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Abstract

Let R be a 2-torsion-free =-prime ring, ./ a nonzero *-square closed Jordan ideal
of R and (F,d), (G, h) be a pair of generalized derivations with h # 0 commuting
with *. In this paper we explore the commutativity of R satisfying any one of the
properties: (i). F(x)z + «G(z) = 0; (id). F(x)x — G(x) = 0; (id). |F(x),y] =
[z, GY)ls (). [F(x),y] + [, Gy)| = 0; (v). Glae,y| = |F(x).y]; (vi). Glz,y| +
|[F(x),y] =0; (vii) F(x)G(y) = xy, forall z,y € J.
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1 Introduction

Throughout the present paper R will denote an associative ring with center Z(R). For
any z,y € R, the symbol |z,y| and z o y stand for the Lie product 2y — yx and Jordan
product xy + yx, respectively. In all that follows the symbol Sa.(R), first introduced by
Oukhtite [11], will denote the set of symmetric and skew symmetric elements of R, i.e.
Sa.(R) = {z € R | #* = £x}. Aninvolution * of a ring R is an anti-automorphism of
order 2. Anideal [ of 1 is said to be a *-ideal if I™ = I. Note that an ideal [ of aring R
may be not a *-ideal. An example, due to Rehman [16]: Let Z be the ring of integers and
let R = Z x Z. Consider a map *: R — R defined by (a.b)* = (b,a), for all (a,b) € R.
For an ideal I = Z x {0} of R, I is not a x-ideal of R, since [* = {0} x Z # I. A
ring R is called 2-torsion-free, if whenever 2x = 0, with x € R, then z = (. Recall that a
ring R is prime if for any a,b € R, al?b = () implies a = 0 or b = 0. A ring R equipped
with an involution x* is said to be a x-prime ring if for any a,b € R, aRb = aRb* = (
implies @ = () or b = (. It is worthwhile to note that every prime ring having an involution
* is *-prime, but the converse is in general not true. Such an example due to Oukhtite [11]
is as following: Let R be a prime ring, S = R X R", where R" is the opposite ring of
R, define (z,y)" = (y,x). From (0,z)S(x,0) = 0, it follows that S is not prime. For
the %-primeness of S, we suppose that (a,b)S(x,y) = 0 and (a,b)S(z,y)* = 0, then we
get aRr x yRb = 0 and aRy x xRb = 0, and hence aRx = yRb = aRy = zRb = 0,
or equivalently (a,b) = 0 or (z,y) = 0. This example shows that every prime ring can
be injected in a x-prime ring and from this point of view *-prime rings constitute a more
general class of prime rings. An additive subgroup .J of R is said to be a Jordan ideal of
Ritzor e J,forallz € J and r € K. If .J is a Jordan ideal of K, then .J is called a
x—square closed Jordan ideal if 2% € .J, for all z € J and J is invariant under *. In this
case, (r—y)* € J and woy € J, we see that 2y € J, forall z,y € .J. An additive mapping
d: R — R is called a derivation, if d(xy) = d(z)y + xd(y) holds, for all z,y € R. An
additive mapping F: B — R is called a generalized derivation associated with d, if there
exists a derivation d: R — R such that F'(zy) = F'(z)y + zd(y) holds, forall z,y € R. A
generalized derivation F’ associated with a derivation d will be denoted by (F, d).

Over the past thirty years, there has been an ongoing interest concerning the relationship
between the commutativity of a prime ring R and the behavior of a special mapping on that
ring (see [3], [5], [4], [6] and [15] for a partial bibliography).

Following Nowicki [8], the fundamental relations between the operation of differenti-
ation (=derivation) and that of addition and multiplication of functions have been known
for as long a time as the notion of the derivative itself. The relations were deepended when
it was found that the operation of differentiation of functions on the smooth varieties with
respect to a given tangent field not only has the formal properties of differentiation but also
conversely; the tangent field as fully characterized by such an operation. Therefore, it was
possible to define e.g. the tangent bundle in terms of sheaves of functions.

The notion of the ring with derivation is quite old and plays a significant role in the
integration of analysis, algebraic geometry and algebra. In the 1940’s it was found that
the Galois theory of algebraic equations can be transferred to the theory of ordinary lin-
ear differential equations (the Picard-Vessiot theory, including Picard-Vessiot theories for
differential equations and for difference equations). In the usual sense, “Picard-Vessiot the-
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ory” means a Galois theory for linear ordinary differential equations (cf. Van der Put &
Singer [17] for details). The field theory also included the derivations in its inventory of
tools. The classical operation of differentiation of forms on varieties led to the notion of
differentiation of singular chains on varieties, a fundamental notion of the topological and
algebraic theory of homology.

The study of derivations in rings though initiated long back, but got impetus only af-
ter Posner [9] who in 1957 stablished two very striking results on derivations in prime
rings. The notion of derivation has also been generalized in various directions such as
Jordan derivation, (6, ¢)-derivation, left derivation, generalized derivation, generalized Jor-
dan derivation, generalized Jordan (6, ¢)-derivation, higher derivations, generalized higher
derivations, etcetera. Also, there has been considerable interest in investigating commu-
tativity of rings, more often that of prime and semiprime rings admitting these mappings
which are centralizing or commuting on some appropriate subsets of F. Being important
ring theory tools, these results are one of the sources of the development of such as the the-
ory of differential identities, theory of Hopf algebra action on rings and Galois theory of for
linear ordinary differential equations. For more details, a historical account, examples and
applications of derivations and their generalizations, see the survey papers of C. Haetinger,
M. Ashraf and S. Ali[1] and |7].

Recently, some well-known results concerning prime rings have been proved for -
prime rings by Oukhtite et al. (see [12], [13], [14] and [10], where further references can
be found).

In this paper we will explore the commutativity of %-prime rings satisfying any one
of the following properties: (i). F(x)z + zG(z) = 0, (ii). F(z)r — 2G(z) = 0,
(iid). [F(),y) = |, Gy)). (). [F(@),y] + [2,G(y)] = 0, (v). Gla,y) = |Fle),ys
(vi). Glz,y| + [F(z),y] = 0, (vii). F(z)G(y) = zy, forall z,y € J, where J is a

nonzero *-square closed Jordan ideal of R.

2 Preliminary results

We begin with four lemmas which are essential in developing the proof of our main
result.

Lemma 2.1 /12, Lemma 2] Let R be a 2-torsion-freex-prime ring and J a nonzero -
Jordan ideal of R. If aJb=a*Jb =0, thena =00rb=0,

Lemma 2.2 [12, Lemma 3] Let R be a 2-torsion-free x-prime ring and J a nonzero -
Jordan ideal of R. If |J, J| = 0, then J C Z(R).

Lemma 2.3 /12, Lemma 4] Let R be a 2-torsion-free x-prime ring and J a nonzero -
Jordan ideal of R. If d is a derivation of R such that d(.J) = 0, then J C Z(R).

Lemma 2.4 []3, Lemma 3] Let R be a 2-torsion-free x-prime ring and J a nonzero *-
Jordan ideal of R. If J C Z(R), then R is commutative.
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3 Main results

Theorem 3.1 Let R be a 2-torsion-free *-prime ring and J a nonzero *-square closed
Jordan ideal of R. If R admits a pair of generalized derivations (F,d) and (G, h) with h #
0 commuting with * such that F(x)x + xG(z) = 0, for all x € J, then R is commutative.

Proof. We are given that
F(z)r +zG(z) =0, for all z € J. (1)
A linearization of (1) yields that
F(z)y+ F(y)r +2G(y) +yG(z) =0, for allz,y € I. (2)

Replace x by 2zy in (2) to get
F(z)y? + xzd(y)y + F(y)zy + 2yG(y) + yG(x)y + yxh(y) = 0 and so

(F(z)y + F(y)z)y + zd(y)y + zyGy) + yG(z)y + yxh(y) = 0, 3)

forall z,y € J.
Using (2) and (3), we find that
(—2G(y) —yG(x))y + zd(y)y + zyG(y) + yG(z)y + yxh(y) = 0, which implies that

zly, Gly| + xd(y)y + yxh(y) = 0, for all z,y € J. (4)
Replace = by 2zx in (4) to get
zz|y, G(y| + zzxd(y)y + yzzh(y) = 0, for allz,y,z € J. ®)
Left multiplying (4) by z we obtain
zely, G(y| + zzd(y)y + zyxzh(y) =0, for all z,y € J. (6)
Combining (5) and (6) we arrive at
ly, z|zh(y) = 0, forall x,y,2z € J. (7

If y € J[)Sa«(R), then (7) yields [y, 2]*Jh(y) = 0 = |y, z|Jh(y) = 0, whence it
follows from Lemma 2.1 that h(y) = O or |y, z| = 0, forall z € J.

Lety € J,asy —y* € J[)Sa«(R), then h(y —y*) = O or |y — y*,2) = 0. If
h(y —y*) = 0, then h(y) = h(y*) = (h(y))*. Inlight of (7) we find that h(y) = 0 or
ly,z) = 0. If [y — y*, 2] = 0, then |y, 2| = |y*, 2|, for all z € .J, which gives, because of
(7, ly,z]*Jh(y) = 0, whence it follows that [y, z] = 0 or h(y) = 0. In conclusion, we
find that h(y) = O or |y, J| = 0, for all y € J. Consequently, .J is a union of two additive
subgroups J; and Jo, where J1 = {y € J | h(y) =0} and Jo = {y € J | |y, J] = 0}.
But a group can’t be a union of two of its proper subgroups and thus J = J; or J = Jo. If
J = Jy, then h(J) = O and so J C Z(R), by Lemma 2.3. If J = J,, then |J, J| = 0 and
therefore .J C Z(R), by Lemma 2.2. Hence Lemma 2.4 forces R to be commutative. [ ]

Using the same techniques we can prove the following:
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Theorem 3.2 Let R be a 2-torsion-free x-prime ring and J a nonzero x-square closed
Jordan ideal of R. If R admits a pair of generalized derivations (F,d) and (G, h) with
h # 0 commuting with * such that F(x)x = xG(x), for all x € J, then R is commutative.

Theorem 3.3 Let R be a 2-torsion-free *-prime ring and J a nonzero *-square closed
Jordan ideal of R. If R admits a pair of generalized derivations (F,d) and (G, h) with
h # 0 commuting with * such that |F(z),y| = |x,G(y)|, for all xz,y € J, then R is
commutative.

Proof. By hypothesis we have
[F(z),y] = [z, G(y)], for allz,y € J (8)
Replacing y by 2y in (8) and using (8) once again, we obtain
ylF(x),z] + [z,ylh(z) + ylz, h(x)] = 0, for all z,y € J. 9)
Substituting 2zy for y in (9) and using again (9), we arrive at [z, z|yh(z) = 0, for all
x,y,z € J, which is the same as equation (7). Reasoning as above, we can get the required

result. [ |

Using the same techniques as above we can prove the following:

Theorem 3.4 Let R be a 2-torsion-free *-prime ring and J a nonzero x-square closed
Jordan ideal of R. If R admits a pair of generalized derivations (F,d) and (G, h) with
h # 0 commuting with * such that |F(z),y| + [z,G(y)| = 0, for all z,y € J, then R is
commutative.

Theorem 3.5 Let R be a 2-torsion-free x-prime ring and J a nonzero *-square closed
Jordan ideal of R. If R admits a pair of generalized derivations (F,d) and (G, h) with h #
0 commuting with * such that G|z, y| = |F(x),y|, for all z,y € J, then R is commutative.

Proof. By the given hypothesis, we have that
Glz,y| = |F(x),y, for allz,y € J. (10)
Since J is *-square closed and R is 2-torsion-free, replacing y by 2yx in (10) and using the
identity |z, yz| = |z, y|x, we have G(|z, y|x) = |F(z), yz|. In view of G is a generalized
derivation, we find that G(|z, y|)z + |z, y|h(z) = [F(z),y|x + y[F (x), z|. Using equation
(10) once again, we get

|z, y|h(z) = y|F(z),z|, for all z,y € J. (11)

As above, replacing y by 2zy in equation (11) and using (11), we have |z, z|yh(x) = 0,
for all z,y, z € J. This is the same expression as in equation (7), ending the proof. ]

Using once more the same techniques, we can prove the following:
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Theorem 3.6 Let R be a 2-torsion-free x-prime ring and J a nonzero *-square closed
Jordan ideal of R. If R admits a pair of generalized derivations (F,d) and (G, h) with
h # 0 commuting with x such that, for all z,y € J, Glz,y| + |F(z),y] = 0, then R is
commutative.

Theorem 3.7 Let R be a 2-torsion-free *-prime ring and J a nonzero *-square closed
Jordan ideal of R. If R admits a pair of generalized derivations (F,d) and (G, h) with
d # 0 and h # 0 commuting with  such that F(z)G(y) = wxy, forall x,y € J, then R is
commutative.

Proof. We are given that
F(z)G(y) = zy, for allz,y € J. (12)
Substituting 2yz for y in (12), we find that
F(z)G(y)z + F(z)yh(z) = zyz, for allz,y,2 € J. (13)
Right multiplying to (12) by z, yields that
F(z)G(y)z = zyz, for all z,y,z € J. (14)

On combining equations (13) and (14), we obtain that F'(z)yh(z) = 0, forall z,y, z €
J. Note that F(z)yh(z*) = 0 and by assumption we have that F'(z)y(h(z*))* = 0. By
the fact that J is -invariant, we have that F'(x)y(h(z))* = 0. Hence, by Lemma 2.1, either
F(z) =0,forall z € J, or h(J) = 0. In the former case, replacing = by 2zy, we deduce
that zd(y) = 0 and hence d(y)Jd(y) = 0 = d(y)J(d(y))*, for all y € J. Applying the
+—primeness of J, it follows that d(.J) = 0. In both cases we have J C Z(R), in view of
Lemma 2.4, we are done. [ |

Remark: Though the assumption that a x—square closed Jordan ideal seems close to as-
suming that .J is an x-ideal of the ring, but there exist *—Jordan ideals with the property that
x? € J, forall z € J, which are not *x—ideals. For example: Let Z5 be the ring of residue

classmodulo-2andR={(3 ?)|a,b,c€Zg},J={(3 2) |a,be%g}‘

C

0
see that .J is an *—square closed Jordan ideal but not an *—ideal of R.

sk
Let us define a map *: 12 — R as follows: ( 3 i = ( _ab ) Then it is easy to

Acknowledgments: The author are greatly indebted to the referee for her/his useful sug-
gestions.
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Abstract

Cylindrically symmetric rotating perfect fluid in general relativity have been stud-
ied. The exact solutions of the field equations are studied in two cases, the first solu-
tion,when the rotation is rigid and r-z space is flat and the second when the rotation is

rigid and the pressure is constant.

1 Introduction

Rotating perfect fluid solutions of the field equations of general relativity have been much
sought after because of their important in cosmology and in modelling relativistic stars.

The basic equation of general relativity for stationary and axially symmetric space-time

Keywords and phrases : Cylindrically symmetric space time, perfect fluid solution.
AMS Subject Classitication : 83C05, 83C15.
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was presented in the cylindrical coordinates by Ernst [1]. Tominatso and Sato found some
solutions of this equation due to rotating source [2]. The solution with real value of defor-
mation for this equation in a gravitational field caused by rotating source [3]-[5]. Spher-
ically symmetric perfect fluid solution of Einstein equations have been extensively used
in discussing relativistic star models gravitational claps or in in homogenous cosmological
models. In a standard cosmological models the matter distribution was considered as a ho-
mogenous perfect fluid with the fluid particles (galaxies or galaxies clusters ) moving along
geodesic lines. Differential form approach for rotating fluid has been discussed by Chinea
and Gonzalalez-Romera [6],[7].

Exact solutions are obtained for a rigidly rotating ideal magnetohydrodynamic [8], and
also for perfect fluid [9], with r-z flat apace and a constant pressure are obtained by Khater
and Mourad. The various schemes for studying rigidly rotating perfect fluids in general
relativity are reviewed by Perjs [10]. Pradhan et al.[11]-[13] have investigated a plane and
a cylindrically symmetric inhomogeneous viscous fluid cosmological models with electro-
magnetic fields. Pawar et al. [14] studied the magnetized plane symmetric viscous fluid
cosmological model in General theory of relativity. A regular static interior solution of Ein-
steins field equations representing a perfect fluid cylinder of finite radius is studied by Ali
[15].

This paper is arranged as follows, The field equations and the equation of motion for
perfect fluid are given. Exact solutions For two cases are obtained, the first when the r-z
space is not flat with constant pressure and the second when the pressure is a function with

are r-z space is flat.

2 Field equations
The Einstein field equations are given by

1
Rah = 5.‘3’0}) — _S?TT;;:'} (l]

where T, is the energy- momentum tensor of the source producing the gravitational field.

For the perfect fluid T, takes the form

y ab = (P + P)U-aub - Pgub (QJ
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where p is the mass density, P is the pressure of the fluid and u,, is the Eulerian flow velocity
vector of the fluid such that u“u, = 1. Using the continuity equation (pu®)., = 0. The

conservation of the energy- momentum tensor can be written in the form
(P + p)ufu’ + Pouu’ + Puul, — Pyg™ =0, (3)

where a comma denotes partial differentiation while a semicolon denotes covariant differ-

entiation. The metric in cylindrical symmetric case can be written, [16] as
ds® = fdt* — 2kdodt — 1d6? + e (dr? + dz?) (4)

where the metric functions f, k,{, and ;2 depend on r only.

If we set (zV, 2!, 2%, 2%)= (t,r, 2,0), the components of u” are

flu® = ? =(f — 2k — )3,
s

kA=
S
I
S
I
2
S
I
I
€
S

(5)

where w is the angular velocity. In cylindrically symmetric case, the t—, /—and z— com-

ponents of the equation (3) are satisfied identically while the »— component is given by
%(P +p)(f — 2wk — w1) "2 (f — 2why — W) + Po(f — 2wk —w?)2 =0 (6)
In terms of the metric (4), three of the the field equations can be written as follows
f12¢" D™ Roo = (D7 f,)r + D™3f fyly
= —16m(P + p)e* D7 (f — 2wk — W)Y (f — wk)? — 8w’ f(P—p) (7)
fl2e*D'Ry3 = (D™ k,)r + D3k Sl
= —16m(P + p)et D7 (f — 2wk — W)™ (f — wk)' (k + wl) — 87e" k(P — p) (8)
fl2e*D'Ry3 = (D!,), + D31f, 1,
= 16m(P + p)e* D (f — 2wk — w?) "k — wi)* — 8mel (P —p)  (9)

where D? = fl+k?. We transform to a system of rotating coordinates with angular velocity

w to that given by (4) so that the functions f, k, [ transform to £, K, L such that

fIL=1, K=k+wl, F=[—2wk—wl (10)
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In terms of of new functions, the equations (6) can be written as

1

5(P+p)F 3 (Fy + 2kuwy) + PF3 =0 (11)
The other two non-trivial components of (1) can be written as

1 1 1
fiRy = =S ppe = D™' Dy + oD 'up Dy + D7 (Fr Ly + K7) = dme(P = p) (12)
l —1 ]' -—1 1 ¥
Ry = —g by~ D™ u, D, — v2-D ur Dy = 4met (P — p) (13)

3 The solutions of The Field equations

Now,we try to solve the Einstein field equations for a rotating perfect fluid under two sets
of conditions.
Case A: The rotation is rigid, i.e. w = constant and the r — z space is flat, i.e., e = 1.

From (13), we obtain

P= I (14)
then the equation (11) has the solutions
FP =0, (15)

where (1 is constant.
If we insert these conditions in the field equations (7-9), we get the important combina-
tions

2¢# D~ (1Roo — 2kRo3 — [ Rs3) = Dy, = —167DP (16)
S1—2e*D7Y((k + wl)Roo + (f + w*l)Ros + w(f — wk)Rs3)
= (D"YFK, - KF,)),=0 (17)

2e(Roo + 2wRo3 + w?R33) = AF + D™2F(F,L, + K?) = —327PF (18)

—2¢/(Ra3 + wRy3) = Ak + D 2K (F,L, + K?) = —32n Pk, (19)
where
d* 1 d
A=37  Dbrar (20)

From (12) , we get
1 y
-D7'D,, + ED"‘Z(F.,.L.,. +K2)=0 (21)
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Using (16) in the last equation, we get
16wP + %D—?(F,.L,. + K% =0 (22)
Using the last equations (22) and the equations (18) and (19), we get
AF =0 (23)

Ak =0 (24)

Integrating the last two equations and equation (15 ) , we obtain

Fo=05D, (25)
K =CaD; (26)
FK;— KE:= CyD, (27)
where Cs, C'3, C'y are constants.
From (22) and (15, 16 ), we get
FFE.p +167Ch1 F. =0 (28)

If we put I, = R in the last equation we obtain

dR 16w C
peint R R 2
(Gp)r=——% (29)
or in the form
dF _
= \/CsF + Cs — 32C, FinF (30)
T

Then equation (28) with an equation of state are sufficient to specify the problem. Similarly,
we can find the other metric functions.

Case B: The rotation is rigid,i.e., w = Constant and the pressure is constant, i.e., P =
constant.

From (16), we obtain

D,y = —16me”DP (31)

From (15), we get
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Ti is easy to see that the equations (12-14)reduce to

1 1 1

=S hrr DB §D-"-¢.:,,,D,. - §D‘2Kf = 4mwe (P — p) (33)
1 1 -1 1

—ghr = ED up Dy, = 4dwe! (P — p) (34)

(D-Y(FoK,))r =0 (35)

Integrating the last equation, we get
DY (RK,) = B; (36)
Also the equations (18) and (19) reduce to
D-2(FyK2) = —8ne" Fy(3P + p) (37)

AK + D?*(KK?) = —8me" K (3P + p) (38)

From the last two equations we get

AK =0 (39)

the last equation can be rewritten in the form

K 1 dE
B D D.,.E =0 (40)
From (37) we obtain
Ct
p=3P — —e F (41)
STTF[‘;‘

Adding (33) and (34) and using (35) with £y = 1, we get
Yoy = —Ajet — Ay (42)

2
where Ay = 167 P and Ay = %, If we put @ = %% we get

Q= \/214‘2 —2Agp — 2A et (43)

Then the solution of equation (42) with with an equation of state are sufficient to specify

the problem. Similarly we can find the other metric functions.
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4 Conclusions

The field equations and the equation of motion for an ideal perfect fluid in general relativity
is presented. The exact solutions of the field equations are studied in two cases, the first
solution,when the rotation is rigid and r-z space is flat and the second when the rotation is

rigid and the pressure is constant.
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Abstract

In the present note the notion of involution in near-rings has been introduced and

it is shown that certain near-rings with involution are rings.

1 Introduction

The involution in rings is an old concept and has been studied by several authors in different

directions and it has got tremendous applications in various areas of mathematics (see |2],
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for further reference). Motivated by this concept introduced in ring theory, it is natural to
think about “Near-rings with involution.” The authors investigated this problem and ob-
tained a nice result namely certain near-rings with involutions are rings. The central idea
behind this note is to give a proof for this result. Now we introduce the notion of involution
in near-rings as following. Let NV be a left near-ring. An additive mapping x — z” on N is
said to be an involution on NV if (i) (z*)* = x and (i7) (zy)* = y*z* hold forall z,y € N.
In this case we call that /V is a near-ring with involution or *-near-ring. It is trivial to see
that involution ‘x” satisfies the following properties, (i) 0* = 0, (ii) (—z)* = —z* and
(7it) “+ is a bijective map. Finally we can say that ‘+’ is a near-ring anti-automorphism of

N.

Example 1. Let S be a zero symmetric left near-ring. Suppose

0 =z y
N = 0 0 0 |]|x,y0€S }.Define*: N — N such that
0 00 |
0 =z y ’ /O y
0 0 0 . 0 0 0
00 0 \ 0 0 0

Then, it is straightforward to check that V is a zero symmetric left near-ring and ‘*’ is an

involution of V.

0z y
Example 2. Suppose N = 00 =z | z,y,2,0 € S 3, where S is a commutative
0 0 0
near-ring.
0 =z y ’ 0 2z y
Define x : N — Nsuchthat | 0 0 2z = 0 0 x | .Itisstraightforward to
0 0 0 0 0 0

check that N is a %-near-ring.

Now we state an important property of near-rings with involution by proving the following

lemma, which will be used later while proving our main result of this note.
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Lemma. Let N be a near-ring with involution ‘+’. Then
(7) N is a distributive near-ring.
(#2) N is a pseudo-abelian near-ring i.e.; zy + 2zt = 2t + zy forall z,y, 2.t € N.

Proof. (i) Forall z,y,z € N we have {(y + 2)z}* = 2*y* + z*2*. Now taking the image
of both the sides under ‘+” we get (y + 2)x = yx + zx. This means that N is a distributive

near-ring.

(#2) Since N has both distributive properties, expanding (r+z)(t+y) forall z,y, z,t € N,

we have xt + xy + 2t + zy = xt + 2t + xy + zy. This implies our required result.

We are aware of the notions of prime rings with involution, semiprime rings with involution
and x-prime rings in ring theory earlier with their nice properties. Motivated by these con-
cepts, we introduce prime near-rings with involution, semiprime near-rings with involution
and x-prime near-rings and prove that prime near-rings with involution, semiprime near-
rings with involution and *-prime near-rings are prime rings, semiprime rings and *-prime

rings respectively.

Definition. Let NV be a near-ring with involution “*’. Near-ring /V is called prime near-ring
if a,b € N and alNb = {0} implies that @ = 0 or b = 0. Near-ring N is called semiprime
near-ring if @ € N and aNa = {0} implies that @ = (0. Near-ring N is called *-prime
near-ring if a,b € N, aNb = {0} and aNb* = {0} (equivalently a,b € N, aNb = {0}
and a*Nb = {0}) implies that a = 0 or b = 0.

Now we prove our main results of this note as given below:

Theorem 1. Let N be a prime near-ring with involution. Then NV is a ring.

Proof. Since N is a prime near-ring with involution ‘x’, by above lemma we obtain that

N is a distributive near-ring and for all x,y,2,{ € N we have zy + zt = zt + xy. Now
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replacing y by ¢ in the last relation we obtain that 2t + z{ — 2t — 2t =0 forall x, z,{ € N.
This implies that (z+ 2 —z—2)N = {0}i.e; (z+z—x—2)Nl = {0}, where 0 # ! € N.
Now primeness of N provides that z + z = z + z for all z, z € N. Therefore (N, +) is

abelian. Finally we conclude that N is a ring.

Theorem 2. Let N be a semiprime near-ring with involution. Then N is a ring.

Proof. Since N is a semiprime near-ring with involution ‘x’, by above lemma we obtain
that IV is a distributive near-ring and for all =, y, z,¢ € N we have xy 4 2t = z{ + zy. Now
replacing y by ¢ in the last relation we obtain that 2t + 2{ — 2t — 2t = O forall x, z,{ € N.
This implies that (z+ 2 —z — 2)N = {0} ie;(z+z—z—2)N(z+ 22—z — z) = {0}.
Now semiprimeness of [V provides that z + z = z + x for all z, z € N. Therefore (N, +)

is abelian. Finally we conclude that N is a ring.

Theorem 3. Let N be a x-prime near-ring. Then NV is a *-prime ring.

Proof. Since N is x-prime near-ring, by above lemma we obtain that N is a distributive
near-ring and for all x,y, 2z, € N we have xy + z{ = 2t 4+ xy. Now replacing y by ¢ in
the last relation we obtain that xt + 2zt — xf — 2t = O for all =, z,t € N. This implies that
(z+2z—x—2)N = {0}. In turn we obtain that (z+2—x—2z)NIl = {0} = (z+2—z—2)NI*,
where 0 £ | € N. Now *-primeness of N provides that x + z = z + x for all z,z € N.

Therefore (N, +) is abelian. Finally we conclude that /V is a *-prime ring.
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Abstract

Let R be a ring and ¥ be the set of non-negative integers. Suppose &, 7 are
endomorphisms of K such that 7 is one-one, onto and o7 = 7o. A family ¥ =
{fn}, gy of additive mappings f, : R — R is said to be a generalized Jordan triple
(e, 7)-higher derivation of R if there exists a Jordan triple (o, 7)- higher derivation
B = {dﬂ_}ﬂdgr of R such that: fy, = Ig, the identity map on R and f,(aba) =

> file™(a))d;(o* T (b))dr (™7 (a)) holds for all a,b € R and for each
itjrk=n
7 Je ¥. In the present paper it is shown that on a prime ring K of characteristic dif-
ferent from two every Jordan triple (o, 7)- higher derivation of R is a (o, 7)- higher
derivation of K and further using this result it is proved that every generalized Jordan
triple (o, 7)- higher derivation on a prime ring R of characteristic different from two
is a generalized (o, 7)- higher derivation on R. Some more related results are also
obtained for semiprime rings.

1 Introduction

Throughout, R will represent an associative ring with center Z(R). A ring R is n-torsion
free, where n > 1 is an integer, in case nx = 0,z € R, implies x = 0. For any x,y,z €

Keywords and phrases : derivation, higher derivation, Jordan triple derivation, generalized derivation.
AMS Subject Classitication : 16W25, 16N60.
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R, |z,y| = xy — yx will denote the usual Lie product and the element zyz — zyx will be
denoted by [x,y, z|. Recall that a ring R is prime ( resp. semiprime) if a Rb = {0} implies
thata = O or b = 0 (resp. if aRa = {0} implies that a = 0). We denote by Q,., Q5 and C
the right, symmetric Martindale ring of quotients and the extended centroid of a semiprime
ring R, respectively. For more details about (),., (); and (' we refer the reader to [3]. An
additive mapping d : R — R is called a derivation if d(ab) = d(a)b + ad(b) holds for all
pairs a,b € R. A derivation d : R — R is inner in case d is of the form d(z) = |a, z| for all
x € R and some fixed element @ € K. An additive mapping d : £ — R is called a Jordan
derivation in case d(a*) = d(a)a + ad(a) is fulfilled for all @ € R. Every derivation is a
Jordan derivation, but the converse is not true in general. A classical result of Herstein [21]
asserts that every Jordan derivation on a prime ring with characteristic different from two
is a derivation. A brief proof of Herstein’s result can be found in [9]. Further, Cusack [11]
generalized Herstein’s theorem to 2-torsion free semiprime rings (see [6] for an alternate
proof). Beidar, Bresar, Chebotar and Martindale [4] fairly generalized Herstein’s theorem
(see also [32]). An additive mapping d : K — [ is called a Jordan triple derivation in
case d(aba) = d(a)ba + ad(b)a + abd(a) holds for all pairs a,.b € R. It is easy to prove
that every Jordan derivation on an arbitrary 2-torsion free ring is a Jordan triple derivation.
Bresar [7] proved that every Jordan triple derivation on a 2-torsion free semiprime ring is a
derivation. This result has been recently generalized by Liu and Shiue [25]. Motivated by
Bresar’s result, we have just mentioned above, Vukman, Kosi-Ulbl and Eremita [31] proved
the following result; let 7' : R — R be an additive mapping, where R is a 2-torsion free
semiprime ring, satisfying the relation T'(aba) = T'(a)ba + aT'(b)a + abT'(a) for all pairs
a,b € R. In this case T is of the form 27'(a) = qa + aq for all @ € R some fixed element
q € (Qg (see also [24]). For results concerning Jordan derivation and related mappings in
prime and semiprime rings we refer to [4],[16],[18], [30], [33],[29] etc.

Let o, 7 be endomorphisms of a ring K. An additive mapping d : & — R is called
a (o, 7)-derivation in case d(ab) = o(a)d(b) + d(a)7(b) holds for all pair a,b € R and is
called a Jordan (o, 7)-derivation if d(a*) = o(a)d(a) + d(a)7(a) is fulfilled for all a € R.
Bresar and Vukman [10] have proved that every Jordan (o, 7)-derivation on a prime ring
with char(R) # 2 is a (o, 7)-derivation. This result has recently been generalized by Liu
and Shiue [25] on 2-torsion free semiprime rings. An additive mapping 7" : B — R is
called a left (right) centralizer in case T'(ab) = T'(a)b (T'(ab) = aT'(b)) holds for all pairs
a,b € R. An additive mapping 1" : K — R is called a two sided centralizer if 1" is both a
left and a right centralizer. An additive mapping 7' : R — R is called a left (right) Jordan
centralizer if T'(a*) = T'(a)a (T'(a*) = aT(a)) is fulfilled for all a € R. In the year 1991,
Zalar [35] proved that every left (right) Jordan centralizer on a semiprime ring is a left
(right) centralizer. Later Vukman [27] established that every additive mapping 7' : R — R,
where R is a 2-torsion free semiprime ring, satisfying the relation 27'(a*) = T'(a)a+aT (a)
for all @ € R is a two sided centralizer. For results concerning centralizers on rings and
algebras we refer to [5],[14],[15] etc., where further references can be found.

An additive mapping f : B — R is said to be a generalized derivation if there exists
a derivation d : R — R such that f(ab) = f(a)b+ ad(b) holds for all a,b € R. The
concept of generalized derivation has been introduced by Bresar [8]. The concept of gen-
eralized derivation covers both concepts the concept of derivations and the concept of left
centralizers. It is easy to see that generalized derivation are exactly those additive map-
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pings f, which can be written in the form f = d 4+ 7', where d is a derivation and 1’ is
a left centralizer. One can easily prove that in case of a semiprime ring the decomposi-
tion of a generalized derivation as the sum of a derivation and a left centralizer is unique.
For results concerning generalized derivations we refer to [23]. Jing and Liu [24] intro-
duced the concept of generalized Jordan derivation. An additive mapping f : B — R is
said to be a generalized Jordan derivation if there exists a Jordan derivation d : K — R
such that f(a*) = f(a)a + ad(a) holds for all a,b € R. Recently in the year 2007 Vuk-
man [28] proved that every generalized Jordan derivation on a 2-torsion free semiprime
ring is a generalized derivation. Generalized derivation was then extended to generalized
(o, 7)-derivation. An additive mapping f : R — R is said to be a generalized (o, 7)-
derivation (resp. generalized Jordan (o, 7)-derivation) if there exists a (o, 7)-derivation
d : R — R such that f(ab) = f(a)7(b) + o(a)d(b) (resp. f(a*) = f(a)7(a) + o(a)d(a))
holds for all a,b € R. Clearly this notion includes those of derivation when f = d
and ¢ = 7 = Ip, of (o, 7)-derivation when f = d and of generalized derivation when
o = 7 = Ir. One natural generalization of a Jordan triple derivation is that of gener-
alized Jordan triple (o, 7)-derivation which was defined by Liu and Shiuve [25]. In accor-
dance to our notation, an additive mapping f : K — R is said to be a generalized Jor-
dan triple (o, 7)-derivation if there exists a Jordan triple (o, 7)-derivation d of R such that
flaba) = f(a)T(ba) + o(a)d(b)T(a) + o(ab)d(a) holds for all a,b € R. In fact, it was
shown that every generalized Jordan triple (o, 7)-derivation on a 2-torsion free semiprime
ring 18 a generalized (o, T)-derivation (for reference see Theorem 3 of [25]). There has been
a parallel study of different kinds of higher derivations, which consists of family of some
additive maps in the setting of rings and algebras.

Let NV be the set of all non-negative integers. Following Hasse and Schimdt [20], a fam-
ily of additive mappings D = {d, },  on R is said to be a higher derivation (resp. Jordan
higher derivation) on R if dy = Ir(the identity map on R) and d,,(ab) = > d;(a)d;())

it+j=n
(resp. dy(a®) = 3. di(a)dj(a)) holds for all a,b € R and for each n € N. Various
i+j=n
results proved for derivations and generalized derivations were shown to be true in case of
higher derivations, for references see [12],[13], [19] etc. The concept of higher derivation
was extended to (o, 7)-higher derivation by the authors together with Haetinger [1] as fol-
lows: let D = {d,}, be a family of additive maps d,, : R — R. Then D is said to
be (o, 7)-higher derivation (resp. Jordan (o, 7) higher derivation) on R if dy = Ir and
dn(ab) = 3 di(0"'(a))d; (1" (b)) (resp. dn(a®) = 3 di(0"'(a))d;(7"(a))
itj=n i+j=n
holds for all a,b € K and for each n € N. The authors introduced the concept of general-
ized (o, 7)-higher derivation in [2] as follows. A family F' = {f,} _y of additive maps
fn+ R — Ris said to be a generalized (o, 7)-higher derivation (resp. generalized Jordan
(o, 7)-higher derivation) of R if there exists a (o, 7)-higher derivation D = {d,.}, j of
R such that: fo = Ig and fn(ab) = Y fi(6™ (a))d;(7" (b)) (resp. fn(a?) =
i+j=n

> file™ *(a))d; (7™ (a)) holds for all a, b € R and for each n € N. Motivated by the
i+j=n
concepts of Jordan triple derivation and generalized (o, 7)- higher derivation we introduce
the notion of generalized Jordan triple (o, 7)-higher derivation as follows: a family of ad-
ditive mappings F' = {f,} . of R is said to be a generalized Jordan triple (, 7)-higher
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derivation if there exists a Jordan triple (o, 7)-higher derivation D = {d,} _j of R such

that fo = Ig and fy(aba) = >,  fi(e™ *(a))d;(a®7'(b))dk (7" *(a)) holds for all
i+j+hk=n

a,b € R and every n € V. Con;equently, in the above definition for f; = d; we get the

notion of Jordan triple (o, 7)-higher derivation.

In the present paper we first establish that on a prime ring R of characteristic different
from two every Jordan triple (¢, 7)- higher derivation of R is a (o, 7)- higher derivation of
R and as an application of this result it is shown that every generalized Jordan triple (o, 7)-
higher derivation of R is a generalized (o, 7)- higher derivation of R. Throughout the paper
o, 7 will denote endomorphisms of R such that 7 is one-one and onto and o7 = 70.

2 Jordan triple (o, 7)-higher derivation

For every fixed n € N and each a.b,c € R we denote by ¥,,(a,b) and ¥, (a,b.c) the
elements of A as

‘I"ri(“ b n ab Z d a"” % ( s j(b)]

i+j=n

and
Un(a,b,¢) =dn(abe) — > di(o" " (a))d;(o"r(b))di (v F(c)).
i+j+hk=n
It can easily be seen that ¥, (a, b) and ll'n(a, b, c) are additive in each argument and
n(a b) = =W, (b,a) and ¥, (a,b,c) = —W,(c,b,a). Obviously if ¥, (a,b) = 0, then
= {dn},x is a (o, 7)-higher derivation and if D = {d, }, is a Jordan triple (o, 7)-
hlgher derivation then ¥, (a,b,a) = 0. In view of Lemma 2. 2 01 [1] it can be easily seen
that on a 2-torsion free ring every Jordan (o, 7)-higher derivation is a Jordan triple (o, 7)-
higher derivation but the converse need not hold in general. In this section we shall prove
the following result:

Theorem 2.1. Let R be a prime ring of characteristic different from two. Then every Jordan
triple (o, T)-higher derivation of R is a (o, T)-higher derivation of R.

Let us start by stating some known lemmas which are crucial in developing the proof
of our theorem.

Lemma 2.2([3], Proposition 2.2.1). Let R be a semiprime ring. Then (), satisfies:
(¢) R is a subring of Q.
(#i) Forall q € Q, there exists a dense ideal I of R such that qI C R.

(iti) Forall q € Qp, qI=0if and only if ¢ = 0.

(iv) For any dense ideal I and d : Ir — Rp there exists q € Q, such that d(z) = qx for
all v € 1.
Furthermore, these properties (i) — (iv) characterize Q, up to isomorphism.
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Here, it is worth mentioning that if R is a semiprime ring then (), is also semiprime
containing the identity element.

Lemma 2.3([13]). Assume that R is a 2-torsion free semiprime ring. Let G1.Ga, -+ , Gy,
be additive groups, S : G1 xGax - xGy — RandT : Gy xGax---x G, — R bethe
mappings which are additive in each argument. If S(ay,as,- - ,ap)xT (a1, a9, ,ap) =
Oforeveryx € R, a; € G;, i =1,2,--- ,nthen S(a1,as, -+ ,an)xT (b, bo,--- ,by) =0
Joreverya;, b € Gy, i=1,2,--- ,n.

Lemma 2.4([22], Lemma 3.10). Let R be a prime ring of characteristic different from two
and suppose that a,b € R are such that arb+ bra = 0 for all r € R. Then either a = 0 or
b=0.

‘We shall begin by proving the following result:

Lemma 2.5. Let R be a 2-torsion free ring and D = {dy }, v be a Jordan triple (o, 7)-
higher derivation of R. If V,,(a,b,c) = 0 for all m < n then ¥, (a,b,c)x7"[g,h, k] =0
forall a,b,c,x,g,h, k € Rand everyn € N,

Proof. . Consider ( = abcxcba + cbaxabe. Then,

dn(¢) = dn(a(bczcb)a) + dy(c(bazab)c)
> di(0™(a))di (o T (b(cac)b))dk (T (a))

i+ j+k=n _ )
+ X di(o"(e)dj(o T (blaza)b))di (1" F(c))
i+j+k=n
— E (di(ﬂf"—?:(a))df(0'y+p+q+““+k‘7‘i(b))d.y(O‘p—'—q_}—s"}—k?‘iﬂ((‘,)]

i+l+y+p+gt+stk=n
dp(o.r,w}- .s-+£.r,ri+£-+—y($))dq (0»5‘1'1"1 ,T.i+1'+y+p (C))dﬁ (o.kTi+I+y+;;+r;(b) )dk (Tn—k (a)))

s Z d?:(Jn—i(C})dl(0y+p+q+3+k75 (b))dy(UP+Q+s+kT-£+I(a)]
i+l+y+p+gts+k=n

dp(gr;--}—ﬁ+ﬁ.:7.i~+~i+y (II?))dq (g.‘;+k,ri+f.+y+'p(a))ds (UkTi-+!+3‘r+?’+q (b))dk (7-”_'*:((’.))) .

(1)

Again consider, d,,(¢) = dn((abc)x(cba) + (cba)x(abc)) and apply Lemma 2.6 of [1] to
get :

WO =Y (dalo™(abe))dy(077 @), (7" (cba)

a+ptry=n

+do (0" (cba))dy (a7 T (:.-:))dn,-(rn_*”(abc))) : (2)
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Equating (1) and (2) we have,

0= Z (da n—i ﬁ'))d; y+p+{;+5+k7‘i(b))dy(O‘I}+Q+S+k7‘i+£((‘.)]
i+Hl4y+ptgtst+h=n
dp(gq-f-s-f-k,?.ﬂ-i«ky(w))dq (o.s+k:7.i+l+y+p (C))ds (o.k,?.i+i+y+p+q(b) )dk (Tnmk (a))]
— Y da(0™(abe))dy (0770 (x))dy (7 (cba))
QA pty=n
tR (dlom @) oV b))y (o Rt o)
i+Hl+y+ptgtst+k=n
dp(o“”"‘ﬂf'?"}“y(&"))dq(O‘HH 1+I+y+p( ) (0‘ T¢+r'+J+p+q(b))dk(Trt-k(c)))

— Y da(0"(cba))dy (07T (), (7" (abe)).

QA pty=n

(3)

Now consider the first term, that is,

(0™~ (@) ds (0¥t sthri(b))dy (P oo Hhrit(c)
itHl+y+pt+gtst+h=n
dp(o.q+s+k,?.i+£+y($))dq(O.s+k:7.i+l+u+p( )d (O'kTi+£+y+p+{"(b))dk(?'”'"k(a)))
= 2 di(0™H(a))di(a¥Ti(b))dy (T ¥ (e)) T (x)7" (cba)
i+l+y=n
+ X crn(a,bc)cr”(:r)alq(a'”_‘i’(c:))d.s(a‘*r‘?( ))di (7" *(a))
q+s+k=n
+F (dlom @) A ), (o7 o)
t+l+yt+gt+st+k=n
0<i+H4+y,q+-5+hk<n—1

(O.q-i—s-i—th'—f—l-i—y(x))dq( sthrithty(c))d (GkT‘HJ”””L"'(b))dk(T”_k(a)))

4 T (.:zz-(o i(@))dy (GUHHsHHLL (b)) d, (o HRHL7iH (o))
i+H+y+gt+s+h=n—1

dl(o.r;+,i;+k7.i+£+y(m))dq(o.s+k,ri+ﬂ+y+l(C))ds(o.l.".,?.'i+r'.+y+q+l(b))dk(,rn-k(a)))
+ -+ di(e™ a))(ro™ 1 (b)) (To™ l(c))dn 1(7(x))7" (cba)

+J”( Yd1 (6™ (b)) (o™ 1 (¢))dn_1(7(x))7"(cba)
+o™(ab)dy (¢ 1({:))(1&n 1 (7(x))T™( (‘ba
+0" (abe)dn—1(o(x))dr (7" (¢))7" (ba
+o"(abe)dp—1(o(x)) (o™ (c))di (7"~ l(b))f”(ﬂr)
+o"(abc)d, (U(x))(UT”_l(C))(UT"_I(b))dl(’f"_l(a))

o™ (ab(’)d (:1:) " (cba).
Further calculate the second term;

> da(0™(abe))dy (077 (z))ds (7 (cba)
aAp4y=n

= dyp(abc)t"(z)m"(cba) + " (abc)o™ (x)d,, (cba)
+ Y do(0"%*(abe))o T (x)d (7" (cba))
a+y=n
O<a,y<n—1
X dalo™ (abe))ds (077 (@) (" (cba)
+ oo +dy (o™ (abe))dp—1 (T(x))T™ (cba)
+0"(abe)dp—1(o(x))dy (7" (cba)) + o™ (abc)dy (x)7™ (cba).
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Using the hypothesis that ¥,,(a. b, ¢) = 0 for all m < n.

do (0"~ (abe))dp (077 () dy (" (cbar))
QA pty=n

= dy(abe)T™ (x)7"(cba) 4+ o™ (abc)o™ (z)d, (cba)
+ D (@) (b)) d, (ot o)
i+l4y+gts+k=n
0<i+H+y.g+s+k<n—1

o.q+s+k7.z'+l+y (.T)dq (O.s+k,?..?:+|f.+y (C)}d3 (o.k,ri+!+y+q (b) )dk (TT-:.—k (G)))

+ X (bl @) di (vt ))dy (ritorte i )
i+l+y+g+s+h=n—1

dl(gq-f—s—HcTi—H-i-y(x )d H—I—R: i+f+y+1(c))ds(o.k?.i-‘rl+y+q+l(b))dk(?.n-—k(a)))
+ -+ 0" (abe)dn—1(a(x))dr (7" (c)) 7" (ba)
+a™(abe)d,—1(o(x)) (o™ 1 (c))dy (7" 1({')))?" (a)
+0"(abe)dn—1(a(x)) (a7 (c)) (a1 (b))d1 (7" (a))
+di(c™ " (a))(ra" 1 (b)) (To™ 1((‘)) n 1(7())7" (cba)
+0"(a)da (0™ (8)) (0™ (€)1 (7)) 7™ cba)
+o"(ab)dy (0" (c))dn—-1(7(2))7’ (CbaJ
+o"(abe)d, ()" (cba).

Now, subtracting the two terms so obtained and using the hypothesis that o7 = 70 their
difference yields;

dp (abe)T" "(cha) — L di (6™ (a))dy (o (b)) ds (7™ % (¢)) " (@) 7" (cba)
i+l+s=n

= {d,(abc) — Z: di(6™ " (a))dy (o7 (b))ds (775 (¢)) }7" () 7™ (cba)
i+l+s=n

= W, (a,b, )" (2)" (cha).

Similarly, the difference of the last two terms of the equation (3) yields

(dilm= (D a¥PHarshri(y))d, (oo hritl(a))
ity +ptatstk=n '

dp(o.q+s+k,ru:+£+y($))dq (05+R:Ti+£+y+p(a_) )ds (g"-q-""i""*y"*"}f""‘?(b) )dk (T”"‘" (c)))
— Y da(o™%(cba))dp(a7T(z))dy (T (abc))
a+ptry=n
= W,(c,b,a)r"(z)7"(abe).
Thus, equation (3) reduces to

0=V,(a,b,c)r"(z)t"(cba) + ¥, (c,b,a)T" (z)T" (abe)

U, (a,b,c)r"(x)7"a,b,c| = 0 for all a,b,c € Rand eachn € N.
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Since 7 is one-one and onto, using Lemma 2.3 we obtain that ¥, (a,b, c)z7"|g, h, k] =
Oforall a,b,c,z,9,h,k € R and each n € V. C

Lemma 2.6. Let R be a 2-torsion free semiprime ring and D = {dy} .y be a Jordan
triple (o, T)-higher derivation of R. If ¥,,,(a,b,¢) = 0 for all a,b,c € R and m < n then
V,(a,b,c) € Z(R) for every n € N and each a,b,c € R.

Proof. . Forn = 0, ¥y(a,b,c) = 0 € Z(R). By induction let us assume that ¥, (a, b, ¢) €
Z(R) for every a,b,c € R and for all m < n. By Lemma 2.5, for all a,b,¢,7,9,h € R
we have, 7|77 (¥ (a,b,c)), g, hlrt™ |77 (Vp(a, b,c)), g, h] = (¥n(a,b,c)m"(gh) —
7" (hg)®n(a,b,c))rm" |77 " ¥, (a, b, c), g, h| = 0.

Thus |¥,,(a,b,c),g,h] = 0forall a,b,c,g.h € R. If we fix the coefficients (a,b,c) and
regard [V, (a,b,c),g,h] = 0 as a generalized polynomial identity with respect to the two
variables g. h and as we know that R and (), satisfy the same generalized polynomial iden-
tity, (Y, (a,b,c),g,h] = 0 forall g,h € Q,. Since @, has the identity element, we obtain
[V, (a,b,c),g] = 0forall g € Q. In particular, [¥,,(a,b,c),g] = 0 forall g € R and
hence we have ¥,,(a,b,c) € Z(R). O

Corollary 2.7. Let R be a 2-torsion free semiprime ring and D = {d, },  be a Jordan
triple (o, 7)-higher derivation on R. If ¥,,,(a,b,c) = 0 for all a,b,c € Rand m < n
then V,,(a,b,c)t"|g, h,d| = 0 for all a,b.c.g,h,d € R and each n € N. In particular,
Y, (a,b,c)7"|g, h] = 0.

Lemma 2.8. Let R be a prime ring of characteristic different from two and D = {d,, }
be a Jordan triple (o, T)-higher derivation of R. If V,,(a.b,c) = 0 forall a,b,c € R and
m < n, then ¥,,(a,b,c) =0 forall a,b,c € R and eachn € N.

Proof. . Let us first consider the case when £ is commutative. Suppose

9 = dy(a’be + cba?)
= % (Al @)y (P ) di(7 (o)

i+j+k=n
+di(0" 7 (e))d; ("7 (b)) dg (7" (a?))).

Again consider

g = dn((abc)a-a-+a-a(abc))
= ¥ (dilo" " (ab))d;(oF T (a))di (7" ¥ (a))
i+j+k=n

+di(0"(a))d; (0% T (a))dy (»rﬂ—k(a.bc))) .
Comparing the above two equations we have

0= Z di(c" " (abe))d; ("7 (a))dyk (7" (a))
i+jt+k=n (4)

=Y di(0™i(e))d; ok (8)di(rmF(a?)) = 0.
i+j+k=n
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Consider the first term of the equation (4)

_+_§ di(0™ " (abe))d;(o" ! (a))dk (7" (a))
i+j+k=n
= ¢"(abc) __g: d;j (0™ (a))di (7" *(a)) + dp(abc)T™(a?)
Jt+k=n
+ Z di(c™ " (abe))d; ("7 (a))dy (1" (a)).
i+ j+hk=n
0<ij+k<n—1

Now consider the second term of the equation (4)
> di(0"7(e))d;(o" T (B))dy (7" 7R (a?))

i+j+hk=n
_ Z (di(oﬂ'_i(c))dj (G_r—f—s-f—f,?.'i(b))d_r (Us-i-i,?.i—l—j (a_))
t+7+rt+st+t=n

(0P (a))dy (7 (a))
=o0"(cha) 3. di(o"%(a))di(t"(a))

s4+t=n _
+ Y di(0"H(@)d; (o (b)) d (7 (@) 7 (0)
i+j+r=n
+ Y (e @y (o ) (0% a)
i+j+r4sti=n
O<itj+rs+i<n—1

ds (o.t,rz'+,?'+.r (a))dt (,rn—f(a))) .
Since R is commutative, equation (4) reduces to

{dn(abc) = 3= di(0"(a))d; ("7 (b))di (7" *(c)) }7"(a®) = 0,
i+j+k=n
i.e; W, (a,b,c)r"(a*) = 0 for all a,b,c € Rand eachn € N.

Using Lemma 2.6, we obtain that

(Un(a,b,c)t(a))R(Y,(a,b,e)7™(a)) = ¥y(a,b,c)r"(a*) RV, (a,b,c) = 0.
Implementing the primeness of R we get ¥,,(a, b, ¢)7"(a) = 0 for all a, b, c € R and each
n € V. Linearizing the above equation on a we obtain W, (a, b, ¢)7"(s)+V,(s,b,¢c)7"(a) =
0, forall a,b,c,s € Rand eachn € N.

Thus we have,¥,,(a, b, c)7"(s) RV (a,b,c)7"(5)=—¥y(s, b, )" (a) RV, (a, b, c)T" (5)
=V, (s,b,¢)7"(s)R¥y(a,b,c)T"(a) =0 for all a,b,c,s € Rand eachn € N.

As Risprime, ¥, (a,b,c)7"(s) = 0foralla,b,c € Randeachn € N. Finally ¥,,(a,b,c) =
O forall a,b,c € Rand eachn € V.

Now let us consider the case when R is non-commutative. From Lemma 2.6 and Corollary
2.7 we can easily obtain that

U, (a,b,c)rm" |kl + 7"k, l|r¥p(a,b,c) = 0 for all a,b, ¢, k,l € Rand eachn € N.

In view of Lemma 2.4 this implies that either ¥, (a,b,c) = 0 for all a,b,c € R or
"k, 1] = 0forall k,l € R. Butif 7"|k,[| = 0, then since 7 is an automorphism, we find
that |k,l] = 0 for all k,1 € R, a contradiction. Therefore, ¥,,(a,b,c) = 0 for all a,b,c €
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R. C

Proof of Theorem 2.1. Let D = {d,,}, j be Jordan triple (o, 7)-higher derivation of R.
It can be easily seen that ¥y(a,b) = 0. By induction assume that ¥,,(a,b) = 0 for all
a,b € R and each m < n. Fora, b,z € R, take £ = abzrab and using Lemma 2.8 we get,

dn(§) = dn(a(bra)b) )

= > di(6"(a))d;(c* 7 (bza))di (7" * (D))
i+j+hk=n

= X d @) ) (" zab)
+ Y (0"(abz))dy (0" (a))di (K (b))
q+hk=n
+ ¥ (Ao @)y (o) (0T @)
i+s+g+k=n
i+s,g+k<n—1

do(o¥¥1(a))di (7 (5)))

bS (dlom @)y )
i+s+gt+hk=n—1

(o7 @)y )y ®)))

+- +d1 ""Ha))(a" 17 (b))dn—1(7()) (7" (ab))

‘|‘Gn( a’= 1 )dn l( ( )( ” ab))
n(a n— 1(0 (x))d1 (T (@) (77 (b))
Lo (oo @ (1)

0™ (ab)d ()" (ab).

On the other hand using the fact that ¥, (a,b) = 0 for all m < n we obtain,
@() = du(ab)z(ab)) |
Y. di(o™ " (ab))d;(o* T (x))di (T " (ab))

i+j+hk=n

r:r"g(;b)o”(:r)d (ab) + dy(ab)T™(z)7" (ab)

+ Y (e @) (TP (B) (0T ()
I+s+p+g=n

I+s.g+p<n—1

g0 (a))dy (77 1))
2 (e @)y (o)
I+s+p+g=n—1
di(0THEr1+(2))dy (P74 (0))dy (7P (1)
e di (0" (@) (70" () dnt (7(2)) (7 (ab))
+or (@ " O () (7 ()
(0™ (ab))dn—1((2))da (7" (@) 7" (8
+(0" (ab))dy—1 (0 (x ))(w“—l(a))dl(r'”-—l(bn
+(0" (ab))dn () di(7"(ab)).

Comparing both the equations and reordering the indices, we have
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0 = {dnlab)— > di(o™ " (a)d;(r"7(5))}r" ()7 (ab)
i+j=n
= U,(a,b)r™(xz)r™(ab) for all a,b € R.
Using Lemma 2.3 we have ¥, (a,b)z7" (wz) = 0 for all a, b, z,w, z € R. This yields that
wr (¥, (a,b))zwr™" (¥, (a,b)) = 0 and the primeness of R gives wr " (¥, (a,b)) =0
for all a,b,w € R. Hence 77 ™(¥,,(a,b))RT"(Vy(a,b)) = 0 for all a,b € R. Finally we
obtain that U,,(a, b) = 0 forall a, b € R which completes our proof.

Remark 2.9. It can be easily observed that Lemma 2.8 follows when £ is a commutative
semiprime ring, and the proof of Theorem 2.1 is also valid in the present situation. Hence,
one can announce the following:

Theorem 2.10. Let R be a 2-torsion free commutative semiprime ring. Then every Jordan
(o, 7)-higher derivation on R is (o, T)-higher derivation on R.

As mentioned earlier, on a 2-torsion free ring every Jordan (o, 7)-higher derivation is
a Jordan triple (o, 7)-higher derivation. Combining this fact together with Theorem 2.1 we
have

Theorem 2.11. Let R be a prime ring of characteristic different from two. Then every
Jordan (o, 7)-higher derivation on R is (o, T)-higher derivation on R.

Corollary 2.12([[19], Theorem 2.1.10]).Every Jordan higher derivation on a prime ring of
characteristic different from two is a higher derivation.

Corollary 2.13([[22] , Theorem 3.1]).Every Jordan derivation on a prime ring of charac-
teristic different from two is a derivation.

3 Generalized Jordan triple (o, 7)-higher derivation

Let us denote ®,,(a,b) and @,,(a, b, ) the elements of R as:

@ (a,b) = falab) = Y fi(o""(a))d;(7" 7 (b))

it+j=n
and
®p(a,b,¢) = falabe) = Y fila" " (a))d;(o" 7' (b)) di(7" ()
i+j+hk=n
for every fixed n € N and each a,b,c € R. ®,(a,b) and <I>n_(a._ b, ¢) are additive in each
argument and ®,(a,b) = —®, (b, a) and ®,,(a,b,c) = —P,(c, b, a). In the present section

we shall find the conditions on R under which every generdlized Jordan triple (o, 7)-higher
derivation is a generalized Jordan (o, 7)-higher derivation which generalizes the results ob-
tained in [24], [25], [34].
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Lemma 3.1. Let R be a 2-torsion free ring and F = {f,} _x be a generalized Jordan
triple (o, 7)-higher derivation on R with associated Jordan triple (o, T)-higher deriva-
tion D = {dy}, x- If Pm(a,b,c) = 0 for all a,b,c € R and every m < n, then
b, (a,b,c)xt"(g,h, k] =0 forall a,b,c,x,g,h,k € Rand everyn € N.

Proof. . Consider n = abczcba + chbaxabe. Then

fam) = falalbezcb)a) + fu(c(bazab)c)
> fila"H(a))dj (0" (b(cwe)b))di (7" (a))

i+j+hk=n ) )
+ Z fi(o'”_“(c))dj(okrl(b(ama)b))dk(T”'_”((:)]
i+j+khk=n
— Z (ft (O.n—f,(a))di(O.y+;;+q+s+#c,?.i(b))dy (o.p—i—q—lws+k,?.i+£(c))

i+l+y+p+gtstk=n

dp(o.q-f—s-kk,?.iﬂ—ky(w))dq(gs+k:7.i+£+y+p(c))ds(o.ﬂ:,?.i+£+y+p+q(b))dk(,rn-—k(a)))

s Z (fz (o.n—'.r', (C))dg(((?y+p+q+";+k7'i (b))dq (gp-f—q-f—s-i—kTi-i—! (an
i+ +y+p+gt+st+k=n

dp(oq-l—s-}—kq.i—i—ﬁ-i—y(x)dq(O.s—f—k,?.i-i—i-i—y-irp(a))ds (Uk,?_-e+e+y+p+q(b))dk (Tn—k(c))) _

(5)
Since F' is a generalized Jordan triple (o, 7)-higher derivation on R,

falaba) = 3 fi(e" " (a))d;(c*7'(b))dp (7" *(a)) for all a,b,c € R and every
i+j+hk=n
n € IN. Now linearizing on a we get,

falabe +cba) = 3= fi(0"(a))d;(a" 7" (b))di(T"*(c))
i+ j+k=n
+ 3 fa'(O'n_i(C))de(D'kTi(b))dk(Tn_&(a)) for all a,b,c € R and every n € V.
i+j+hk=n

On the other hand again consider, f,(n) = f.((abc)z(cba) + (cba)x(abe))

=Y (falo™(abe))dy(07 7 (@))dy (7" (cha)

a+pty=n

+ a0 (cba) )dy (077 (2))dy ("~ (abe)) ). (6)

Combining equations (5) and (6) we have,

0 = E (f_!_(Uﬂ,—;f.(a))df(o.y-}—p-f—q—hs-}—k?i (b))dy(o.;ﬂ+(;+s+k7.i+i(C)]
iH+y+ptgtstk=n

dp(o.q+s+k,ru:+£+y($))dq (05+R:Ti+£+y+p(c) )d.s (O.ﬂ:,?.i+£+y+p+q(b) )dk (T”“k(a))j

- a+.,§~-:n fa(o"™*(abc))dy (077 (x))d, (7" (cba))

bSO dorrr e () d, (or et a)
i+l+y+ptgtst+k=n

dp(o.q+s+k,rvi+£+y($))dq (05+R:Ti+£+y+p(0) )ds (0..‘\?7.'5+l!+y+-}-)+q(b) )dk (T-n-wk (C)))

- Y Jalo"%(cba))dp(o7T(z))dy (7™ (abc)).
a+pty=n
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Using Theorem 2.1 we have that D = {d,, }, . is a (o, 7)-higher derivation on R. Hence
proceeding in a similar fashion as in Lemma 2.5 we obtain the required result.

Using same techniques as used in the proofs of Lemma 2.6 and Lemma 2.8 we can
prove the following result.

Lemma 3.2. Let R be a prime ring of characteristic different from two. If F' = { f,} _ is
a generalized Jordan triple (o, T)-higher derivation and ®,,(a,b,c) = 0 for each m < n
and for all a,b,c € R then ®,(a,b,c) =0 forall a,b,c € R and eachn € N.

Theorem 3.3. Let R be a prime ring of characteristic different from two. Then every gener-
alized Jordan triple (o, T)-higher derivation of R is a generalized (o, 7)-higher derivation
of R.

Proof. . Let F' = {f,}, g be generalized Jordan triple (o, 7)-higher derivation of R.
It can be easily seen that ®(a,b) = 0. By induction assume that ®,,(a,b) = 0 for all
a,b € R and each m < n. Fora, b,z € R, let § = abrab. Now application of Lemma 3.2
yields that

fa(B) = falalbra)b)

= Y fil0"(@)d;(o"r (bea))di(r" K (b))
i+j+k=n

= Hz;nd(rr“ “(a))dy (7" 5(b))(7" (zab))
+ Y (0™ (aba))dy(0™ (@) di (" F(b)
g+hk=n
+ X (A" (@)ds (07T (b)) (00T ()
i+s+g+k=n

O<i+s,g+k<n—1

dy(o*r+ (@) de(7" (1))
> (di(a“—ﬁ(a-))ds(oHMfri(b)J

i+s+g+k=n—1
dl(gq+k:,ri+s(:r))dq(o.k,r1+s+r( )) e I.. b)))
+"'+d1(0"’_1(a))(0“ '7(0)) 1 T(?))( "(ab))

+o"(a)d1 (o™ (b ))dn—1(7(x))(7" (ab))
+o"(ab dn 1(0( ))di (7" (a)) (" (b))
+0"(ab)d,_1(o(x)) (o™ 1 (a))d (7" (b))
+o"(ab)dy (x)T “(ab)

On the other hand implementing Theorem 2.1 we find that,
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fn(@ = fn((ﬂb)ﬂ?(ab)J ) .
= > filo"(ab))d; (0" 7" (x))di(T"* (ab))

?,+_}+J's il

= 0™(ab)o™(x)dy(ab) + fu(ab)" (x)7"(ab)
+ Y (Mo @)do(rla TP (B) (07 )
l+s+p+g=n
0<l+s,g+p<n—1

dy(0P7+2(a))dy ("7 (8)) )

Y (Ao @)y (T (B))
I+s+p+g=n—1

dl(o.rr}-k,?.ﬂ+s( )d O.'p,_..i—l—‘.—}—l(a )d n P b)))

ot 10" (@) (70" () dn 1 (7()) (7 (ab))
+0"(a) f1 (0" (b)) dn— (7(2)) (" (ab))
(0™ (ab))dn—1 (0 (2))da (7" (a)) 7" ()
(0™ (ab))dn—1(0(2)) (07" (a))d (" (b))
(0™ (ab))dy () dx (7" (ab)).

Comparing both the equations and reordering the indices we have

0 = {falab)— > file" (a))d;(r" (b)) }7" (x)7" (ab)

i+j=n

= ®,(a,b)7"(x)r"(ab) for all a,b € R.

Hence using the same technique as used in the end of Theorem 2.1 we have ®,(a.b) = 0
foralla,b € Rie., F'={fu}, Jy is a generalized Jordan triple (o, 7)-higher derivation of
R. O

If the underlying ring R is commutative and semiprime, then the arguments used in
the proof of Theorem 3.3 are still valid and hence we can prove the following:

Theorem 3.4.Let R be a 2-torsion free commutative semiprime ring. Then every general-
ized Jordan triple (o, T)-higher derivation of R is a generalized (o, T)-higher derivation of
R.

Corollary 3.5([24, Theorem 3.5]).Let R be a prime ring of characteristic different from
two. Then every generalized Jordan triple derivation on R is generalized derivation.

Following [2, Lemma 2.2(i7)], on a 2-torsion free ring every generalized Jordan (o, 7)-
higher derivation is a generalized Jordan triple (o, 7)-higher derivation on R. Hence utiliz-
ing Theorem 3.3 we have the following:

Theorem 3.6. Let R be a prime ring of characteristic different from two. Then every gen-
eralized Jordan (o, T)-higher derivation on R is a generalized (o, T)-higher derivation on
R.
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In conclusion it is tempting to conjecture as follows:
Conjecture 3.7(i). Let R be a 2-torsion free semiprime ring. Then every generalized Jor-
dan (o, 7)-higher derivation on R is a generalized (o, T)-higher derivation on R.
(ii). Let R be a 2-torsion free semiprime ring. Then every generalized Jordan triple (o, T)-
higher derivation on R is a generalized (o, T)-higher derivation on R.
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Abstract

In this paper by using statistical upper and lower bound the concept of statistical
supremum (st — sup) and statistical infumum (st — inf) for real valued sequences are
defined and studied. It is mainly shown that, the equality of st — sup and st — inf of
the sequence x = (x,,) is necessary but not sufficient for to existence of usual limit of
the sequence. On the other hand, the equality of st — sup and st — inf is necessary

and sufficient for to existence of statistical limit of the real valued sequences.

Keywords and phrases : Asymptotic Density, Statistical Convergence, Statistical upper (lower) bound.
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1 Introduction and Some results

In [5, 11], Fast and Steinhaus introduced the concept of statistical convergence of real val-
ued sequence in 1951. The idea of statistical convergence based on asymptotic (natural)
density of the subset of natural numbers(see [1]). The statistical convergence was studied
in |2, 3, 6, 7, 10] as a non-matrix method.

Let K be a subset of positive natural numbers N, K (n) denotes the set
{k:k<nandk € K}

and | K (n)| denotes the cardinality of the set X (n). Asymptotic density of the subset K is
defined by

. 1

6(K) = lim — |K(n)|.

n—oa
Over the years, by using asymptotic density some concepts of mathematics are gener-

alized and this subject has been applied different areas of mathematics ([8], [9], [4], etc.).
The real valued sequence x = (x}) is statistical convergent to the element L, if for

every ¢ > 0,the set
K(n,e):={k:k<nand |z, — L| > ¢}

has asymptotic density zero, in this case we write

st — lim xp, = L.
n—oc

In this paper, we will define statistical lower bound and statistical upper bound for real
valued sequence. By using statistical lower bound and statistical upper bound, statistical
infimum and statistical supremum will be given respectively. Also, some related results

between statistical convergence and statistical infimum and supremum will be investigated.

Definition 1. (Statistical Lower Bound) The point | € R is the statistical lower bound of

the sequence x = (x,,), if the following
0{k:zr 21})=1(ord({k: z <l}) =0), (110
hold. The set of statistical lower bound of the sequence x = (x,,) is denoted by Ls(x) :

Lg(z) := {l € R : [ satisfies (1.1)} .
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Let us denote the set of usual lower bound of the sequence = = (z,,) by L(z):
Lz):={leR:l <z, foralln € N}.
From the above definitions we have following simple results:

Theorem 1. Ifl € R is a lower bound of the sequence x = (x,,), then | € R is a statistical

lower bound.

Proof. From the definition of usual lower bound we have | < x,, for all n € N. So, the sets

{k:ap 21} =N
Therefore,
itk ez 1) =1
hold. This show that every usual lower bound is statistical bound. C

Theorem 1 shows that every usual lower bound of the sequence is also statistical lower

bound (L(z) C Ls(x)).
Remark 1. The inverse of Theorem 1 is not true in general.

Let us consider the sequence = = (z,) = (—=) and take | = —§ € R. It is clear that
| = —3 is a statistical lower bound because §({k : xx > —3}) = 6(N — {1}) = 1 but it

is not usual lower bound.

Definition 2. (Statistical Upper Bound) The point m € R is the statistical upper bound of

the sequence & = (xy,), if the following
0({k:xr <m})=1(or6({k: z > m}) =0) (1.2)
hold. The set of statistical upper bound of the sequence x = (xy,) is denoted by Lg(x):
Us(z) :={m € R : m satisfies (1.2)} .
Let us denote the set of usual upper bound of the sequence x = (z,,) by U(z) :
U):={meR:z, <mforalln € N}.

From the above definitions we have following simple results:
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Theorem 2. Ifm € R is an usual upper bound of the sequence v = (), then m € Ris a

statistical upper bound.

Proof. Since m € R is an usual upper bound of the sequence = = (z,), then we have

x, < mforall n € N. So, the sets
g & k=N

Therefore,

{k:zpr<m})=1
hold. LE

This show that every usual upper bound of the sequence is a statistical upper bound

U(x) C Us(x)).

Remark 2. The inverse of the Theorem 2 is not true in general.

Let us consider the sequence z = (z,,) = (%) and take m = 5 € R. It is clear that
m = 1 is a statistical upper bound because 6({k : z < 1}) =d(N—{1}) = 1, but it is
not usual upper bound for the sequence.

By using Definition 1 and Definition 2, following results are obtained easily:

Corollary 1. i) If| € R is a statistical lower bound and l' < I, thenl' € R is also statistical
lower bound of the sequence x = (xy,).
ii) If m € R is a statistical upper bound and m < m/, then m’ € R is also statistical

upper bound of the sequence x = (x,).

Proof. i) Assume that [ € R is a statistical lower bound of the sequence = = (z,,). The set

{k : x. > 1} has asymptotic density 1. Since I’ < [,then the inclusion
{hvzy 21} € {kvmp 21}

and inequality

| {ksme 2 <] {brme 2 1]

hold. So, we have

1< 5({&: DT > I’}) =
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This gives the desired result.
ii) Since m € R is a statistical upper bound of the sequence x = (z,), then the asymp-

totic density of the set {k : xx < m} is 1. Since m < m’, then the inclusion
iy s mlC {k v < m’}

and the inequality

|k 122 < m}| < | fbran<m'}
hold. From the last inequality we have
1<6({k:ax<m'}) =1
This gives the desired result. E

Remark 3. If the sequence x = (x,) has a statistical lower (statistical upper) bound, then

it has infinitely many statistical lower (statistical upper) bound.

Definition 3. (Statistical Infimum (st—inf)) A number s € R is called statistical infimum of

the sequence x = (xy,) if s € R is supremum of Ls(x). That is, st — inf x,, := sup Lg(z).

Definition 4. (Statistical Supremum (st — sup)) A number s' € R is called statistical
supremum of the sequence x = (x,,) if ' € R is infimum of Ug(x). That is, st — sup x,, :=

inf Ug(z).
Theorem 3. Let x = (x,,) be a sequence. Then,

infx, < st —infx, < st —supxz, <supz,
hold.
Proof. From the definition of usual infimum we have

d({k:infx, <xp})=06(N)=1.

This gives inf z,, € Lg(x). Since st — inf x,, = sup Lg(x), then we have st —inf z,, >
inf z,.

From the definition of usual supremum we have

0({k : xp <supxp}) =60 (N) = 1.
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This gives sup z,, € Ug(x). Since
st — sup z, = inf Ug(x),

then the inequality

st —supx, < supz,

hold. For to completion of the proof it is enough to show that the inequality
[<m (1.3)

holds for an arbitrary [ € Lg(z) and m € Ug(zx).

Let us assume (1.3) is not true. That is there exist al’ € Lg(z) and m’ € Ug(z) such
that m’ < [ is satisfied. Since m/’ is a statistical upper bound, then from Corollary 1 ii), I’
is also statistical upper bound of the sequence.

This is the contradiction on the assumption on I’. So, (1.3) is true and equality is hold.

O
Remark 4. i) If v = (x,,) is a constant sequence, then
inf z,, = st —inf x,, = st — sup z,, = sup .
ii) If we consider the sequence x = (x,,) as

Tp, N<ng ng€eN
Ly =
a, n > ng,

such that ©, < aforalln € {1,2,3,...,n9}. Then,
infz, < st —infx, < st —supz, = supz,.
iii) If we consider the sequence x = (x,,) as

Tn, n<ng ng€eN
Ly =
a, > ng,

such that ,, 2 a foralln € {1,2,3,...,n9}. Then,

inf z,, = st —inf z,, < st —supz, < supz,.
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iv) If x = (x,,) is monotone increasing and bounded, then

inf z, < st —inf z,, = st — sup z,, = sup zn.
v) If & = (xy,) is monotone decreasing and bounded, then

infz, = st —infx,, = st — supz, < supz,.
Remark 5. Let x = (x,,) be a real valued sequence. Then,

0({k : xp ¢ [st —infz,, st —supz,]}) = 0.

and

0({k : zx € [st — inf zp, st — supzy]}) = 1,
hold.

Proof. Let us assume for simplicity st — infx,, = [ and st — supx, = m. Thatis [ =
sup Lg(z) and m = inf Ug(z). From the definition of infimum and supremum we have

l—e€Ls(xz),m+ee€Us(zr)and
I,m|C [l —¢e,m+¢g]. (1.4)
It is clear from (1.4) that we have
k:zp g llml} <o({k:arp¢|l—e,m+el}) =

=d{k:azr<l—e})+d({k:zr>m+e}) (1.5)

Since 6({k : xp <l —¢e}) =0and 6({k : & > m +}) = 0, then from (1.5) we have
0({k: zp & |st —infxz,, st —supzy,|} = 0.
It is clear from the following equality
{k :x € |st —infx,, st —supxy|} = N—{k:xp ¢ |st —infzp, st —supzy)}
hold and we have
0({k : zx € |st — inf zy,, st —supxy|}) = O(N)—0({k : xx € |st — inf z,, st — supz,|}).

This gives the desired result. E
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Theorem 4. Let x = (x,,) be a real valued sequence and | € R. Then, st —supx, =l if

and only if for any positive ¢
@)k : zp<l4+e})=1

and

(i1) 6({k : x> 1—¢}) #0

hold.

Proof. =" Since st — supz,, = [, then [ = inf Ug(z). Therefore, we have
(a)l < 5,Vs € Us(x)

and
(b) Ve > 035" € Ug(x)

such that ' <[ +¢.

From Corollary 1 and (b) [ 4+ ¢ is a statistical upper bound. So, (i) is hold. Now assume
that (ii) is not true. That is, 3e¢ > O such that 0({k : | — g9 < x}) = 0. It means that
0({k : zp <l—ep}) =1andl — gy € Us(zx). But this is contradiction to | = inf Ug(z).

<" Now assume that for every ¢ > 0, (i) and (ii) are hold. From (i) and (ii) we
have | 4+ ¢ € Us(z) and | — € ¢ Usg(z) respectively. Therefore, Us(z) = |l 4 ¢,0c) and
infUg(z) = L. O

Theorem 5. Let x = (x,) be a real valued sequence and m € R. Then, st —inf x,, = m

if and only if for an arbitrary € > (

(@) 6({k : zp=>2m—¢}) =1

and

(73) 6({k : o <m+¢e}) #0

hold.
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Proof. ”=-" Assume that st — inf z,, = m. That is, sup Lg(z) = m. So, we have
(a) Forall s € Lg(z), s <m

and

(b Forevery € > 03s’ € Lg(x)

such that m — & < s,
From Corollary 1 and (b), m — £ is a statistical lower bound. So, (i) is hold. Now

assume that (ii) is not hold for all £ > 0. That is, there exists an £ such that
0k : zx <m+eo}) =0.

This mean that §({k : 2 > m+ep}) = 1and m+ 2y € Lg(z). Since m < m + &g, this
is contradiction to assumption on m.

7<=" Now assume that, (i) and (ii) are hold for all positive £ > (. It is clear that
m—e¢ € Lg(z) and m + ¢ ¢ Lg(x). Therefore, Lg(z) = (—oc,m — ¢, forall £ > 0. So,

we have sup Lg(z) = m. O

Theorem 6. Let x = (x,,) be a real valued sequence. The following statements are true:
(i) If the sequence x = (x,,) is monotone increasing, then st — inf x,, = sup @,

(i) If the sequence = = (x,,) is monotone decreasing, then st — sup x,, = inf x,,.

Proof. We shall give the proof only (i). The case (ii) can be obtained by doing suitable

changes in the proof of (i). Now, assume that = (z,,) is monotone increasing and
sup T, < 00.

So, we have for all n € N,

Ip < SUP Ty,

and for every € > 0 there exist a ng € N such that
SUPXp — € < Tpy-
From the first inequality above, sup x,, ¢ Lg(x). From the second one we have

{k: zx > supxn —e} =N\ {1,2,3,...,n0}.
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Since,
J(N\{1,2,3,....,n0}) = 1,

then

supx, —€ € Lg(z).
Therefore, Corollary 1 gives that
Ls(x) = (—oo,supzy, —€)
for all € > 0. So,
st —inf x, = sup Lg(z) = sup zp.

Now, assume that

sSup L, = 0.

It means that for all [ € R there is an ng = np(r) € N such that | < z,,, and for every

n = ng the inequality x,,, < x, are hold. So, we have

ikize =21} 2 N—41,2,3,..sm}-
Since,
1= (S(N = {1,2._.31 ...,R{]}) = 1,

then for an arbitrary point /, | € Lg(x).Therefore,
Lg(xz) = (—o0,00) and sup Lg(z) = oc.
This gives the proof. E

Corollary 2. Assume x = (xy,) real valued bounded sequence. If the sequence v = ()

is monotone decreasing (increasing) then

lim &, = st —supz, (= st —inf z,).
N—+00

Definition 5. (Peak Point {9]) The point x; is called upper( or lower) peak point of the

sequence x = (x,,) if the inequality x; > xy, ( or x; < xy) holds for all k > 1.

Theorem 7. Let x = (x,) be a real valued sequence. If the element x,,, is an upper(or
lower) peak point of (), then the element x,,, is a statistical upper (or statistical lower)

bound.
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Proof. Assume that the point x,,, is an upper peak point of the sequence z = (x,,) such

that z;, < x,, holds for all £ > ng. So, the inclusion
{k:gx = Tus DN = {1,2,..mp}

and the inequality

=12, o H £ HE & op =0
hold. From the last inequality and the properties of asymptotic density we have
I §likidgs € zagli=1
This give us the point x,,, is an upper bound of the sequence = = (). [
Theorem 8. If lim x, = [, then st —supx, = st —infx, = [.
n—oc
Proof. Assume nli_}n;omn = [. That is, for any € > 0, there exists ng = ng(e) € N such that
lzn — 1| <&, (1.6)
hold for all n = ng. So, the following inclusion deduced from (1.6) easily
{k:xp<l—ce} C{1,2,....,n0}, {k: oz >1+¢e} C{1,2,..,n0} (1.7)
and
N—{1,2,.,ne} Clk:ar>l—¢€},N—-{1,2,...,n0} C{k:zx <l+e}. (1.8)
By using (1.8) we obtain
(k:zp>21l—¢})=1

and

0{k:zr<l+e})=1.

This discussion gives

l—c€ Lg(z), I +¢ € Us(x)

for all £ > 0. Also, Corollary 1 gives

Lg(x) = (—00,1) and Us(z) = (!, 00).
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Therefore,

st — inf z,, = sup(—o0,l) =1

and

st — sup &, = inf(l,00) =1
are obtained. L
Remark 6. The inverse of the Theorem 8 is not true.

Let us consider the sequence x = (x,,) when

1 n=k%k=1,2,..,
Ly =
0 otherwise.

It is clear that st — int x;, = st — sup x,, = () but the sequence is not convergent to (.
On the other hand, = = (z,,) is statistical convergence to (. Therefore, we have follow-

ing result:
Theorem 9. st — lim x,, = [ if and only if st —supz, = st —infz, = [.
N—C

Proof. ”=" Assume that st — lim x, = [. From the assumption, we have for any £ > 0,
N—oC

1
lim — {k: k <n,

n—oo Tl

zx — 1| = e} =0. (1.9)
Also, we have
{k:k<n, |[zp—l2el={k:k<n, zp2l+etU{k:k<n z<l—¢}
and
Hk : k<n,ze—l|2e}l=Hk: kE<nzr 21+l + Nk : k<nz <] —¢}
By using last inequality and (1.9) we obtain
d({k:zr21l4+¢€})=0 (1.10)

and

Sk :zp <l—e}) =0. (1.11)
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From (1.10) and (1.11) we obtain
O({k:zp<lte})=1

and

Sk zp>l—e}) =1

respectively. Also, we have

0{k : xp <l+e}p) =1 (1.12)
and
0k 2l—€}p)=1 (1.13)
because of
ik : wp<l+e}Clk : o £l +¢}
and

1k : g >l=e}Cllh s op=l—€}

respectively. The equation (1.12) gives [ + ¢ is a statistical upper bound, (1.13) gives [ — ¢
1s a statistical lower bound.
So,
Ls(z) = (—o0,l) and Ug(z) = (I, 00)

tor all € > 0. Therefore, we have
sup Lg(xz) =1, infUs(x) =1.

"«—" Assume that

st —supx, = st —infx, =1I.

That is,
l = sup Lg(z) = inf Us(z).

From the definition of usual supremum and infimum, for all £ > 0, there exists at least one

element !’ € Lg(z) and I” € Ug(x) such that the inequality
l—e<landl" <l+¢

hold.
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Since 1" is an statistical upper bound, then the following inclusion
{k:xp>1+¢} C {k:&ikzﬂﬂ},

hold. So, we have

d{k:zr>214+¢€})=0. (1.14)
Since !’ is an statistical lower bound, then the following inclusion
{hswe < l—e} € {k vz <V}

hold. So, we have

k1oLl —e})=10 (1.15)
From the facts (1.14)-(1.15) and
Hk:lop =l Ze}|=|{k: o 24} |+ |{k:z S 1 - €},

we have
0{k: |z =1 = €}) =0.

Therefore, the sequence = = (x,,) is statistical convergent to | € R. M

Definition 6. The real valued sequences v = (x,) and y = (y,) are called statistical
equivalent if the asymptotic density of the set A = {k : x, # yy.} is zero. It is denoted by

T =y.
Theorem 10. If the sequence x = (x,,) and y = (y,,) are equivalent, then
st —inf z,, = st —inf y,, and st — supx,, = st — supy,.

Proof. Since the sequence * = (z,) and y = (y,) are equivalent, then the set A =
{k : xp # yr} has zero asymptotic density. Let us consider an arbitrary element [ € Lg(x).

The element [ € R is a statistical lower bound of the sequence z = (x,,), then we have
0({k:zp<l})=0andd ({k:2x 21}) =1
From the following inclusion

kiyr<li={k:imFw<lUlk:zr=m<li} C
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CAU{k: 2=y <!}
we have
0<o({k: g <l})=0({k:zp #yp <U})+0({k:zp =yp <I}) <
<dA)+o({k:zr=u <1l})=04+0=0. (1.16)
Since the inclusion
kg >l ={k:a#u > Ulk o=y 21} S

Dikiap =y <}

we have

1=0({k:y21}) 20k ar =y >1}) = 1. (1.17)

From (1.16) and (1.17), the element [ € IR is a statistical lower bound of the sequence
y = (yn). Thatis, Lg(z) C Lg(y). If we consider arbitrary point [ € Lg(y), it can obtain
easily I € Lg(y) such that Lg(y) C Lg(x). Therefore,

Ls(y) = Ls(z) (1.18)

hold. Since sup Ls(y) = sup Lg(z), then st — inf 2, = st — inf y,, is obtained.

By using the same idea as above it can be obtained st — sup x,, = st — sup y,,. O
Remark 7. The inverse of Theorem 10 is not true.
Let us consider the sequences x = () and y = (y,,) as follows:
i
Zpi=1——andy, =1+ —
n n
tor all n € IN. Then, it is clear from Theorem 8 that
st —infx,, = st —infy, = 1 and st — supx, = st —supy, = 1.
But, asymptotic density of the set
A == {'ﬂ ' :I:n 71—_ yn}

is 1. So, z = (z,) and y = (y,,) are not equivalent.
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Abstract

In this paper, we prove a common fixed point theorem for five mappings under the
condition of weak compatible mappings in non-complete fuzzy metric space, without

taking any function continuous.We improve results of Singh and Jain [8].

1 Introduction

Fuzzy set being a brain child of Zadeh [9] acts as a foot print to other researchers involved
in the field of non-linear analysis for the development of Fuzzy metric spaces in fixed point

theorems and its applications. The major break through in the said field was given by
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AMS Subject Classification : 47H10, 54H25.
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Kramosil and Mechalik [4] who followed Grabiec [ 1] to obtain successfully the fuzzy ver-
sion of Banach’s fixed point theorem. Working on the same line , Mishra et. al [5] used
the concept of compatibility in fuzzy metric spaces and proved some common fixed point
theorems for the same. Popa [6] came out with a concept of implicit relation and used it to
prove some fixed point theorems for compatible mapping. The introduction of the notion
of weak compatible maps by Jungck and Rhodes [3] and thereby proving that compatible
maps are weakly compatible but converse need not be true opens new boundaries in the
domain of fixed point theory and its applications in the allied fields. The aim of this paper
is to prove a common fixed point for five mappings under weak compatibility by striking

off the condition of continuity. Our result improves the results of Singh and Jain [8].

2  Preliminaries

Definition 1. /7] A binary operation = : |0,1] x|0, 1] — |0, 1| is called a continuous t-norm
if (10,1}, %) is an abelian topoligical monoid with unit 1 such that a b < ¢ * d whenever

a<candb<d Va,b,cdel01].

Definition 2. [4] The 3-tuple (X, M, *) is called a fuzzy metric space if X is an arbitrary
set % is a continuous t— norm, and M is a fuzzy set in X* x [0, 0c) satisfying the following

conditions ¥ x,y,z € X and 5,1 > 0 :

M(z,y,0) =0; (2.1)

Mz,y,t) =1LVt >0 < z=y; (2.2)
M(z,y,t) = M(y,z,1); (2.3)

M(z,y,t) * M(y,2,8) 2 M(z,z,t + 5); (2.4)
M(z,y,.) : 10,00) = |0,1|isleft continuous. (2.5)

Note that M (x,y,t) can be thought of as the degree of nearness between x and y with
respect to t. we identify x = y with M (z,y,t) = 1,¥t > 0. The following example shows

that every metric space induces a fuzzy metric space.

Example 1. [2] Let (X, d) be a metric space. Define ab = min{a,b} andVa,b € X,
M(z,y,t) = (t/(t + d(z,9))), V¢ > 0;
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M(z,y,0) = 0

then M (x,y, *) is a fuzzy metric space. It is called the fuzzy metric induced by metric d.
Lemmal. [/]Vx,y € X, M(z,y,.) is a non decreasing function.

Remark 1. Since * is continuous, it follows from (2.4) that the limit of a sequence in fuzzy

metric space is unique. Let (X, M, *) be a fuzzy metric space with the following condition:
lim M(z,y,t) =1,Vz,y € X. (2.6)
t—oc )

Lemma 2. [5]IfVz,y € X,t > 0and for a number k € (0,1), M (z,y,kt) > M(x,y,t)

then x = y.

Lemma 3. [5] Let y,, be a sequence in a fuzzy metric space (X, M, *) with the condition
(2.6). If there exists a number k € (0, 1) such that
M (ynt2,Yns1,kt) > M(Yns1,ynst), ¥t > 0 and n = 1,2,... then yy is a cauchy se-

quence in X.

Definition 3. [3] A pair of mappings S and T is called weakly compatible pair in fuzzy
metric space if they commute at coincidence points; i.e. if Tu = Su for some u € X,
then TSu = STu. It is easy to see that if S and T' are compatible , then they are weakly

compatible and the converse is not true in general.

Definition 4. (Implicit Relation) Ler o be the set of all real continuous functions ¢ .

(RT)* = R, non-decreasing and satisfying the following conditions. For u,v > 0,

d(u,v,v,u) > 0,0r, ¢(u,v,u,v) 20, 2.7)

implies that u > v
d(u,u,1,1) > 0,0r, ¢p(u, 1,u,1) > 0,0r,p(u,1,1,u) >0 (2.8)
implies that u > 1.

Example 2. Define ¢(t),t2,t3,t4) = 15t; — 139 + bty — Tt4. Then ¢ € 1.
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3 Main Results

Here we improve the theorem of Singh and Jain [8] without taking any function contin-
uous for five mappings under the condition of weak compatible mappings. We prove the

following.

Theorem 1. Let (X, M, ) be a fuzzy metric space with t x t,Vt € |0, 1] and the condition
(2.6). Let A, B, S, T and P be mappings of X into itself such that

P(X) C AB(X), P(X) C ST(X); @3.1)
forsome ¢ € Y, thereexist k € (0,1)suchthatVe,y € Xandt > 0 (3.2)
¢|M(Pzx, Py, kt), M(ABzx, Px,t), M(ABx,STy,t), M(STy, Py, kt).

M(Pz, Py, kt), M(ABz, Px,t), M(ABzx, STy, kt), M(STy, Py,t)| > 0;

oneof P(X),AB(X)or ST(X) are complete subspaceof X; (3.3)
PB=BP, PT =TP, AB=BA, ST=TS§; (3.4)
the pair (P, AB) and (P, ST) is weak compatible, (3.5)

then A, B, 5,T and P have a unique common fixed point in X.

Proof : Let vo € X be any arbitrary point as P(X) C AB(X) for any xy € X there
exists a point ¥y € X such that Pxy = ABxy. Since P(X) C ST(X), for this point x1,
we can choose a point v9 € X such that Pxy = ST'xs. Inductively, we can de fine a
sequence {y,} € X as follows:

Yon = Pxon = ABXoni1,Yons1 = Pxoni1 = STxonya, forn =0,1,2,.... Now using

(3.2) with & = Zopy1,Y = Top42, We get

o [ﬁi{r(PIQﬂ_+1, Py 40, kt), M(ABxon11, Proni1,t), M(ABxony1,STxon12,1).
M(STxon+2, Pxania, kt), M(Pxaony1, Proanto, kt), M(ABzany1, PTant1,1).
M(ABxopt1, STxon40,kt), M(STxo,2, P:::gn+g,t)] > 0, that is

¢ [JM(.Uan sYont2, kt)- ﬁf(u?ﬂ‘ Yon+1, t)- ﬂf{yﬁns Yon+1, t) *'}.l":{(an.—l—l s Yont2, 'z"t)

M (yon+1, Y2n+2, kt), M (yan, Yont1, 1), M (Yon, Yon+1, kt), M (Yon+1, Yon42,t) | = 0,
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Using (2.7), we get

M (yons1, yont2, kt) = M(yon, Yont1,t). Similarly, by putting x = Tap 42 and y = Topi3

in(3.2), we have

o [ll{(P:z:gﬂ_+g, Pxopis,kt), M(ABzay12, Propia,t), M(ABxan 9, STxonts, 1),
M(STxonys, Pronis, kt), M(Pxanyo, Pronis, kt), M(ABzop42, Prapio,t).
M(ABzon42, STxon 43, kt), M(ST x93, Pronys, t)} =1,

@ [M(yznw, Yon+3: kt)s M (Yon+1, Yan+2, £)y M (Yon+2, Yont+1, 1), M (Y2n43, Yont2, kt).

M (y2n+2, Y2n+3, kt), M (Y2n+1, Y2n+2, 1) M (Yan+2, Y2n+1, kt), M (Yon+3, Yani2,t) | = 0,
Using (2.7), we get

M (Yon+2, Yon+3, kt) > M (Yon+1, Yons2, t). Thus for any n and t, we have
M(ynsYn+1,kt) > M(Yn—1,Yn,t). Hence by Lemma (3),{y2,} is a cauchy sequence in
X.

Suppose AB(X) is a complete subspace of X there exists a point u = (AB)™'z ie
ABu = z, by (3.2) with a« = 1, we have

o [M'(Pu., Pxoy 1, kt), M(ABu, Pu,t), M(ABu, STx2,11,t),

M(STxon+1, Pront1, kt), M(Pu, Pxony1,kt), M(ABu, Pu,t), M(ABu, STxan11,kt),

M(STxop41, Prony1,t)| = 0, Taking the limit n — oo, we get
o|M(Pu,z,kt), M(z, Pu,t), M(z, z,t), M(z, z, kt), M(Pu, z, kt), M(z, Pu,t),

M‘(z,z,kt),ﬂﬂf(z,z,t),} > 0,

b JM(Pu,z,kt),i‘d(z,Pu,t),1,l,ﬁ-if(Pu.,z,kt),ﬂff(z,Pu,t),1,1} >0,

Using (2.8), we get M(Pu, z,kt) > 1,Vt > 0, which gives M (Pu, z,kt) = li.e. Pu= z,
therefore Pu = ABu = z, Le. u is a coincidence point of P and ABu. Now suppose
ST(X) is a complete subspace of X, there exist a point v = (ST) 'z i.e. STv = z. By
(3.2) with « = 1, we have

o) [M(P:E%H, Puv,kt), M(ABxon+1, Pxopt1,t), M(ABxayt1, STy, t),

M(STv, Pv, kt), M(Pzopt1, Pv, kt), M(ABzon+t1, Pront1,t), M(ABzant1, ST, kt),

M(STwv, Pv,t)| = 0, Taking the limit n — oo, we get on solving

o [M'(z, Puv, kt),1,1, M(z, Pv, kt), M(z, Pv,t),1,1, M(z, Pv,t)| = 0.
Therefore by using (2.8), we have
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M(Pv,z,kt) > 1,¥t > 0, which gives M(Puv,z,kt) = 1 ie. Pv = z, therefore Pv =
STv = z,i.e. vis a coincidence point of P and ST. Hence STv = ABu = Pv = Pu=z
. Again since the pair { PAB} is weakly compatible , therefore P and AB commute at their
coincidence point i.e. (AB)Pu = P(ABu)or ABz = Pz. By (3.2) with o = 1, we have
o [M(Pz, Pxopy1,kt), M(ABz, Pz,t), M(ABz, STx9,41,1).

M(STzont1, Pront1, kt), M(Pz, Pxopy1,kt), M(ABz, Pz,t), M(ABz, STTop 41, kt),

M(STxon 41, Proyy1,t)| > 0, Taking the limit n — oo, we get

Qﬁ[ﬁ»{(f’z,z,kt),M’(z,Pz,t),l,l,fl.af(Pz,z,kt),M’(Z,Pz,t),l,1),} > 0. Using (2.8),
we get

M(Pz,z,kt) > 1,¥t > 0, which gives M(Pz,z,kt) = 1 ie Pz = z, therefore
Pz = ABz = z. Again since the pair {P.ST} is weakly compatible, therefore P and
ST commute at their coincidence point i.e. (ST)Pv = P(STv)or Pz = STz. By (3.2)
with o« = 1, we have

o [M(P;sgﬂ_H, Pz, kt), M(ABZon i1, PToni1,t), M(ABTons1, STz, t), M(STz, Pz, kt),

M(Pxgp41, Pz, kt), M(ABxon 41, Pxoni1,t), M(ABxon41, STz, kt), M(STz, Pz, t)}
> 0, Taking the limit n — oo, we get
o [ﬁﬁf'(z, Pz, kt), M(z,z,t), M(z,2,t), M(z, Pz, kt), M(z, Pz, kt), M(z, z,t), M(z, z, kt),

M(z,Pz,t)| 20

]

This gives ¢ [M'(z, Pz, kt), 1,1, M(2, Pz, kt), M(2, Pz, kt), 1,1, M (2, Pz, ?‘)} >0,
Therefore by using (2.8), we have

M(Pz,z,kt) > 1,¥t > 0, which gives M(Pz,z,kt) = 1 ie Pz = z, therefore
Pz = 8Tz = z,and so Pz = ABz = STz = z. By (3.2) witha = 1, and x = Bz
and y = z, we have

6| M(P(Bz), Pz, kt), M(AB(Bz), P(Bz),t), M(AB(Bz), STz,t), M(ST 2, Pz, kt),

M(P(Bz), Pz,kt), M(AB(Bz), P(B2),t), M(AB(Bz), STz, kt), M(STz, Pz,t)| >0

1

¢|M(Bz,z,kt), M(Bz,Bz,t), M(Bz,z,t), M(z, z,kt), M(Bz, z,kt), M(Bz, Bz,t),

M'(Bz,z,kt},ﬂi’(z,z,t}] >0,

o|M(Bz,z,kt), 1,;1'I(Bz,z,t)?1,M'(Bz,z,kt)7l,ﬁJ(Bz:z,kt),l] >0,
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using (2.8), we have

M(Bz,z,kt) > 1,Vt > 0, which gives M(Bz,z,kt) = 1 ie. Bz = z, therefore
Az=Bz=Pz=zBy(32)witha=1,and x = z and y = T'z, we have

&|M(Pz,P(Tz),kt), M(ABz, Pz,t), M(ABz,ST(Tz),t), M(ST(T'z), P(Tz), kt),

ﬁfI(Pz,P(Tz),kt),M'(ABZ,Pz,t),ﬂf(ABz,ST(Tz),kt),M(.S'T(Tz),P(Tz):t)} >0,
| M(2,Tz,kt),M(z,2,t), M(2,Tz,t), M(Tz,Tz,kt), M(2,Tz, kt), M(z, 2,t),

ﬂf(z,Tz,kt},ﬁJ(Tz,Tz,t)] >0,

o|M(z,Tz,kt),1,M(2,Tz,t),1,M(z,Tz,kt),1, M(z,Tz,kt), 1] >0, using (2.8), we
have

M(Tz,z,kt) > 1,¥Yt > 0, which gives M(Tz,z,kt) = 1ie Tz = z, therefore
Tz = Sz = Pz = z. Hence Az = Bz = 52 = Tz = Pz = z,i.e.z is a common
fixed point of A, B, S, T, and P.

For uniqueness, let (z # w) be another common fixed point of A, B, S, T, and P. By (3.2)

with o = 1, we have

o|M(Pz, Pw,kt), M(ABz, Pz,t), M(ABz,STw,t), M(STw, Pw, kt), M(Pz, Pw, kt),
M(ABz, Pz,t), M(ABz,STw, kt), M (STw, Pw, t)} >0,
| M(z,w,kt), M(z,2,t), M(z,w,t), M(w,w, kt), M(z,w, kt), M(z, z,t), M (z,w, kt),

M(w,w,t)| >0,

O M(z,w, kt), 1, M(z,w,t), 1, M(z,w, kt),1, M(z,w, kt), 1] > 0, using (2.8) we have
M:(z,u,r._ kt) > 1,¥Yt > 0, which gives M(z,w,kt) = lie z=w. Thus A,B,S,T, and
P have a unique common fixed point.

If we take the space to be complete then we have the following :

Corollary 1. Let (X, M, x) be a complete fuzzy metric space withtxt > t,Vt € |0, 1] and
the condition (2.6). Let A, B, S,T and P be mappings of X into itself such that

P(X) € AB(X), P(X) C ST(X); (3.6)
forsome¢ € Y, thereexistk € (0,1) suchthatVz,y € Xandt >0 (3.7)

6| M(Pz, Py, kt), M(ABz, Pz,t), M(ABz, STy, t), M(STy, Py, kt), M(Pz, Py, kt),
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M(ABz, Px,t), M(ABz, STy, kt), M(STy, Py,t)| >0
PB=BP, PT =TP, AB = BA, ST = TS; (3.8)

the pair (P, AB) and (P, ST) is weak compatible, (3.9)

then A, B, S, T and P have a unique common fixed point in X.

For four mappings we have the following result.

Corollary 2. Let (X, M, *) be a fuzzy metric space with t xt > t.¥t € |0,1] and the
condition (2.6). Let A, B, S, and T be mappings of X into itself such that

A(X) € T(X), B(X) C §(X); (3.10)

thepair (A, S)and (B, T) is weak compatible; (3.11)

forsome ¢ € Y, thereexistk € (0,1) suchthatVz,y € Xandt > 0 (3.12)
¢|M(Az, By, kt), M(Sz,Ty,t), M(Az, Sx,t), M(By, Ty, kt), M(Ax, By, kt),
M(Sz, Ty, t), M(Az, Sz, kt), M(By, Ty,t)| >0;

oneof A(X), B(X),S(X)orT(X)iscomplete subspaceof X, (3.13)

then A, B, S and T have a unique common fixed point in X.

References

[1] Grabiec, M. : Fixed point in fuzzy metric spaces, Fuzzy Sets and Systems, 27(1988),
385-389.

[2] George, A. and Veeramani, P., On some results in fuzzy metric spaces, Fuzzy Sets and

Systems, 64(1994), 395-399.

[3] Jungck G. and Rhoades, B. E. : Fixed point for set valued functions without continuity,

Ind.J. Pure Appl. Maths. ,29(3)(1985),227-238.



Weak compatibility and fixed point theorem in fuzzy metric . .. 63

[4] Kramosil, I. and Michalek, J.: Fuzzy metric and statistical metric spaces Kybernetika,

11 (1985), 336-344. Math. Japonica, 11 (1975), 336-344.

[5] Mishra, S. N., Sharma, N. and Singh, S. L. : Common fixed points of maps in fuzzy
metric spaces., Internat. J. Math. Math. Sci.,17 (1994), 253-258.

[6] Popa, V.: Some fixed point theorems for compatible mappings satisfving on implicit

relations, Demonsratio Math.,32 (1999), 157-163.

[7]1 Schweizer, B. and Sklar,A. : Statistical metric spaces, Pacific. J. Math., 10 (1960),
313-334.

[8] Singh, B. and Jain, S. : Semi-compatibility, compatibility and fixed point theorems in
fuzzy metric space, J. Chungcheong Math. Soc., 18 (1) (2005), 1-23.

[9] Zadeh, L.A.: Fuzzy Sets, Inform Contr., 8 (1965), 338-353.



ISSN: 0304-9787
The Aligarh Bulletin of Mathematics Copyright (©) Department of Mathematics
Volume 32, Numbers 1-2 (2013) 65-76 Aligarh Muslim University, Aligarh-202 002, India

A NOTE ON CONTACT C R-WARPED PRODUCT
SUBMANIFOLDS OF A SASAKIAN MANIFOLD

Vigar Azam Khan' and Mohammad Shuaib?

Department of Mathematics, A.M.U., Aligarh-202002, India
le-mail: vigarster @ gmail.com

2e-mail: shuaibyousuf6 @ gmail.com

(Received June 20, 2013)

Abstract

If M is a proper contact C'R-submanifold of a Sasakian manifold M such that the
structure vector field £ is tangential to M, then the structure tensor field 1" can not be
parallel on M. In fact, if V1" = 0 on a contact C'R-submanifold, then it is locally a
Riemannian product between the integral curve of £ and the anti-invariant submanifold
of M. Now, it is natural to seek conditions involving VI’ (and V F') under which a
contact C'R-submanifold reduces to a C'R-product and more generally a C'R-warped
product submanifold. Such conditions are worked out in the present note.

1 Introduction

R.L.Bishop and B.O’Neill [3] introduced the notion of warped product manifolds while
investigating manifolds of negative sectional curvatures. They studied some intrinsic geo-
metric properties of these manifolds. Later, it was realized that the warped product mani-
folds provide an excellent setting to model space-time near black holes or bodies with high
gravitational field. This paved way for the study of warped product manifolds with extrin-
sic geometric point of view. B.Y.Chen [5] initiated the study of warped product manifolds
with this stand point and considered (' R-sub manifolds of a Kaehler manifold as warped
product manifolds. He studied various geometric properties of these sub manifolds and
obtained a characterization ( in terms of the shape operator of the immersion) under which
a (J R-submanifold reduces to a C R-warped product submanifold. Similar investigations
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are carried out for contact C'R-sub manifolds of a Sasakian manifolds by I.Hasigawa and
[.Mihai [6]. In the context of ' R-sub manifolds of Kaehler manifolds, Chen [4] pointed out
that the canonical structures T" and F’ play important role in revealing many geometric prop-
erties of the submanifold e.g., a C R-submanifold of a Kaehler manifold is a C' R-product if
and only if 7" is parallel, where a C'R-product is a special case of a (' R-warped product (in
fact a trivial warped product). The same result doesn’t hold for contact C' R-submanifold
of a Sasakian manifold. In this setting, under the parallelism of 7', the manifold reduces
to a Riemannian product between the leaves of the structure vector field and the ¢-anti-
invariant submanifold of the Sasakian manifold. This motivates us to study a more general
problem of finding a characterization under which a contact (' R-submanifold reduces to a
(' R-warped product submanifold. To this end, first in Section 3, we have worked out some
preliminary results and formulas concerning contact (' -sub manifolds of a Sasakian mani-
fold that help us in establishing necessary and sufficient conditions (involving the canonical
structures 1" and F') for a contact (' R-submanifold to be a ' R-warped product submanifold
in Section 4.

2 Preliminaries

Let M be a (2n + 1)-dimensional almost contact manifold with almost contact structures
(¢,€,m), where ¢ is a (1, 1) tensor field &, a vector field and 7, a 1- form satisfying

¢ =—I+n®E n€) =1, nogp=0.

An almost contact structure on M is said to be normal if the induced almost complex
structure .J on the product manifold M x R, defined by

d

. d
=) = (8U = X, n(U)

J(U,A =

is integrable, where U is a vector field tangent to M, ¢ is the co-ordinate function on R and
A is a smooth function on M x R.

On an almost contact manifold there exists a Riemannian metric g which is compatible
with the almost contact structure (¢, £, n7) in the sense that

9($U,dV) = g(U, V) —n(U)n(V), (2.1)
tfrom which it can be observed that

9(U,€) = n(U), (2.2)

forany U, V € T(M). In this case, the Riemannian manifold (M, g) is called an almost
contact metric manifold. If |¢, ¢| denotes the Nijenhuis tensor of ¢, then the almost contact
structure is normal if and only if the torsion tensor |¢, ¢| + 2dn ® & vanishes. An almost
contact metric structure is called a contact metric structure it dn = @ where @ is the
fundamental 2-form defined by ®(U, V') = g(U, ¢V'). A normal contact metric manifold is
called a Sasakian manifold . 1t is known that an almost contact metric manifold is Sasakian
if and only if

(Vud)V = —g(U, V)& +n(V)U. (2.3)
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where V is the Riemannian connection on M. It can be derived from the above formula
that
V€ = oU. (2.4)

Let M be a submanifold of an almost contact metric manifold M. Let 7'M and T M
denote the tangent and normal bundles on M respectively. If V and V* be the induced
Riemannian connections on 7'M and T M respectively then the Gauss and Weingarten

formulae are written as :
VoV =VyV +h(U,V), (2.5)

VUN =-AnU + V(J}N, (2.6]

forany U,V € TM and N € T-M. Ay and h respectively denote the shape operator and
the second fundamental form of the immersion of M into M. The two are related as

g(ANV,U) = g(h(U,V), N), (2.7)
where g denotes the Riemannian metric on M as well as the induced metric on M.

Forany U € T(M) and N € T*M we decompose ¢U and ¢N into their tangential
and normal parts respectively as

¢U = TU + FU, (2.8)

¢N =tN + fN. (2.9)

Thus, T(resp.f) defines a one-one tensor field on T'M (resp.T-M). Similarly, F (resp.t)
defines a normal (resp.tangent) valued 1-fom on T'M (resp. T M).
The covariant derivatives of 1" and /' are defined as :

(VuT)V =VyTV - TVyV, (2.10)
(VuF)V =V FV — FVyV. (2.11)

Let M be a Sasakian manifold and A, a submanifold of M such that the structure vector
field £ is tangential to M.

Now, making use of equations (2.3) to (2.11), we obtain that
(VuT)V = ApyU + th(U, V) — g(U, V)€ + n(V)U (2.12)
(VuF)V = fh(U,V) - WU, TV). (2.13)

Since, our aim is to study contact ' B-submanifolds of a Sasakian manifold which are
warped product submanifolds, we recall in the following paragraphs the notion of warped
product manifolds and some intrinsic geometric properties of these manifolds.

Let (M, g1) and (M2, g2) be two Riemannian manifolds and f a positive differentiable
function on Mj. Then the warped product manifold denoted as My Xy Ms is a product
manifold M; x M5 endowed with a Riemannian metric g , given by

g=g1+ g
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The real valued function f, in this case is known as warping function. If f = 1, the warped
product metric g reduces to a Riemannian product. That is a warped product metric is a
generalized version of the product metric. The Riemannian product of two manifolds is
therefore known as trivial warped product of the manifolds.

Few important observations and formulae revealing some geometric aspects of a warped
product manifold are obtained by R.L.Bishop and B.O’Neill and are stated as under:

Theorem 2.1 ([3]). Let My x ; My be a warped product manifold. If X,Y € T'M; and
Z.W € T Mo, then

(1)VxY € TM,
(#)VxZ = VzX = (XInf)Z,
(#ii)nor(VzW) = —g(Z, W)Vinf,

where nor(V zW') denotes the component of VzW in T My and V f is the gradient of f
defined as g(Vf,U) = Uf,forany U € TM.

A couple of important consequences of the above Theorem are stated as under :
Corollary 2.1. Let M = My Xy My be a warped product manifold. Then
(7) M, is totally geodesic in M.

(72) My is totally umbilical in M.

3 Contact (' R-submanifold of a Sasakian manifold

A submanifold M of an almost contact metric manifold M is called a contact C R-submanifold
if it is endowed with the pair of orthogonal distributions D and D satisfying

\)TM = D@ D+@ < £ >, where < £ > is the one dimensional distribution spanned by
structure field &,

(ii) the distribution 1) is invariant by ¢ i.e.¢ ), = D, foreach x € M,

(iii)the distribution D™ is anti-invariant i.e., ¢D; C T;-M for each z € M.

Throughout, we assume that M 1is a Sasakian manifold and M, a contact (' R-submanifold
of M such that the structure vector field £ is tangential to M for otherwise M is a ¢-anti-
invariant submanifold (cf.[10],p.43). A contact C' R-submanifold is proper if neither D nor
D+ are trivial on the submanifold. A contact C'R-submanifold M of a Sasakian manifold
is called a U R-productif M is locally a Riemannian product of an invariant submanifold
My and a ¢-anti-invariant submanifold M, of M.
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It follows from the definition that the normal bundle T M of a contact C' R-submanifold
M admit the following direct decomposition

TiM = oDt @ v,

where v is the orthogonal complement of ¢ D+ in T-(M) and is evidently invariant under
¢. Now, in view of the definition of contact C' R-submanifolds, for any U € T'M, we may
write

U = BU + CU + n(U), (3.1)

where BU € D and CU € D™, Following are some easy observations :

T?U = -U +n(U)¢, TBU =TU, FCU = FU,

tFU = -CU, FBU =0, TCU =0.
Now, from equations (2.4), (2.5) and (2.8)

(@) Vu& = ¢BU, and (b) h(U,&) = ¢CU (3.2)
for any U € T'M. Now, taking account of (2.9), it is straight forward to deduce that

(a) th(U,£) = —CU and (b) fh(U,£) =0 (3.3)
Lemma 3.1. Let M be a contact C R-submanifold of a Sasakian manifold. Then

App€ = CU, foreachU € TM.

Proof. Forany U € TM and Z € D", on using formulae (2.7), (3.2)(b) and (2.1), we have

9(Arz&,U) = g(h(U,¢), FZ)
= 9(¢CU, ¢Z)
=9(CU, Z) =nU)n(Z).

Taking account of (3.1) and the fact that n(Z) = 0, we deduce from the above equation that
g(ApzE,U) = g(U,Z), forany U € TM and Z € D™,
That shows that Apz€ = Z. Further, as FU = FCU for any U € TM, we may write,
Arp€ = CU. (3.4)

L
Lemma 3.2. On a contact C R-submanifold M of a Sasakian manifold M,

(a) (VeI)U =0 (b) (VuT)E = BU (¢) (VuF)é = (VeF)U =0,
Jorany U € TM.
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Proof. Part (a) can be proved straightaway by making use of (2.12), (3.3)(a) and Lemma
3.1. For part (b), again using (2.12) and taking account of the fact that /' = () we obtain

(VuT)E =th(U, &) — g(U, €& + U.
Making use of (3.3)(a) and (3.1), the above equation takes the form
(VuT)E =-CU —nU)E+U = BU.

This proves part (b). For part (c), notice that #'§ = 0 and by (3.2)(a) £'Vy& = (. In view
of these observations, equation (2.11) implies that (Vi F)€ = 0.

On the other hand, by (2.13) (V:F)U = fh(U,&) — h(&,TU). The two terms in the
right hand side of the last equation vanish by virtue of (3.3)(b). That means (Vi F')§ = 0.
This completes the proof of the Lemma. LJ

With regard to the integrability of the distributions on a contact (' R-submanifold of a
Sasakian manitold, we have:

Proposition 3.1 ([1]). The ¢-invariant distribution D and the distribution D & D+ on a
contact C' R-submanifold of a Sasakian manifold are not involutive.

Proposition 3.2 ([2]). The ¢-invariant distribution D& < £ > on a contact C R-submanifold
of a Sasakian manifold is involutive if and only if

9(h($X,Y),6Z) = g(h(X,8Y ), 6Z),
foreach X,Y € D® < &€ > and Z € D+,

Proposition 3.3 ([2]). The anti-invariant distributions D+ and D*& < & > are involutive
on a contact C R-submanifold of a Sasakian manifold.

Proposition 3.4 ([1]). The ¢-invariant distribution D& < € > is parallel if and only if
g(WX,Y),0Z) =0

foreach XY € D@ < € > and Z € D*.

4 (C R-warped product submanifolds of a Sasakian manifold

Let M be a Sasakian manifold. If M, and My are sub manifolds of M such that the warped
product M = My X ¢ Mo admits an isometric immersion into M, then M is known as
warped product submanifold of M. In particular if M; is ¢-invariant tangent to the struc-
ture vector field £ and My is ¢-anti-invariant submanifold then M is called a C R-warped
product submanifold of M. A trivial contact (! R-warped product submanifold is simply a
C R-product. As D is not integrable on a contact C'R-submanifold of a Sasakian manifold,
there does not exist a non-trivial warped product submanifold of a Sasakian manifold such
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that £ is tangential to ¢-anti-invariant submanifold. The assertion also follows from the
following result of Matsumoto and Mihai [8].

Theorem 4.1 ([8]). If M = My Xy My is a warped product submanifold of a Sasakian
manifold M where My and My are any sub manifolds of M with £ tangential to second
factor My, then M is a Riemannian product of My and M.

However as D& < ¢ > and D™ are involutive on M, contact C'R-warped product
submanifold of M do exist and are studied by I. Mihai and 1. Hasegawa [6]. Obviously,
a (' R-warped product submanifold is a contact C'R-submanifold but the converse is not
true in general. Our aim in this section is to work out a characterization under which a
contact (' R-submanifold is a C'R-warped product. To this end, it can be recalled that a
C R-submanifold of a Kaehler manifold is a C' R-product (a trivial C'R-warped product) if
and only if the one-one tensor field T is parallel on M (cf[4]). But in the contact setting it
can be realized that on a proper contact C' R-submanifold of a Sasakian manifold, 7" can not
be parallel. In fact, M.I. Munteanu [9] proved:

Theorem 4.2 ([9]). Let M be a contact C R-submanifold of a Sasakian manifold M with
€€ Dand VT = 0. Then M is a contact C R-product between an integral curve of & and
the ¢-anti-invariant submanifold M| of M.

Throughout, we denote by M7 and M | respectively the ¢-invariant and ¢-anti-invariant
sub manifolds of a Sasakian manifold M and by My x s M| a contact C' R-warped product
submanifold of M. Further, the structure vector field £ is assumed to be tangential to My
for otherwise M is a trivial warped product submanifold by virtue of Theorem 4.1.

Lemma 4.1. Let M = Mg xy M, be a contact C R-warped product submanifold of a
Sasakian manifold M. Then for eachU € TM, X € TMyp and Z € TM | .

(I)(VzD)X = (TXInf)Z
(i7)(VuT)Z = g(CU, Z)T(Vinf)
(4it) Elnf = 0.
Proof. In view of formula (2.10), statement (i7) of Theorem (2.1) and the fact that 7’2 = 0,
we have (VzT)X = (TXInf)Z. This verifies part (i). For part (i), making use of
formula (2.1), (3.1) and the fact that T'Z = 0, we get
(VuT)Z = -T(VeuZ +VeuZ +nU)VeZ).

Applying the statement (iz) and (7i7) of Theorem (2.1) on the right hand side, the above
equation takes the form

(f?UT)Z = —(BUInf)TZ + g(CU,Z)T(Vinf) —nU)(&Inf)TZ.
Now, as 1'Z = () we obtain

(VuT)Z = g(CU, Z)T(Vinf),
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This proves part (ii) of the Lemma.
Finally, by formula (3.2)(a) and Theorem 2.1(ii), we have

V2 = (€nf)Z =0,

That shows that f is constant along £. This proves the lemma completely. U
Now we may establish the following characterization.

Theorem 4.3. A contact C R-submanifold M of a Sasakian manifold M is a contact C R-
warped product submanifold if and only if there exist a smooth function jron M with Zp =
0 for each Z € D> satisfying the following formula

(VuT)V = g(CU,CV)T (V) + n(V)BU
+ (TBVw)CU — g(BU, BV ). (4.1)

Proof. Let M = My x s M be a contact C'R-warped product submanifold of a Sasakian
manifold M. Then on using decomposition (3.1), we may write

(VuT)V = (VeuT)BV + (VeuT)BV + (VyT)CV

+ n(V)(VuT)E + n(U)(VeT)BY. (4.2)

By formula (2.12), (VpyT)BV = th(BU, BV) — g(BU, BV )¢. Further, as My is totally
geodesic in M, (VpyT)BV € T My implying that th(BU, BV') = 0. Hence

(?BUT)BV = —Q(BU, BV)E

On the other hand, on making use of Lemma 4.1 and Lemma 3.2 the remaining terms in the
right hand side of equation (4.2) reduce to

(TBVInf)CU + g(CU,CV)T'(Vinf) +n(V)BU.
Thus, equation (4.2) takes the form
(VuT)V =q(V)BU + (TBVInf)CU — g(BU, BV)¢ + g(CU,CV)T(Vinf).

Conversely, suppose that M is a contact ' R-submanifold of a Sasakian manifold such
that for each U,V € T'M and for a smooth function ; on M satisfying Zy = 0 for each
Z € D+, (4.1) holds . Then by (4.1),

(VxT)Y = —g(X,Y)§ +n(Y)X,
foreach X,Y € D& < £ > . On the other hand by formula (2.12),
(VxT)Y =th(X,Y) — g(X,Y)E+n(Y)X.

Comparing the last two relations,it follows that th(X,Y) = 0. That means h(X,Y) € v
foreach X,Y € D@ < £ >. Therefore by proposition 3.4, D& < £ > is parallel on M.
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Thatis, D& < £ > is integrable and its leaves are totally geodesic in M.

Now, for Z, W € D, consider g((VzT)X,W). On writing X = BX + n(X)¢, and
taking account of the fact that (V zT')¢ = 0, we get

J(V2T)X, W) = g(V,T)BX,W). (43)
Now, making use of formula (2.12), we have

g((VzT)BX, W) = —g(h(BX,Z),pW)
— 4(V2BX,¢W)
=—g(VzW,TX).

Thus, from (4.3) and the above equation,
g(VzT)X, W) = —g(TX,VzW). (4.4)
On the other hand, by formula (4.1)
g(V2T)X, W) = (TXp)g(Z,W). (4.5)
By (4.4) and (4.5), we deduce that
g(VzW,TX)=—g9(Z,W)g(Vu,TX). (4.6)

Since D+ is involutive, M is foliated by its leaves. Let us assume that M| is a leaf of DL
and k' is the second fundamental form of the immersion of M in to M. Then

g(H(Z, W), TX) = g(V2W,TX) = —g(Z,W)g(Vis, TX).
As h'(Z, W) lies in D, it follows from the above equation that
W(Z,W)=—g(ZW)Vpu.

That means M is totally umbilical in M with Vi as the mean curvature vector with re-
spect to the immersion of M | into M. further, as Zyu = 0 for each Z € D+, V is parallel.
That is the leaves of D are extrinsic spheres in M. Hence by virtue of a result in [7], M is
locally a C' R-warped product submanifold of M. Thatis M = My X5 M), where f = e¥.
This proves the Theorem completely. L

If M is a contact (' R-submanifold of a Sasakian manifold M, then by (2.12)
ApzX = (VxT)Z —th(X, Z), (4.7)
forany X € D® < & >and Z € D*. Also, by (2.12)
th(X,Z) = (VzT) X —n(X)Z. (4.8)
In particular, if M is a contact (' R-warped product submanifold of A, then by (4.1)
(VxT)Z =0 and (VzT)X = (TXinf)Z.
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On substituting the above values, equations (4.7) and (4.8) respectively reduce to
ArzX = —th(X,Z) and th(X,Z) = (TXInf)Z —n(X)Z.
That gives,
ApzX = ((X) — (TXInf))Z.
Hence, we conclude that
Corollary 4.1. A contact C R-submanifold of a Sasakian manifold M is a contact C R-
warped product submanifold if and only if there exist a function p on M with Zj = 0 for

each Z € D+ such that
ApzX = ((X) — (TXInf))Z,

forany X € D® < € > and Z € D+,
Corollary 4.2. A contact C R-submanifold of a Sasakian manifold M is a contact CR-

product if and only if
Arz X =n(X)Z,

forany X € D® < € > and Z € D+,
The statements of the above corollaries are independently proved by Munteanu [9] and

can be treated as extensions of the characterizations obtained by Chen [4] in the setting of
C R-sub manifolds of a Kaehler manifold.

Theorem 4.4. A contact C R-submanifold M of a Sasakian manifold M is a contact C R-
warped product submanifold if and only if there exist a smooth function . on M with Zy =
0 for each Z € D™ such that the following formula holds

(VuF)V = fh(U,CV) — (BVu)FU, (4.9)
foreach U,V € TM.

Proof. Let M = My x ; M be a C R-warped product submanifold of M. Then on taking
account of (3.1) and Lemma (3.2)(c), we may write

(VuF)V = (VeyF)BV + (VeuF)BV + (Vy F)CV.

The first term in the right hand side of the above equation vanishes due to formula (2.11)
and the fact that M+ is totally geodesic in M. The second term, on making use of (2.11) and
Theorem 2.1 (ii) reduces to —(BVInf)FCU. Finally, the third term by applying formula
(2.13) reduces to fh(U,C'V'). Hence, we obtain that

(VuF)V = fh(U,CV) — (BVInf)FCU

That shows that formula (4.9) holds on a contact C'R-warped product submanifold of a
Sasakian manifold.
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Conversely, suppose that M is a (' R-submanifold of a Sasakian manifold M and there
exists a smooth function g on M with Zp = 0 for each Z € D= such that (4.9) holds, then
forany X|Y € D& < £ >, by (4.9) (VxF)Y = 0. This fact together with (2.11) shows
that D@ < £ > is parallel, i.e., D& < £ > is involutive and its leaves are totally geodesic
in M. Further, forany X € D@ < £ >and Z, W € D+, by (4.9), we have

9(VzF)X,0W) = —g(Vu, X)g(¢Z,oW) = —g(Vp, X)g(Z, W),

which on applying (2.11) and using the fact that X = 0, yields

9(FV2X,FW) = (Vi BX)g(Z, W)

or,
9(VzW,X) = —g(Vu, BX)g(Z,W).

It is known that DX on M is involutive. Let M| denote a leaf of DL. If i’ denotes the sec-
ond fundamental form of the immersion of M in to M, then the above equation is written
as

g (Z,W),X) = —g(BVu, X)g(Z,W).

That is,
h(Z,W)=—g(Z, W)BVu,

which shows that M | is totally umbilical in M with mean curvature V. further, as Zp = 0
for each Z € D+, Vy is parallel. That is the leaves of D are extrinsic spheres in M.
Hence M is locally a (' R-warped product submanifold of M (cf.[7])(as stated in the proof
of Theorem 4.3) and the theorem is proved. U
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Abstract
Given a point  and a set K in a metric space (X, d), an element k, € K is called
a best approximation to x in K if d(x, k,) = d(z, K) = inf{d(z. k) : k € K}. The
set Px(z) ={y € K : d(z,y) = d(x, K)} is called the set of best approximants to =
in K. For k, € K, the set P‘,}l{ko) ={ax € X : k, € Px(x)} is called the k,-nearest
points set of K. Many properties of he set Pk () are available in the literature. In this
paper we also discuss some properties of the set Py (z), the set Py ' (k,) and some

related properties in metric spaces.

1 Introduction

Let K be a subset of a metric space (X,d) and x € X. An element k, € K is called
a best approximation to z in K if d(z,k,) = d(z, K) = inf{d(z,k) : k € K}. The set

Keywords and phrases : proximinal set, Chebyshev set, convex set, starshaped set , convex metric space

and restricted center property.
AMS Subject Classification : 41A65, 41A50.



78 T. D. Narang and Sangeeta

Pr(z) ={y € K : d(z,y) = d(z, K)} is called the set of best approximants to z in K.
we have
r, ifre K
P (z) = _ (1.1)
o, ifre K\K,
If for each x € X, Pk (z) is non-empty then K is called proximinal and if Py (z) is
exactly singleton for each x € K than K is called Chebyshev. From (1.1) it follows that
every proximinal set in closed.
Many properties of set Pk (x) are known in the literature (see e.g. Narang [7],[8] and
Singer [11], p. 379-380). In this paper, we shall also be dealing with the set Px(z) in
convex metric spaces. These spaces were introduced by W. Takahashi [12] in 1970 and

subsequently studied by many researchers.

2 Notations and Definitions
We begin with a few definitions and notations.

Definition 2.1. A subset /' of a metric space (X, d) is said to be proximinal if for each

x € X there exists a point k, € K which is nearest to x i.e.
di(z) =d(z,k,) = d(z, K) = inf{d(z,k) : k € K} (2.1)

The term ‘proximinal’ was proposed by Raymond Killgrove (see Phelps[9]).
Every element £, € K satistying (2.1) is called a best approximation or nearest point
or closest point to 2 in K.

We denote by Pg (), the set of all best approximants to x in K i.e.
P} =A{kz€ K dla: k) =gz K) )
The set K is said to be proximinal or an existence set if Py (x) # ¢ foreach z € X.

Also, for k, € K, we have the set szl(ko) ={x € X : k, € Pg(z)}, which is called
the k,-nearest points set of K.
Although every proximinal set is closed, a closed set need not be proximinal. This is

shown by the following examples:
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Example 2.1. Let K = {y € C[-1,1] : ful y(t)dt = 0}. Then K is a closed subset
of C'[—1,1] that is not proximinal, where C'|—1,1] is the set of all continuous functions

defined from |[—1,1| to R.

Example 2.2. Let ¢, = {< ap, >: an € F,a, — 0} (F = RorC) with d(< a,, >,
< b, >) = sup d(an, by). Let
K ={<a,>et,: Z 2R, =0}

nenN

Then K is a closed infinite dimensional subset of ¢, and if * =< b, >¢ K, then there is

no k € K such that d(z, k) = d(z, K). So the set K is also closed but not proximinal.

Infact in every incomplete inner product space there is a closed subset that is not prox-
iminal (Deutsch[2]-p. 32). In view of (1.1), in order to exclude the trivial case when
elements of best approximation do not exist, throughout while discussing P (), we shall

assume, without mention that i # X.

Definition 2.2, A mapping W : X x X x |0,1] — X is said to be a convex structure[12]
on X ifforallz,y € X and A € |0, 1]

d(u, W(z,y,A)) < Md(u,z) + (1 — A)d(u,y) (2.2)

holds for all u € X. A metric space (X, d) together with a convex structure is called a
convex metric space.

Example 2.3. [12] Let I be the unit interval [0, 1| and X be the family of closed intervals
la;, b;] such that 0 < a; < b; < 1. For I; = |a;,b;), I; = |aj,b;] and A (0 < A < 1), define
amapping W by W(Zl;, I;, A) = |Aa; + (1 — A)a;, Ab; + (1 — A)b;] and define a metric d
in X by the Hausdorff distance, i.e.

d(Ii: IJ) = Sup{
acl

inf {|a — b|} — inf {|a — ¢|}] .
inf(ja =81} inf (o~ l} |}
The metric space (X, d) along with the convex structure W is a convex metric space.

Example 2.4. [12] The linear space L which is also a metric space with the following
properties:

A z,ye L, dz,y) =d(z—y,0)

(i) Forz,y € Land A(0 < A < 1), d(Az+ (1 —A)y,0) < Ad(z,0) + (1 — A)d(y,0)

is a convex metric space.
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Definition 2.3. A nonempty subset K of a convex metric space (X, d) is said to be

(i) starshaped [3] if there exists some v € K such that W(z,u,\) € K for every
x € K and forevery A € [,

(ii) convex [12]if W (z,y,\) € K forevery z,y € K and A € I.

Definition 2.4. ([6]-p. 476) Let (X, d) be a metric space, K a closed subset of X and F' a
bounded subset of X. Let r(F,y) = sup{d(z,y) : © € F'}. The number
radg(F) = inf sup d(z,y)
veK pef
is called the restricted radius of /" in K. A best representor or global approximator of F

in K is an element k, € K, called restricted centre of /' in K satisfying
radg(F) =r(F, k).

The set of all restricted centers of F'in K will be denoted by

Centg(F)={y € K : supd(z,y) = radg (F)}.
zeF

Throughout, the set Blz,r| = {y € X : d(z,y) < r} denotes a closed ball in X with
center = and radius r, The set X ~ K stands for complement of K in X, 9K for boundary
of K, K for the interior of K and I for the closed interval |0,1]. For any two points
r,y€e X, theset{z € X :d(x,z) +d(z,y) = d(z,y)} is called a metric segment and is
denoted by |z,y|. The set [z,y, —|= {2z € X : d(x,y) + d(y,2) = d(x, z)} denotes a half
ray starting from x and passing through y i.e. it is the union of line segments |, z| where

l2,9) € Iz, ).

3 Best Approximation in Metric Spaces and
Convex Metric Spaces
This section deals with some properties of the sets Py (z) and Py (k,) in metric spaces

and convex metric spaces.

Concerning the set Px (), we have
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Theorem 3.1. In a convex metric space (X,d), if Kis starshaped w.r.t. k, then Pr(x) is

starshaped w.r.t k, if k, € Pg(z).

Proof. Lety € Pk(x). Thend(z,y) = d(x, K). Since K is starshaped w.r.t ko, W (y, ko, A) €
K foreach A € I. We claim that W (y, k,, A\) € Pi(x) forall A € I. Consider

d(z, W (5, ko, \)) < Ad(z,y) + (1 — N)d(z, ko)
— Mz, K) + (1= \d(z,K)
= d(a,K)

d(z, W (y, ko, \)).

AN

Therefore d(x, W (y, ko, A)) = d(x, K) for all A € I and so W (y, ko, A) € Px(z) for all
y € Pg(x)and X € I. Hence Py (z) is starshaped w.r.t k,. O

Next theorem deals with the convexity of the set Px ().

Theorem 3.2. If K is convex subset of a convex metric space (X, d) then the set Pk (z) is

convex for each v € X,

Proof. Suppose y,z € Px(x) and A € I. Theny, z € K and so W(y, z,A) € K.

Consider

Az, W(y,2,)) < M,y)+ (1 - Nd(,2)
= M@, K) + (1 - Nd(, K)
= d(z,K)

d(z, W(y, 2,))).

AN

Therefore d(z, W (y, z,\)) = d(z, K) forall A € I i.e. W(y,2,A) € Pg(z) forall A € I.

Hence Pk (z) is a convex set. ]

The following theorem (see also Al-Thagafi[1]) shows that in a convex metric space

(X,d), Pg(z) is a part of the boundary of K:

Theorem 3.3. If K is a subset of a convex metric space (X,d) then for any x € X,
Pk (z) C OK.
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Proof. Lety € Py (x) be arbitrary. Suppose y € K (the interior of X). Then some open
ball B.(y) C K,e > 0.Foreachn € N, let z, = W(z,y, ). Then

1
d(zn,y) = d(W(ﬂ?,y,;)!yJ

VAN

= %d(;t:,y]

= Late 1)
T

ie. d(zn,y) < Ld(z,K) foralln € N.
Therefore for sufficiently large m > 1, we have d(zp,,y) < e i.e. 2y € B:(y) C K.

Now
1
d(z,zm) = d(z,W(x,y, E)J

1 1
m T

= (1= )dz,y)
< d(z,y)
= d(z,K)

ie. d(z,zy) < d(z, K), a contradiction and hence y € 0K. ]

If K is a subset of a convex metric space (X, d) then for any x € X, Px(z) C 0K
is not true in an arbitrary metric space where an element of best approximation may be an

interior point of the set. Following example from Singer[11]-p. 381 elaborates this fact.

Example 3.1. Let E be the set {z = (£;,&2) : |£&1| = 1} in the Euclidean plane, endowed
with the metric induced by the Euclidean metric, let K = {z = (£1,&) € E: [§ + 2| <
1,1&| < 1} andlet z = (2,0) € F then Pk (x) contains single point k, = (—1,0) € K°.

It is well known (see e.g. Deutsch[2]-p. 301, Singer[11]-p. 364) that if K is a
Chebyshev set in a normed linear space X then Px|A\z + (1 — A\)Px(z)] = Pgk(z),
x € X,0 £ A < 1. In order to extend this result to convex metric spaces, we prove

the following lemma:

Lemma 3.1. If (X,d) is a convex metric space then for x,y € X and X\ € I, we have
d(,y) = d(w, W (@, 9, N) + d(W (2,5, 1), y):
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Proof. Consider

dlz,y) < dz,W(z,y,A))+dW(x,y,A),y)
< Mz,z)+ (1 - ANd(z,y) + Md(z,y) + (1 - Nd(y,y)
d(z,y).

The result now follows. =
Theorem 3.4. If K is a Chebyshev set in a convex metric space (X, d) then
Px(W (2, Px(2), \)) = P ()
forevery A € I.
Proof. By the above lemma
d(z, W(z, Pk (x),A)) + d(W(z, P (2), A), Pk (z)) = d(z, Pk (z)).  (3.1)
Now forany y € K, d(z,y) < d(z,W(z, Pk(x),\)) + d(W(z, Pk (x),\),y) implies

d(W (2, P(2),0),9) > d(z,y) - d(z, W (z, Px(z),\))
> d(z,K) — d(z, W (2, Px(z),\))
= d(z, Px(2)) - d(a, W (z, Pk (), }))
= d(W(z, Px(z),)), Pk (), by B.D)

ie. d(W(z, Pg(x),A), Px(z)) < d(W(z, Pk(x),A),y) for all y € K. Therefore

d(W (z, Pk (z),\), Pk (z)) < d(W(z, Px(z),\), K)
< d(W(zx, Pk (z),)), Pk (2))

ie. d(W(z, Px(x),A), Px(x)) = d(W (x, Px(z),)), K) and since K is Chebyshev, we
have
Pg\W(z, Pk(x),\)| = Pk (x) forevery A € 1. [

Let (X, d) be a metric space and K’ C X. Forz € X, we have the set Px(z) = {k, €

K :d(xz,k,) = inf{d(x,k') : ¥ € K}} which is the set of all best approximants to x in
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K. Simply stated, the set P (z) is the set of all points k, € K which are at least as near

as are any other points of K. For k, € K, we define the set
Pgl(ko) = {z € X : d(z,ko) = d(z,K)} = {z € X : k, € Px(z)}.

The set P % (ko) is called the ko-nearest points set of /. It may well be that k, may be
the only point of Py (k).

Concerning the set szl(kzo), we have

Theorem 3.5. If K is a subset of a metric space (X,d) and k, € K then Py '(k,) is a
closed subset of X.

For normed linear spaces this result is stated in Phelps[10] and its proof which is given

in Singer(1970) (Theorem 6.3, p.143) can be easily extended to metric spaces.

Definition 3.1. A subset K of metric space (X, d) is called a convex cone if |z,y, —|C K

whenever 2,y € K.

Example 3.2. [13] Let K be the closed disc in R* and let k, be the point (1,0) which lie
on the boundary of K. Then Py " (k,) is the ray {(z,0) : # > 1}. It may be noted that K is

convex and Pgl (ko) is a closed convex cone.

Example 3.3. [13] Let K be the set of points in R? whose first coordinate are not greater
than -1 together with the point (1,0). Let k, be the point (1,0), then the set of points equidis-
tant from k, and the set K \ {k,} is the parabola {(x1,xz3) : .Lﬁ = 4z, }. Then Pgl(k,,) is

the set {(x1,x9) : :r_.'% < 41 }. Here P};l(ko) 1s convex but not a cone.,
Concerning the set P}EI (ko), we have

Theorem 3.6. Let K be a subset of a metric space (X,d) and k, € K then the set
Pict (ko) = 1] Ppy gy (ko)-
yEK
Proof. For simplicity, let K’ = ﬂ P{_ki,y}(k")' Now, let z € Pr'(k,) and lety € K,
then d(z, k,) < d(x,y). Since k:oyg\{ko: y}. It follows that d(z, k,) = inf{d(z,w) : w €
{ko,y}} and therefore = € P{}i,;g}(kﬂ)' Since y is arbitrary, x € K’ which implies that
P ) &1,
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Conversely, let z € K'iez € () P{}cl 4 (ko) which implies that = € P{fkl o (o)
ye}{ ol (rR}:

forally € Kied(z,k,) < d(z,y) forally € K. Since, k, € K, we have d(z,k,) =

inf{d(z,y) : y € K}iex € Pi'(k,) and so K’ C P;;'(k,) and therefore K’ = P! (k,).

O

Concerning the set Pfgl(ko), we have the following reformulation of Theorem 3.4 :

Theorem 3.7. If K is a subset of a convex metric spaces (X,d) and k, € K then x €
szl(kn) = W(x, ko, A) € Pgl{ko)_for every A € I ie. szl(ko) is starshaped with

respect to k.

Remark 3.1. Theorem 3.6 is proved in Singer[11]-Theorem 6.3, p. 143 for all scalars
A when K is a linear subspace of a normed linear space X. For convex subsets of a
normed linear space the result was given by Klee[4]. It may be remarked that proof given
in Singer[11] can easily be extended for the case 0 < A < 1 when K is any subset of a

normed linear space.

4 Restricted Center Property in Convex Metric Spaces

Let § denote a family of closed and bounded subsets of X and K be a non-empty
closed subset of X. We say that K satisfies restricted centre property( See Mhaskar and
Pai(2000)-p. 476) for § if Centy(F) # ¢ foreach F' € §. When K = X satisfies this
property, we say that X admits centers for §. If F' is singleton set {x,} then radx (F) =
d(zo, K) = inf{d(z,,k) : k € K} and Centg(F) = Px(z,) = {k € K : d(zo,k) =
d(z,, K)}.

In this section, we prove that in a convex metric space certain classes of sets satisfying
a particular property satisfy restricted center property.

Let (X, d) be a complete, convex metric space and K a nonempty closed subset of X,

given £ > () define

de(z,y) = yifd(z,y)<e

= X7 # £ 3 aT. T
W (y,x, d(m,y)) ifd(z,y) = ¢

Clearly, the mapping ¢. : X x X — X is continuous. Moreover, d(¢:(z,y), z) < £ for all

x,y € X as shown below
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Case I If d(z,y) < e, we have d(¢.(z,y)),z) =d(x,y) <€
Case II: If d(x, y) = &, then

d(¢-(x,y)),x) = ‘E(W(y’w'd(::?y))!z:)

5 g
d(z,y) d(z,y) + (1 o d(:{:,y))d'(m’m) =€

Definition 4.1, The pair (X, K')is said to have Property P if for every r > 0, £ > 0 there

<

exists § = d(g) > 0,0 < d(¢) < e such that ¢ (K x K) C V and
Blz,r + 4| N Bly,r + 0] C Bl¢:(z,y),r + 6] 4.1)

forall 0 < # < § and 2,y € K. The space X is said to have Property P if (4.1) holds for
allz,y e X

Note. Above property was given by Mach[5] and was named Property P by Mhaskar
and Pai[6]-p. 479.

Property P defined above says that for two balls B|z,r 4 6|, Bly,r +0],0 < 8 < 9,
r >0, x,y € X itis possible to move center y of second ball arbitrary close to the center
x of first ball without decreasing the intersection Blz,r + §| N Bly.r + 6], if § is small
enough.

Mach[5] proved that every uniformly convex Banach space satisfies Property . Machl[5]

also gave an example of a Banach space in which Property P does not hold.

Definition 4.2. Let (X, d) be a metric space, F' a subset of family § of closed and bounded
subsets of X and K a nonempty closed subset of X. The set K is said to satisfy restricted

center property for § if C'ent g (F') # ¢ for each F' € §.
For convex metric spaces satisfying property PP, we have

Theorem 4.1. Let (X,d) be a complete convex metric space and K a nonempty closed
subset of X. If the pair (X, K) satisfies Property P then the set Centy (F') # ¢ for every
nonempty closed and bounded subset F of X. i.e. a subset F of family of nonempty closed

and bounded subsets of X satisfies restricted center property.

Proof. Let F be a non-empty closed and bounded subset of X. For r = radg(F) =
inf{r(F,k) : k € K} (where r(F,k) = sup{d(k,y) : y € F})and ¢ = 271, find the
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corresponding §(27') as in the definition of Property P, we have 0 < §(27') < 271,
Pick a point k; € K such that r(F, k1) < r 4+ (271). Then F C Blky,7 + 6(271)] ( as

r(F, k1) < r+06(271) implies supd(h y) <r+0(27Y) iedk,y) <r+6(271)
forally € Fandsoy € B[km*-l—é?? D) forall y € F).

Assume now that for n € N the points k, € Kand the numbers §(27") are cho-
sen such that 6(27%) < 27%, F C Blkj,r +40(27%)] fori = 1,2,3,--- ,n — 1,n and
d(k;, k:‘+]) <27 fori =1,2,3,--- ,n—1. Now for r and 2= ("1 choose §(2~("+1)) <
min{d(2-"),2-("+1}. Pick a point k € K such that F ¢ B[k,r + §(2-("+1))] then in
view of Property P satisfied by (X, K), F C Blkn, 7+ 0(27™)] N Blk,r + §(2-™+1)]
Blkny1,7+0(2- 1)), where k1 = p9—n (kn. k) (Comparing with property P here 6 =
§(2-(+D), §(2-(+)) < min{6(2"),2-"*+} implies 0 < < § and §(2-"+V) <

—(n+1)), Then

d(kni1,kn) = d(@g-n(kn, k), kn)

= d| W|k,k,,
‘( (’ km) )

2—?1 2
S Tl ks ) + G‘dkde%$ﬂ
— 2_7{-

i.e d(knp+1,kn) < 27", We claim that the sequence {k,} C K so constructed is a cauchy

sequence. For e = 2-lletm’ = 1 and n,m = m’, n > m. Consider

d(km km) = (km ‘F‘n) g d(kms km-ﬁ-l) o+ d(km-i-l-. km--i—‘z) SR d(kn—lu k:nJ
< 9-m 4 2—(??1-!—1) frEne 2—(?1—1)
_ g 2-_)
] e

2_.”-,'4_1 2—n+1 2= ﬂH-l( Q'm—u) < 2—m+1 ~..<.‘ 2—1

i.e there exists a positive integer m’ = 1 such that d(k,,, k,,) < & for n,m = m/. Therefore,
{kn} C K is a Cauchy sequence. If {k,,} — &, then k, € K. Since r(F, k,) <r+4(27")
for all n and 6(27") — 0. We conclude that r(F, k,) = r and k, € Centg(F). i

Note. If § contains all singletons and K satisfies restricted centre property for § then K is

proximinal.

Remark 4.1. For Banach spaces, Theorem 4.1 is proved in Mhaskar and Pai[5]-p. 479.
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1 Introduction

In 1985, S. G. Matthews [7] established a generalization of Banach fixed point theorem in
dislocated metric spaces under the name of metric domains. In 2000, P. Hitzler and A. K.
Seda [3] gave an alternative proof of G. S. Matthew’s theorem established in [7]. Indeed
dislocated metrics differ from the conventional ones in the sense that the distance of a point
from itself need not be zero. Formally speaking, a nonempty set X together with a fuction
d: X x X — |0,00) is called a dislocated metric space (denoted by (X, d)) if d satisfies
the following conditions:

(dy) d(z,y) =0=>z =y,

(d2) d(z,y) = d(y, x).

(d3) d(z,y) < d(z,2) +d(z,y),

forall z,y, 2 € X.

For more informations on dislocated metric spaces, one can be referred to [1],[3], [6].
|9-10] etc.

In the present paper, we prove a common fixed point theorem in dislocated metric spaces
which is an improvement over Theorem 1 of M. Aamri and D. El. Moutawakil [2]. In order
to state the esteemed theorem the following definitions are required:

Definition 1.1 [2]. Let S and T be two selfmappings of a metric space (X, d). We say that
the maps 1" and S satisfy the property (E.A) if there exists a sequence (x,,) in X such that

lim Tz, = lim Sz, =1
n—0o n—oc

for some t € X.

Definition 1.2 [5,8]. Two selfmappings 7" and S of metric space (X, d) are said to be
weakly compatible if the pair commutes at their coincidence points; i.e. Tu = Su (for
u € X) implies T'Su = STu.

In [2], the following natural theorem was established.

Theorem 1.1. Let S and T be two weakly compatible self-mappings of a metric space

(X, d) such that
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(i) T and S satisfy the property (E.A),

- d(Tax,Sz)+d(Ty,Sy, d(Ty.Sx)+d(Tx,5, R

(i) d(Tz,Ty) < max{d(Sz, Sy), o )2 Ty "r}], [4(Ty }? ( J)]}, Vz#
y € X and

() 7T'X C SX.

If SX or T X is a complete subspace of X, then 7" and S have a unique common fixed
point.
With a view to enlarge the class of spaces covered by Theorem 1.1, we introduce the fol-
lowing relatively larger class of spaces.
Definition 1.3. A distance space (X, d) is called a strong small self distance dislocated
metric space (in short SSSD dislocated metric space) if (X, d) is dislocated metric space
which satisfies the following condition:

() for every z € X, d(z,y) > d(x,x) whenever y € X — {z}.

Every metric space is SSSD dislocated metric space but not conversely as substantiated

by the following example.

Example 1.1. Let X = {a.b,c} andd : X x X — |0, 0c) defined by d(a.a) = d(b,b) =

d(c,c) = §,d(a,b) = d(b,a) = d(a,c) = d(c,a) = d(b,c) = d(c,b) = 2.

Notice that (X, d) is SSSD dislocated metric space but it is not a metric space as

1

d(a,a) = d(b,b) = d(c,c) = 3.
The following well known metrical definitions can naturally be adopted to the setting

of SSSD dislocated metric spaces.

Definition 1.4 [3] A sequence (x,,) in a SSSD dislocated metric space converges to € X

(denoted by limg s Ti = o) I lim, sesdln 3) =0

Definition 1.5 Two self-mappings S and 7" of a SSSD dislocated metric space (X, d) are

said to be weakly commuting if

dl&T%,T9%) = d(85:Tz); Ve E X,

Definition 1.6 Let S and 7" be Two self-mappings of a SSSD dislocated metric space (X, d).
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Then S and 7" are said to be compatible if

lim d(STz,,TSz,) =0,

n—rod

whenever (x,,) is a sequence in X such that

Iim Sz, = lim Tz, =1
n—oC n—oc

for some € X.

Definition 1.7. Two self-mappings 7" and S of a SSSD dislocated metric space X are said
to be weakly compatible if they commute at their coincidence points; i.e., if T'u = Su for

some u € X, then T'Su = STu.

Definition 1.8. Let S and 7" be two selfmappings of a SSSD dislocated metric space (X, d).
We say that 7" and S satisfy the property (d-E.A) if there exists a sequence (z,,) in X such
that

(1) limy, oo Ty, = limy, o0 Sy, = tfor some t € X.

(2) If t = Sa for some a € X and T'a # Sa, then there exists a subsequence (T'zy,;) of
(T'xy) such that Tz, # TaVn; € N.

The following lemma is crucial.

Lemma 1.1. Let (X, d) be a dislocated metric space. Then d is continuous.

2 Main results

We prove the following extension of Theorem 1.1 to SSSD dislocated metric spaces wherein
the condition on containment of range of one mapping into the range of other is also relaxed.
Theorem 2.1. Let S and 1" be two weakly compatible self-mappings of a SSSD dislocated
metric space (X, d) such that

(i) T'and S satisfy the property (d-E£.A),

(ii) for each z.y € X with z # y,

d(Tx,Ty) < max{d(Sz, Sy),

|d(Tx, Sz) + d(Ty, Sy)| |d(Ty,Sz) + d(T'z, Sy)] }
2 " 2
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(iii) SX is a d-closed subset of X.

Then 7" and S have a unique common fixed point.

Proof. Since 7" and S satisfy the property (d — E.A), there exists a sequence (x,) in
X satisfying lim,, ,, Tz, = lim, ,o Sz, = t for some t € X. If SX is closed, then
t € SX, ie. there exists an @ € X such that £ = Sa. We show that T'a = Sa. Suppose
that Ta # Sa. Then there exists a subsequence (1'zy,;) of (T'x,) such that T'r,,; # Ta
Vn; € N. Now,

|d(Tzy,;, Szn;) + d(Ta, Sa)|
2 ?

d(Twy,;,Ta) < max{d(Sz,,, Sa),

|d(Ta, Sxn,) + d(Tzn;, Sa)|
5 }

Letting n; — +oc and appealing to Lemma 2.1, we have

d(Sa,Ta) < max{d(Sa,Sa), (B 56) +4(T8; Sa.)J1

2
|d(Ta,Sa) + d(Sa, Sa)| }
2
< max{d(Ta, Sa),d(Ta, Sa),d(Ta, S'a.)}

= d(Ta, Sa),

a contradiction. Hence T'a = Sa. Since T and S are weakly compatible, therefore S7'a =
TSaand TTa =TSa = STa = SSa. Now we show that T'a is a common fixed point of
T and S. Let on contrary that 7Ta # Ta. Then
d(Ta,Sa) +d(TTa,STa
d(Ta,TTa) < max{d(Sa,STa), ElTa5a) +2( i G)J._
|[d(I'Ta,Sa) + d(Ta,STa)) }
2

d(Ta,Ta) + d(TTa, TTa
= max {d(T(L,TT(L), (e Ta) +2( & G)J._
d(TTa,Ta)+d(Ta,TTa) }
2

= d(Ta, TTa),

a contradition. Hence T'a = TTa Also, STa = TTa = T'a which shows that 7" and S

have a common fixed point. Now, we proceed to show that the common fixed of S and T is
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unique. Suppose that there exist x,y € X such that z # y, Sx = z, Tex = x, Sy = y and
Ty = y. Then

|d(Tz, Sz) + d(Ty, Sy)]
2 ]

d(z,y) =d(Tz,Ty) < max {d(Sm,Sy)?

d(Ty, Sz) + d(Tz, Sy)|
; J

= max {d(xjy)jd(x;-y)jd(;rey)} = d(z,y),

a contradiction so that & = y. This completes the proof.

As every noncompatible pair shares the property (d-£.A), we have the following;
Corollary 2.1. Let S and T" be two noncompatible weakly compatible self-mappings of a
SSSD dislocated metric space (X, d) such that
(#) the requirement (1) Of Definition 1.7 is satisfied i.e, 7" and S satisfy the property (d-
E.A),

(i7) d(Tz,Ty) < max {d(S:::, Sy), [d'(T‘T"Sx);d‘(TU‘ST")], ld(Ty‘S"”;d{T"""S"”')] }, Vo#£ye
X,
(7i1) SX is a d-closed subset of X.

Then 7" and S have a unique common fixed point.

Corollary 2.2. Let S and 7" be two weakly compatible selfmappings of a SSSD dislocated
metric space (X, d) such that

() the requirement (1) of Definition 1.7 is satisfied i.e. 7" and S satisfy the property (d-
EA)andTX C SX,

(i1) d(Sz,Tz) < ¢(Sz) — ¢(Tz), Yz € X,

(iii) d(Tz,Ty) < max{d(Sz, Sy), WILSHATESIL v 5 2 y € X.

(7i1) SX is a complete subspace of X.

Then 7" and S have a unique common fixed point.

Corollary 2.3. Let 7" be self-mapping of a complete metric space (X, d). Suppose that
there exists a mapping ¢ : X — R such that
(2) d(z,Tz) < ¢(x) — ¢(Tx), VX € X,
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(#4) d(Tz,Ty) < max {d(az,y], W} Ve#yeX,
Then T has a unique fixed point.

Corollary 2.4. Let S be a surjective self-mapping of a complete metric space (X, d). Sup-
pose that there exists a mapping ¢ : X — R such that

(i) d(z, Sz) < ¢(Sz) — @(z), Ve € X,

(ii) d(z,y) < max {d(Sx?Sy)? ““‘”);—“fﬂ]} VeyeX,

Then S has a unique fixed point.

Proposition 2.1. Let S and 7" be two self-mappings of a metric space (X, d) such that
(1) T"and S satisfy the property (E.A);
(ii) SX is a closed subset of X.

Then the requirement (2) of Definition 1.7 is satisfied.

Proof Owing to (i) and closedness of SX, one can conclude that there exists a sequence
(zn) in X such lim, oo Sz, = limy, 00 Tz, = Sa for some a € X. Suppose Ta # Sa.
Since the limit of a sequence is unique, therefore lim,, ., Tz, # Ta. Then for every ¢ > 0
and n € N, there exists m(n) € N with m(n) > n such that d(7'z,,(,), Ta) > €. Since
d(x,y) # 0iff v # yVr,y € X, therefore T'x,,(,,) # Ta. Clearly, for ny > ny, one can

select m(ng) = m(ny) so that (1'z,,(,) Jnen 18 a subsequence of (1'z;,)nen-
Since T'a # Sa, therefore d(Ta, Sa) > 0 = d(Sa, Sa).

Corollary 2.5 ([Theorem 1,2]). Let S and 71" be two weakly compatible selfmappings of a
metric space (X, d) such that

(1) 7" and S satisfy the property (E.A),

(ii) for each x,y € X such that z # y,

|d(Tz, Sx) + d(Ty, Sy)| |d(Ty,Sz)+d(Tx,Sy)] }
2 i 2

d(Txz,Ty) < max {d(S;t:, Sy),

(iii) SX is a closed subset of X.
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Then 7" and S have a unique common fixed point.

Proof. Using Theorem 2.1 and Proposition 2.1, one can outline a proof.
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