obtain the bilateral generating functions involv-
ing Jacobi and Bessel polynomials by using group theoretic method and to illustrate

that the classical technique can as well be employed to obtain these results and many
more of the same nature.

Introduction

Wiesner’s pioneer contribution of using group theory to obtain generating functions, has
initiated many to contribute elegant formulae for generating functions of classical and or-

thogonal polynomials, references of such can be found in the literature.

Keywords and phrases : Modified Bessel Polynomials, Generating Functions.
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In what follows, we have used the following:
The Jacobi polynomial defined as ( Rainville 1971, p.254)

14 a),

P’(‘a’ﬁ) (#) = In

1—2=

yal [_n,l—l—a—i—_ﬁ—i—n;l—i—a; 21,] (1.1
And, the modified Bessel defined by

V@) = By [-n 2+ a -1~ 5 23]
where Y, () is the generalized Bessel polynomial, introduced by H. L. Krall and O. Frink
(1949).
Main Result and Proof
In what follows, following results in the form of theorem, involving Jacobi and Bessel
polynomials have been established.
Theorem

If there exist a generating relation of the form

G(z,2,w) = ¥ anPrgm” (@)Y (2)um 2.1)
n=>0
then !

[1+w(l—a))P[1 —w(l+z)]*(1 — wz)ezp(wp).

3 z b
Glz + w(l — 2?), 1—wz’ [1+w(l—2))[1—wl+x)

oo
an(=2)Ppduw™tPHe [ m+n+p a—n—p,8—n— Ats—q)
= 3, = B TR el 69
n,p,qg=0 ’ p

Proof of the theorem
Replacing w by wyt in (2.1), and multiplying both the sides by v*, we get
U’\G(:I:, zawyt) = 3 ﬂsap,ﬁ:,:"’ﬁ”n) (z)y" ,,,.U‘*"")(z)t"fa.-’\w“ (2.3)
n=0

now opt for the following two operators given by (Ghosh 1993, pp.88) and (Mukherjee and
Chongdar 1988, pp.412)

Ri=(1-2)yg + 2%y + 81 —2) —a(l +2)ly (2.4)
and
Rs = zgtv_2%+23tzu_2~§% +ztv_1%+(;t—z)w—2 (2.5)
Such that
Ry (PP @)y = —2Am+n+1) PP D @)yt (2.6)

and
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Ry ( 3(’\ +5) (Z)tnv'\) Yq(iii“? 1}( )ty A2 (2.7)
From (Ghosh 1993, Mukherjee and Chongdar 1988), we also have
evBrf(z,y) = [1 +wy(l — 2)]P[1 —wy(l +z)]®

Yy
f [1 + wy(l — ;1’2)5 (14 wy(1 —z)][1 —wy(l + .I‘)J &

and

sils B _ w_zf fwpt z t v
€ f(zﬂ tt U) - (1 ’02 ) exrp ( -'UQ f 'U..’zt ] £ 'U..’Zt (29)

i . wzt S
v2 (1 2 v2

now operating both the sides of (2.3) with "¢/ left hand side becomes;

[1+wy(l —z)]? [l—w (L2)]2

wzt z wyt
1—— —.G"—i—: (1-z°), . 2.10
T o 1 e s T ey Iy
02
and consequently the right hand side reduces to
arnwn—f—p+q (_ij!(m +n+ P) (a—n—p,B—n—p)
n,p,q=0 Ip!q !(m . Tl) TP
("I’) TH—}'J;“QY(A"‘“’ t}'}( ) (TH‘QJ /\—2(; (2] 1)
now equating (2.10) and (2.11), we get
[1+u=i (1 —T)] [1 =yl +z)]°
t w1 2 gt
3 " T ¥ ; —
= 3 ﬂnu-rp q*’+° (=2)* lﬁ;‘;:(r:l}rwrp) R’(nc:nzrpp B-n— p)( )YS(i\;rs Q)(z)tmqv,\ 2qyn+p (2.12)
n,p,q=0

on substituting y = £ = v = 1 we obtain the desired result.

Special Cases
(DIf we set s = 0, we notice from our theorem that G(z, z,w) becomes G(z,w) for
YU(A) (z) = 1. Hence from our theorem, we obtain

1+ w(l—2)]%1 - wd+ z)]%zp(wy).Glz + w(l —

), et

9)P 7 m—+n+ |
Z tin —z!n]n whte P P(a n—p.3—n— p)( ) (3_1)

m—+n—+p
n,p=0 P
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Abstract

Let R = F, + vF},, where v? = 1. Then R is a finite commutative semi-local ring
but not a chain ring for p > 2. In this paper, we define a Gray map from I? to Fp? and
study —w-constacyclic codes over K. It is shown that the image of a —wv-constacyclic
code of length n over K under the Gray map is a distance-invariant linear cyclic code
of length 2n over F),. Further, we determine the generator polynomials of such con-
stacyclic codes of arbitrary length over K and prove that —v-constacyclic codes over
this ring are principally generated. Finally, the dual codes of these constacyclic codes
are also discussed.

1 Introduction

The study of codes over finite chain rings was initiated by Blake [1, 2] in the year 1970s. A
great deal of attention has been given to codes over finite rings from the 1990s because of
their new role in algebraic coding theory and their successful application. A landmark paper
[9] has shown that certain good non-linear binary codes can be constructed from cyclic
codes over Z4 via the Gray map. Since then, codes over finite rings have been studied by
many authors [4, 7, 10]. In these papers, the ground rings associated with codes are finite
chain rings in general and linear codes over this class of finite rings have been characterized
in several papers [8, 11, 18]. Further, Yildiz and Karadeniz [19], considered linear code
over the ring Fy + uFs + vy + uvFy with u? = v? = 0 and uv = vu, where some good
binary codes have been obtained as the images under two Gray maps.

Keywords and phrases : Cyclic codes. Constacyclic codes, Dual codes and Gray map.
AMS Subject Classification : Y4B05, 94B15.
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It is always interesting to consider the structure of cyclic codes over different alphabets.
The structure of cyclic codes over finite fields F),2 and Z,2 with p? elements are well known
[10, 12, 13]. The structure of cyclic codes over F}, + uF), with u* = 0 was determined in
[14]. New ternary linear codes were constructed from codes over Fj + uF3 via a Gray map
[8]. which improved the known lower bound on the maximum possible minimum Hamming
distance. The structure of cyclic codes over F + vF} with v? = v was discussed by Zhu et
al. [20], which was generalized to F3 + vF3 with v =1 by Cengellenmis [5, 6]. Later on,
Zhu and Wang [21], considered (1 — 2v)-constacyclic codes over F), + vF, with v* = v
and proved that the image of a (1 — 2v)-constacyclic code of length n over F), + vF}, under
the Gray map is a distance-invariant linear cyclic code of length 2n over F),. Recently, Shi
et al. [16], obtained good p-ary quasi cyclic codes from cyclic codes over F}, + vF}, with
v? = 1. Motivated by this study, we define —v-constacycic codes over F, + vF,, where
v =1,

In this paper, we focus on codes over the ring R = F, + vF}, with v* = 1. The ring R
is a finite semi-local ring, not a finite chain ring. We investigate a class of —v-constacyclic
codes over R. Also, we define a Gray map from R to F),* and show that the image of
a —w-constacyclic code of length n over IR under the Gray map is a distance-invariant
linear cyclic code of length 2n over F,. We determine the generator polynomials of
such constacyclic codes over R and prove that —wv-constacyclic codes over this ring are
principally generated. The dual codes of these constacyclic codes are also discussed.

2  Preliminaries

Let F}, be a finite field having p elements, where p is an odd prime and let R = F), +vF), =
{a+vb|a, b € F,} be a commutative ring with v* = 1. The ring R is a semi-local
ring but not a chain ring, it has two maximal ideals < 1 +v >= {a(l +v) |a € F,}
and < 1 —v >= {b(1 —v) | b € F,}. Itis easy to see that both R/ < 1+ v >
and R/ < 1 — v > are isomorphic to F},. From Chinese Remainder Theorem, we have
R=<1+4+wv>@& <1—wv >. Intheremainder part of the paper, we denote —v as A for
simplicity.

Definition 2.1 A nonempty subset C of R" is called code of length n over R and C' is
called linear over R if it is an R-submodule of R".
Let C be a code of length n over R and
5(0) = {C() B o 1 R o cn_lx'”_l | (co,€1y-eeyCn—1) € C}

be its polynomial representation. Suppose that g, v and 7 are maps from K" to K" given
by

p(Coy €1y ey Cn1) = (Cn—1,C0y sy Cn—2),

U(CU, Clyseny Cn—l) = (_Cn—le Clis sany CH_QJ
and

TleniCynn Gt ) = [PCa_15 O Gns)

respectively. Then, we have the following definition.
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Definition 2.2 A linear code C' is said to be cyclic if u(C) = C, negacyclic if v(C) = C'
and X-constacyclic if 7(C') = C.

The following lemma is easy to obtain.

Lemma 2.3 (i) A code C of length n over R is cyclic if and only if £(C') is an ideal of
Rzl f < 8% 13

(ii) A code C of length n over R is negacyclic if and only if £(C') is an ideal of
Rlz|/ < z" 41 >.

(iii) A code C of length n over R is A-constacyclic if and only if £(C) is an ideal of
Rlz]/ < a®™ —A >

Definition 2.4 Let x = (zo,x1,....Tn—1) and y = (Yo, Y1, ..., Yn—1) be two elements of
R"™. The Euclidean inner product of x and y in R" is defined as x -y = xoyp + x1y1 +
. + ®p_1Yn—1, Where the operation is performed in R. The dual code of C is defined as
Ct={zeR"|z-y=0, forally e C}.

3 Gray map
We define a Gray weight for codes over R as follows:

Definition 3.1 The Gray weight on R is a weight function on R defined as

0,ifa=0,b=0,
1, 9 f a0, b=10.
1, ifa=0,b+#0,
2. 4f a£0,b£0.

wg:R—N r=a+vb—

Define the Gray weight of a codeword ¢ = (¢, €1, ...,¢,—1) € R" to be the rational sum of
n—1

the Gray weights of its components, that is, wg = >  wg(¢;). For any ¢1, ¢2 € R", the
Gray distance dg is given by dg(c1,2) = wg(a - (?3) The minimum Gray distance of
(' is the smallest nonzero Gray distance between all pairs of distinct codewords of C. The
minimum Gray weight of (' is the smallest nonzero Gray weight among all codewords of
C'. If C is linear code, then the minimum Gray distance is the same as the minimum Gray
weight. The Hamming weight w(c) of a codeword c is the number of nonzero components
in ¢. The Hamming distance d(cy, c2) between two codewords ¢; and ¢o is the Hamming
weight of the codeword ¢; — ¢o. The minimum Hamming distance d of (' is defined as
min{d(c1,c2) | c1, c2 € C, ¢1 # co} (for detail see [13]).

Now we give the definition of the Gray map on R". Observe that any element ¢ € C
can be expressed as ¢ = a + vb, where a, b € F),. The Gray map ¢ : R — FE is given by
o(c) = ¢(a+wvb) = (—b, a). This map can be extended to R" in a natural way as follows:

¢: R" — F2"
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(C[},Cl, C?‘l—l) — (_b{]: _bl'.\ veey _bn—l':a{_]':a'lﬁ an—l)-.

where ¢; = a; +vb;,, 0<i<n-—1.

Proposition 3.2 The Gray map ¢ is a distance-preserving map from R"(Gray distance) to
F7"(Hamming distance) and it is also Fy-linear.

Proof. Letz, y € R" and o, 3 € Fj,. Then by the definition of Gray map ¢, it is clear
that ¢(ax + By) = a¢(xr) + Bo(y), which means that ¢ is an Fj-linear map. Now, we
show ¢ is a distance-preserving map. Since ¢(x — y) = ¢(z) — ¢(y), Vz, y € R",
dg(z,y) =welz—y) =w(d(z—y)) = w(P(x) —o(y)) = d(¢(z), ¢(y)). This complete
the proof.

Proposition 3.3 Ler T denotes the A-constacyclic shift of R" and yu the cyclic shift of Fg”'.
Let ¢ be the Gray map of R" into Ff". Then ¢T = .

Proof. Let ¢ = (cp, C1y...sCn—1) € R", where ¢; = a; + vb; witha;, b; € Fyfor0 <i <
n — 1. Taking A-constacyclic shift of ¢, we have

7(¢) = (Acn—1, €0y sy Cn—2)

l

(3.1)

Tz’(a'n.—l + T"'b-n.—]_)1 ap + T,"b(]-_ vy Q2 + Ub'n,—Z)

(
(—ven—1,€0, s Cn—2)
(
(

bp—1 — van—_1, a0 + vbg, ...,an—2 + vby_2).
Now, using the definition of Gray map ¢, we can deduce that
&(7(c)) = (@n—1,—bo, ..., —bpn—2,—bn_1, 80, ..., An—2).
On the other hand,
¢(c) = (=bo, =b1,s ..., —bn—1,00,a1, .., Gp_1).

Hence,
.ru((p(c)J - (a"n—l'! _b(]: 1aeg _bn—zu _bn—lu A0y eeny G‘?I—QJ'
Therefore,

OT = .

Theorem 3.4 A linear code C' of length n over R is a A-constacyclic code if and only if
@(C) is a cyclic code of length 2n over F),

Proof. Tt is an immediate consequence of Proposition 2.7.

Corollary 3.5 The Gray image of a A-constacyclic code C of length n over R under the
Gray map ¢ is a distance-invariant linear cyclic code of length 2n over Fj,
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4 \-constacyclic codes over R

Let A, B be codes over R such that ANB = 0, and write A& B = {a+blac A, be B}
In [15], it was shown that any code (' over R is permutation equivalent to a code with a
generator matrix of the form

Ikl (1 £ U)Bl (1 e T,-')Al (1 o ’!,’)‘42 + (]_ = ?.-‘)B'z (1 + T,’)A3 + (1 = ?J).83
G= 0 (14+v)l, 0 (1+v)A4 0
0 0 (1 - v)Ii, 0 (1 —v)By

where A; and Bj are p-ary matrices with 1 <4, j < 4. Such a code C is said to have type
p?F1pk2phs and contains p?F1+h2tks codewords.

For a code C' over R, let
Ciy={ac P}';‘ | (14+v)a+ (1 —v)be C, forsomeb e }*;’;’}

and
Cirio=1{be F}|(1+v)a+ (1 -v)beC, forsomea € F;'}

be two p-ary codes such that (1 4+ v)C_, is equal to C mod (1 — v) and (1 — v)C4,
is equal to C' mod (1 4 v) respectively. Therefore, any code C' over R can be written as
C=(14v)C1—y S (1 —v)C1ey. According to the generator matrix G, the code C'—,, is
permutation equivalent to a code with generator matrix of the form

I, 0 24, 24, 2A4;
0 2I;, 0 24; 0
and the code C' 4, is permutation equivalent to a code with generator matrix of the form

L

‘1

2B; 0 2B, 2Bs
0 0 2 0 2By

where A;, B; are p-ary matrices with 1 < 4, j < 4. It is easy to see that
|Cl—1-‘”cl+v| e pkka-zpk]_pkg — pﬂ.‘.] +hotks _ el

The preceding statements showed that any code C' over R can be completely character-
ized by its associated codes C'; _,, and (', and vice versa. Now we give a characterization
of the A-constacyclic codes over A.

Theorem 4.1 Let C' = (1 + v)Ci—, & (1 — v)Ci4y be a linear code of length n over
R. Then C'is a A-constacyclic code of length n over R if and only if Cy_,, and C,, are
negacyclic and cyclic codes of length n over I, respectively.



10 Mohammad Ashrat and Ghulam Mohammad

Proof. For any ¢ = (cg, ¢y, ..., €n—1), We can write its components as ¢; = (1 +v)a; + (1 —
v)b;, where a;, b; € F,, 0 <i <n—1. Leta = (ag,a1,...,an-1), b= (bo,b1,...,0n—1).
Then a € C'y_, and b € Cy4,. Now, Suppose C'y_, and (C';, are negacyclic and cyclic
codes over F), respectively. This means that v(a) € C;_, and u(b) € Ci4,. Hence
(1+v)r(a)+(1—v)u(b) € C. It can be easily seen that (1+v)v(a)+ (1—v)u(b) = 7(c).
Hence 7(c) € C, which means that C is a A-constacyclic code over R.

Conversely suppose that C' is A-constacyclic code over R. Let ¢; = (1 + v)a; +
(1 — v)b;, for any @ = (ag,@1,.-,8n—1) € C1—y, b = (b, b1,...,0n—1) € Ci44. Then
¢ = (cp,€1,...,cn—1) € C. By the hypothesis 7(c) € C. Since (1+v)v(a)+(1—v)u(b) =
7(c), (1 +v)v(a)+ (1 —v)u(b) € C. Thus v(a) € Ci_, and u(b) € Cy+,, which implies
that i, and C, are negacyclic and cyclic codes over F), respectively.

Theorem 4.2 Let C = (1+v)Ci—, B (1 — U)('lﬂ. be A-constacyclic code of length n over
R. Then C =< (1 +v)g1(x), (1 — v)ga(x) > and |C| = p?*—es(91)=deg(92) \where gy ()
and g2(x) are the monic generator polynomials of C'y _,, and C'14y respectively.

Proof. Since Ci—y, =< gi(z) >C Flal/<a"+1>, Cipy =< go(z) >C
Elz|/<z"—1>and C = (1 +v)C1—y ® (1 — v)C140, we get C = {c(x) | ¢(z) =
(I4+v)fi(z) + (1 —v)fo(x), fi(z) € Ci—y, fa(x) € Cryy}. Therefore

CC<(1+v)gi(z),(1—v)ga(z) >C Ry =Rlz|/ <z" = A>.
For any
(1 +v)g1(@)k1(7) + (1 = v)ga(x)ka(z) €< (1 +0)g1(x), (1 — v)ga(x) >C R,

where k;(z), ka(z) € R, there are 7 (z), r2(z) € Fp|z| such that (1 + v)ki(z) = (1
v)ri(x) and (1—v)ka(z) = (1—v)ra(x). This means that < (1+v)g; (), (1—v)g2(z) >
C. Hence < (1 +v)g1(z), (1 — v)ga2(z) >= C. Since |C| = |Ci—y||Ci44], then |C|
pn—deg(g1)—deg(g2)

minm +

Theorem 4.3 For any A-constacyclic code C of length n over R, there is a unique polyno-
mial g(z) such that C =< g(x) > and g(zx)|z" — A\, where g(z) = (1 +v)g1(z) + (1 —
v)gz(x).

Proof. By Theorem 4.2, we may assumed that C' =< (14 v)gi(z), (1 —v)g2(x) >, where
g1(x) and go(x) are the monic generator polynomials of C;_, and C, respectively. Let
g(xz) = (1 +v)gi(z) + (1 — v)ga(x). Clearly, < g(z) >C C. Note that (1 + v)g; () =
a(l+v)g(x) and (1 —v)ge(z) = a(1l —v)g(x), where 2a = 1(mod p), so C €< g(x) >
Hence C =< g(x) >. Since g (z)|z" + 1 and go(x)|z™ — 1, there are 1 (), r2(z) € Fplz]
such that
" +1=gi(z)ri(z) and " — 1 = ga(x)r2(x).

This implies that
" — X = g(x)m(l +v)ri(z) + m(l — v)ra(x)], where 4m = 1(mod p).

Hence, g(x)|z" — A. The uniqueness of g(x) can be followed from that of g, (z) and ga(z).
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Corollary 4.4 Every ideal of R,, = R|z|/ < z" — X > is principal.

We now give the definition of polynomial Gray map over R. For any polynomial
c(z) € R|x| with degree less than n can be represented as ¢(z) = a(x) 4 vb(zx), where
a(x), b(x) € F,|x| and their degrees are less than n. Define the polynomial Gray map as
follows:

¢p: Rjz]/ <z — A >— Blz]/ <z®™ -1>

bp(c(x)) = ~b(a) + 2"(a(a)).
Let ci(z) = ai(z) + vbi(z), ca(x) = az(x) + vha(x) € Ry. If c1(x) = ca(x), then
a;(z) = ag(z) and by (x) = ba(x). So

op(ci(z)) = —bi(z) +2"(a1())
—ba(z) + 2" (az(x))
= ¢p(c2()).

Hence ¢p is well defined. It is obvious that ¢p(c(z)) is the polynomial representation of
¢(c). We simply write ¢p(c(x)) as ¢(c(z)).

Theorem 4.5 Let C = (1 +v)C1_, & (1 — v)C14,, be a A\-constacyclic code of length n
over R, and C' =< (1 —|— v)g1(x), (1 —v)g2(x) >, where gi(x) and g2(x) are the monic
generator polynomials of C'_,, and C\4, respectively. Then ¢(C) =< g1(z)g2(x) >

Proof. Since g1 (x)|z™ 4 1 and ga(x)|z™ — 1, there are ry(x), m2(x) € Fp|x| such that z" +
1 =gi(z)ri(z) and 2" — 1 = go(x)ra2(x). By Theorem 3.3, we know that C' =< g(x) >,
where g(z) = (1 +v)g1(z) + (1 — v)ga(x). Let a(z) = f(x)g(x) be any element in C,
where f(x) € R|z|. Since f(x)canbe written as f(z) = (14+v) fi(z)+(1—v) fa(z) where
fi(x), fa(x) € Fplx), it follows that a(z) = (1 4+ v)g1(z) fi(z) + (1 — v)g2(z) fa(x) =
(91(2)£1(2) + g2(2) fo(@)) + 091 () fo(2) — g2(w) fo()). Then we have

¢(a(z)) (92(%) f2(@) — g1(2) fr(2)) + 2" (91(x) f1 (%) + g2(2) f2())
(@" + 1)g2(2) f2(x) + (2" — 1)g1 (2) fi(x)

(#)g2(2) fa(x)r1(2) + g1(2)g2() f1(2)r2(2)
= g1(x)g2(x)(fa()re(x) + fr(T)ra(2)).

This implies that ¢(C') C< g1(x)g2(x) >

(©)] = [C] = pn—deolo)=deaten) and | < gy(@)ga(a) > | =
p2n—deg(g1)—deg(gz) chce, H(C) =< g1(x)ga(z) >

Now, we consider the dual codes of A-constacyclic codes of length n over K and we get the
following results.

Theorem 4.6 Let C be a \-constacyclic code of length n over R. Then its dual code C* is
also a A-constacyclic code over R.

Proof. We know that dual of a A-constacyclic code is a A~ !'-constacyclic. But A = A~! in
R, and hence C'* is also a A-constacyclic code.
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Theorem 4.7 Let C' be a A-constacyclic code of length n over R with associated p-ary
codes Cy+y and Cy_y. Then C*+ = (1 +v)Ci=, ® (1 — v)Ci,.

Proof. The proof of this Theorem is similar to [3, Theorem 3.2].
In order to study the generator polynomials of the dual of a A-constacyclic code over
R, we first need to define the concept of the reciprocal polynomial as follows.

Definition 4.8 Ler g(x)h(x) = 0 in Ry, define the reciprocal polynomial of h(x) to be
h(z) = 249 @) p(x1), its coefficients are those of h(x) in reverse.

Corollary 4.9 Let C =< (1+v)g1(z), (1 —v)ga(x) > be a A-constacyclic code of length
n over R, where gi(z), g2(x) are the momc generator polynomials of C_, and C.,
respectively and " + 1 = g1 (z)hy(x), 2™ — 1 = go(x)ha(x). Then

(i) C*+=<(1+v)hi(z), (1 —v)ha ;g) > and |CF| = plea(ar)+deg(g2),

(i) Crt=< h( ) >, where h(z) = (1 4+ v)hi(x) + (1 — v)ha(x) and h(z)|z™ — ),
(iii) ¢(Ct) =< hi(x)ha(z) >

(iv) $(C*) = o(O),

where hi(x) and hy(x) are the reciprocal polynomials of hy(x) and hs(x) respectively.

.

Theorem 4.10 Let 2™ + 1 be uniquely expressed as z" + 1 = [] f}'(x), where fi(x) €
i=1

E,\z| are pairwise relatively prime nonzero polynomials and let " — 1 be uniquely ex-

& -
pressed as x" — 1 = ] gi’(x), where gj(z) € Fylz| are pairwise relatively prime
i

nonzero polynomials. Then the number of —v-constacyclic codes of length n over R is
| -]

11@+1) 1] (g +1)
i=1 j=1

Proof. We obtain the requlred result from the fact that the number of p-ary negacyclic codes

C—, of length n is “ (t; + 1) and the number of p-ary cyclic codes C'yy,, of length n is

i=

lll(fij +1).
J’:
We close our discussion with the following examples:

Example4.11 Let R = F3+vF3, v2 = landn = 4. Since z*—1 = (z—1)(z+1)(2®+1)
and 2 + 1 = (22 + = + 2)(22 4 2x + 2) in F3[z], there are 31 nonzero —uv-constacyclic
codes of length 4 over R(from Theorem 4.10). If g1 (z) = 2* + 2z + 2 and go(z) =2 — 1
are the generator polynomials of C';_, and 4, respectively, then from Theorem 4.3,
g(z) = 1 +v)gi(x) + (1 — v)ga(x) = (1 + v)x? + v + 1 and therefore the code
C' generated by g(x) is a —v-constacyclic code of length 4 over F3 + vFj3. Also from
Theorem 4.5, it is easy to see that the Gray image ¢(C') of C is a ternary linear cyclic code
of length 8 with generator polynomial (z — 1)(z* + 2z + 2).
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Example 4.12 Let R = F5 +vF5, v* = landn = 3. Since z° — 1 = (z — 1) (z? + 2 + 1)
and 2° + 1 = (z + 1)(2* — 2 + 1) in F5[z], there are 15 nonzero —v-constacyclic codes
of length 3 over R(from Theorem 4.10). If gi(z) = 2 — 2z + 1l and go(x) = = — 1
are the generator polynomials of C';_, and 4, respectively, then from Theorem 4.3,
g(z) = (L +v)gi(z) + (1 —v)g2(x) = (1 + v)z* — 2vz + 2v and therefore the code
C' generated by g(z) is a —v-constacyclic code of length 3 over F; + vF5. Also from
Theorem 4.5, it is easy to see that the Gray image ¢(C) of C is a 5-ary linear cyclic code
of length 6 with generator polynomial (z — 1)(2? —x + 1).

Example 4.13 Let R = Fr +vFr, v* = landn = 8. Since 2% — 1 = (x + 1)(z +6)(a? +
1)(z*+3z+1)(z* +4x+1) and 25+1 = (z°42+6)(2* +32+6)(2* +42+6) (z* +52+6)
in Fy|z|, there are 511 nonzero —v-constacyclic codes of length 8 over R(from Theorem
4.10). If g1(x) = ? + x + 6 and go(x) = 2 + 1 are the generator polynomials of C_,
and C'14, respectively, then from Theorem 4.3, g(z) = (1 + v)g1(z) + (1 — v)g2(z) =
22*+(1+wv)z+50v and therefore the code C generated by g() is a —v-constacyclic code of
length 8 over Fr+uvF5. Also from Theorem 4.5, it is easy to see that the Gray image ¢(C') of
C'is a 7-ary linear cyclic code of length 16 with generator polynomial (2?4 +6)(z%+1).
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Abstract

In this paper, we shall show that an infrabarrelled locally convex nuclear space and
a (DF) space are both nuclear if their strong duals are co-nuclear. We shall also show
through example that every nuclear space is not co-nuclear and every co-nuclear space
1s not nuclear. For this, the notion of topological dual of a locally convex space is
discussed in section 1 in order to bring those new results on the topological dual of a
locally covex nuclear space as given in section 2.

1 The Topological dual of a locally convex space

If & is a vector space over ¢, a linear mapping of £ into the scalar field ¢ itself is called a
linear form (or linear functional) on E. The set of all linear forms on E is a vector space
over ¢ called the algebraic dual of £ and denoted by E™.

When E is a topological vector space, the vector subspace of E* consisting of those
linear forms that are continuous is called the topological dual of E, and is denoted by E’.
In a general topological vector space it is possible for the only continuous linear form to be
the zero form f(x) = 0 for all x € E. In convex spaces such a thing does not happen.

Detinition. A topological vector space £ is said to be a locally convex if each point has a
fundamental system of convex neighbourhoods.

Keywords and phrases : Locally convex space, dual, locally convex nuclear space, infrabarrelled strongly
bounded, (DF") spaces, equi-continuous, boundedly summable and co-nuclear.
AMS Subject Classification : 46A45, 46H45.
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Let E be a locally convex space with dual E’. Then E’ is a vector subspace of the
algebraic dual E* of E. Also to each element X of F corresponds a linear form X on E'
defined by X (f).

The mapping of E into E™* thus defined is clearly linear; if E is separated it is also
(1,1), for X = Y iff f(z) = f(y) for all f € E’, and by a corollary of Hahn-Banach
theorem this is equivalent to 2z = y. Thus E is identified with a vector subspace E of E’*.
We shall see that this algebraic symmetry between F and E’, in which each is (isomorphic
to) a vector subspace of the algebraic dual of the other, extends to a topological one; there
are topologies on E’ under which it is a separated convex space with (continuous) dual E.

We denote the elements of E' by a', 1/, ......... and write (x, 2} is a bilinear form on E
and E' (for each fixed ' € E’ it is a linear form on E and for each fixed x € FE it is a linear
form on E’), and the following two conditions are satisfied :

(A) For each 2z # 0 in E, there exists ' € E’ with (z,2') # 0. (It follows from a
corollary of Hahn-Banach theorem).

(B) Foreach 2’ # 0 in E’, there exists z € E with (x,2’) # 0.

More generally, let F and E’ be any two vector spaces over the same (real or complex)
scalar field, and let (, 2) be a bilinear form on F and E’ satisfying the conditions (A) and
(A’). Then there is a natural linear mapping of E’ into E*, in which the image of 2’ € E’ is
the linear form f on E with f(z) = (z, 2’). This mapping is (1, 1) because of (A’), and so
E' is (isomorphic to) a vector subspace of E*. Similarly, (A) ensures that F is (isomorphic
to) a vector subspace of E'*. We then call (¥, E’) a dual pair.

2 Topological Dual of a Locally Convex Nuclear Space

Definition. A locally convex space F is called a nuclear space if there is a fundamental
system u,(E) of nhd. of 0 in E with the property that to every U € u.(F), there exists
V € u.(E) with V' < U and such that the canonical map K, iy of E, into Ey; is nuclear.

A locally convex space E is called infrabarrelled if every strongly bounded subset of its
dual E’ is equicontinuous.

Proposition. An infrabarrelled locally convex space E is nuclear iff its strong dual £ is
co-nuclear.

Proof. Since F is infrabarrelled, a fundamental system of bounded sets in Ej is given by

{U° .U e v(E)}

where v(E) denotes a fundamental system of nhd. of origin in E.
Suppose FE is nuclear.
Then given

U € v(E),3V € v(E)

with V' < U such that the canonical map of EE,U into E{,U is nuclear.
Since the
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{U°:U e v(E)}

form a base for bounded sets in Ej,, this implies that Ej is co-nuclear.
Conversely, suppose Ej is co-nuclear. Then given a basic bounded set UY, there exists
VY such that B/, — F, is nuclear. But this implies F is nuclear.

Proposition. An infrabarrelled co-nuclear space is nuclear iff its strong dual E; is bound-
edly summable.

Proof. F infrabarrelled and nuclear = EE; is co-nuclear, [for, a nuclear space is co-nuclear
iff it is boundedly summable], and hence boundedly summable.

Conversely, if F is co-nuclear, then Eg is nuclear. But E{) nuclear and boundedly
summable implies Ej; co-nuclear and hence by the above proposition £ is nuclear.

Definition. A locally convex space £ is called a co-nuclear space if its strong topological
dual E] is a nuclear space.

Definition. A D /['-space I is a locally convex space such that (i) £ has a fundamental
sequence of bounded sets. (ii) Every strongly bounded subset M of E’ which is the union
of denumerably many equi-continuous subsets M,, is itself equi-continuous.

Proposition. A (D F')-space is nuclear if its strong dual E} is co-nuclear.

Proof. Suppose Ej is co-nuclear. Let U be a nhd. of 0 in E' and Uy is bounded in Ej. By
co-nuclearity, there exists a bounded set B in Ej such that .J : Ej,, — E'; is nuclear. So

(=9

there exist sequence {V,,} C B and {x,} C (E,) such that ju = >  (u,z,)V, and

. n=1
b

Tnl|l < oc
since F is a (D F')-space, the set {1/, } is equi-continuous and hence contained in some
VY. S0 ||v,|| < 1 and the map j actually has range in Y.

J — EE){Q — E{,—o.

This implies that E is nuclear.
Proposition. A (D F)-space is nuclear iff it is co-nuclear.

Proof. We know that a (DF)-space is co-nuclear iff (1 (FE) = (1{E}.

Suppose, conversely, that F is a co-nuclear (D F')-space, so its strong dual is nuclear.
But the strong dual of a (DF')-space is metrizable. Now Ej nuclear and metrizable = E}
co-nuclear and hence from the above proposition it implies that E is nuclear.

Remark. There exist nuclear spaces which are not co-nuclear and co-nuclear spaces which
are not nuclear. This can be seen from the following example.
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Let / be an uncountable index set. Let K denotes the scalar field.
Let
Wi =myeKi, Ky =K forall i€l

And let W; be equipped with the product topology.
Let
Er=K;, K;=K forall iel

and let

W be equipped with the product topology. Is well known that
(Wi) 2 Ey, (Er), = W)

Hence Wy and Ej, reflexive spaces. We recall that W7 is not boundedly summable and
so W7 is not co-nuclear. But ' = W7 is nuclear since Fy; is always finite dimensional and
hence F,, — Fy is nuclear. In fact any map with finite dimensional range is nuclear.

Hence, (W;) = (E} )y is nuclear, E; must be co-nuclear. But E; = (W')j, is not nu-
clear since Wy is not co-nuclear.
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Abstract
We exhibit transtormations to map a second order linear differential equation into
a Riccati (R) equation and to construct its corresponding Schridinger (S) equation,
which implies a relationship between the R and S equations.

1 Introduction

In the second order linear differential equation

d?y da

5 + (@) +q(w)y =0 )
we realize transformations of the dependent variable to obtain its corresponding Schrodinger
(S) and Riccati (R) [1-3] equations, with applications to Hermite [4] and Laguerre [5] equa-
tions, that is, for harmonic oscillator and Coulomb potentials in quantum mechanics. Be-
sides, we make a study of the connection between the S and R equations [6].

Keywords and phrases :Schrodinger equation, Riccati equation, second order linear differential equation.
AMS Subject Classification : 34A05, 34B30, 81QU5.
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2 Second order linear differential equation and its associated
Schrodinger equation

In the homogeneous equation (1) we change the dependent variable [7, 8]

1 T
y=Wew |-3 [ pan] ®)
to obtain the Schrodinger-like equation
W i . ldp p? )
where j(z) has the information of the corresponding quantum potential.
Now we apply this mapping to two important differential equations:
(a) Hermite equation [7-9]
y' —2zy +2ny=0,n=0,1,2,--- (4)

and its polynomial solution is denoted by H,,(x) [10, 11]. By comparison of (1) with (5)
we see that p = —2x, ¢ = 2n, then j = 2n + 1 — 22, thus the Schrodinger equation (3)
adopts the form

| A :1:2_,_ __ 1 .
2W + 2“/—(u+2) W (5)

for the potential “’72 of the harmonic oscillator in natural units (4 = m = w = 1), with the
energy spectrum (n + %) for the stationary states [12, 13]. The equation (2) implies that
W o H, exp (—T;), then the normalization of the wave functions leads to final result
[12-14]

2
nlz) = @iV k(o) exp (-5 ) ©®
(b) Associated Laguerre equation [7, 8]
k+1—=x N
g BTy —y=0 (7)

and the polynomials Lffv(;c) [10, 15, 16] represent the respective solutions. From (1) and
(7)itisclearthat p = (k+1—x)/x and ¢ = N/x, then (2) and (3) give us the Schrédinger
equation

1—k* k+1+2N
'[’:V'H
o ( 42 2

In equation (8) the corresponding potential is not evident , therefore we make the changes

1 3 T
= :1) W=0, W 23 e 3LE(2) (8)

2r dieg
=—, 0= 9
bn’ Ze? (9)

then equation (8) takes the known form for the Coulomb potential (A = m = 1) [12, 13]

k=241, N=n—-{-1,
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2 ) 7.2 72
i [d. P,(f.—i-l)] W Ze VA (10)

e W=—-—>5W
2 | dr? r2 Amwegr 32n2e3n?
where n and ¢ denote the principal and orbital quantum numbers, respectively. Thus, equa-
tion (8) and (9) imply the normalized radial wave functions [12, 13, 17]

, 2r ¢, (n—¢—1)! W& i i " 2r .
Yne(r) = (;)“rl [___(?l+€)!) } s R e (E) (11)

If in equation (8) we apply changes of variables different to given in equation (9), then
it is easy to show that equation (8) reproduces the radial part of the Schrédinger equation
for the Morse and two-dimensional harmonic oscillator potentials [18].

3 Second order linear differential equation and its correspond-
ing Riccati equation

Euler [19] proved that under the mapping
v=co | [ (B~ Jotn) an| . R=L 2 (12)

the expression (1) implies the Riccati equation (thus named by D’ Alembert
[20]) [1-3, 21, 22]

R +R 4 j(x)=0 (13)
in its normal form, where j(z) is given in (3).
Conversely, if in the general Riccati equation
R' +r(z)R?>+ s(z)R = t(x), rt#0 (14)

we realize the transformation

e
B=cl 1y (15)
T’y

where () is an arbitrary function, we obtain the second order linear differential equation

al
Yy’ + (2’}-‘?' i s) Y +r(y +rP+sy—t)y=0 (16)
e

If equation (15) is applied to equation (13) [r = 1,5 = 0,t = —j| for v = 0, then equation
(16) gives the result

!

R+ R + j(z) =0, RJ; =y +j(@)y =0 (17)

that is, the Riccati equation (13) can be transformed to Schrédinger equation. D Alembert
[23] studied the wave equation for a non-homogeneous string, and showed how to map a
Schridinger-like equation into the Riccati’s form [9, 24]
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v+ i@y =0.y= e ([ "Rinydn) = R+ R +j@)=0  (18)

as inverse of (17).

This analysis exhibits the relationship between the Schrodinger and Riccati equations
[6] of importance in quantum mechanics [22, 25, 26]. For example, a Darboux transform
[27-29] in (1) or (3) automatically shall imply a mapping into (13) [30]. Inversely, new
analytical solutions [31, 32] and integrability cases [33, 34] for the Riccati equation can be
useful in the study of quantum problems.
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Abstract

In the paper we establish some new results depending on the comparative growth properties
of composite entire or meromorphic functions using /m-th generalized ,, L*-order and the m-th
generalized pL*-luwcr order and wronskians generated by one of the factors where m and p

are any two positive integers.

1 Introduction, Definitions and Notations

Let C be the set of all finite complex numbers and f be a meromorphic function defined
on €. We will not explain the standard notations and definitions in the theory of entire and

Keywords and phrases : Transcendental entire function, transcendental meromorphic function, com-
position, growth, m-th generalized , L*-order and the m-th generalized , L"-lower order, wronskian, slowly
changing function.
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meromorphic functions as those are available in [2] and [5]. In the sequel we use the

following notation : loglkfi x = log (log[k—ll

:.-:) fork=1,2,3,...and logl’ 2 = z.

The following definitions are well known:
Definition 1. A meromorphic function a = a(z) is called small with respect to f if
T (rya) =S (r,f).
Definition 2. Let ay, a9, ....a; be linearly independent meromorphic functions and small
with respect to f. We denote by L (f) = W (a1, aa,....ar; ) the Wronskian determinant
of a1, a9, ..., A, j ie.,

a  az . . . @ fr
a,  ay . . . a f
L(f)=
] .= & 3
ag ) ag b ag, ) )

Definition 3. If @ € C U {oo},the quantity

. N (r,a: f)
6 (a; = 1-—Ilimsup——————=
(a; f) e, 1)

= liminf DAL 0T} (r,a; 1)
r—ooo T (7, f)
is called the Nevanlinna deficiency of the value ‘a’.
From the second fundamental theorem it follows that the set of values of a €

CU{oc} for which § (a; f) > 0is countable and ) & (a; f)+0 (oc; f) < 2 (cf [2],.p.43).
aFoo
If in particular, ) d(a; f) + 6 (oco; f) = 2, we say that f has the maximum deficiency
a#oo
SUIIL

Somasundaram and Thamizharasi |4] introduced the notions of L-order and L-
lower order for entire function where [ = L (r) is a positive continuous function increasing
slowly i.e.,L (ar) ~ L (r) as r — oo for every positive constant ‘a’. The more generalized
concept for L-order and L-lower order for entire function are L*-order and L*-lower order.
Their definitions are as follows:

Definition 4.[4] The L*-order p}re and the L*-lower order /\f;* of an entire function f are
defined as

log? M (r, f)

. . log® M (r, f)
L5 . L* _ g =) ’
Ay = llfigép log [relr)] and Ay = liminf log [rel™]

When f is meromorphic, the above definition reduces to

pﬁ."’ = 1§ sup lOgT(T: f) : fl(}gl (T'._. f)

L _ s .
r—oo log [rel(r)] iy s log [rel (]

In the line of Somasundaram and Thamizharasi [4] , for any two positive integers
m and p, Datta and Biswas [1] introduced the following definition:
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(m)

Definition 5.[1] The m-th generalized ,L*-order with rate p denoted by pf and the

m-th generalized , L”™-lower order with rate p denoted as Ep)})\% of an entire tunctlon f are
defined in the following way: '

[m—+1] : [m+1]
%rr;}ﬂf = lim sup log ML) and E”;}/\L = lim inf log M(r §) ;
4 r—oc log [rexplPl L (r )] r—co log [rexplP! L (r)]

where both m and p are positive integers.
When f is meromorphic, it can be easily verified that
7 S CR— log™T(r,f) _  (m AE = lim inf log™ T (r, f)
® 7 r—oc log [rexplPl L (r}] ) r—o0 log [rexplPl L (r)]

where both m and p are positive integers.

Since the natural extension of a derivative is a differential polynomial, in this paper
we prove our results for a special type of linear differential polynomials viz. the Wron-
skians. In the paper we establish some new results depending on the comparative growth
properties of composite entire or meromorphic functions using m-th generalized , " -order
with rate p and the m-th generalized , L*-lower order where m and p are any two positive
integers and wronskians generated by one of the factors.

2 Lemmas

In this section we present some lemmas which will be needed in the sequel.
Lemma 1. [3] Let f be a transcendental meromorphic function having the maximum defi-
ciency sum . Then
T (L
o T L)

L TE =14k —ké (o0; f).

Lemma 2. Let f be a transcendental meromorphic function having the maximum deficiency
sum and m and p are any two positive integers.Then the m-th generalized ,,L*-order with
rate p (the m-th generalized , L*-lower order with rate p) of L (f) and that of f are same.

Proof. By Lemma 1, lim log™) T(r, L(f))

exists and is equal to 1 for m > 1. Now
Koo lg[m] T( f) q -

m * logl""'] (v LT
) Py = lmsup )

r—oo log [rexplPl L (r)]

~  bm log"™ T (r, L(f)) i st log™ T (r, f)
r—o0 Jogl™ T (r, f) r—00 log [rexplPl L (r)]
(m) L*
) Ps
In a similar manner, "™ \E* m})\“

; ' (p) L) T ()
This proves the lemma.
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3 Theorems

In this section we present the main results of the paper.
Theorem 1. Let f be transcendental meromorphic having the maximum deficiency sum

: (m)yL*  (m) L= ()L  (n) L=
and g be entire such that 0 < ) )\fog (p) Pog < O© and 0 < (p)A < (p)pf < B

where m, n and p are all integers > 1. If expP~1 L (:r‘”l) =0 {log[”] T( 4 L(f))} as

r — oo then for any positive number A,

(m) \L* m (n)yL*
——-—li’f—og— < liminf log™ T (r, { o g) R )M fog
A [k = o loglI T (r4, L(f)) + expb=T L (r4) = 4. (3L
(m) p
[m] ;
< limsup log™ T'(r, f 0 9) < () Pfog |
e 1ogP T (4, L(f)) + expl T L () ~ A- PAE

Proof. From Definition 4 and in view of Lemma 2 we have for all sufficiently large
positive numbers of r that

log™ T'(r, f 0 g) > ({1 \foy — €) log [rexp L(r)| ()
logl"l T ( JL(f)) = ({n)}ALU) ) log l-rA expl L (r)
e ST L) 2 (G - oa[rebie] . o
log™ T (r, f 0 g) < (E;;'}pj:;g * E) fog [?. expl” L ("")J «)
and
T A1) € (Gt o) s s )
i.e., log[”'] T (?"A, L(f)) < Gg})p;’* + s) log {T’A exp[”] L (?)J : 4
Also for a sequence of positive numbers of r tending to infinity
log™ T (r, fog) < ( )Afcg + E) log {r exp? L (?‘)J (5)
A < ()Pt )
ie., logi!lT (TA, L(f)) < (E:))/\:%* e 5) log er exp? L (T’)J , (6)
log™ T (r, f o g) > (E:;},Ojr?;g - s) log l?‘ exp? L ('r)J (7)
and

log[n] T (?,A: L(f)) (E
i.e., log[”‘] T (?"A, L(f)) > G

IV

n})p‘af} \,) log {r“l exp[p] L (?")J
n) L
)

pf - s) log {T’A expl? L (?)J . (8)
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From (1) we obtain for all sufficiently large positive numbers of r that
logl" T (1, f 0 g) > () AfSg — ) {logr +expP I L ()}

* ]
ie., logl™ T(r,fog) > (ES))\?DQ - e) {]012,’?‘ -+ 7 expP—1! (r’q)}

_ 1.,
(Ez)l))‘fog - 5) {BXPLP UL (r) - 1 expP~ 1L (T'A)} ; 9)
Again from (4) we get for all sufficiently large positive numbers of 7 that
1T (4, £01) < (G +) {41+ exp 1 £.(4)

An A
log (’i;(l*,L(f)) glogr+%exp[p_]]fz(r‘4) _ (10)
A((ef +2)

Now from (9) and (10) , it follows for all sufficiently large positive numbers of r that

i.e.,

(.-
log™ T (r, f o g) > ()—ylog[n] T (%, L(f))
A(Ge +)

log™ T (r, f 0 g)
" logl"l T (r4, L(f)) + explr—1 L (r4)

(m) -
> (&) 2%, —¢) , log T (4, L(f))
1 ((n) Le L E) 1Og[n] T (rA, L(f)) + explP—11 L (r4)

(p)Pf
(Em))\fog - 5) {expP~U L (r) — L explP=1 L (r4)}
log"l T (r4, L(f)) +9Xp[p_1 L(r4)

1.€.

log"™ T (r, f 0 g)
log" T (rA, L(f)) + explP=1 L (r4) ~
(m) \L*
(fp) fog )
A(Dok+e)
explP— 1 L(r4)

i.e., >

({mJ/\L* E) { expP" U L(r) _ L}
(p) " fog exp[P—l]L(w‘l) A
log™ T(r4,L(f))

L+ o164 Ly e A o)

Since explP~1 L (-r"") = o{log[”] T (r"',L(f))} as r — oc, it follows from above
that s
T }\ 3
lim inf log ™ T(r,foq) > ( ) “fo5 )

r=o< logh! T'(r4, L(f)) + explP~U L (r4) ~ 4 (En))ﬂf +€) |

(11
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As g (> 0) is arbitrary, we get from (11) that
(m)y L+
] AL
fierind log™ T'(r, fog) ~ _(p) “fog

r—00 logl T (74, L(f)) + explP-1 L(r4) ~ A. E.:))pf'* :

Again from (2) , we obtain for all sufficiently large positive numbers of 7 that

log"T (%, 2(£) 2 (X — <) {Alogr +e L ()}
l0g"1 7 (+4, (1))

A -2)

From (5) we get for a sequence of positive numbers of r tending to infinity that
log™ T (r, f o g) < (( ) /\fog ) {log?‘ +explP UL (?)}

1
i.e., log™ T(r,fog) < (g;))\fog + e) {]og?‘ -+ Zexp[?’_'] L (-rA)}

(12)

Lié:,

1
> logr + T expl”"l] L (?""1) ; (13)

m . ili "
(Ep)})‘fog + 5) {GXP[‘” UL (r) - 1 expP~ L (r“‘)} ; (14)

From (13) and (14), it follows for a sequence of positive numbers of 7 tending to
infinity that

(m)
Moy T €
m fo T
log" T (r, fog) < %m[ 1T (r4, L(1))
A ((zoJ)\ )

m s 1 g
(Ep)}’\fog + 5) {GXIJ[p UL (r) - ZEXp[p 1, (TA)}

log!™ T (r, f 0 g)
? log[“] T (r4, L(f)) + explr—U L (r4)

(m)
< (( ) )‘foq ) _ log[”] T (?‘A,L-(f))
A (E;J},\L‘ E) IOgEn] T (r4, L(f)) + exp[P—l] L (?,A)
(§, +9) o9 1500 - o 110
lOg[ T (rA, L(f)) + explp—U L (r4)

1.€.

log™ T (r, fog)
" logll T (r4, L(£)) + expltU L (r4) ~
(N e
= o* (m)* expP~1 L(r) 1
AGH ) (i Moo +¢) \ iy — %
14 explP U L) 1 4 1o T(rA,L(f) '
logi" T(rA,L(f)) expP~1 L(r4)

1.€.
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As explP=1 L (?‘A) =5 @ {log[”J i iy (rf‘, L(f))} as r — oo we get from above that

i (m)
lim inf log™ T (r, f 0 9) & (( )‘fog B 6) i (15)
72 1ogP T (A, L(f)) +expl-T L (r4) = 4 (WrF — )
Since € (> 0) is arbitrary, it follows from (15) that
logl"™! 7 (1, f o g ) Mog
lim inf — <2 : (16)
5% logl' | T (rA, L(f)) + explr T L (r4) ~ A+ (E°

Also from (6) we obtain for a sequence of positive numbers of r tending to infinity that

log['rLJ T (?‘A, L(f)) < GPJ /\f + f) {A logr + exp[”—” L (T‘A)}
log"™ T (r4, L(f))

A (E;'} ALY 4 6)

1 i
i.e., <logr+ 1 expP 1 L (TA) : (17)

Now from (1) and (17) we get for a sequence of positive numbers of r tending to infinity
that

log™ T (r, f o g) > (EE;}AfDG ) {log:r‘ +explP UL (fr)}

N T — (m) \ L* b o] ok
i.e., log™ T (r,fog) > ((p) Afoii — ) {]og’r -+ Ae}n:p'*'J L(r )}
1

+ (0o —¢) {exp[P‘” L(r) - 2 expl )L (-;«A)}

(5.
e log T (r,fog) >~/ 1oglnl T (4, (1))

A(GAF +e)

T - 1 N
(Ep)))‘fog ){exp[P UL (r) - 5 expl L(-rA)}

log!™ T (r, f 0 g)
" logll T (r4, L(f)) + explp=1 L (r4)

(m)yL*
5 ((p) Afog ~ ”) ‘ l(}g[”JT(?‘A,L-(f))
A(IINE +2) og T (A, L(f) + expl=1 L (r4)

(p)
" (Em)/\‘jzﬂg - 6) {expli”_11 L(r)— expr” Ur (r"{)}
log" T (A, L(f)) + explp—1 L (r4)

i.e.




32 Sanjib Kumar Datta, Tanmay Biswas and Ananya Kar

log™ T (r, f o g)
" logi" T (r4, L(f)) + explt—U L (r4) ~
(28, <)

mn * {m) L explp : L(?"} . i
A Af +e N (( ) Afog ~ ) {exp[p-ll L(rA) A}

1.€.

1+ explP—=1 L(r4) 1 log["] T(r4,L(f))
log™ T'(rA,L(f)) expP~ 1T L(r4)

In view of the condition exp?~! L (-r“l] =0 {log[”] T (?‘A,L(f))} as r — oc we
obtain from above that

log") T (1, o ) R

lim sup e >

o gl T (A, () + expb L () = A (00N +¢)

(18)

Since £ (> 0) is arbitrary, it follows from (18) that

(m)yr*
108‘ T (r,fog) K (p) Afog
n} L* '
()N

(19)

lim
v ToghI T (A, L( f))—i-exp[-”“ LG~ A

From (3) we obtain for all sufficiently large positive numbers of r that

log[m]T('-",fog) < ((”})Pﬁg ){103r‘+expL" ”L(?‘)}

m 1 _
, log™M T (r,fog) < GP)J J+og+€) {log'r-l-zexp[‘” ”L(-rA)}

m . 1 _
e (Ep)) Pfog +5) {exp[P 1 L(r) - Zexplp 1r (TA)} . 20)

Again from (2), we get for all sufficiently large positive numbers of r that

log"17 (%, 2(£) 2 (X — <) {Alogr +e L ()}
log™ T (r4, L(f))

A(AF <)

1
t.€., >logr+ — 1 expLp g (?‘A) ’ 20

Combining (20) and (21) , it follows for all sufficiently large positive numbers of 7 that

(m) L
Pfog T€
log" T (r, f 0 ) < %’—i)mmmfn
A(fhE —e)

(p)
T . 1 B
Ex (Ep)) Pfog *) {EXP{P VE@) - - expP 1 L (-rA)}
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log™ T (r, f 0 g)
" log™ T (r4, L(£)) + exple—1 L (r4)

Dofire T

" A (0 =) ogFT (A L) + expl L ()

) f
(o) e 111
].Og[ ( A L(f)) —|—exp[p—l]L(?,A)

1.€.

log™ T (r, f 0 g)

1.€., =
logl™ T (r4, L(f)) + explr=1 L (r4)
el L* +&
(p) Pfog [p—1] !
I m) I, explt U L(r) 1
A(AF <) ((m Plog “) {expl?—llL(-rf*) A}

4 eer e [ g T AL()
logI" T(+ 4, L(})) t el TLrA)
Using exp?~ 1 L (r"‘) = {log[”] T (r"l, L(f))} as r — oo we obtain from above

that
(m) r*

1 [m] T s !O s}
lim sup o8 (r.fo9) < () Prog ¥ ; (22)
o gl T (A, () + expb L () = 4 (GInk — )
As £ (> 0) is arbitrary, it follows from (22) that
] () 5
lim sup log T (r, f 09) < @) Pies (23)

(n) /\L* '

r—oo logl™ T (rA, L(f)) + explP~ L (r4) ~ A. o)

Thus the theorem follows from (12), (16), (19) and (23).
Remark 1. The equality sign in Theorem 1 cannot be removed which is evident from the
following example:
Example 1. Let f =expz, g=2,m=n=p=1, A=1and L(r) = £ exp (3) where
a is any positive real number.

Then
Afog_pfcg A - _1andLé f) +d(00i f) =2.
aF#0o

‘ B - la f| |1 expz
AlSO taklng a) = 1 31’]d g = ... = aj = 0 we get that L(f) = u'_.cl f; ’ = ‘ 0 exp 2 =
exp 2.
Now r

T(r,fog)=T(r,L(f) =~

Hence

liminf log T'(r, / o 9) = lim inf logr+ G (1) =1

r—oo log T (r4 L(f))—I—L(rA) r—00 log'r'+O(1)+%exp (%)
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and

) logT (r, fog) . logr+0O(1)
lim su = limsu - -
rvoor log T (1A, L([) + L (1) raso’ logr + O (1) + 7 exp ()

=1.

In view of Theorem 1 the following theorem may be carried out:

Theorem 2. Let f be meromorphic and g be transcendental entire such that 0 <

(m) (
(p) Pfog <o00,0< (

(m)y\L*
(p) }‘fog &

::')) )\;‘* = EE}J p;‘* < oo where m, n and p are any three integers > 1 and

S 8(a;g) + 6(c0;g) = 2. explP~U L (r4) = 0 {log[”] Tiln®, L(g))} as r — oo then
aF#oo
for any positive number A,

(m) y L*

[m] (m),\Lx
(p) “\fog - log™ T'(r, f o g) (p) "\fog
) < lim inf o = = 7 < N
A g T g™ T (r4, L(g)) +expP=HL(r4) — A- WAL

: (m) L

log™ T ) Pfo

< Timsup 0g (r,fog) . (p) "' fog ’
r—oo log™ T (r4, L(g)) + expP~U L (r4) ~ A. E‘:}))‘g“

Remark 2. Taking f = 2, g =expz, m=n=p=1 A=1L(r) = éexp (%]
where a is any positive real number and for L(g), a; = 1, a2 = ... = a; = 0 in Definition
2 one can easily verify that the equality sign in Theorem 2 cannot be removed.

Theorem 3. Let f be transcendental meromorphic having the maximum deficiency sum

and g be entire with 0 < g;})\}‘;g < EE;)'O?SQ < ocand 0 < E;}Jp? < oo where m, n and p

are any three integers > 1. If expP~ 1 L (?"A) =0 {log[”] i (:PA, L(f))} as r — oo then
for any positive number A,

[m] (o) L*
lim inf lop™™* Tirs o) < P Prog
r=oo log"™ T (r4, L(f)) + expl 1 L (r4) — 4. (Mol

< limsu 10glm] T(r,fog)
5 r_;mplog[-ﬂ.] T(r““, L(f)) + exp[P—ll 7 (.rA) .

Proof. From Definition 4 and in view of Lemma 2, we get for a sequence of positive
numbers of r tending to infinity that

log!™ T (r4, L(f)) (E;‘{ PL) 5) log W expl”! L (T)J

ie, log"T (r4 L(f)) > (Eg})f’?}' - 8) {A log r + exp? ! L (?'A)}
In] o (A
i.e., log™ T (T ’L(f)) > logr+ %exp@—‘] L (T’A) . 24)

Aok —e)

Now from (20) and (24), it follows for a sequence of positive numbers of r tending to
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infinity that

(m) L*
p) Pfog T €
log[m] T(r,fog) < M ]Og[“] i i (?’A, L(f)]

Aoy <)

T . 1 B
+ (Ep)) fog i 5) {E‘Xp{p 1] ye (T) — Z explp ]] L (TA)}

log™ T (r, f o g)
" logl T (r4, L(f)) + L (r4)

(m) .n
(p) *Ofog e 108[ Ly ( A,L(f))

A((n) L E) 10g™ T (rA, L(f)) + explP~11 L (r4)

() Pf
4 o~ )
].Og[n] ‘n (-‘,"‘A: L(f)) + exp['p—l] L (T'A)

1.€.

log™ T (r, f o g)
" log T (r4, L(f)) + explP=U L (r4) ~

1.€.

(m) p*
_(p) Progt€ _ e, xolp1l
n L D=L Ly o
(i (G PFog +2) { ity — &}
1+ _explP=U L(r4) 1o log("] T(rA,L(f)) '
log™! T(r4,L(f)) expP— 1 L{rA)
Using exp[”“l] L (r"‘) =0 {log[""] T (r’l, L(f))} as r — oo we obtain from above
that

[m] : e p o
lim inf o tog el 98) < P) f g " ; (25)
r~ log" T (r4, L(f)) + explp=1 A ot )
As £ (> 0) is arbitrary, it follows from (25) that
(m) 1=
1 [mn] T (p P
liminf o8 (rfog) = (p) “fog . (26)
r—00 10g-[n] T (rA, L(f)) + explP—1] L('r""‘) A (ﬂ)p L

() "f

Again for a sequence of positive numbers of r tending to infinity,

log™ T (r, fog) > (E:;) j%;g ) log {7‘ exp” L (T)J
e, log™T(r fog) > (Ep)) }‘;g c) {10g?‘ +expP U L ('r)}
i.e., log[m] T(r,fog) = (E;;J }’;g e) {log'f‘ + % expP1 L (-rA)}
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m * . 1 _
T (Ep)J Pfog = 5) {E‘Xp[p RAGE ZeXp[” ']L(-r"‘)}. 27

So combining (10) and (27) we get for a sequence of positive numbers of r tending to
infinity that

"k e

T * . 1 B
T (Ep)) j’og 5) {GXP{P UL (r) - Zepr’ 17 (-rA)}

log™ T (r4, L(f))

log"I T (r, f 0 9)
" logl™ T (rA, L(f)) + explp—11 L (r4)
%S}P};‘g log™ T T (r4, L(f))
A +e) 10gl T (r4, L(f)) + expl—T L (1)
Gﬂﬂ)t)pf'ﬁg ) {EXP[‘U_” L(r)— % eXp{P—l] L (?.A)}
log™ T (74, L(f)) + explP=11 L (r4)

1.€.

log™ T (r, f o g)
" log™ T (r4, L(f)) + explt—U L (r4)

(m) _r*

{p();fifoi - (m) = _ _\ [ explP L) 1

A((peF +) 4\ Pfog — ©) \explP-TL(rA) ~ 4
explr—1 L(r4) 1 log!™ T(rA,L(§)) '
log!™ T(rA,L(f)) explP=1T L(rA)

1.€.

1+

Since explP~1 L (-r"") = o{log[”] T (r"',L(f))} as r — oc, it follows from above
that

(m) L=
Pfog—€
lim sup log T(r,fog) > ((p) i ) : (28)
B, IOO'L”]T(T'4 L( ))—f—exp[P 1]L(?"‘4) A(Ep;pf ‘I"E)

As £ (> 0) is arbitrary, we get from (28) that

(m) L

lim sup log[m] T(rfo9) > _® £reg (29)
o ToglT T (+, L(F) + explp UL (r4) ~ 4. (k"

Thus the theorem follows from (26) and (29) .
Remark 3. Taking f = expz, g =2, m=n=p=1, A=1,L(r) = éexp (%]
where «a is any positive real number and a; = 1, as = ... = a5 = 0 in Definition 2 for
L(f) one can easily verify that the equality sign in Theorem 3 cannot be removed.
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Theorem 4. Let f be meromorphic and g be transcendental entire such that 0 < E;;) )\j;;g
< E;;)p}';g < oo, 0 <« E;)}pé* < oc where m, n and p are any three integers > 1 and

S d(as g) + 6(o0;g) = 2. If explP~U L (r4) = of log" T (r4, L(g)) } as r — oo then
aF#00
for any positive number A,

log™ T (r, f o g) ) Pag
lim inf — L ol

r~o logl'l T (r4, L(g)) + explP-U L (r4) ~ 4. (L

< limsu log!™ T (r,f ©9)
P 7'_;Ocp]_0g[.ﬂ] T (?u‘-ﬂl’ L(g)) + exp[p—ll L (T‘A) -

The proof is omitted as it can be carried out in the line of Theorem 3.
Remark 4. Taking f = z, g =expz, m=n=p=1, A=1,L(r) = éexp (%]
where @ is any positive real number and a; = 1, ag = ... = a3 = 0 in Definition 2 for
L(g) one can easily check that the equality sign in Theorem 4 cannot be removed.

The following theorem is a natural consequence of Theorem | and Theorem 3:
Theorem 5. Let f be transcendental meromorphic having the maximum deficiency sum

- (m) yr* (m) r- (n) yr* ~(n) L*
and g be entire such that 0 <(p) )\fog §(p) Pfog < OO and 0 <{p} /\f S(p) pf <

where m, n and p are any three integers > 1. If exp?~1 L (T‘A) =0 {log[”] T (-r"l, L(f)) }

as r — oc then for any positive number A,

(m)/\u (m) p*

o.['n'!.] T 2 ; ,() ;
ol 120 wiog T () = in o
r—=co Jog™ T (r4, L(f)) + explP—U L (r4) A 3AF A ipf
(m)yr+  (m) e -
T ®) Mog_(n) Pfog s log™ T (r, f 0 g)
= max ) : < lim sup : i
AP A Tk [T ree log™ T (r4, L(f)) + explr=1 L (r4)

The proof is omitted.

Combining Theorem 2 and Theorem 4 we may state the following theorem:

Theorem 6. Let f be meromorphic and g be transcendental entire such that 0 <E$J

)\jrr’;g Sg;’) pgg < 0o, 0 <EE)} )\{‘; SEE’}J p;‘* < oo where m, n and p are any three in-

tegers > land Y 6(a;9) + (005 9) = 2. IfexplP~1 L (r4) = 0 {log[”] ¥ (TA,L(g))}
aFoc

as 7 — oo then for any positive number A,

(m)yLe  (m) r¢

10g[m'] T(r,fog) (p) "*fog (p) Pfog

lim inf < min

P logl T (1A, L(g)) + explr 11 L (1) 4. T 4L Do
AL Shb m
< max { — Mos ) Prog < lim sup log!™ T (r, f o g) ‘
= A (n}/\L,‘. A M) i [ — ;50 log[n] T(?”A,L(g)) i, exp[?’—lf I (?‘A)

(e " (p) Py
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Abstract

The Pascal triangle is a well known and famous triangle which is dated long before
Pascal has introduced it and got his name attached to it. Chinese, Persian, and Greeks
had all dealt with the structuring of the numbers which are now known as the Pascal
triangle. Many Properties have been noticed in the structure of the numbers in the
Pascal triangle, Such as the Fibonacci numbers, the triangular numbers, the Hockey
stick, the Sierpinski’fractals. In this paper, further exploration is made for the Pascal
triangle. The horizontal elements making the triangle represent the coefficients of nth
powered binomial expansion of the form (z + y)™, or (Z?zl x;)", and it has been
noticed that the set of the diagonal elements as well as the vertical elements of the
right angled Pascal triangle present the numbers of expansion terms of monomials,
binomials, and polynomials of the form (Zle x;)™ in a consecutive order. The val-
ues of those coefficients are ones for monomials, the horizontal elements of Pascal
triangle for binomials, and for the higher polynomials the values of the coefficients
are determined by the Embedded Pascal Triangles (EPTs) expansion method. Those
set of numbers determining the number of coefficients of the r-nomials are named as
the Waterloo numbers (W-numbers),whereas the values of those numbers are called
the attached values to Waterloo numbers. Furthermore, the paper presents a geomet-
rical representation to those set of numbers in a similar manner as the geometrical
representation of Polygonal numbers.

Keywords and phrases : Pascal Triangle, Embedded Pascal Triangle, binomial expansion, polynomial
expansion, Waterloo numbers, Attached values to Waterloo numbers.
AMS Subject Classification : 11B39, 11B65, 11B83, 11H71.
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1 Introduction

The history of Pascal triangle lays back with ancient Chinese, Persian, and Greeks, but it
has been well presented by Pascal in 1653 and has been named after him since then. A lot of
studies related to Pascal triangle can be found in literature [1, 2, 3]. One of the explanations
of the Pascal triangle is that its horizontal elements represent the coefficients of a binomial
expansion. It has been found that an extension to polynomial expansion can be achieved
using what is called the Embedded Pascal Triangles for polynomial expansion method [4,
5]. In such method, it has been found that the expansion of the sum of I-variables raised to
power n can be obtained by the use of the expansion of (I — 1) variables raised to power
n multiplied by horizontally laid out Pascal elements. So, effectively, starting with Pascal
triangle for binomial expansion at any row level, one can generate trinomial expansion by
simply multiplying the coefficients of the binomial expansion with the horizontally laid out
batches of Pascal triangle elements. One can extend this to generate the coefficients of I
-variables expansion by multiplying the coefficients of the polynomial expansion of (1 —1)
variables by the horizontally laid out batches of Pascal triangle elements in a recursive
manner. An efficient algorithm has been developed for such purpose [5].

It has been found in this study that the Pascal triangle elements viewed diagonally or
vertically can be related to the number of the expansion coefficients of higher polynomials,
and with the help of the EPTs expansion method, one can determine the values of those co-
efficients. Such vertical or diagonal sets of numbers appearing in Pascal triangle are called
the Waterloo numbers, and their values determined by the EPTs expansion are called the
attached values to Waterloo numbers . Also, because it is noted that the Waterloo numbers
are related to the expansion of monomials, binomials, trinomials, tetranomials, pentanomi-
als, etc., it is then suggested to relate those numbers to polygons. The Waterloo numbers are
different from the polygonal numbers[6] , and hence the geometrical representation of both
numbers were different in the number of dots on the polygons. The dots corresponding to
polygonal numbers have low entropy (evenly distributed on the sides of the polygons), how-
ever, those dots on the polygons representing Waterloo numbers are more crowded which
imply that they have higher entropy. Detailed analysis for the subject is presented in the
following sections of the paper.

2 Polygonal numbers

Number theory is quite active in research, and Polygonal numbers are part of this theory.
Earlier work has been done with those numbers since Hypsicles, and Diophantus. Many
formulas have been derived for the Polygonal numbers, such as:

Ph= 3nl2+ (n—1)(r —2) (1

Which represents the nth polygonal number with r sides of the polygon.
Other formulas can be easily deduced from the patterns of the polygonal numbers, such as :

P = L0 = 2)n® — (r - 4)n] 2)
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Equations (1) and(2) can be re-derived from each other. Another formula can be deduced
also for polygonal numbers, namely;

o T BT 5

Which is also derivable from egs.(1) and (2).
A recursive formula can be easily determined from the pattern of the polygonal numbers

namely;
pntl =ph+p3, (4)

Table 1 summarizes the generation of the polygonal numbers:
Table 1 has been generated using the recursive formula, with the help of the property:

P?z = Pysz—1 =N (5)

Table 1 represents the polygonal numbers which are read horizontally for » = 3 we have
the triagonal numbers p3, for r = 4, we have the square numbers ps, and for r = 5, we

Table 1. Generating Polygonal numbers

4 1{4]9 |16]|25|36| 49 | 64 | 81 | 100 | 121 | 144 | 169 | 196 | 225 | 256 | 289 | 324
5 LIS 12 (223551 70 | 92 (117 | 145 | 176 | 210 | 247 | 287 [ 330 | 376 | 425 | 477
6 161528 45|66 | 91 | 120 | 153 | 190 | 231 | 276 | 338 | 378 | 435 | 496 | 561 | 630
7 L[ 718345581 (112|148 | 189 | 235 | 286 | 342 | 416 | 469 | 540 | 616 | 697 | 783

have the pentagonal numbers pJ, etc.. . The polygonal numbers as can be seen are gen-
erated with the triagonal numbers p3_,. Those triagonal numbers are noticed in the very
known Pascal triangle which is shown in Table 2, as the shaded numbers 1, 3, 6, 10, 15, 21, .
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n!

Table 2 The Pascal Triangle :The Binomial coefficient ( Z ) = m—R)K I

(x+»"
(x+y)°
(£ +¥)
(x +y)?
(x+y)?
(x+9)°
(xty)
(x+y)°
(1)

o
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—ltn| O
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Table 2 shows the coefficients of the binomial expansion for the power n = 0,1,2,3,---
etc. This means that the expansion of (z + y)* is 12# + 423y + 622y2 + 42y + 1y?. As
it is mentioned earlier that the only polygonal numbers appearing in Pascal triangle are the
triagonal numbers (shaded diagonal numbers, as well as the shaded vertical numbers). Such
numbers seem to be the building block of all of the polygonal numbers as it has been stated
earlier in Table 1 where through the recursive formula one builds up the polygonal numbers
via the subsequent additions of p3_,. A geometrical representation for the polygonal num-
bers is displayed in figure 1.

o
B Y

Fig.1 geometrical representation of polygonal numbers
(Triangular, Square, Pentagonal, and Hexagonal)

There are two interesting theories about polygonal numbers, the first one called Fermat’s
theory [6] says that any whole number can be generated by the addition of rr-gonal numbers
or less. As an example: 12=6+3+3 (a sum of three triangular numbers), 12= 9+1+1+1
(a sum of four square numbers), 12=5+5+1+1 (a sum of four pentagonal numbers), and
12=6+6 (.a sum of two hexagonal numbers), etc.. . The other theorem is called the Fermat’s
last theorem[7] (known also as the margin note) which Fermat claimed he had a proof of
it which was not found, but later has been proved by Andrew john Wiles[7]. Fermat in his
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last theorem proposed that there is no way of extending Pythagoras theorem a? + b% = ¢?
to powers of n greater than 2, i.e; a™ + b" # c", for n > 2.

3 Embedded Pascal Triangles (EPTs)for polynomials expansion

It has been mentioned in the prev1ous sectlon that Pascal triangle represents the coefficients

of the binomial expansion of (E ", and such coefficients can be generated via the bi-
nomial coefficient 7}, = Z - The first author, developed a special binomial expansion
[8]of the form:

Hiaw+A) =32 e %5 D SRR (6)

- ()
k
where, > n A---F... X denotes the sum of the products of each and every
"k = )
k

possible combinations of kelements of the set A\;, Ag,--- , \,. Such expansion is named

later as the Guelph expansion [9]. For a single valued )\;, the expansion reduces to the reg-
ular expression of the binomial expansion, i.e;

(w+A)" ZT g™ EAR = Z ( Z ) % (7)

k=0

In another study, the first author extended his formulation for polynomial expansion [4],

namely;
I n
i=1

—k_k—k' k'—K" k(I—B)—k(I_z) k(I-2)
Z Tnkak’Tk'k”~~ Tk(l 3)k(1 2) n Tq I3 i Xy (8)
k,k’,k”,k“’,-n
withk =0,---n,k" =0,---k,k” = 0,---K,--- etc. with the notation k° = k, k! = &',
etc.
As an example, equation (8) can be used to expand the following polynomial:
ple, eq p g poly

n=3
(1 + x2 + :L'3 Z Tngkk/$3 g é u $§ (9)
kK
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Table 3 shows the full expansion:

Table 3 The expansion of (21 + x5 + 3)3

symbolic | numeric monomials
n k| K| T | Twr | Tak | Tirr | T = ToaTiewr | 23 ¥k * xX'
010 | T 1 X3
0 T31 3 x12x2
ATE 13 X7
0 | Ts 3 X x4
2 [Ty 3 %2
01T 1 X3
1 | Ts3 3 ES%
ERe 3 %) 22
3 [\ Ta 1 x3

The expansion reads as:
(z1 + 22+ 23)° =
123 + 3z3xs + 32223 + 3z123 + 6717923 + 3x123 + 123 + 3x2z3 + 3zoxi + 123 (10)

Such method of expansion is named as the Embedded Pascal Triangles (EPTs) expansion
of polynomials , because it has been observed that the coefficients of the polynomial ex-
pansion of I-variables can be generated from the coefficients of (I-1)-variables polynomial
expansion by multiplying them with the elements of horizontally expanded Pascal triangle
as it is demonstrated in Table4 [4]. An efficient algorithm has been developed using math-
ematica software to generate such coefficients for I-variables raised to power of n [5].
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Table 4 The Embedded Pascale Triangles (EPTs) method for polynomial expansion [4]

Expansion | Embedded Pascal's TFiangies {white background) and Polynomial Coefficients

One of the applications of the Guelph expansion is the introduction of a new
mathematical representation of nuclear reactor kinetics and its characteristic equation ( the
Inhour equation) [8,10] , and another one is related to an inverse problem by finding the
roots of any polynomial knowing its coefficients, and finding its coefficients knowing its
roots [11]. On the other hand, applications of the EPTs expansion have been introduced,
for example; finding the minimal cut set for fault tree analysis of an engineering system
[12], and tagging of genomes using EPTs expansion [13].

4 The Waterloo numbers ( W-numbers)

Many researchers have studied Pascal triangle and recognized certain patterns such as the
Fibonacci numbers, the triangular numbers, the square numbers, Sierpinski’fractals, etc. In
this paper, further exploration is made to the Pascal triangle in connection to the developed
EPTs expansion of polynomials. It has been noticed , with reference to Table 4 and Table
5, that the vertical set of numbers in Pascal triangle represent the number of coefficients in
the expansion of r-nomials raised to the powerm = (n—k) = 0,1,2,3,--- consecutively,
with 7 = 1 for monomials, r = 2 for binomials, » = 3 for trinomials, etc. Those numbers
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appear also diagonally in the Pascal triangle. The set of numbers appearing in Table 5
are the set of ones, the set of counting numbers, the set of triangular numbers, the set of
tetrahedral numbers, the set of pentatope numbers, etc..,. Since all of the numbers in the
different sets have in common the representation of the number of the coefficients in the
r-nomials, hence, they are given the name of Waterloo numbers.

Table 5 Elements of Pascal triangle and its connection to r-nomial expansion

Number of coefficients in the expansion of r-nomials (r=1, 2, 3, 4,...) for
n=0,1,2,... ‘

m=(n-k)
X; )

=1

X1+ Xt +x, %+ x +25)"
1 3
. elc

cess

| Hexanomials (x; + x5, + x3 + x4 +

Pentanomials (x; + x, + x3 + x, +
1 Xs + x(,)m

| Tetranomials (x; + x5 + x3 + x,)™
x5)™

| Monomials X"
| Binomials (x; + x,)™
| Trinomials (x; + x, + x3)™

The values of those coefficients of the 7-nomials (7 > 3) can be easily generated using the
EPTs polynomial expansion method and its efficient algorithm. Note that the coefficients
for r = 1 are simply the 1’s, and for r = 2 are simply the horizontal elements of Pascal
triangle corresponding ton = 0, 1,2, 3, etc. The values of the Waterloo numbers are called
the Attached Values to Waterloo Numbers . Tables 6,7 ,8,and 9 demonstrate the Waterloo

numbers and their attached values for monomials, binomials, trinomials, and tetranomials
respectively.
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Table 6 . The Waterloo numbers and their attached values for monomials

n | Monomials | Number Explicit
of Coefficients Coefficients
(Waterloo numbers) | (Attached Values to Waterloo Numbers)
0 " 1 1
1 % 1 1
2 2 1 1
3 %5 1 1
4 . 1 1
Table 7. The Waterloo numbers and their attached values for binomials
n | Binomials | Number Explicit
of Coefficients Coefficients
(Waterloo numbers) | (Attached Values to Waterloo Numbers)
0 |(x,+x)° |1 1
1 | (g +x5)t |2 =]
2 [(xi+x) 13 12|
3 | (x;+x)3 |4 ] 3931
4 | (g +x)* |5 14641
Table 8. The Waterloo numbers and their attached values for trinomials
n | Trinomials Number Explicit Coefficients
of Coefficients (Attached Values to Waterloo Numbers)
(Waterloo numbers)
0 | (x;+x,+x3)° 1 1
1 | (g +x, +x3) |3 i !
2 | (x+x,+x3)% |6 122121
3 | (xg+x,+x3)3 |10 333601331
4 15 1446126412124 14641

(1 + x, + x3)*
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Table 9. The Waterloo numbers and their attached values for tetranomials

n| Tetranomials Number Explicit
of Coefficients Coefficients
(Waterloo numbers) | (Attached Values to Waterloo Numbers)
0] (q +x,+x3+x)° |1 1
1 (e +x, +x3+x)" |4 1111
2] (g + %, + x5 + x4)° 10 12220122121
3 (g + %2 + %3+ x4)° 20 1333366363133363
1331
4 +x, + X3+ x4)* 35 1444612126 1264 12 12
e 122412412124 1446126
41212414641

Tables 6-9 present the number of the coefficients, Waterloo numbers, ( column 3 of Tables
6-9) involved in certain polynomial expansion . Each set of W-numbers corresponds to its
r-nomial. Not only that, but the Waterloo numbers have meanings, that is; they are just
like taggers to the values of the coefficients in the respected r-nomial expansion ( see figure
3 representing the Waterloo magic box for demonstration of the tagging idea) . As it is
demonstrated the values of those coefficients , Attached Values to Waterloo Numbers s
column 4 of Tables 6-9) can be easily generated. An efficient algorithm to generate those
Attached Values to Waterloo Numbers for polynomials has been reported [5].

&
Q«Q
&

$

&
Waterloo Numbers
Lt bLEL |} 1 1
1121314 5.6 7
1{316]10]15] 21 | 28
11 4r=1201351 56| 84:]..
1] 5)i74135]70 126210 ..

£]

Figure 2 The Waterloo magic box for Waterloo numbers and their attached values
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A generating formula for W-numbers can be stated as:

(%) )

Withn =0,1,2,3,..,and k =0, 1,2,3,--- ,n, noticing that )W = 0, for k > n.
Hence, equation (11) can be used to generate the W -numbers for all of the r-nomials with
the following conditions stated in Table 10:

Table 10 conditions for generating the Waterloo numbers (W -numbers) for r-nomials

r =k +1 | name k=r=1102K| pp /MY n!
K = (k) (n—k)! k!

1 Monomials 0 e S 0 S O B et

2 Binomials 1 n=11123456J ..

3 Trinomials 2 p>211 3610152128

4 Tetranomials | 3 n>3(14 10 20 35 56 84...

B Pentanomials | 4 n=411 51535 10 136,

6 Hexanomials | 5 n=>5116215 126.:....

So, as an example of generating the 5-nomials, one uses k = 5 — 1 = 4, and n > k which
implies that n = 4,5,6,7,8, - - - . The Pentanomials Waterloo numbers are:

w=(4):(5)(2)- () () ().(1)

k=4 SRR R T O R St 0 L N B Rl e o
=1,5,15,35,70,126, 210, - - - .

Alternatively, Waterloo numbers can be represented in a matrix form as shown in Table 11

with simpler notation for their generation.

Table 11 Generating the Waterloo Matrix using the binomial coefficient formula

<n+k‘ ) _(n+k)

k nlk!
n/k|0]1 1
0 111 1
1 102 8
2 }13 36
3 14 120
4 115 330
5 1|6 792
6 B 51 A
i 1|8 34 ...
(n + k)
k
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One can note that the Waterloo numbers can be read from Table 11 either vertically or
horizontally, which is an interesting property of this Waterloo Matrix. This property means
that for a fixed number of variables I, the number of coefficients as it increases with the
increase of the power n, will be the same as the number of coefficients if we fix the power
n and increase the number of variables I . That is ; in matrix notation ( W equals to its
transpose)

w=wT (12)

Furthermore, the matrix has the symmetry diagonal 1, 2, 6, 20, 70, 252, 924, 3432,, where
the upper triangle elements equals to the lower triangle elements of the Waterloo matrix.

S Graphical representation of W-numbers

As it is said earlier that Waterloo numbers represent the numbers of polynomial coefficients
for successive increase of the raised power of the related polynomial, n. One can plot
the Waterloo numbers( representing the number of coefficients) for monomials, binomials,
trinomials etc.. versus the raised power n. This is presented below in Figure 3, The trend of
the plotted data can be easily fitted as shown in the figure.

6 Geometrical representation of W-numbers

As it is presented earlier with respect to polygonal numbers, there is a geometrical rep-
resentation to those numbers, and such representation has been shown above in figure 1.
In the development of the Waterloo numbers and their attached values for r-nomials, it is
suggested that there could be some geometrical representation as well to the Waterloo num-
bers. Such geometrical representation is summarized in Table 12. Tables 6-9 were used to
determine the number of dots to be set on the polygons with the dots on the vertices are
assigned to the coefficients 1’s of the r-nomial expansion, whereas the other dots represent
the other coefficients of the expansion.

One notes that the geometrical representation for polygonal numbers are more organized
less entropy (figure 1), whereas those for the Waterloo numbers have higher entropy (Table
11). The dots are more crowded on the sides of the polygons for Waterloo numbers.



Waterloo Numbers and Their Relation to Pascal Triangle and Polygons 51

W2: Binomial Waterloo Numbers

W1: Mononomial Waterloo

Numbers 9 8
@8 y=x+1 ¥
£ g7
g6
(5]
E 83
] S 4
o [
b 23
3 £2 ]
g E
20 0
0. 15c2e 300 4505607508 0 1 2 3 4 5 6 7 8
Power of Polynomial Power of Polynomial
W3: Trinomial Waterloo
Numbers W4: Tetranomial Waterloo
y=0.5x2+1.5x+ 1 36 Numbers
40
2 y =0.1667x3 + 1x% + 1.8333x + 1
S 150 120
3 30 )
E S 84
§ 20 g 100 56
— ] 35
S 10 | g 50
& s
g 0 @ a 0 &—
EooD 11805 6078 £ 61 2 34 567§
Power of Polynomial z Power of Polynomial
W6: Hexanomial Waterloo
WS5: Pentanomial Waterloo Numbers
Numbers y= 0.0083x5 + 0.125x* +
y =0.0417x* + 0.4167x3 + v 1000 0.7083x3 + 1.875x2 + 2.2833x +
w 400 | 1.4583x2 +2.0833x + 1330 e 1 792
£ g 800
2 300 &
& @ 600
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@ 200 -
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Power of Polynomial
Power of Polynomial

Figure 3 Polynomial fitting to Waterloo Numbers
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Table 11. The geometrical representation of the 7-nomial Waterloo numbers
(Dots on the polygons correspond to the attached values of the W-numbers where vertices
have the value of 1)

Mono Bi-
.

Ry \1 — [B
1|e °—=0 3

0000 (4

90.0.0-0-0 5

7 Conclusion

This paper explored the classical Pascal triangle (right angled) where its horizontal elements
represent the values of the coefficients of binomial expansion, and finds that there is a con-
nection between its vertical or diagonal elements and the number of coefficients in higher
order expansion, namely the polynomial expansion. Furthermore, the exact values of those
coefficients can be easily generated using the Embedded Pascal Triangle EPTs method for
polynomial expansion, and an efficient algorithm is available. Those set of numbers (the
verticle or the diagonal elements of Pascal Triangle) are named the Waterloo Numbers, and
their explicit values are named as the attached values to Waterloo numbers. Such attached
values can be determined using the EPT’s inspection method. The Waterloo numbers are
not just numbers, but they do carry meaning; they represent the number of coefficients in a
given polynomial expansion. They can be considered as taggers to the actual numerical val-
ues of the coefficients of the related polynomials expansion. A geometrical representation
is developed for the W-numbers which is represented by polygons, and the dots on the poly-
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gons are the attached values to Waterloo numbers. A nice, sketch representing the Waterloo
numbers and its attached values is given by the Waterloo Magic Box. Such sketch gives a
hint of possible application of the Waterloo numbers and its attached values, namely; in the
area of Pass Wording.
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Abstract

The aim of this paper is to establish new general constitutive relations for electro-
magnetic fields E ,B, D, and H in a trequency-time domain setting. The four basic
assumptions of the medium are linearity, invariance under time translations, causal-
ity and continuity. A short review of the classification of media in bi-anisotropic,
bi-isotropic, anisotropic and isotropic chiral media, respectively, is made. The possi-
bility of the backward waves and negative refractive indices of the gyrotropic chiral
materials can be studied with the proposed formalism, where the wave equation, phase
velocity and impedance of the eigenmodes are derived. Also expressions for scalar
and vector potentials are derived which satisfies the Lorenz gauge. This condition is
not satisfied by the other chiral formalisms so the proposed approach is useful to nu-
merical calculations and applications of scalar and vector potentials. In this context, a
major role could be played by the electromagnetic (EM) simulators, which are usually
employed to solve very complex and challenging EM field problems. In the litera-
ture, a few examples of application of EM solvers to quantum problems have already
been reported, but these have never been actually applied in connection with the Dirac
equation.
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1 Introduction

The well known Maxwell equations for the macroscopic electromagnetic fields are given
by
Vszf)iB,Vxﬂzj%—f)tD (1.1)

These equations, however, are not complete. Six more equations, the constitutive relations,
have to be added relating the electric field E, the magnetic induction B, the displacement
field D and the magnetic field H to each other. These constitutive relations are completely
independent of the Maxwell equations. The Maxwell equations involve only the fields
and their sources. The constitutive relations, however, are concerned with the equations of
motion of the constituents of the medium in an electromagnetic field ([1-6]). Traditionally,
these constitutive relations are described as a relation at fixed frequency. The intensified
interest in transient phenomena, however, especially wave propagation properties in more
complex media, motivates a fresh look at these problems from a different starting point.

The constitutive relations in its most general form are usually given as a relationship
between the pairs of fields {D,H} and {E,B}. Other combinations between different pairs
of fields are also frequently used ([7-9]). The constitutive relations employed in this paper
can formally be written as a general functional dependence

E=E{DH},B = B{DH} (1:2)
If space is empty, the vacuum relations between the fields hold, i.e.

E =D/sy, B = jyoH (1.3)

where £¢ and p are the vacuum permittivity and permeability, respectively. The difference
between the non-vacuum relations and the vacuum ones reflects the presence of a medium.
The most frequently used constitutive relations in the literature deal with the case of no cou-
pling between the electric and the magnetic fields. Electric polarization and magnetization
are then two separate phenomena and the constitutive relations separate into two function-
als; one relating the electric fields E and D, to each other and a separate one relating the
magnetic fields, B and H. There are, however, several classes of materials that do show
magneto-electric behavior, and these are modeled by a coupling between the electric and
magnetic fields in the constitutive relations. The general name for these constitutive rela-
tions having a coupling between the electric and the magnetic fields is bi-anisotropic media
([10D).

Other types of media that show magneto-electric behavior are the chiral media. A new
born interest in these media is noted by the extensive new literature in this field (cf., [11]-
[15]). Several constitutive relations have been suggested as models for the magneto-electric
medium; an early suggestion is due to Born [2]

D =¢E+5(VxE|, B=uH (1.4)

The magneto-electric effects are here modeled by the constant 3. Since the magneto-electric
effect usually is very small, this constant is small compared to other relevant quantities.
Inserted into the Maxwell equations these constitutive relations imply
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Bued?V x E+V x (V x E) + ued?E = 0 (1.5)

Later, Condon [3] used
D=cE - po:H (1.6)
B = uH + SOE (1.7)

where again the magneto-electric effects are modeled by the constant 3. These constitutive
relations lead to

B2O}E 4+ 280!V x E+V x (V xE) 4+ uc6’E =0 (1.8)

A third example of constitutive relations for magneto-electric media are those due to Fe-

dorov [4]

D=¢E+5(V xE|, B=puH+B(V x H| (1.9)

The corresponding partial differential equation is then

B2ucd?V x (V x E) + 28ucd?(V xE) + V x (V xE) + ucd?E =0 (1.10)

These three examples of models all lead to partial differential equations where the coeffi-
cient multiplying the principal part of the equations is small in some sense. This leads to
drastic changes in the wave propagation properties as this constant varies.

The constitutive relations in the electromagnetic case are usually stated as relations
between the appropriate fields for a fixed frequency ([5]). A Fourier transformation then
transforms the fixed frequency result to the time domain. However, in the analysis of the
transient behavior of the fields, especially the short time behavior near a wave front, the
investigation of the problem as a time domain problem is more appropriate. Causality
and time invariance are naturally built into the formulation, whereas in the fixed frequency
formulation, these properties have to be added to the constitutive relations at a later stage.

Some of the mathematical notations used in this paper are introduced in Section 2.
Also, the general form of different constitutive relations of chiral media found in literature
are presented in Section 2. The new approach for chiral media and the Lorenz gauge are
introduced in Sections 3 and 4, respectively.

2 Constitutive relations for bi-isotropic media in frequency
formulation

The constitutive relations that are needed to fully describe general bi-isotropic media re-
quire four scalar material parameters. There are different constitutive equations due to the
various possibilities to link the electric (Eand D) and the magnetic (H and B) fields and flux
quantities. Here we assume sinusoidal time dependence exp (iwt).



58 H. Torres-Silva, J. Lopez-Bonilla, J. Rivera-Rebolledo and Zafar Ahsan

2.1 Formalism of Lindell-Sihvola.

D = e gE — ir/ZopuoH, B = pursE + ik/ZouoE (2.1)

The wave propagation is

V x (V x E) — 2kw+/ioeoV X E — w?(ursers — pocor?)E = 0 (2:2)

and the propagation constant of the RCP and LCP waves are [7]

krep = w(ky/ogo + VELSELS), krop = w(—K+/ogo + /HLSELS)- (2.3)
2.2 Formalism of Condon-Tellegen.

D =ccrE —iwxH, B = pcrH+ iwyE (2.4)

The wave propagation is

V x (V x E) = 2xorw?V x E — w*(pereor — w*x*)E =0 (2.5)

and the propagation constant of the RCP and LCP waves are [3]

krcp = w(wx + VicréeT), krcp = w(—wx + crécT) (2.6)
2.3 Formalism of Engheta-Jaggard.

1
D=cg/E—-iB, H=—B —i£E (2.7)
HEJ
The wave propagation is
V x (VXxE)—28ucrwV X E — w(upsep))E=0 (2.8)

and the propagation constant of the RCP and LCP waves are ([5, 6])
krop = w(pes€ + \/ REJERT + 1% ;€2),

krep = w(—pes€ + \/MEJEEJ + p% ,£2) (2.9)

2.4 Formalism of Born-Fedorov.

D=¢eprlE+ B(V XE)|, B=pugr|H+ 3(V x H)| (2.10)

The wave propagation is

(1- wgﬂ-BFé‘Byﬁg)V x (VxE)— Q_B;LBFaB,.-»wQV x E — wQ(,t.:BFé‘Bp)E =0 (2.11)

and the propagation constant of the RCP and LCP waves are ([4])
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krop = w(—wupreprfB + vV psrepr)(1 — wppreprw?®) ™! (2.12)
krop = w(wppreprB + v uprepr)(1 — w?ppreprw?) ™ (2.13)

Here the chiral parameter is represented by x, x, £ and 3, respectively. The relationship be-
tween these formalisms is well known. Formalism 2.1-2.4 were have been used in different
applications [7-15].

3 General form of the new formalism

The constitutive relations relate the electric displacement field D and the magnetic field H
with the electric field E and the magnetic induction B. In this paper we present the formal
constitutive relations like a transformation

E D
L (3.1)
B H

The transformation L associates with each pair of fields {D,H} a pair of fields {E,B}. For
physical reasons the transformation L is limited to be a linear dispersive law defined in the
following

Definition 2.1. A transformation [ is said to be a linear dispersive law if it to every pair
{D,H} that belongs to the class ' associates a pair of fields {E,B} given by (3.1) and that
satisfies the conditions 1-4 below. Here {E’, B’} are defined by

E' D’
=7 (3.2)
B’ H'
where {D,H} and {D', H'} both belong to the class I'".

1. The transformation is linear, i.e., for every pair of real numbers «, 3

D D’ D D’
L |« + =al + 8L (3.3)
H H’ H H’

2. The transformation is invariant under time translations, i.e., for every fixed time 7 > 0
the relation

D'(t) D(t—17)
= (3.4)
H'(t) H(t—7)
forall t € (—o0, 00) implies
E'(t) E(t—T)
= (3.5)

B'(t) B(t—17)
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forall t € (—o0,00).

3. The transformation satisfies causality, i.e., for every fixed ¢ such that

D
=0 (3.6)
H
on (—oo, t) implies
E
=0 (3.7)
B

on (—oo,t).

4. The transformation is continuous, i.e., for every fixed 7 and every £ > 0 there exists
d(e,7) > 0 such that max {|D(t)|, [H(¢)|} < d(e,7) forall t € (—o0,00) implies
max {|E(?)|, |B(t)|} <e.

The conditions 1-4 are satisfied if we propose that the constitutive equations are

E=c'D+T(VxD)], B=pur[H+T(V x H)] (3.8)

In this case the wave propagation in frequency formulation is

V x (V x E) — w?(urer)E =0 (3.9)

and the propagation constant of the RCP and LCP waves are

krop = w(y/ureT), krcp = w(—+/HTET) (3.10)
The phase velocity is given by (,/frer) ! and the impedance is \/pr/e7).

This approach is most simple when is compared with the other formalisms, (see for-
malisms 2.1-2.4) because the chiral factor T does not appear in the wave equations as occurs
with the other formalism. This formulation is elegant, possesses some desirable mathemat-
ical properties, and offers important advantages for constructing high-accuracy numerical
algorithms on its basis. In particular, this formulation allows well-developed (mainly, in
computational dynamics) methods of solving hyperbolic systems of equations to be used to
the best possible extent in solving chiral electrodynamical problems.

Here the chiral parameter is hidden so we can work with E and B treated as classical
fields as well as the sources p and J which are invariant under gauge transformations and
therefore their underlying geometrical meaning is hidden. We may identify the proper geo-
metric character for these variables, such as scalars, force fields, fluxes or volume densities
as could be done for any other dynamic system. This can be done without reference to the
geometric nature of electrodynamics in the sense that E and B represent the curvature in the
geometrical interpretation of electrodynamics because E and B depend on 7. Therefore, in
this paper we can consider the scalar potential and vector potential fields that do depend on
gauge transformations and as such will give access to the geometry of electrodynamics for
numerical calculations.
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4 Lorenz gauge in chiral media

A class of gauges (velocity gauge) is described as in which the scalar potential propagates
at an arbitrary speed v relative to the speed of light. The Lorenz and Coulomb gauges are
special cases of the v-gauge. For the formalisms presented in Section 2 we have a velocity
gauge because v is different to ¢, the light velocity, because v = v(k),v = v(x), (v = v(§)
or v = v(f3)), respectively . The proposed approach of chiral formalism is appropriate to
describe electromagnetic waves in terms of vector and scalar potentials, because v = ¢. The
Lorenz gauge condition is covariant with respect to the Lorentz transformations [17].
Let the Maxwell equations be

7] 0
E=-—B ‘B =0, H = —D+], ‘B =
V x 5D \Y ), V x T +], V P
with
B=purH+T(V x H)| (4.1)
E =e;'[D+T(V x D)] (4.2)
B=Vx(A+TV xA)=VxF (4.3)
0
E=—-——F-— 4.4
S oV (4.4)
The general wave equation is
wz,ugsoF —twpoeoVV = —pupg(J+TV X J)+ VXV X F (4.5)
and using the vectorial identity
VxVxF=V(V-F)- V‘F (4.6)

we have

—V(V - F) + V?F + w?poeoF — iwpoeoVV = —po(J + TV x J) (4.7)
We remove the coupling term by introducing the so-called Lorenz convention

V- F+iwpoeoVV =0 (4.8)

This Lorenz gauge condition is covariant under Lorentz transformations.
The wave equations for potentials F and V" are

+V2F + wuoeoF — po(J + TV x J) (4.9)
V2V + wloedV = —p/eo (4.10)

If we have a Beltrami regime with (J + 7'V x J) = 0, we obtain the well known result
VAF + w?upeoF = 0 = w?/c* = k* (4.11)

so equations (4.10) and (4.11) are decoupled and can be used to numerical calculation.
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An special case results if we consider spatial parallel field configuration

1 1 _
We have
VXE=——F and VxB=——B (4.13)
“ T Top A ~ToT -
I 1
= EDBOADD and VF = —F. (4.14)

The system of equations (4.1-4.14) is useful to apply the electric field integral equation
(EFIE) method for modern simulations of scattering, radiation, and circuit problems [18-
20]. All algorithms of EFIE using the Lorenz-gauge Green'’s function are very suitable for
performing calculation in the radiation regime in chiral systems.

Also with this approach it is possible to reconsider the relation between Maxwell and
Dirac equations because the connection between four-spinor and four-potential, instead of
the electromagnetic field: this choice appears to be a more natural bridge between the above
two equations. The central point is that the spinor has to be assumed as a combination of
positive and negative energy solutions of the Dirac equation, satisfying the Lorenz condi-
tion. In the zero mass case, the four spinor v, satisfies the equation 43,1, = 0 which
is the zero mass Dirac equation in the standard chiral representation. The 4-potential play
the role of the 4-spinor, and subsequently we can derive the resulting electric and mag-
netic field components in the frequency domain 4”9, F), = 0 with 9, F* = 0 the Lorenz
condition (see equations 4.9 and 4.10 with (J. p) = 0)) [21]. The four-potential can be as-
sumed as a spinorial solution, provided that the latter satisfies the Lorenz gauge. A crucial
choice is needed: the form of the electromagnetic potential is to be assumed as a combina-
tion of positive- and negative-energy (frequency) solutions of the spinor. The present work
may help to clarify the controversial relation between Maxwell and Dirac equations, while
presenting an original way to derive the electromagnetic fields, leading, perhaps, to novel
concepts in EM simulations. Vice versa, the explicit derivation of the electromagnetic-fields
solution of Maxwell equations starting from the Dirac equation can be obtained, that de-
scribes the so called spinor wave-function of quantum particles. In particular, we show that
if the four-component vector (spinor) solution of the Dirac equation for zero mass is iden-
tified with the four-potential of the EM field, then, under the Lorenz gauge, fields derived
from that potential satisfy the Maxwell equations.

On the other hand, the possibility of representing the observables of the Maxwell the-
ory by different (gauge-equivalent) potentials means that within the Maxwell theory, the
electrodynamic potentials A and V' possess no physical reality. The same holds for the vec-
tor potential A in context of the Aharonov-Bohm effect where only that part of information
contained in A, that is also contained in the observable B = curlA, is of physical relevance.
However, in our case ELIDUBLIHLL F, F and V possess as B = curl F physical reality.
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5 Conclusions

In this paper we have proposed a new constitutive relation for E,B in terms of D,H, as a
function of the chiral parameter T which satisfies the Lorenz gauge. This condition is not
satisfied by the other chiral formalisms so the proposed approach is useful to numerical
calculations and applications of scalar and vector potentials in chiral devices, and metama-
terials. Also with this approach it is possible reconsider the relation between Maxwell and
Dirac equations because the connection between four-spinor and four-potential, instead of
the electromagnetic field leading, perhaps to novel concepts in EM simulations, i.e., mod-
eling the combined electromagnetic (EM)/quantum transport problem in graphene circuits
requires the development of novel concepts and novel unified tools.
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Abstract

It is known that the Darboux transformation (DT) allows to construct isospectral
potentials in quantum mechanics. Here we employ a DT to obtain the etfective poten-
tial introduced by Greene-Aldrich in their method to generate pseudo-Hulthén wave
functions for states with non-zero angular momentum.

1 Introduction
In the stationary case, the one-dimensional Schrodinger equation is given by ([1])
d2
dx?

Y+ u(x)y =\ (1)

. . N

in natural units taking o 1. The values of A represent the energy spectrum allowed
m

for determined boundary conditions corresponding to the potential w(z). The Darboux

transform (DT) ([2-8]) permits to generalize any specific standard potential and thus to

generate new interaction models with the same energy levels. The DT has relationship

with the Sturm-Liouville theory ([9, 10]), and it is natural the implicit presence of DT in

supersymmetric quantum mechanics ([1, 4, 11-13]).

We suppose that (1) admits the particular solution 1y with eigenvalue A,

_-r,-'ilf; +u(z)hr = My @
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then we use 1, as "seed function’ to construct the DT ([2- 4, 14])

: / ; d ;
() =9 —o1(x)y, o1 = ——Lny (3)

Therefore (1) adopts the structure

d? d
—@ff) + U(.l)q) = Ao, U(J) = u(i) — 2@01 (4)
where U(x) is a generalized isospectral potential. That is, the Schrodinger equation is co-
variant with respect to DT. Other "seed functions’ can generate many DTs and thus a family
of potentials with the same energy spectrum. The DT is a mathematical technique that can
be interpreted as supersymmetry ([1, 4, 11, 15, 16]) when applied in quantum mechanics.

In Section 2, we apply the DT to Hulthén model to deduce the potential introduced in
Greene-Aldrich [17] to explain experimental results.

2 Generalized Hulthén potential

The Hulthén potential [18] is a useful interaction model that has been employed extensively
([19]) in several areas of Physics, including nuclear ([20]) and atomic physics ([21]), due
to the fact that it yields to closed analytic solutions for the s waves ([22-24]), and it is given
by (122, 25])

Vo
eAr — 1

u(r) = - (5)

where the screening parameter A and 1} are positive constants such that V; > AZ; this
model is a special case of the Eckart potential ([26]). It is clear that ([1, 11]) the Schrédinger
equation for the radial wave function R(r) takes the form (1) with R = Ilu for I = 0.
According to equation (3) the DT depends on the function 1 selected veritying (2),
then here we shall employ the usual wave function (|22, 23]) for the ground state associated
to (5)
Vo — A?
2A
then the relations (3) and (5) lead to the generalized potential of Hulthén

Y1 =(1—e ek, A = —k?, k= >0 (6)

V{'J 2‘4265{?“
edr _1q + (EA"‘ s 1)2 (7]

L'T: -

which is isospectral to (3).

The interaction model (7) has the structure of the approximate Hulthén’s effective po-
tential introduced by Greene-Aldrich ([17]) to produce pseudo-Hulthén wave functions for
states with non-zero angular momentum. This shows the usefulness of the Darboux trans-
form to construct potentials with physical meaning.
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Abstract

In this paper we have infroduced a new definition of generalized absolute Cesaro
summability. Employing that definition we give some sufficient conditions in terms of
the coefficients of an orthogonal series under which such series is generalized absolute
Cesaro summable almost everywhere.

1 Introduction

There are a lot of notions of absolute summability of an infinite series defined by several au-
thors. Particularly, some authors such notions employed for studying the absolute summa-
bility of an orthogonal series. As a recent result can be mentioned those of Y. Okuyama
(see section 2) who has proved two theorems which give sufficient conditions in terms of
the coefficients of an orthogonal series under which such series would be absolute gener-
alized Norlund summable almost everywhere. Moreover, an interested reader could find
some new results, see as examples [2]-[4], where are given some statements which include
all of the results previously proved by Y. Okuyama and T. Tsuchikura [7]-[8], and also are
given some new consequences. In order to make an advance study in this direction, here we
give some sufficient conditions so that an orthogonal series is generalized absolute Cesaro
summable almost everywhere, which is the aim of this paper.
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2 Notations and Known Results

For two sequences of real or complex numbers {p,, } and {q, }, let

T

P, = po+pr1+p2+-+Pn=)_po
v=0

T
@n = w0+ +qz+---+qn.:2:qt.-,
v=0
and let the convolution (p * ¢),, be defined by

T TE
Ry = (p*q)y = L Pvn—v, and denote R} := Lpt:Qn—t,"

v=0) v=j

Let ) , an be a given infinite series with the sequence of its n—th partial sums {s,}.
We write

tfl"q — E Zpr':.—T.!Q't}S?.-‘-
v=0

If R, # 0 for all n, the generalized Norlund transform of the sequence {s,} is the
sequence {th7}.
The infinite series Y~ ay, is said to be absolutely summable (N, p, q) if the series

o
=3 .
P.q == p.gq
2 r|i':-n tn—l

n=1
converges, and we write in brief

o

2: ap €

n=0

N,p,q

The | N, p. ¢| summability was introduced by Tanaka [1].
Let {¢;(x)} be an orthonormal system defined in the interval (a, b). We assume that f
belongs to L*(a, b) and

o

f@) ~ Y cipsa), (2.1)

J=0

where ¢; = fuh fle)pita)de, (5 =0,1,2;...).
Regarding to the orthogonal series (2.1) Y. Okuyama has proved the following two the-
orems:

Theorem 2.1 (|7]). If the series
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converges, then the orthogonal series

Z cjpi(x)
J=0

is summable | N, p, g| almost everywhere.

Theorem 2.2 ([7]). Let {2(n)} be a positive sequence such that {Q(n)/n} is a non-
increasing sequence and the series

o0

e

= nQ(n)

converges. Let {p, } and {g, } be non-negative. If the series

3 leaPRA(Y(0)

n=1

converges, then the orthogonal series
o
) ¢ipi(x) € |N,p,q
J=0

almost everywhere, where w(n) is defined by

o : i\ 2
o Hl Y
w(j) =571 an (R—n - Rn_:) ,

n=j

We denote by o?(fm the n-th Cesaro means of order (o, 3), with « + 3 > —1 of the

sequence (na,), i.e. (see [11])

a

n

(o, 3) L a—1 4183,

“ﬂ.J = AUH‘.S An—'uAt:LaU'.
n

v=1

where A3 = O(n®*%),a+ 5 > ~1and AE;JF'G =1.
Now we shall introduce the following definition:

Definition 2.1. Let {p,} be a sequence of positive real numbers. The infinite series
>0 o @n is said to be summable ¢ — |C, a, i, k > 1, if

0 -
3 eh ] (@p)|F
L 0?1

n=1 e

converges, and we write shortly > a, € ¢ — |C, a, 8.

If we take 8 = 0, then ¢ — |C, av, 8| summability reduces to ¢ — |C, |y introduced in
[10].
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As we mentioned in section 1, here in this paper we study the ¢ —|C, a, 5| summability
of the orthogonal series (2.1), but only for 1 < k& < 2.

Throughout K denotes a positive constant that it may depends only on £, and be differ-
ent in different relations.

The following lemma due to Beppo Levi (see, for example [6]) is often used in the the-
ory of functions. It will need us to prove main results.

Lemma 2.1. If f,,(t) € L(F) are non-negative functions and

Z/F.fn.(t)dt < oo, (2.2)

then the series

n=1

converges almost everywhere on F to a function f(¢) € L(E). Moreover, the series (2.2)
is also convergent to f in the norm of L(F).

3 Main Results

We prove first the following theorem.
Theorem 3.1. If for 1 < k& < 2 the series

b

o 1——

Z Q;Au-i-ﬁ Z |A;: tl'A 1€1'|

n=1

converges, then the orthogonal series

o

2: Enlinla)

n=>0

is summable ¢ — |C, «, 3|}, almost everywhere.

Proof. First we consider the case k € (1,2). Let o&P) () be the n-th (C, «, 3) means of

the sequence {vc, i, ()}, then by definition, we have

A 1 ot
O'?(F )N(z) = a+3 Ag l/—l’ Ve oy ().
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Using the Holder’s inequality and orthogonality to the latter equality, we obtain

b R N
[ leed @ < ([ ot @pPar)
a a .
) 2\ 2
_k 5
= (b—a)'"2 =7 ZA?: 1 ABye,pp(2)
n w=1
<

)

a—1 48
i (e Dbt

Subsequently, the series

50 s ka—] 1 n 2 %
> [t < Y ( > |aziatea )
n=1 n=1 n v=1
k
[s's) 2 l—— 2
=it Z l’OﬂAu—{—d Z ‘Ag '}A 1'(‘1, (31]
n=1 v=1

converges, since the last one does. Now according to the Lemma 2.1 the series (2.1) is
summable ¢ — |C, a, 3| almost everywhere. For k = 2 we apply only the orthogonality, as
far as for £ = 1 we apply the well-known Schwarz’s inequality. This completes the proof
of our theorem. U

If we take 3 = 0, then we immediately obtain

Corollary 3.1. If for 1 < k < 2 the series

k
00 2 1- 5 2
(1977 a—1 2
E E AT oue,
n?AL\ | n—u
n=1

converges, then the orthogonal series

o

2: Cnpn(x)

n=0

is summable p — |C, af;. almost everywhere.

Remark 3.1. Note that for @« = 1 Corollary 3.1 has been proved earlier by present author
in [5].

Next example shows that an orthogonal is ¢ — |C, o, 8| almost everywhere for a =
1,8=0:
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Example 3.1. Let {¢,} = {-5} and {¢,,} = {-r},n € N. Then for 1 < k < 2, we have

Therefore the series Y - | —¢n () is =7 — |C, 1], summable almost everywhere.

Now we shall prove a counterpart of Theorem 3.1 (it can be seen also as a counterpart
of one theorem of P. L. Ul'yanov [9]). It is a general theorem which involves in it a new
positive sequence with some additional conditions. If we put

2

LB I & reand-1) | A2 _ (n—1ess
m(k,agﬁ) ('L') = — Z (%) ( k) n.—t,{ ) ’ (32)
PE-L L | [ po+8
- in
forv =1,2,3, ..., then the following statement holds true.

Theorem 3.2. Let 1 < £ < 2 and {Q(n)} be a positive sequence such that {Q(n)/n} isa
non-increasing sequence and the series » 7 | m converges.
It the series
s 2 ; )
> (A k(4 DRED (0 + 1)
n=0

converges, then the orthogonal series

o

L (':'n.'ﬁo'n,(lr) Ep— |C, o, .dlk

n=0

almost everywhere, where (%% (i, - 1) is defined by (3.2).
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Proof. Applying Hélder’s inequality to the inequality (3.1) we get that

o0 =
99:'1 . /b |o,(a,_8)(_r)|kd_r
k n 3 :
_l [}

o0 Lf92[: —= 5 2
n 1 3
55 1 2 1—— 2" %
— kY ——_ |mam)*? on _ ‘Afﬁ },A%au|
ij (nQ(n)) T n2ASYP 4
2k k
oo S [ 221, 4 200-3%) n 2
1 i1 (n)g )
< K _ ‘A(: lAﬁ i
- (nz=1 nﬂ(?'a)) 7,2::1 n3—3 A0+8 ; n—v 4y Ve
oo 5 o0 Q%_l(n) 2( 9 %
2R T 3 —— “'”;3 \An o1 = )en |
w=0 n=uv-+1 n‘;_ E A(:
y k
e 21 oo af1—1 A3 2y 2
<K Z(Aﬂ:—1)2 (Q(’U"i‘l))k Z (ﬂ) (1-%) — 1(n_1')(’n v
- v 1 2
v=0 v+l n=v+1 % 1}Ag+-ﬁ

ke

o0 2

<K {Z (4212 Qi1 (p + 1)REB) (y + 1)} ;
=0

which is finite by assumption. Doing the same reasoning as in the proof of Theorem 3.1 we

easy arrive to finish the proof. L

It is obvious that if we take 3 = 0 we have

Corollary 3.2. Let 1 < k£ < 2 and {Q2(n)} be a positive sequence such that {€2(n)/n} is a
non-increasing sequence and the series » - | m converges.
It the series

o>

> (A 0E (n+ 6% (n+ 1)
n=0
converges, then the orthogonal series

[+ 4
L ('3-“\',0;1(11.’) € p— |C: O‘lk
n=0

almost everywhere, where 6%:) ( /) is defined by

2 2
k : a3
i =t X A;

Remark 3.2. The statement of Corollary 3.2, for o = 1, has been proved in [5].
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Abstract

In the present paper we introduce and study some new classes of sequences
(VE A AS, Fou,plo, [ViF, A A%, Fu,ply and [VF, A A% | F u,p|s defined by

m? me m?

a sequence of modulus functions. We examine some topological properties of these
spaces and establish some inclusion relations between these classes.

1 Introduction and Preliminaries

Let w be the set of all sequences, real or complex numbers and [, ¢ and ¢y respectively
be the Banach spaces of bounded, convergent and null sequences z = (z}.), normed by
||z|| = sup |z |, where k € N, the set of positive integers.

ke

Let A = ()A,,) be a non-decreasing sequence of positive reals tending to infinity and A\; = 1
and A1 < A, + 1. The generalized de la Vallée-Poussin means is defined by

t-n.(-'r) — ")'"_‘ Z L.

L kel,

where I,, = [n — A, + 1,n|. A sequence r = (x},) is said to be (V, A)-summable to a
number [, if t,,(x) — | as n — oo (see [5], [10]). If A,, = n, (V, A)-summability and strong
(V, A)-summability are reduced to (C, 1)-summability and |C, 1]-summability, respectively.
The notion of difference sequence spaces was introduced by Kizmaz [4], who studied the

Keywords and phrases : Paranormed space; difference sequence space; modulus function.
AMS Subject Classification : 40A035, 40C05, 46A45.
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difference sequence spaces [ (A), ¢(A) and co(A). The notion was further generalized in
[3] and [8]. Let w be the space of all complex or real sequences x = (x) and let m, s be
non-negative integers, then for Z = [, ¢, ¢ we have sequence spaces

Z(AY)={z=(zx) € w : (AT 'Tx) €2},

where ATz = (AMgy) = (A™ gy — A1z, 1) and Az = x4, for all k € N, which
is equivalent to the following binomial representation

m

m ; T

As T = Z(_I)T ( 9 ) Lt
v=0

Taking s = 1, we get the spaces which were studied by Et and Colak [3]. Taking m = s =
1, we get the spaces which were introduced and studied by Kizmaz [4].

A modulus function is a function f : |0,00) — |0, o0) such that
(1) f(x)=0ifandonlyif x = 0,
(2) f(x+y) < f(z)+ f(y) forallz >0,y >0,
(3) f is increasing,
(4) f is continuous from right at 0.

It follows that f must be continuous everywhere on |0, oc). The modulus function may
be bounded or unbounded. For example, if we take f(x) = —F5, then f(z) is bounded. If
f(z) = 2P, 0 < p < 1, then the modulus f(z) is unbounded. Subsequentially, modulus
function has been discussed in ([1], [2], [9], [11], [12], [13]) and references therein.

Let X be a linear metric space. A function p : X — R is called paranorm, if
(1) p(z) > 0,forall z € X,
(2) p(—z) = p(z), forall z € X,
3) p(z+y) <plx)+ply), forallz,y € X,

(4) if (A\p) is a sequence of scalars with A, — A as n — oo and (&) is a sequence of
vectors with p(z,, — ) — 0 as n — oo, then p(Apz, — Az) — 0 as n — oc.

A paranorm p for which p(z) = 0 implies z = 0 is called total paranorm and the pair

(X,p) is called a total paranormed space. It is well known that the metric of any linear
metric space is given by some total paranorm (see [14], Theorem 10.4.2, P-183).

The following inequality will be used throughout the paper. If 0 < py, < suppp = H,
D = max(1,2F-1) then

|ay, + bi[* < D{fax|"* + [bn["*} 1.1y
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for all k and ay, by, € C. Also |a|P* < max(1, |a|?) foralla € C.

Throughout the paper E will represent a seminormed space, seminormed by ¢q. We de-

fine w(E) to be the vector space of all E-valued sequences. Let F' = (fi) be a sequence

of modulus functions, p = (pi) be bounded sequence of strictly positive real numbers,

u = (ug) be any sequence of strictly positive real numbers and A = (a;;;) be a non-
oC

negative matrix such that sup Z: ajr < oo, for all s,,m € N. In the present paper we

k=1
define the following sequence spaces:

; 1 Pk
Vi, A, AL, Fyu,plo = {l € w(E): lim W S ﬂkajk[fk (Q(Afnil’-;.-.))] = 0.
. L kel,
uniformly in 3}
E s - A 1 5 Pk
[V}‘ $A,A.m_,F,U,p]1 = {I € ?U(E) : ?35%0 'A_' Z Uk ajk [fk(Q(Aﬁlmk = L)):| =0,
T kel
uniformly in j for some L}

and

1 Pk
[V, A A, Pt gl = {& € w(B) s supsup - 3 wpaze[fi (a(Ag0) ] < o0}
J ? ™ kel,

For fi(xz) = x, we have

: 1 5 Pk
WV, 4, Ay uplo = {w € w(B) s lim +— 3~ wa[a(Ana)] ™ =0,

L kel
uniformly in j},
1 Pk
B 5 =l iy o . e S o — —_
Vi, A, AL, u,p)1 = {JI € w(k) n]l_!}]gﬁ - k; 1thajh[q(Amrk L)} 0,

uniformly in j for some L}

and

1 jn
[V, 4, Ay, Blo = {2 € w(B) :supsup — 3 wpaze[a(An,zi)] ™ < 0.
J B L kel,

For p. = 1, we get

1 " |
[VAE,A,A;SR._U, F]Q = {.L (= -‘.U(E) % ﬂ,h—I)-Ic}o ")‘—n k; "[L},-.(lj},-_ I:fk (q(A'm'LkJ)] = U,

uniformly in j},
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1
B & . 5
[V)\ =A':An'wqu]l = {5"} € T,U(E) : n,lilylr:}o E kEEI Uk Qjk [fk (Q(Ammk = L))] =0,

uniformly in j for some L}

and

. 1 !
[ViE, 4, A%, 0, Floo = {z € w(B) : supsup — 3 wrai [fu(a(As,0)) | < o}
7 T T kel,

For f.(z) = z and p;. = 1 for all k € N, we have

o 1 §
[ViE, A, A%, ulo = {:c € w(E) : lim x k; ukajk[q(A;nrck)] =0,

uniformly in j},
1
E ; | s, 2
Voo, A A0 4]y = {J: € w(E): nan;o N Z Uk [q(A.,,n.}:,;c - L)] = 0
kel
uniformly in j for some L}

and

1
Vi, A A% 1) = {:;: € w(E) : supsup T Z Uik [Q(Afn;}:kﬂ < oo}.
J n i k:Efﬂ

Form =1, we find

‘ 1 3 Pk :
[VAE$A$ AsaF: ’U.,p]() = {:I'. & ?-LT(E) : ?}E}Igo :\: k; Urajk [fk(q(&\ :BK‘.))} ' =0,

uniformly in j},

[VE, A, A%, Fu,pl, = {:,-:.- € w(E) : lim -/\1— Y waj [fk(q(m:ck _ L))rk =5,

n—0o0 el kel
i

uniformly in j for some L}

and

[ViE, A, A%, F,u,ple = {x € w(E) : supsup L Z Uk [fg:(q(As:tz;‘,))rk < oo}.

i n ? el

For A = 1, we have

[V, A Fyslo = {z € w(B) : im = 3™ we[fu(a(dge0)] ™ =0,

n—oo Ap kel
. n
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uniformly in j},

: 1 5 Pk
[V)\Ea m? F H p] {'B = lU(E) : nli_{-[;_) E A; U, [fk (Q(Amxk T L))} ' = 01
kel,

uniformly in j for some L}

and

2 1 5 Pk
[ViE, AL, F,u,ploo = {’I‘ € w(E) : supsup o Z Uk [fk(q(Amxk))} < oo}.
7 i n kel,

For E =C, gq(z) = |z|, fe(x) =z, pr = 1, forallk € N,s =0,m = 0, u = (uz) = 1, the
spaces [V, A, A%, F,u,plo, [ViF, A%, A, F,u,pl; and [ViE, A3 | A, F,u,p|s reduces to
[V, Alo, [V. A1 and [V, ]~ respectively see [7]. These spaces are called as A-strongly
summable to zero, A-stongly summable and A- strongly bounded by the de la Vallée-Poussin
method. When A, = n, foralln =1,2,3,--- the sets |V, Ao, |V, A] and [V, A|» reduce to
the set wyp, w and wy introduced and studied by Maddox [6].

Throughout this paper, we will denote any one of the notations 0, 1 or oc by X.

The main purpose of this paper is to create some new sequence spaces defined by a sequence
of modulus functions. We also make an effort to study some topological properties and
inclusion relations between these sequence spaces.

2 Main Results

Theorem 2.1. Let F' = (f}.) be a sequence of modulus functions, p = (py.) be a bounded
sequence of positive real numbers and u = (uy) be any sequence of strictly positive real
numbers. Then the sequence spaces [V/\E VAP AL F u, plx are linear spaces over the com-
plex field C.

Proof. Letz,y € [VE, A3 A F,plo and o, 3 € C. Then there exist positive numbers

M, and Ng such that |a| < M, and |3| < Ng. Since fj, is subadditive and A™ is linear,
we have

S > ukaji [fk(!}(Afn(awk + ,Byg-.)))rk

/\'n kel,
1 . 2 Pk
< 1 2w [ fillala(Ahai)) + filBla(Auw)]
T kel,
Pk
< D(M,) Z UpQjp, [fk ))}
re k eI,
Pk
Z Uk ik [fk myk)):l
re kel,

— 0 as n — oo,
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This proves that [V, A3 | A, F,u,p|o is a linear space. Similarly we can prove that

(ViE,AS,, A F,u,ply and [ViF, A3, A, F, u, plo are linear spaces.
Theorem 2.2 Let F' = (f;.) be a sequence of modulus functions. Then

[ViE,AS A Fou,plo C [ViE, A3, A, Fu,pl; C [V, A%, A, F u,ploo.

Proof. The first inclusion is obvious. For the second inclusion, let z € [VI\F’ A A Fyu,plh.
Then by definition, we have

= 3 was [ fula(agz)]

N kel
: s P
= — Z Ugjk [fk(f](&:mrz:k — L+ L))}
A'”.
kel
! s Pk 1 o
< D?\_ Z U [fk(t}’(ﬂ}n;rk = L))] + D-/\— Z U [fk(Q(L))]
T kel s s

Now, there exists a positive number A such that g(L) < A. Hence we have

= 3 wan[fla(as )] < = 3 wag[fula(bgm - )]

" kel " kel

+D[A]H:\1_— > ugag, [Fe(0)] ™.
™ kel

Since z € [V, A%, A, F,u,p)y we have z € [V, A%, A, F, u, p|o. Therefore,

m

[V)AE'-‘AS Ai F‘-‘ “"-‘p]l. C [V,\E, A‘; -A'.'F: “‘1 p]OO'

me T

This completes the proof.

Theorem 2.3. Let F' = (f1.) be a sequence of modulus functions, p = (py) be a bounded
sequence of positive real numbers and u = (uy) be any sequence of strictly positive real
numbers. Then [V, AS | A, F,u, plg is a paranormed space with

g(x) = sup ()\L Z UrAjk [fk(Q(A:”xk))} ?"“) i

n TE kEIﬂ,

where K = max(1,sup pg).

Proof. Clearly g(x) = g(—x). It is trivial that A} zx = 0 for z = 0. Since f(0) = 0, we
get g(x) = 0 for x = 0. Since 55 < 1, using the Minkowski’s inequality, for each n, we
have
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(&5 wonftaata + a300]")
" kel,

< (2 X o[ fula@t) + fla@hu] ™) ¥

An kely
i (_ Z uwjk[ A ‘Bk))]m)% + ()\L Z U Qjk [fk((f(Afnyk))} m)%
. kel ™ keln

Hence g(x) is subadditive. For the continuity of multiplication, let us take any complex
number «v. By definition, we have

slom) = SUP( Z“’ﬂ‘rk[fk (A7 a.,rk))]pk)%

n kel,
ClKg(z),

IA

where C,, is a positive integer such that |a| < C,. Now, let &« — 0 for any fixed x with
g # 0. By definition for |a| < 1, we have

oW Z uka_,;i[fk O:Ama,k))] ‘ <€, for n > ng(e). (2.1
" kel

Also, for 1 < n < ny, taking o small enough, since F' = ( fi) is continuous, we have

1 Z ukajk[ felq (OzAm.L;,))} ™ <e 2.2)

n kel,
Now equations (2.1) and (2.2) together implies that
glaz) -0 as a — 0.

Theorem 2.4. Let ' = (fy) be a sequence of modulus functions and m > 1, then the
inclusion
[If}“r‘!‘ At;n_l 3 A: F! U]X C [Vhs A:n- ‘4} F! H]}(

is strict. In general
[V)\EvA:‘mA! F, “‘]X C [VAE1 m A, F, H]X
foralli=1,2 --- s — 1 and the inclusion is strict.

Proof. Letz € [V.E,A5"1 A, F,u|. Then we have

sup 3 3 uae [ fu(a(Ag ar))] < oo
mn TL kEIn
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By definition, we have

—“ > ukajk[fh (g(A%, ‘Lk))} = '):1— Z uka_;rk[ (g(ay e ))}
keln
+ )\L Z ;.agk[ 13’-'&-1—1)}
< oo -
Thus [Vi¥ A3 1A, Fouls C [VIF, A3 A, F, u|. Proceeding in this way, we have

Vi, AL, A, Fulo C [ViE, A2, A, F o

foralli = 1, 2 c-om—1. Let E = C and A, = n foreach n € N Then the se-
quence z = (2™ € [V, A3, A, F, u] but does not belong to [Vi¥, AS-1 A F,u] fo
Jelz) =

Simiiarly, we can prove for the case [Vi¥, A%, A, F,u]g and [ViF, A% | A, F,u]; in view of
the above proof.

mo?

Corollary 2.5. Let F' = (f}.) be a sequence of modulus functions. Then
[VE A3~ A Fu,p); C [ViE, A2, A, F,u,plo.

m?

Theorem 2.6. Let 0 < pp. < 1. < o0 for each k, F' = (fi.) be a sequence of modulus
Junctions and s be a positive integer. Then we have

[VE,AS A, F,u,r]e C [VE,AS

m

A, F,u,ploo-

Proof. Letx = (1) € [VAE,AS A, F,u,7|o. Then we have

T
r~sup‘3up X Z Uk [fk( (A?rlrk))} L
B kelq

This implies that

1

sup — Z Uk Ak [fk( (Amxk))] <€ (0<e<1) forsufficiently large k.
L T

Hence, we have

1 5 Tk 1 Pk
sup /\_ Z Uk sk [-fk (Q(A;nwk))] < sup :\_ Z Uk gk [fk (Q(Afnmk))} < 0.

"I kel " kel

This implies that = (xy,) € [V, AS,, A, F, u, ploo. Thus

[ViE,AS A Fou,r)e C [ViE, A3, A, F,u, D)oo

me

This completes the proof.
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Abstract

A ring without subtraction, unity and commutativity is called a hemiring. If it is

with unity then called a semiring. Jacobson radical can be defined with the help of
right quasi regularity on rings and hemirings both. But it could not prove many ring
theoretic results on right quasi regularity in hemirings. Therefore Bourne used a gen-
eralisation of right quasi regularity called right semiregularity to prove some results
on Jacobson radical.
Later using representation theory of hemirings lizuka defined how a pair of elements
is united with an equivalence relation defined on a hemiring yielding an ultimate gen-
eralisation of both notions the right quasi regularity and right semiregularity. Our aim
in this paper is to compare all three approaches, ring theoretic, Bourne’s and lizuka’s
with suitable modifications of proofs given by Bourne and lizuka on semirings.

1 Introduction

We denote a ring by R, a hemiring by H, and a semiring by S. For basic definitions
involved in the text we refer to our paper |2|, Golan [3|. However we shall reproduce some
new concept borrowed from [4], [5]. In place of calling difference ring R — A, we call
quotient hemiring H /A for an ideal A, consisting of equivalence classes h = h + A such
that h = h/(A) if and only if h + a = h/ + o’ for h,h' € H and a,a’ € A

Keywords and phrases : Hemiring, Right semiregular, right quasi regular, Irreducible hemimodule, Ja-
cobson radical.
AMS Subject Classification : 16Y30,16Y60.
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Notions right quasi regular, left qausi regular, right semiregular, left semiregular are denoted
by rqr, £qr,rsr and £sr respectively. However if an element is rgr and £gr both then it is
called quasi regular denoted by qr. Similarly if an element is rsr and #sr both then called
semiregular denoted by sr.

Jacobson radical defined by rsr is called right Jacobson radical denoted by .J,.. Dual of .J,
is .Jy which is defined by £sr property. Bourne showed that J, = J; = J, is the Jacobson
radical of H. However the Jacobson radical obtained by lizuka’s approach is denoted by
J'. We show in subsequent sections that .J = .J'

Right Quasi Regularity

Given a hemiring (H,+,.) we define a new operation @ such that h ® ' = h + h' + hh'.
The identity of operation  is 0.

Definition 2.1 If & © b’/ = 0, then A’ is called right quasi inverse (rqi) and h is called right
quasi regular.

Similarly dual concepts £gi and £gr can be defined.

Remark 2.2 An element @ € H is rgr then a right subtractive ideal

A={ah+hlhe H}=H

Remark 2.3 A right subtractive ideal A of H is rqr then it is gr.

Detinition 2.4 Jacobson radical of a hemiring H can be defined like that of ring /2 namely
J(H) = {a € H|aH is rqr ideal} which is largest rqr ideal.

Right Semi-Regularity

Definition 3.1 An element i € H is rsr iff there exist hq, ho € H such that h+hq +hhy =
ho + hho

Remark 3.2 rqr is a special case of rsr if we chose hs = () in above definition.
Definition 3.3 A right ideal A is rsr if for a pair a;,as € A there exists a pair by, by € A
such that

a1 + by +aiby +ashby =as +bo +arby +ashy ... ... (1)

Remark 3.4 From equation (1) we can observe that a,, a- are seperately rsr with same pair
by, by € A. If we put ap = 0 in equation (1), we get

ar + by + a1by = ba + a1bs

This shows that element a; € A is rsr.

Definition 3.5 An ideal A is rqr iff every element of A is rqr. Similarly an ideal A in a
semiring S is rsr iff every element of A is rsr. This is because right ideal aH is rsr implies
every a € Aisrsr.

Theorem 3.6 [[1], Theorem 2] An element a € H is rsr iff there exist elements hq, ho € H
such that i + hqy + ahy = ha + ahs forall h € H.
The following lemma is very important to define right Jacobson radical.

Lemma 3.7 [[1], Lemma 1] The sum of two rsr ideals in € H is an rsr right ideal.

Definition 3.8 Let {A,,},_(, be the family of all rsr right ideals of a hemiring H over a
countable set {2, then right Jacobson radical
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J(H) = T Ar,.
el

Theorem 3.9 J,.(H) is a two sided ideal.

Proof : By induction on 2, .J, is an rsr right ideal by lemma 3.7. If @y,a2 € .J, then
ajh,ash € J, forall h € H. But J, is an rsr right ideal, hence there exist ag, a4 € .J;- such
that

arh + a3 + ayhas + aghay = ash + a4 + ayhas + ashaz ...... (1)

Premultiply (1) by h and post multiply by a; to get new equation. Similarly premultiply (1)
by h and post multiply by a9 to get another new equation. Add both these new equations
and add ha; + hao on both side of the subsequent equation to get

hay + (hay + hasay + hasas) + hai(hay + haza; + haygas)

+has(has + hasa; + hasas) = hay + (has + hasa; + hagas)
+hag(hay + hagzay + hagas) + hay(has + haga; + hagas) ... ... (3)

has + hagay + hazas and hay + hasay + hagas are in hJ,.. This implies that h.J, is rsr
and h.J. C J..
Thus J, is a left ideal. Hence J,. is 2-sided ideal.

Lemma 3.10 [[1], Lemma 2] For an rsr right ideal A of a hemiring H, if a;,as € A such
that

(i) a; + b1 + a1by + asby = as + bs + a1bs + asby
(ii) a1 + ¢ +cjay) + caas = as + ¢ + cras + caaq

where b;, ¢i(i = 1,2) € A, then there exists an element d € A such that by + 2 +d =
bo 4+ ¢ +d.

Theorem 3.11 J, is Isrideal in a hemiring H.

Proof: By theorem 3.9, .J, is a left ideal. Let ay,as € J,. which is rsr right ideal, hence
there exist by, by € .J,. such that

ay + by + arby + agby = as + b2 + arby + agby ... (1)
Further by, bs € .J,. so there exist ¢q, ¢2 € J,. such that
by +¢1 + bicy + baca = by + co + brea + bacy ... (2)
By Lemma 3.10 there exists d € J, such that
caatast+d=co+a1+d...(3)

Add ay + a9 + bya; + boas + b1d 4 bad 4+ d on both sides of (2), we get
by + a1 + biay + (1 + a2 + d) + (baas + bicy + baca + bid + bad) = by + as + (c2 +
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ay +d) +bica + bacy +bray + baas + bid + bad . . . (4)

Now using (3) on R.H.S. of (4) and rearranging terms we get

by + a1 + biay + baas + v = by + as + byas + bray +v... (5)
where v = byc) + baca + bid + bad + (€1 + a2 + d)

since v € .J, therefore by (5) a, as are Isr.

Hence .J,. is Isr ideal.

Corollary 3.12 J; is an rsr right ideal in a hemiring H .

Proof: With suitable modification of lemma 3.10 we can prove the dual of theorem 3.11 on
parallel lines.

Theorem 3.13 J,. = J;.

Proof: Theorem 3.11 and corollary 3.12 yield J, C Jy and J; C .J, respectively to prove
the theorem.

Definition 3.14 A hemirng H is semisimple iff J(H) = 0.
Definition 3.15 A hemiring / is a radical hemiring iff J(H) = H
Theorem 3.16 For a hemiring H, H/.J(H) is semisimple.

Proof :For brevity, we denote H/.J(H) by H and J(H/J(H)) by J.

Let @y, as € J then there exist by, by € J

such that a; + b_1 + a_-lb_l + afgf)_z = d9g + b_g + Lb_lb_g + U,_gb_l

= ay + b1 + ai1by + asbe + J = ag + ba + a1bs + ashy + J

= a; + by +aiby + asbe + a3 = a2 + be + a1be +asb; + a4 ... (1) for some asz,as € J.
But for a4, az € .J, there exists by, bs € J such that

aq + by + agby 4 azbs = ag + bz + azby + asbs ... (2)

Denoting LHS and RHS of (1) by A and B respectively we find that

A+ by+ Aby + Bby = B + by + Bby + Abs

Rearranging elements on both sides and assuming

by + bibg + babs = c¢q; ba + baby + bibs = 3

as + azby + agbz = c3, ag + agby + azbz = ¢y, we get

ay +c1 +ai(er +by) +aa(ca +b3) + 4 + by = az + c2 + ax(c2 + b3) + az(cy + by) +
4+ bg ...... {3)

Now adding (a; + a2)cy4 on both sides of (3), regrouping the terms and assuming ¢; + ¢4 +
bi=dy, cot+bg+cy=ds

We yield a1 + di + ay1dy + asds = as + do + ayda + asdy

This implies that a;,as € J

Therefore d; = a = 0 and hence J = (0).

Theorem 3.17 Jacobson radical of a hemiring H is a radical hemiring.

Proof : In fact we have to prove J(H) = J(J(H)).

Clearly being an ideal .J(J(H)) C J(H). But J(H) is an rsr ideal and J(.J(H)) is largest
rsr ideal.

Hence J(H) C J(J(H)).
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Theorem 3.18 Let NV be a nil ideal of a hemiring H, then N C J(H)

Proof : Let a € N, then a” = 0 for some positive integer n.
n—1 i n i
Assume a' = Y a*, a" =Y a*!
i=1 i=1
Then clearly a + o’ + aa’ = a” + aa” holds.
Thus a is rsr element. But the Jacobson radical is the largest rsr ideal, hence a € .J.
Therefore N C J(H)

Remark 3.19 Since J(H) is a largest nil ideal and J(H) = 0 for H = H/.J. Thus there
exists no non zero left or right nil ideal in H. That is there exists no non-zero idempotent
in J(H) or a non-zero idempotent can not be rsr.

Theorem 3.20 A nilpotent ideal U is contained in Jacobson radical .J(H ) of a hemiring H.
Proof : Let A be a nilpotent ideal of H, then A" = (0 for some positive integer n. We need
to show that A is an rsr ideal. By assumption aj.as...a, = 0fora; € A,1 < i < n. For
elements a1, as € A we choose by, bs € A as follows :-

Let {j1,72,...,Jk} be a subsequence of sequence {1,2,...,n}. A permutation ¢ on the
subsequence is defined by

. {1: if j, = 1 for even number of r

Jk) =

O T Japessy =
U1, 52 0, if j, = 1 for odd number of r

2n—1
We choose by = > 3 ot o185E)
k=1 ji.92,..3e=1,2
2n—1
and by = 5 3 o'(aj,,ajg,--.,05,) whereo' =1—0¢
k=1 jl,jz,.,,,jk:l.g
Then it is easy to check that a; + by +a1by +asbs = as+bs+aybs+asbhy, since by, by € A,

so A is an rsr ideal.
Corollary 3.22 J(H) is semiprime ideal.

Proof It is easy to prove that H = H/.J has no nonzero nilpotent ideal if and only if .J is
semiprime.

Corollary 3.23 Prime radical of a hemiring H is contained in the Jacobson radical i.e.
P(H) CJ(H)
Proof P(H) = () P, where P/'s are prime ideal of H

ield
So P(H) is the smallest semiprime ideal, while .J(H) is the semiprime ideal hence the
corollary.
For definition of principal right ideal we refer [2] and for zeroid we refer [3].

Theorem 3.24 If a € H such that HaH C J(H), thena € H.

Proof Let A = (a) be a principal right ideal. Then HaH C J(H) implies (aH)* C
aJ(H) C HJ(H) C J(H).

J(H) is semiprime ideal hence a H C J(H) i.e. aH is an rqr (respectively rsr) right ideal
of H and J(H ) is largest rqr (rsr respectively) ideal hence a € J(H ).
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Detinition 3.25 [[ 1], p168] A hemirng H is called von Neumann regular if forevery h € H,
there exist a,b € H such that hah = h + hbh.

Remark 3.26 If we consider a ring then we choose b = () and we get hah = h and say R
is von Newmann regular ring.

Theorem 3.27 Jacobson radical of a von Newmann regular hemiring is equal to its zeroid.

Proof Clearly Z(.J(H)) C J(H) where LHS denotes zeroid of .J(H) and J(H) denotes
Jacobson radical of H. Let h € H then by Von Newmann condition there exist a,b € H
such that hbh = h + hah... (1)

since ah,bh € J as .J is left ideal of H, there exist hy, ho € H such that

ah + hy + ahhy + bhhy = bh + ha 4+ ahhs + bhh, . .. (2)

Premultiply (2) by h and rearrange the terms to get hah + (h + hah)hy + hbhhy = hbh +
(h + hah)ha + hbhhy
Using (1), we get

hah + hbhhy + hbhhe = h + hah + hbhha + hbhhy

This implies i’ = h + h’, where h' = hah + hbhh, + hbhhs
ie.he Z(J(H))
Therefore J(H) C Z(J(H)). Hence J(H) = Z(J(H)).

Theorem 3.28 J, = J(H,) where J, = (J(H))n,

Proof : Let A}, be right ideal of matrices generated by Mj, = |h;;| with h;; = 0 for i # F,
J # isuch that h;; € J. Clearly M), € J,,. Further we show that A, is an rsr ideal gener-
ated by Mj,. Let S = (s;) and T' = (f1;) be two matrices of Ay, then S, 7" € .J,,. Further
since Ay, is an rsr ideal, so for pair (sj;, ;) in .J, there exists a pair (uy;, vy;) in .J such
that

Skj + Upj + SkjUkj + tejVk; = thj + Vkj + SV + TrjUp;

we define new matrices U = (ug;), V = (vg;) with ug; = 0 and vg; = 0 for k # i, 5 # 0.
Then we can verify that

S4+U+SU+TV =T+ V + SV +TU. Thus Ay is an rsr ideal. It is easy to prove that
JIn=A10A0...0A,. Since J C HsoJ, C J(Hy,).

Let A=) a;jE;j and B = (by,,) = >, bEy,;, be two matrices in J(H,) such that by, = 0
for ¢ # i, # jthen By, AByi, = Bip()_ aijEij)Bgr = ) bapbEpy =0=1d,d,...,d|is
a diagonal matrix in J(H,,) where d = ba,,b. Let /A be the set of first entries of all such
diagonal matrices then A is right ideal in H,,. If Dy, D5 are in J(H),) such that
Di+E1+D1E1+DsFEy = Do+ Es+ Dy Eo+ Doy where Ey, = [E."-{fl, E’.'i“'l, T ,E.’"fl] with
k = 1,2. Now it is easy to prove that dj + e}, +djel; +doe?; = dy +e?, +dy.€3, + doel,
where ef, € /. Since A is rsrideal so A C J. Thus all diagonal entries d € .J hence
A e e J(H ) € dp
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Representation Hemimodule and Jacobson radical

Detinition 4.1 A commutative monoid M is called a right hemimodule over a hemiring H
if and only if the binary operation M x H — M satisfies the following axioms

l. (z+y)a==za+ya

2. z(a+b) =za+ b

3. xz(ab) = (za)b, forall z,y € M and a,b € H

Definition 4.2 A subset N of M is called an H-subhemimodule of M iff
() c+ye Nforallz,y e N
(ii) za€ N forallz € Nanda € H

(iii) N contains zero of M.

Definition 4.3 An equivalence relation p on H—hemimodule M is called linear iff it is
additive and homogeneous with regard to H. That is

(i) zpx' and ypy' = (z + y)p(z’ + ')
(i) zpz' = (za)p(z'a) forall z,y,2",y' € M anda € H

Detinition 4.4 A linear equivalence relation p admits the cancellation law of addition iff
(xz +y)p(a’ +y') and ypy' = xpa’

Definition 4.5 Let N be an H-subhemimodule of H-hemimodule M. Then z,y € M are
called strongly congruent modulo NV defined as
=, y(N) & x+n; =y+ ny for someny,ng € N,

Definition 4.6 For a subhemimodule /N of an hemimodule M element x,y € M are called
weakly congruent module N denoted as z =, y(N) iff z +n) + 2 = y + na + 2z for
ni,no € Nand z € M

Definition 4.7 N = {z € M|z + ny = ny for ny,ny € N} is called closure of N

and N ={zxe M|zx+n;+2=mns+ 2, forn;,ny € N,z € M} is called strong closure

of N. N is called closed in M if and only if N = N and strongly closed in M if and only
it N =N.

Definition 4.8 M is called representation hemimodule of a hemiring H if and only if
1. M is an H-hemimodule

2. Cancellation law of addition holds i.e.

r+y=x+z=y=zforallz y z e M.
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Definition 4.9 Let // be a hemiring, M be an H-hemimodule and £(M ) be the hemiring
of endomorphisms of M.
Then homomorphism ¢ : H — E(M) is called representation of H provided.

1. E(M) is commutative
2. Additive cancellation law holds in E(M)

Definition 4.10 A representation hemimodule M of a hemiring H is called faithful iff
Z(H) = Anng(M) where Z(H) and Anng (M) are zeroid of H and annihilator of M
respectively. That is

Z(H)={a€ Hla+ h=hforsomeh € H}
Anng(M)=(0: M) ={he€ HMh =0}

Definition 4.11 A representation hemimodule M of a hemiring H with M # 0 is called
irreducible iff for each fixed pair of distinct elements m,, ms € M, we can choose x € M
and hy, ho € H such that x + mihy + maohs = mihs + mohy

Detinition 4.12 A representation hemimodule M over a hemiring H is called semi-ireducible
iff

1. MH #0
2. There exist no non-zero proper closed subhemimodule of M.

Definition 4.13 Let {2 be the set of irreducible representation hemimodules of hemiring .
Then Jacobson radical of H, say J'(H) = () Anny(M)

Mef)
Remark 4.14
1. If Q = ¢ then J'(H) = H namely H itself is the annihilator of only irreducible
hemimodule (0). In this case H is called radical hemiring.
2. If © is the set of all possible irreducible representation hemimodule then J/'(H) = (0)
i.e. any non-zero irreducible representation hemimodule M is annihilated by 0 € H. In

this case H is called semi simple hemiring.
3: ZUH) € F(H),

Definition 4.15 A proper ideal A of a hemiring H is called semi-nilpotent if there exists a
positive integer n such that A" C Z(H)

Definition 4.16 The map M x H — M gives rise to a permutation map (m, h) — mh.
Since this map is one-one (i.e h # 0 implies mh s 0), so it is called faithful. An irreducible
representation hemimodule M is faithful if and only if A, , (M) = Z(H)

Detinition 4.17 A hemiring H is called primitive if and only if it has a faithful irreducible
representation hemimodule.

Definition 4.18 An ideal A of a hemiring H is primitive if and only if H/A is primitive.
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Lemma 4.19 ||4], Lemma 1| For a representation hemimodule M of a hemiring / and ideal
Aof H with MA # 0

(i) M is semi-irreducible and m € M then m = 0 iff ma =0 foralla € A
(ii) M is irreducible and m, ms € M then m; = mo iff mia = maa foralla € A.

Proof : (i) Direct part is obvious

For converse, assume M is semi-irreducible, m € M and ma = 0 forall a € A.

Define My = {z € M|za = 0,for all a € A}, then MyA = 0. We prove that M is closed
subhemimodule of M. Firstly we show that My is subhemimodule. If my,m’ € My, then
(m+m')A = mA + m'A = 0 showing that m + m' € My. Further (ma)A C mA =0
for m € My and a € H, showing that ma € M. Now we show that M is closed in M.
Letm +m' € My and m' € M,,.

Clearly (m + m')A = mA+ m'A = mA +0 = 0ie. mA = 0. This implies that
m € My since M A # 0 and MyA = 0. This implies that My # M. By the definition of
semi-irreducibility My = 0i.e m = 0.

(i1) Direct part is obvious.

Converse part: M is irreducible and mj,ms € M with my # ms. Since M A # 0, there
exists m € M and a € A such that ma # 0. By definition of irreducibility of M, for given
m € M and pair mq,mo € M, there exists pair h, ho € H such that

m -+ mihy + moha = myhe + mohy. This implies that ma + mihia + mohea =
myhoa + mahia. Since ma # 0 and law of additive cancellation holds in M, so at least
one of h;a say ag is such that mjag # maay.

Lemma 4.20 [|4|, Lemma2| A representation hemimodule M # 0 of a hemiring H is semi-
irreducible iff mH = M for all m € M. That is for every 0 # m € M there exist x € M
and hy, ho € H such that x + mhy = mhs.

Proof : Let M # 0 be semi-irreducible. If 0 # m € M, then by lemma 4.19, mH # 0.
Thus mH is closed subhemimodule of M and mH # 0, therefore mH = M.

Conversely if for each 0 # m € M,mH = M. Suppose N is closed subhemimodule of
M and N # 0. Then there exists 0 # n € N so that by assumption nH = M. Hence for
x € M, there exists hq, ho € H such that

x + nhy = nho. Since N is closed subhemimodule and nhy,nho € N, sox € N ie
M = N. Thus M has no proper non-zero closed subhemimodule. Suppose M H = 0. This
implies mH = 0 for all m € M so M = 0, a contradiction. Thus M H # 0. So M is
semi-irreducible.

Corollary 4.21 If a right hemimodule M is irreducible then it is semi-irreducible and
MH = M.

Proof : Let M be an irreducible right hemimodule of /. Then M # {0}, which guarantees
that there exists 0 # m € M. Then by irreducibility of M, for each z € M, there exist a
pair hy, ho € H such that x + mh; = mhy. Then by lemma 4.20 M is semi-irreducible.
MH # {0} implies that MH # {0}. But M H is a closed subhemimodule of M, so
MH =M.

Lemma 4.22 ||4], Lemma3| If M is an (hemi) irreducible representation hemimodule of
H and N # 0 is an H—subhemimodule of M, then N is (hemi.) irreducible and repre-
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sentations of / with regard to endomorphism hemirings £(M ) and E(N) are isomorphic.
Lemma 4.23 [[4], Lemma4| Let A be an ideal of a hemiring H

(1) If M is an (semi) irreducible representation hemimodule of / then either M A = {0}
or M is (semi) irreducible represenation hemimodule of A.

(2) If M is an irreducible representation hemimodule of A then there exists an irreducible
representation hemimodule M’ of H such that ¢(A) = ¢'(A) via correspondence
¢(a) «— ¢'(a) with¢p: A — E(M)and ¢' : H— E(M') and a € A.

Theorem 4.24 [[4], Theorem1| .J'(H) is strongly closed ideal.

Proof : It is obvious that .J'(H ) is an ideal of H. To show that .J'( H ) is strongly closed we
prove that all rsr elements of H are in .J'(H ). Let f’(H) be the closure of J'(H). Suppose
e j’(H), then there exist 1,72 € J'(H)and h € H suchthatr +r; +h=ra+ h

= mr +mry +mh = mre + mh, forall m € M

But mry = mre = 0, so mr + mh = mh.

Additive cancellation law yields mr = 0.

Sor € J'(H). Therefore J'(H) = J'(H).

Theorem 4.25 [[4], Theorem2] For an ideal A of a hemiring H, J'(A) = AN J'(H).

Proof : By definition J'(A) = (| Anna(M), where M is representation hemimodule
Meh
varying over an index set /\.

Letz € J'(A) = x € Anna(M) for all M € A over A. By lemma 4.23(2), there exists
an irreducible representation semimodule M’ of H connected by ¢ : E(M) — E(M').
Thus 2 € Anny(M') C J'(H)

Thus J'(A) C An J'(H).

Conversely assume € AN J'(H). Thenz € Aand z € J'(H) = ) Anng(M').
M
Thus z € Anna(M) for all M € A being irreducible hemimodule by lemma 4.23(2).

Thus 2 € J'(A)

Corollory 4.26 .J'(.J'(H)) = .J'(H)
Proof : Put A = .J'(H) in theorem 4.25.

Theorem 4.27 If J' is a Jacobson radical of a semiring (hemiring with identity) then
HaH C J' implies a € J'.

Proof : Suppose HaH C J'and a ¢ Anng(M)ie. Ma # {0}.

Now A = Ha is a right ideal of H. By lemma 4.22 there exists subsemimodule N =
M(Ha) # 0 which is irreducible. Thus (M Ha)H # {0} by condition of irreducibility
implies semi irreducibility. This implies Ha H f@_ Anng(M)ie. HaH ¢ .J', a contradic-
tion.

Remark 4.28 : Ring theoretic proof is also valid.
Lemma 4.29 An irreducible representation H-hemimodule is faithful /A hemimodule
where A = Anng(M).
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Wehave Z(H) C Anng(M)...... (7) Forreverse inclusion let 7 = x4+ A € Anng(M).
This implies mZ = 0 forallm € M and T € Z(H).

Hence Anng(M) C Z(H)... (i)
So by (i) and (i) Anng(M) = Z(H)
Theorem 4.30 J'(H) = (] A; where A}s are strongly closed primitive ideals.
[1=vaN
Proof: J'(H) = (| Anng(M), where M is an irreducible representation H-hemimodule.
MeQ
A strongly closed ideal A is primitive if and only if A = Ang(M).
Therefore J'(H) = [ A;
[1=vaN

5. A unique equivalence relation yielding generalisation of both rqr and rsr properties
We denote an equivalence relation aypas on a hemiring H by p(a;, as).

Definition 5.1 A pair of elements a, b is united with respect to p(a;, as) if and only if there
exist by, b» € H such that

a+ by +arby +asbs =b+ba+ajbe +ashy ... (1)

holds.
We consider the following special cases:
Case 1: If we choose pair (a, b) as (a1, a9) then (1) becomes

a) + bl + ﬂ.]hl + (I-ng = as + hz I (1-1!52 + agbl ol (2)

This defines an rsr ideal.
We redefine an rsr right ideal as follows

Definition 5.2 A right ideal A is rsr iff a pair a;, as € A is united with respect to p(a;, as).
Case 2: Similarly choosing pair (a1, 0) in place of (a1, a2) in equation (2), we get

ay + bl + ﬂ.]bl — 52 S (1-1{)2 iie (3)
This rephrases definition of rsr element

Definition 5.3 An element a; is rsr if pair (a;,0) is united with respect to p(a,, 0) i.e. there
exist by, by such that @y + by + a1b7 = by + a1b2 namely equation (3).
Case 3: The definition 2.1 of right quasi regularity can be redefined as follows;

Definition 5.4 The pair (a1, 0) is united with respect to p(a;, 0) if there exists a pair (b;, 0)
such that
a) + b[ sh (I-lbl =z (4)

Here equation (4) say a; is rqr and b; is rqi of a;.

Lemma 5.5 Let £ = E(M) be the set of all endomorphism of M ,an irreducible represen-
tation H-module. Then
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1. If p(h1, he) € E then for any a1, a2 € H, (a1 + hiay + hoa2)p(hy, he)(az + hias +
hoay).

2. If hy, ho are united with respect to p(hy, ha) then p(hi, ha) = p; a maximal element of
b

Proof: Recall that by sp(hi, ho)t we mean (s, t) are united with respect to p(hy, he). That
is there exist by, bs € H such that

5+ bl + hlbl + hgbz =.f=k bg + hflbg T hgbl S (AJ

holds.

we prove this theorem in four steps.

Step 1: First we show that sp(hi, ho)t is an equivalence relation. Clearly sp(hy, ho)t is
reflexive and symmetric.

To show transitivity.

Suppose rp(hy, ha)s and sp(hy, ho)t hold.

Then there exist k1, ks € H and a1, as € H such that

r+ ki + hiki + hoko = s+ ko + hiko + hoky ... (?)

s+ay; +hia; + hoas =t + as + hyas + heay . . . (i)

Adding (i) and (ii) we have

r+s+ki+a+hi(ki+ar+s)+ho(ka+as+s)=t+ (ka+az+s)+hi(ka+as+
s) + ha(k1 + a1 + s)

put k; + a; + s = {5 and k2 + a2 + s = {5 then we have

T+ Ly 4+ hily + hols =t + o+ hyfo+ hoty ... (13?)

This shows that 7p(hy, ho)t.

Step 2: We show it is additively cancellative.

Suppose (p + s)p(h1,h2)(q +t) and sp(h1, h2)t hold.

Then there exist b1,b2 € H and ay,a9 € H respectively such that

p+s+br+ hiby + hoby =g+t + by + hiba + hoby ... (iv)

and

t+ay + hiay + hoas = s +ag + hiag + heay ... (v) hold.

Then adding (iv) and (v) we have
p+(s+t+ar+bi+hi(bi+ar+s+t)+he(batas+s+t)=qg+ (ba+az+s+
t)+ hi(bs +as +s+1t)+ ha(by +a; + s+ 1)

choose a; + by + s+t =c¢; and as + b + s +t = ¢a, we have

p+ecr+hier +hoca = g+ ca+ hica + hacy . .. (vi).

This proves pp(hi, ho)t showing aditive cancellation.

Step 3: Now we show the claim (1).

Since sp(hy, ho)t holds, therefore there exists (b, by) € H such that s+b;+h1b; +hobe =
t+ 52 + hlbg + h.-gbl vias (U?:i-':)

Replace s = a; + hja; + hoag and t = as + hjas + heay and (b, bs) by (a9, a;) then
equation (vii) converts to

(a1 +hiay +hoas)+as+hias+ hoay = (ag+hias+ heay) +a; +hyay 4+ hoas . . . (viii)
This implies (a1 + hiay + hoa2)p(hi, ho)(as + hias + haay).

Step 4: In this step we prove part (2) of the lemma.
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Suppose hyp(hi, ha)he holds. Then for a pair a;,as € H we have

hiayp(hl, ha)hoay ... ... (iz)
hzagp(hl,hg)h1ag ...... (3:) hold
Adding (ix) and (x) we have
(h1ay + hoaa)p(hy, ha)(haay + hia2) ... ... (xi) holds.
By part (1) of the lemma
(a1 + hray + hoaz)p(hy, ha)(a2 + hiag + heay) ... ... (xi7) holds.

Therefore by additive cancellation between (xi) and (xii)
a1 p(hy, ha)as holds. Thus equivalence relation p(hy, ho) unites any arbitrary pair a;, a2 €
H namely it is maximal element of E say p;.

Remark 5.6 Recalling definition 3.3 we say right ideal A is called rsr if and only if
ayplay,as)as holds for a,as € A.
< p = p1, maximum of E(A) where A is treated as an H-hemimodule.

Remark 5.7 a1 p(ay, az2)as does not hold is denoted by ajp(a;, as)as

Lemma 5.8 If a; p(a1, az)as then there exists an irreducible representation H-hemimodule
M such that at least one of a;, as does not belong to Anny (M).

Proof : a;p(a;,as)as implies p(ai,az) # p1. Let E = E(M) be the set of all endomor-
phisms.

Let E(ay,a2) = {pg € Elaipgaz; pg > p(ai,as)}. Clearly E(ay,as) is an ordered set.
Hence by Zorn’s Lemma E(a,, a2) has maximal element py. By Lemma 5.5(2) pg is maxi-
mal element of E' — p;. Hence by lemma 5.5(1)

(a1 + a2 + a2)po(ara2)(az + aras + azay) ... ... (1)

for any ay,a9 € H

But p < p, in E — p; therefore (a1 + a2 + a2)p(ay,az)(as + ajas + azay) holds.

This implies by additive cancellation that (a? + a3)p(ajas + aza;) holds. Thus E(M) =
{po, p1} where M is an H-hemimodule of all equivalence classes of p € E(M) — p; in H,
By (1) M H # {0}. Thus M is irreducible. Thus there exist at least one of a;, ay such that
May # 0or Mas # 0ie. ay ¢ Anng(M) oray ¢ Anng(M).

Theorem 5.9 Jacobson radical .J'( H) is semiregular ideal namely it is rsr and £sr ideal both.

Proof : Clearly .J'(H) is aradical hemiring. So by definition J'(H) = (| Anng(M), J'(H)
MeQ

has no irreducible representation H-hemimodule M < {2 i.e. by Lemma 5.8 for every

ay,az € J'(H), aip(ay,az)as holds. Hence by definition of rsr right ideal .J'(H) is rsr
right ideal. Similarly we prove dual that .J'(H) is ¢sr right ideal.

Now as defined by Bourne let .J(H) be Jacobson radical as largest rsr right ideal and
as defined by lizuka let .J'( H) be the Jacobson radical which is rsr ideal and intersection
of all annihilators of irreducible representation hemimodule M. So it is the smallest rsr
right ideal. Thus we have

Corollary 5.10 J'(H) C J(H)
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Theorem 5.11 Jacobson radical J'( H) of a hemiring H is the largest 7sr (hence rqr) right

ideal of H.

Proof : Let A be an rgr right ideal of H such that A & J'(H) = (| Anng(M) where
Mefl

M 1is an irreducible representation H-hemimodule. But irreducibility of M implies semi-
irreducibility so M.J" # {0} i.e. there exists a € .J’ such that ma # 0 for m € M. But .J'
is right ideal so ahy,ahs € J' for some hy, hy € H.

Now recalling irreducibility definition.

x +myhy + mahs = myhg + moh; and substituting m for z, ma for m; and 0 for mo we
have

m+ (ma)hy = (ma)hy...... (1)

But ahy,ahy € J' are rsr elements, so there exists by, by € H such that

ahy + by + (G.hl)hl + (G.hg)b-z = ahg + by + ((l-h.-l)bg + ((Ih.-'z)bl ...... {2)

Multiply (1) by b7 and b9 respectively, we have

mby +m(ahy)by = m(aha)by ...... (3)

m(ahg)by = mby +m(ahy)bs...... (4)

Adding (1), (3) and (4) we get

m + m(by + ahy + ahy1b; + ahabs) = m(ahs + ba + ahaby + ahybs)

since additive cancellation holds, so by (5) and (2) we get m = 0. This contradicts that
ma # 0.

Thus every rsr(rqr) right ideal A is contained in J'(H)

Corollary 5.12 J(H) C J'(H)
Proof: Since every right semiregular ideal is a quasi regular ideal, from theorem 5.11, we
have

J(H) C J'(H)

Theorem 5.13 J(H) = J'(H)
Proof : By corollaries 5.10 and 5.12, we have J(H) = J'(H).

Theorem 5.14 If H is a radical semiring i.e. H = J(H ) and a € H then for every positive
integer n either a"H C a" 'H ora™ € Z(H)

Proof: H is a semiring so it contains identity. Sincea € H = J(H) soa™ ' € J(H) i.e.
a1 H is rqr right ideal. In particular a” '@ is rqr element hence " H C " ' H.
Suppose this inclusion is not proper i.e.

a"H = o™ ' H. Namely

a"h = a" forsome h € H...(1)

But i € H is rsr so there exist a1, as € H such that

h+ as + hai = ay + has

= a"h+a"as + a"ha; = a"a; +a"hay...(2)
By (1) and (2) we get

a" +a"(a; + az) = a"(a1 + az)

This shows that o € Z(H).
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6. Ring Theoretic Observations of lizuka

Let H be a hemiring where additive cancellation holds. We generate a ring H from H then
H is embedded in H. We obtain following observations.

6.1 Let M is representation H-hemimodule and M is H-hemimodule generated by /1. Then
M is H-module iff M is an H-module. This is because ¢(H) = ¢(H) where ¢ : H —
E(M) and ¢ : H — E(M) are representations of H and H respectively.

6.2 M is irreducible iff M is irreducible as H-module
6.3 If L is an H-submodule of M then subhemimodule N of M is closed iff N = M N L.

6.4 In sense of lizuka J(H) = () Anng(M) is Jacobson radical of a hemiring H and
MeQ

J(H) is Jacobson radical of ring H then J(H) N H* = J(H*) where H* = H — {0} and

JH)={he Hh* € J(H*")}

6.51f ¢ : M — M’ is an H-hemimodule homomorphism then ¢ can be extended to o
M — M'. Further equivalence relation ¢(z) = ¢(y) is equivalent to z = y {¢1(0)}
because ¢! (0) coincides with F-submodule of M generated by ¢~ (0).

7. Some Examples and Counter Examples

Example 7.1 Let H = Ny — {1},non-negative non unit integers with usual addition and
multiplication be a hemiring. Then M = 2Ny is an H-hemimodule.

Example 7.2 Let H = Zj,M = My(Z;), set of all 2 x 2 matrices over Z; and
N = M>(2Z). Then N is H-subhemimodule of M.

Example 7.3 Let M = QQS' On M we define equivalence relation p as xpy iff z|y i.e.
there exists ¢ € Q:{ such that y = cx. Then clearly p is linear and admits cancellation law
of addition.

Example 7.4 Let H = Z (set of non-negative integers)
M =2ZF and N = 6Z
Then z =, y(N) and N = N. In this case N = N,

Example 7.5 Let H = Z, M = MFQ(ZJ). Then M is representation hemimodule of H.

Example 7.6 Let H = Z {1}, M = 2Z.

E(M) =set of right multiplications

hy: M — M givenby r — zh withz € M, h € H. Then homomorphism ¢ : H —
E(M)

defined by h — h, is a representation of H. We say F(M ) is commutative provided H is
commutative. In this example H is commutative but in general it may not be.

Example 7.7 Let M = {z,a,b}. On M we define binary operation # by following table
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* 2 a b
z z Z z
a z b a
b & a b

(M,*) is a monoid. Let H = P(M) = power set of M with A + B = AU B and
A.B={axblac A,be B}

Endomorphism ¢ is injective iff A #£ B

= ¥(A) # ¢¥(B). In present case no two subsets of M are equal hence corresponding
endomorphisms are unequal. In other words Z(H ) = Anng (M) = {¢}

Example 7.8 Let M =< (r — 1) >, ideal generated by polynomial z — 1 in a hemiring
H = Alz| where A is non-negative integers modulo 3, then M is irreducible representation
hemimodule, as we can choose m = (x — 1)t(z), m; = (z — 1)p(x), me = (z — 1)q(z),
hy = r(x), ha = s(z), where coefficients of all polynomials are {0, 1, 2}.

Zs)x]

Example 7.9 Let Z3[z] be a ring of polynomials over integer modulo 3 and M = E—lj}—
£L—

be a Z3|z|- module. Then M is not irreducible but it is semi-irreducible.

Example 7.10 Let H = {a,b. c, z} with + and . defined as

+ | z a b c . | z a b c
z z a b c Z z z z z
a a a b c a z z a z
b b a b c b 2 a b c
¢ (s ¢ c c c 2 z 5 c

Anideal A = {z,a} is semi nilpotent as A* C Z(H).

Example 7.11 In fact an equivalence relation with additive cancellation can define rsr prop-
erty, not all equivalence relation. Let H = ZS’ be the hemiring of non-negative integers, we
say apbiff a, b, # 0 otherwise 0p0. Then p is an equivalence relation which is not additively
cancellative as (0 + 5)p(3 + 4) and 5p4 but 0p3.

Example 7.12 We give an example to show that first isomorphism theorem of hemirings
does not hold and their Jacobson radical and zeroids are also distinct. Let H be a hemiring
of example 7.11 and p be an equivalence relations defined therein. Then we define two
equivalence classes of p in H say ¢y, c;. Then Hy = {cp,c;} is a hemiring and we define
a homomorphism ¢ : H — H; such that ¢(a) = ¢ if @ # 0 and ¢(0) = ¢o. We define
addition and multiplication in H) by co+¢p = ¢g, co+c¢1 = ¢ = ¢1 +¢g, €1 +¢; = ¢; and
Co.Co = €y = Cp.C] = €1.Cp, €1.¢1 = ¢;. Clearly Ker ¢ = {0}. Hence H/Ker(¢) = H
and H, 2 H. Further J(H) = Z(H) = {0} and J(H,) = Z(H,) = H;.

Example 7.13 A homomorphism between two hemirings exists, yet first isomorphism the-
orem does not hold. In fact they are radical hemirings. Let H, = {cy, ¢; } be the hemiring
defined in example 2 and Hy = {bg, b1, by, b3 } be a hemiring of order 4 where composition
tables are defined by
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+ ‘ bU b 1 J 19 b 3 . bU b] bQ b3
bo bo by bo by bo bo bo bo bo
by b1 by bo b3 by bo bo by bo
bs b3 b3 ba bs bs bo bo bs b3

We define a homomorphism 1) : Hy — H; such that {bg, b; } mapped onto ¢y and {b, b3}
mapped onto c;.

Clearly Kery) = {bo,b1} and Hy/Keryy = {0,b2,b3} = {{bo,b1}.{b2} {b3}} where
Kery = 0.

Hence Hy/Kery = Hy 2 H;.

However J(Hy) = Z(H3) = Hy and J(H,) = Z(H,) = Hy

Example 7.14 Every subhemimodule of a hemimodule is not closed. Let H be the hemiring
of polynomials over non-negative rationals i.e. H = Qy[z] and H = Q|x] be the ring
generated by H namely over a field of rationals (). Clearly H = H* and J(H) = {0}.
Qlz]
(x—1)
¢ : H — H'is given by H' = ¢(H). Clearly ¢—'(0) = {0} and _ﬁjﬂ% 2 H'. Further
M = (x — 1) is maximal ideal in Q|z| with left identity e = zand M N H = A = {0}
ideal in H and (0) is not closed ideal of H because (0) can not generate M.

We can define a natural hmomorphism ¢ : Q[z] — The restriction of ¢ say

Example 7.15 We give a counter example to show that semi-irreducibility does not imply

irreducibility.

Let M be the H-semimodule consisting of all equivalence classes of difference H-module
Q]

(z—1

2 This representation H-semimodule M is not irreducible but it is semi-irreducible.
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Abstract

We find sufticient conditions for semigroup identities to be preserved under epis in
conjunction with seminormal identities. Further we introduce the notion, for a semi-
group identity, to be weakly preserved under epis and find some sufficient conditions

for semigroup identities to lie in this class.

1 Introduction and Preliminaries

The study of Epimorphisms and Dominions in semigroups was first considered by Isbell [4].
But it is in 1980s when it was revived and studied extensively by T.E. Hall, P.M. Higgins,
N.M. Khan and others resulting in the appearence of various intresting research articles
(see for example Howie [3] where all these articles are cited). It was proved by N.M. Khan
[7], jointly with P.M. Higgins [1], that any semigroup variety which satisfies a permutation

identity x 2z - ®, = ¥, Ti,, where ¢y # 1 or i, # n, is epimorphically closed,

Keywords and phrases : Epimorphism, saturated semigroup, saturated variety, epimorphically closed.

preserved under epis, hetrotypical identity, seminormal identity.
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In [2], Higgins found an example of an identity whose both sides contain repeated vari-
ables and which is not preserved under epis in conjunction with the identity xyzt = xzyt
(a seminormal identity). Thus the problem of finding those semigroup identities whose
both sides contain repeated variables and are preserved under epis in conjunction with a
seminormal identity, is worthwhile. This problem remained buried under dust for a period
of almost three decades. Recently the authors [8] and [9] revived this problem again and
found certain classes of semigroup identities whose both sides contain repeated variables
and were preserved under epis in conjunction with seminormal identities by establishing
some sufficient conditions. The objective of the present paper is to further enlarge the class
of heterotypical identities whose both sides contain repeated variables to be preserved under
epis in conjunction with seminormal identities under similar sufficient conditions as in [8]
and [9]. Further we introduce the notion, for a semigroup identity, to be weakly preserved
under epis and find some sufficient conditions for semigroup identities whose both sides
contain repeated variables to lie in this class.

A morphism a : 5 — T in the category of all semigroups is called an epimorphism
(epi for short) if for all morphisms (3,7, a8 = a~ implies § = . Let U and S be any
semigroups with U/ a subsemigroup of S. Following Isbell [4], we say that U dominates
an element d of S if for every semigroup 1" and for all homomorphisms o, 8 : § — T,
ua = uf for all w € U implies da = df3. The set of all elements of S dominated by U
is called the dominion of U in S, and we denote it by Dom(U, S). It may easily be seen
that Dom(U, S) is a subsemigroup of S containing U. A subsemigroup U of a semigroup
S is said to be epimorphically embedded or dense in S if Dom(U,S) = S. It may be
easily checked that o : § — T is epi if and only if the inclusion map i : Sa — T'is
epi and the inclusion map 7 : U — S is epi if and only if Dom(U,S) = S. Every onto
morphism is epi, but the converse is not true in general. A variety ) of semigroups is said
to be epimorphically closed or closed under epis if whenever U € V and Dom/(U, §) = S,
o <

An identity of the form
T1Ba+ =By = TiiLis * iy (n>2), (1)

is called a permutation identity, where i is any permutation of the set {1.2,3,...,n} and

ig, for each k (1 < k < n), is the image of k under the permutation i. A permutation
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identity of the form (1) is said to be nontrivial if the permutation i is different from the
identity permutation. Further, a nontrivial permutation identity of the form (1) is said to be
left semicommutative if i1 # 1; right semicommutative if i,, # n and seminormal if i; = 1
and i,, = n. Clearly every nontrivial permutation identity is either left semicommutative,
right semicommutative or seminormal. A semigroup S satisfying a nontrivial permutation
identity is said to be permutative, and a variety V of semigroups is said to be permutative if
it admits a nontrivial permutation identity. We will say that an identity u = v is preserved
under epis if whenever U satisfies u = v and Dom(U,S) = S implies S also satisfies
© = v. For any word u, the content of u (necessarily finite) is the set of all variables
appearing in u and is denoted by C'(u). An identity u = v is said to be heterotypical if
C'(u) # C(v); otherwise homotypical. For any unexplained notation and terminology, the
reader may refer to Howie [3].
The following results will be extensively used through out the paper.

Result 1.1 ([7, Theorem 3.1]). All permutation identities are preserved under epis.

A most useful characterization of semigroup dominions is provided by Isbell’s Zigzag
Theorem.
Result 1.2 ([4, Theorem 2.3] or [3, Theorem VIL.2.13]). Let U be a subsemigroup of a
semigroup S and let d € S. Then d € Dom(U, S) if and only if d € U or there exists a

series of factorizations of d as follows:

d =apt; = yarty = yiasts = Yoasty = = Ymlom—1tm = YmGom, (2)

wherem = 1; ge €U = 0, Lo s 2m); wnl € 8 =1 2i5:m); and

ap = Yia1, a2m—1tm = A2m,

agi—1t; = agitiy, YiG2i = Yi4+102i+1 A=gis<m~1)

Such a series of factorization is called a zigzag in S over U with value d, length m and spine
ag,ai, ..., a2, In whatever follows, we refer to the equations in Result 1.2 as the zigzag
equations.

Result 1.3 ([6, Result 3]). Let U be any subsemigroup of a semigroup S5 and let d &€
Dom(U,S)\ U. If (2) is a zigzag of minimal length m over U with value d, then y;,t; are
iti §\ U forall §'=1,2; o W0
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In the following results, let U and S be any semigroups with U dense in S.
Result 1.4 ([6, Result 4]). Forany d € S\ U and k any positive integer, if (2) is a zigzag
of minimal length over U with value d, then there exist by, ba, ..., by € Uand d € S\ U
such that d = bybs - - - brdj.
Result 1.5 ([6, Corollary 4.2]). If U be permutative, then

ST1Z2 TRl = ST, Tjy - T4, 1

for all z1,x9,...,2x € S, s,t € §\ U and any permutation j of the set {1,2,...,k}.
Result 1.6 ([8, Proposition 2.2]). Let U be any semigroup satisfying (1) with n > 3. Then
for each g € {2,3,...,n} such that x,_;x, is not a subword of x; x;, - z;,, for all

m>g—1landforallue S, ves \ U, we have
ULLELD *** LU = UL L), " L),V

forall x1,xa,...,x¢ € S (£ > 2), where A is any permutation of the set {1,2,...,¢}.
Symmetrically, for all p > h — 1 such that Tp—hTn—(h—1) is not a subword of x;, x;, - - - @,

and forallv e SP ye S \ U, we have

WLLELY ** * LU = WLY Ly © " LN,V

forall x1,xa,...,x¢ € S (£ > 2), where A is any permutation of the set {1,2,...,¢}.
Result 1.7 ([8, Corollary 1.8]). Let U be any permutative semigroup. Then, forany d € S
and positive integer k, if d = byby - - - brdy, for some by, bo,... by € Uandd, € S\ U
such that by = y¢; for some ) in S\ U, ¢y € U, then d” = b1"by" - - - bPd)” for any
positive integer p.

The symmetrical statement in the following result does not appear in the original, but is
immediate.
Result 1.8 ([10], Proposition 4.6). Assume that U is permutative. If d € S\ U and (2) is
a zigzag of length m over U with value d such that y; € S\ U, then d* = ufjt;f for each
positive integer k; in particular, the conclusion holds if (2) is of minimal length. Symmetri-
cally, if d € S\ U and (2) is a zigzag of length m over U with value d such that t,,, € S\ U,
then d* = y* a%  for each positive integer k; in particular, the conclusion holds if (2) is of

minimal length.
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Lemma 1.9. Let U be any permutative semigroup satisfying (1) which is dense in S; and

let r, s be any positive integers. If U satisfies the identity
Ty Byysean i’ = UMEsSsw )t (3)

then the identity (3) is also satisfied V z,y € S and x1,x9,...,2p € U.

Proof. Take any semigroups U and S with U a subsemigroup of S such that Dom/(U, S) =
5. Since U satisfies (1), by Result 1.1, S also satisfies (1). Now we shall show that the
identity (3) satisfied by U is also satisfied when x,y € S and z1,x9,...,24 € U.

Case(a): First take any © € S and x1,29,...,2p,y € U. If x € U, then (3) holds trivally.
So assume that x € S\ U. By Result 1.2, let (2) be a zigzag of minimal length m over U

with value x. Then

T e PR S/
= yhab, u(xry,xa,...,xs)y" (by the zigzag equations and Result 1.8)
= yny'v(z1,Te,...,x¢)ah,, (as U satisfies (3))
= yryiv(zy,xa,...,ze)ah,, th, (by zigzag equations and Result 1.8)
= yb.ab,_1u(T1, T2, ..., T0)y°ty, (as U satisfies (3))

=y _,ah._ou(x1,xa,...,x0)y"t;, (by zigzag equations and Result 1.8)

= ylaju(xy, za,...,x¢)y%th

= yiy*v(xy, wa,...,x¢)ants (as U satisfies (3))

= yiy*v(xy, za,...,xp)alt] (by zigzag equations and Result 1.8)
= ylaju(zry, za,...,xe)y’t] (as U satisfies (3))

= afu(zy, @2, ..., x0)y°*t] (by zigzag equations and Result 1.8)
= y'v(z1,x2,...,x¢)alt] (as U satisfies (3))

(
= y*v(z1,@2,...,x¢)z" (by zigzag equations and Result 1.8)

as required.
Case(b): Next take any z,y € S and x1,29,...,2y € U. Again we may, by Case(a),

assume that y € S\ U. Let (2) be a zigzag of minimal length m over U with value y. Now
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i T R i L g

= z'u(zy,xe,...,x¢)ajt; (by the zigzag equations and Result 1.8)

= ajv(x1,z9,...,20)x"t] (by Case(a))

= yjajv(zy,xe,...,xp)x"t] (by the zigzag equations and Result 1.8)

= yijz"u(z1,29,...,2e)ait; (by Case(a))

= yiz"u(xy, xe,...,x¢)adts (by the zigzag equations and Result 1.8)

= GE r 2 i
= Yp1T w1, T2« - - 1$E’)a21rz—2tm

= yi _,a,. ov(z1,x2,...,2¢)2"ts, (by Case(a))

= yoay,, v(x1,z9,...,2p)z"t], (by the zigzag equations and Result 1.8)

= ywsnx.ru("ﬂ:hx?: G !If)a§111—1ti1 (by Case(a))

= yia"u(xy,x,...,x¢)as,, (by the zigzag equations and Result 1.8)

= y5 a3, v(x1,T2,...,2)z" (by Case(a))

= y*v(x1,29,...,2¢)x"(by the zigzag equations and Result 1.8)
as required. O

Remark: The proof of the Lemma 1.9 does not require |z;|,, > 0 or |x;[, > 0, so it applies
equally well to both homotypical as well as to heterotypical identities.

The following corollary follows directly from Lemma 1.9,
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Corollary 1.10. Let U be any permutative semigroup which is dense in S, and py, pa2, ..., py,

and s be any positive integers. If U satisfies

oy ey enly = yslf?fl .Lff e :rf;"’ z" (4)
where j is any permutation of the set {1,2, .../}, then (4) is also satisfied for all z,y € S

and xy,20,...,2p € U.

Let (1) be any seminormal permutation identity. Then there exists g, 2 < g < n — 2; such
that x,_x, is not a subword of x;, x;, - -+ x;,. Thus the set P of all positive integers g
(2 < g <n—2)suchthat z,_;z, is not a subword of z;, z;, - - - z;, is non-empty and, so,
will have the minimum element. Let gy = min P, the minimum of P. Similarly, the set (}
of all positive integers h (1 < h < n — gy — 1) such that x,_px,,_(;_1) is not a subword
of »;, z;, - - - x;,,, is non-empty. Let hy = min ().

In whatever follows, gy and hg will stand for the same as defined above. Also for
any word w and any variable = of w, |z|, will denote the number of occurrences of x in
w. Further to avoid introduction of new symbols, we shall treat, whenever is appropriate,
T1,T2,...,Tyetc. both as variables as well as the members of a semigroup without explicit
mention of the distinction.

2. Heterotypical Identities

The following lemma is crucial for proving the main theorem of this section and may
be proved on lines similar to the proof of [9, Lemma 2.1]. The bracketed clause yields the
dual statement (and likewise all other bracketed statements elsewhere in the paper).
Lemma 2.1. Let S be a semigroup satisfying a seminormal permutation identity and let
u be any word in the variables x|, z9,...,z¢. Let r, s be any positive integers such that
r>go—1land s > hg — 1. If ; = s1a |x; = bsy for some a,b, 51, s2 € S and for some

j€{l,2,...,£}, then

o T e el L e U

[ wlErs e By @e)y” =& W@poos B ) sgy”]
forall x,y,x1,x2,...,2¢ € S and where w = (31)|"’"'-f|“_"‘ [w= (Sg)le“'l“_ﬁ]‘
Further, if z; = sjcsy for some ¢, 51,59 € S and for some j € {1,2,... ¢}, then

5

By g B = :r:r(skl)lxﬂ“(st)'mJ'“u(Il, B )
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and

ER B penrid e BN 5 BT s mcgBoonce L xp) (5, )%l (g, )| Tilugys

forall z,y, 1, xa, ...,y € S, where k is any permutation of the set {1, 2}.
Theorem 2.2. Let (1) be any seminormal identity and let u, v be any words in 21, zo, ..., 2
and z1, 22, ..., 2, respectively. Let r, s be any positive integers such that r > go — 1,5 >

ho—1 with min{|z;|,, |z;|,} > min{r, s} foralli € {1,2,... ,f}andforall j € {1,2,...,p}.

Then all heterotypical identities of the form

Eu(Er; Boie s oy T)Y° = YU(R13205 055 %) 8 (5)

are preserved under epis in conjunction with (1).

Proof. We shall prove the theorem for the case when min{r, s} = r. The proof in the other
case will follow on similar lines. Assume that U (and hence S, by Result 1.1) satisfies a
seminormal identity. We shall show that if U satisfies (5), then so does 5. If z,y € S and
all of x1,x9,...,2¢,21,22,...,% € U, then (5) holds by Lemma 1.9. So, assume first
that not all of wy,x2,..., 2, 21, 22,..., 2, are from U. Now to show that the equality (5)

is satisfied by S, we shall first prove that
T u(Bry @2y = Y0109 00 5 Up) " (6)

for all z,y,zy,®2,...,2¢ € S and vy, v9,...,vp € U. We prove the equality (6) by
induction on k assuming that arguments xj,xs,...,x) of the word u are from S and
the remaining arguments xj1,...,2¢ are from U. When k = 0, equality (6) holds by
Lemma 1.9. So assume inductively that equality (6) holds for all z, y, z1, z9,..., 21 € S
and =, TL11,...,2¢ € U. From this we shall prove that S also satisfies (6) for all
T1,29, ..., Tk 1, Tk, 2,y € Sand xpq,...,2, € U. When z;, € U, then (6) is satis-
fied by inductive hypothesis. So assume that z;, € S\ U. Let (2) be a zigzag of minimal

length m over U with value x;. Let w) = (y,\)"“*'”_’" forall A = 1,2,...m. Now for any

V1,V2,..-,Up € U
r e 5
T r':"'(':’?].-.:1-"2-. IRIIER 1y T [P TRy TR P :mf)y
= z"u(x1, T2, ..., Th—1,Ym@om, Thil,---,2¢)y° (by the zigzag equations)

= WL B i1 00 Bestv s Zey® (by Letima 2 1)
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= " "wny*v(vi,va,. .., V)Y, (by inductive hypothesis)

= x"wny,u(T1, 2, ..., Tp_1,02m—1,Tk+1,-- ., 2¢)y® (by inductive hypothesis)

= z"u(T1,%2,. ..y Th—1, YmO2m—1,Th+1,---, L)y’ (by Lemma 2.1 as
Wy, = (y'ﬂl) |mﬂ‘. |71 gyl )

= z"u(Z1,%2,...sTh1,Ym—102m—2, Thk+1,-- -, Te)Y® (by the zigzag equations)

== xrwrn—lyge—lu(x] 3 L2y 00y Th—1,02m—23 Th415 -+ xf)ys (by Lemma 21]

= g wiyiu(z1, T, ..., Te_1,02, Tyl .-, T)Y’

= z'wy*v(vy,ve,...,vp)y] (by inductive hypothesis)

= z"wiyiu(z1,T2,. .. Th—1,01, Thil,- .., T¢)y° (by inductive hypothesis)

= 2'ul@1; Tosve o5 Co—1: Y1015 Thi1s+ o s e )y® (by Lemma 2.1 as
wy = (yl)lm-lu—r)

= z"u(r1,%2, ..., Tk-1,00, Tht1, .-, T¢)y° (by the zigzag equations)

= y*v(vi,v2,...,v,)z" (by inductive hypothesis)
as required.

Similarly we may prove that

Tultg; Uy oo u)Y° = YR B Zp) B

forall x,y, 2z1,22,...,2p € S and uy, ug,...,ug € U.

Now, for any ,y, 1, T2,-. - Tp; 21, 225- -1 2p € 5 and ug, Ug, ..., Ug, V1,02, .. Vp iD
U, we have
'u(Zry .00, 20)y = Y0(V1,. )2 = 2T u(u, . w)Y = Yiv(R1, 0.0, 2p)T

This completes the proof of the theorem. O
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3. Identities that are Weakly preserved under epis
An identity .J is said to be a consequence of an identity [ or an identity .J is said to be
implied by the identity I if all semigroups satisfying the identity I also satisfy the identity
J. Such an identity .J may be deduced from I by a sequence of substitutions using /.
Anidentity [ is said to be weakly preserved under epis if U satisfies I and Dom/(U, S) =
S, then S satisfies some consequence of /. Clearly every identity that is preserved under
epis is also weakly preserved under epis. Now we establish some sufficient conditions for
some semigroup identities to be weakly preserved under epis.
The following lemmas will be required to prove the main results of this section. The lemma
3.2 is a generalized form of [9, Lemma 2.9]. The bracketed statement in the lemma 3.3
does not appear in the original [8, Lemma 2.7.3], but follows on similar lines.
Lemma 3.1 ([8, Lemma 2.7.1]). Let (1) be any seminormal identity, and let v, v and
w be any words in the variables x1,x9,..., 21 (k > 2) such that {(u) > go — 1 and

{(v) > hg — 1. Take any ay,ag, ...,a; € U and t1,ts,...,t, € S*. If for each i such that

ti € S, a; = yib; |a; = biy;| forsome y; € S\ U and b; € S (i = 1,2,...,k), then for any
choice dy,ds, . .., dy for the variables x1, 9. ...,z € S respectively
u(d)w(arty, agty, . .., aptr)v(d) = u(d)w(ay, az, ..., ax)w(ty, ta, ..., t3)v(d)

[u(&)w(tlal,tgag, s tka.k)a.r(ff) = u(&)u;(thtz, sevs tpw(ar; Qoy ey aevid)];

where d = (disdasanes did:
Lemma 3.2. Let S be any permutative semigroup and let uy,us, ..., ug, w and w’ be any

words in the variables 1,2, ...,z such that £(w) > g, — 1, {(w') > h, — 1. Then
w(Z)ur (B)ug (&) -+ up(2)w'(2) = w(E)uj, (8)ujy (F) - - - uj, (B)w' (%),

where & = (21, 22,...,2;) € S®*) and j is any permutation of the set {1,2,...,¢}.

Lemma 3.3. Let (1) be any seminormal identity and let «, v and w be any words in the
variables x1,2,...,xr (kK > 2) such that £(u) > go — 1 and ¢(w) > hg — 1. Take any
dy,dy,...,dj in S for the variables x,xo,. ..,z respectively. If z; € C(v), for some

1 < j <k,besuchthatd; € S\ U, then

u(d)v(d)w(d) = u(n{)(d,j)|m-"'|"‘-v((i’.u")m((f]

[u(d)v(d)w(d) = u((f)'u(d?)(dj)m va(d)
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in S'(in fact the two products are equal in S), where
d.={dyias v+ k)

and

(f = (d].'.d"zu'-- '.dj—lu ]-'-dj-i-lu-" adk)'.

for all dy,ds,...,d. € S (thus the product 1:((?) is obtained from the product fv(cf) by
ommitting all the occurences of the element d;).

Proposition 3.4. Let U be any permutative semigroup satisfying a seminormal identity
which is dense in S. Let p, , s be any positive integers such that p— 1,7 and s > max{gy —
1, ho—1}. Letu and v be any words in 1, 9, . . ., zg such that [z;|, = rViin{1,2,..., ¢}

If U satisfies the identity
Bl Saveve i’ = TUlBs B @) s (7)
then S satisfies the identity
ol 7 e e Vi N ERRE o (8)

Proof. Take any x,y.dy,do, ... . dg € S. Ifallof dy,ds,...,dy € U, then, by Lemma 1.9,
(8) is satisfied. So, assume that not all of dy.ds,....d; € U. Thend; € S\ U for some
Hl<jst
Let

d= (dy,ds,...,ds).

In this notation we need to show that:

P u(d)y® = y*v(d)a?". 9)

Then as established in [7, Lemma 4.3] and already used in [8] and [9], d has a zigzag over

U in (Sl)m of length m as follows:

d = agty, ag = Y101,
Uraok = Jry1doks1, Aok_1tg = Gogrtpr A <k<m—1,1<i<m—1);

&Qm—ltm o é"zma 'g-rn.&%n = d (IUJ
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where @, € U (t=0,1,...,2m) and iy, fq S (S‘)m (=120 i) ol Th1, for
any semigroup 7" and for any integer v > 2, denotes the cartesian product of the ~-copies
of 1"

Now
o u(d)y’

= P"u(Ymaom)y® (by equations (10))
= P"u(Pm)u(d2m)y® (by Lemma 3.1)
= 2" u(f,,)(y)) u(dzm)y® (by Lemma 3.3)
= :r:"'-u(g"j_:n)(-y,{-,{).’::p_1)T1f.(&2.m_)g;" (by Lemma 3.2)
= :.-:’"u’(g.n;,)y";v(&gm)(yiﬁ);z:p‘l)r (by Lemma 1.9)
= x’"u(g}:n)y""ﬁ(&gm)(ygr)) (P=1)r (by Lemma 3.2)
= :c’"u’(g}m)y“;v(&gm_lZm_)(yg))’"x(”‘1}’" (by equations (10))
= :r:""u(g;n)y“"?;(fizm_l) (fm)(J,(”)) P~ (by Lemma 3.1)
= 2"u(§)v(Em )y v(G2m_1 )(-y,(-f;))"":r:@_l)" (by Lemma 3.2)
= " (Jm}’v(fm)(y }’u dom—1)y* 2P~V (by Lemma 1.9)
= 2" 0(En)u(f) (Y)) u(@2m—1)y* 2@~V (by Lemma 3.2)
= 2"0(E) (G )u(@2m—1)y*z P~ (by Lemma 3.3)

= 2"0(Em)u(@mbom—1)y* =P V7" (by Lemma 3.1)
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2" 0(En ) (Jim—1820m—2)y° P17 (by equations (10))

a"v(ta)u (g )u(az)y = P~1" (by Lemma 3.1)
z"v(ts)(y (3)) (Jl)u(ag)y 2P (by Lemma 3.3)
2 u(iy) () u(ds)y*v(fz)a PV (by Lemma 3.2)
a:ru(gl)ysv(ég)(yg”) v(t2)z®= V" (by Lemma 1.9)
a:ru(g};)y"?(ygj))’”v(&ﬁ*u(&)ﬂ””" (by Lemma 3.2)
ru(ii;)y® (y)) v(aafy)2® 1 (by Lemma 3.1)
a:’"u(ﬁ’l]ys(ygj})""v(&.lfl)33(?’_”" (by equations (10))
2 u( @)y (W) v(ay o(f)2®=Vr (by Lemma 3.1)
a:ru(gl)ysv(él)(yg”) v(t)z®= V" (by Lemma 3.2)
‘r"u(ﬁi)(ygﬂ)"u(&l)y“"-a:(fljx(p_l)" (by Lemma 1.9)
a"u (i )u(ar)y*o(t)zP=1" (by Lemma 3.3)
"u(gay )yt )P~ " (by Lemma 3.1)
a"u(ag)y*v(t) P (by equations (10))

y*v(ao)x"v(t)z®P=" (by Lemma 1.9)
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= y*v(aot)z 2PV (by Lemma 3.1)

= y*v(d)zP" (by equations (10))

as required. O

The following corollary immediately follows from Proposition 3.4.
Corollary 3.5. Let v and v be any words in xy,x9,...,xe such that |z;/, = r ¥V i in
{1,2,...,/} and let p,r, s be any positive integers with max{gy — 1,hop — 1} <p—1,r

and s. Then all semigroup identities of the form
T e ) T | 1 i e T L

are weakly preserved under epis.

The following proposition may be easily proved by arguments analogous to the proof of the
Proposition 3.4.

Proposition 3.6. Let U/ be any permutative semigroup satisfying a seminormal identity
which is dense in S. Let p, r, s be any positive integers with p — 1,7 and s > max{gy —
1,hg — 1}. Let u and v be any words in x1, T2, ...,xe with |z;|, = sV iin{1,2,...,(}.

If U satisfies the identity

Fil Bose vl = PHBnSn e ) (11)
then S satisfies the identity

e 1 R ) ) el T T e T o . 7 ) (12)

The following corollary immediately follows from Proposition 3.6.
Corollary 3.7. Let u and v be any words in @1, x9,...,xe such that |z;|, = s Vi in
{1,2,...,(} and let p, , s be any positive integers with max{gy —1,hp—1} <p—1,r and

s. Then all semigroup identities of the form
.

Sty e B® =00 (BBt

are weakly preserved under epis.
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