


THE ALIGARH BULLETIN OF MATHEMATICS

Editorial Board

Managing Editor
Mursaleen
mursaleen@gmail.com

S.S. Alam, Kharagpur, India
alam@maths.iitkgp.ernet.in

Q.H. Ansari, Aligarh, India
ghansari@kfupm.edu.sa

Afzal Beg, Aligarh, India
begafzal@yahoo.com

P.K.Banerji, Jodhpur, India
banerjipk@yahoo.com

J. Bicak, Czech Republic
bicak@mbox.troja.mff.cuni.cz

Huseyin Bor, Turkey
bor@erciyes.edu.tr

M. Bresar, Slovania
bresar@univ-mb.si

Luisa Carini, Italy
Icarini@dipmat.unime.it

U.C. De, Kalyani, India
uc_de@yahoo.com

T.R. Gulati, Roorkee, India
trgmaiitr@rediffmail.com

Claus Haetinger, Brazil
chaet@univates.br

Mohd. Imdad, Aligarh, India
mhimdad@yahoo.co.in

Huzoor H. Khan, Aligarh, India
huzoorkhan@yahoo.com

Chief Editor
Zafar Ahsan

zafar.ahsan@rediffmail.com

Members

Managing Editor
M. Ashraf

mashraf80@hotmail.com

Sunder Lal, Agra, India
sunder_lal2@rediffmail.com

E. Malkowsky, Yogoslavia
eberhard.malkowsky@math.uni-giessen.de

H. Marubayashi, Japan
marubaya@naruto-u.ac.jp

S. Natesan, Guwabhati, India
natesan@iitg.ernet.in

P. Panigrahi, Kharagpur, India
pratima@maths.iitkgp.ernet.in

R.P. Pant, Nainital, India
pant_rp@rediffmail.com

S. Parvathi, Chennai, India
sparvathi@hotmail.com

V. Popa, Romania
vpopa@ub.ro

S.M. Tariq Rizvi, U.S.A.
rizvi.1@osu.edu

Ekrem Savas, Turkey
ekremsavas@yahoo.com

Suthep Suantai, Thailand
senti00S@chiangmai.ac.th

R.Tikekar, Vallabh Vidyanagar, India
tikekar@gmail.com

Jen-Chih Yao, Taiwan
yaojc@math.nsysu.edu.tw



Contents of Vol. 31, Numbers 1-2 (2012)

Critical point analysis of early tumor growth with time dependent
proliferation rate and killing rate
S.S. Rajput and S.8. Yadav 1-7

Trilateral generating relation of Laguerre polynomials from the group theory
Kamlesh Bhandari and S.S. Bhati 9-13

Mass transfer and joule heating effects on transient non-decay

magnetohydrodynamic conversion flow of micropolar fluids past a

vertical moving plate with viscous dissipation

Anurag Dubey, U.R. Singh and Rajeev Jha 15-47

Linear differential equations of third and fourth order
R. Cruz-Santiago, J. Lopez-Bonilla and Zafar Ahsan 49-51

A simple deduction of the Lewis invariant
R. Cruz-Santiago, J. Lépez-Bonilla and Zafar Ahsan 53-55

Function acting as a multiplicative homomorphism (or anti-homomorphism)
on Jordan ideals of prime rings
Lahcen Oukhtite and Abdellah Mamouni ' 57-64

A counter example for a Theorem of Sen
J.H. Caltenco, J. Lopez-Bonilla and Zafar Ahsan 65-66

Representations and matrix units for the cyclotomic
Brauer algebras of G(r, p,n) type
N. Karimilla Bi 67-108



ISSN: 0304-9787
The Aligarh Bulletin of Mathematics Copyright (©) Department of Mathematics
Volume 31, Numbers 1-2 (2012) 1-7 Aligarh Muslim University, Aligarh-202 002, India

CRITICAL POINT ANALYSIS OF EARLY TUMOR
GROWTH WITH TIME DEPENDENT
PROLIFERATION RATE AND KILLING RATE
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E-mail: ssyadvncs @gmail.com

(Received December 12, 2011)

Abstract

We study the critical points of early tumor growth when proliferation rate and
killing rates of tumor cells are not time dependent, proliferation rate is time dependent
even as killing rate is not so. It is found that critical point of tumor cells decreases when
proliferation rate increases and critical point increases when killing rates are increases
for both the rates are not time dependent. Critical point also increases when killing
rate increases for time independent killing rate and time dependent proliferation rates.
We have also studied tumor cells increases when time increases for time dependent
proliferation rate and killing rate.

1 Introduction

Modeling of early tumor growth give an insight in to how a tumor develops with time.
Critical point plays extremely significant role in early tumor growth theory. Critical point is
a point below which tumor extinct. Now a day’s tumor extinction is a challenging problem
for medical practitioners and biologists. Ali et al. (2003) studied the steady state properties
of tumor cell growth and discussed the eftect of correlated noise. They investigated that the
degree of correlation of the noise can cause tumor. Fory’s et al. (2005) performed a critical
point analysis of for three variable systems the represent essential process of the growth of
the angiogenic tumor such as tumor growth, vascularization, and generation of angiogenic
factor (protein) as a function of effective vessel density. Cui (2006) studied existence of a

Keywords and phrases : Critical point, proliferation rate, killing rate, Transient state (Depending on
time).
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statinary solution to a tumor growth model proposed by Ward and King with biologically
reasonable modification. Mathematical formulation of this problem is a two-point free
boundary problem of a system of ordinary differential equations, one of which is singular
at boundary points. Cui and Xu (2007) studied two mathematical models for the growth of
tumors with time delays in cell proliferation, one for nonnecrotic tumors in the presence of
inhibitors, and the other for necrotic tumors. Behera and Rourke (2008) studied the effect
of noise in an avascular tumor growth model. They considered the growth mechanism is the
Gompertz model. Jing and Yong (2010) have discussed the effect of multiplicative noise
and the time delay on tumor extinction. In this paper, We have investigated the critical
points of early tumor growth when proliferation rate and killing rate of tumor cells are not
time dependent, proliferation rate is time dependent while killing rate is not so and both the
rates are time dependent.

2 Modeling of the Problem

Let us consider proliferation rate () satisfies the differential equation

dx .
= = = k with 2(0) = g &

Where z(t) is the number of cells within a solid tumor at time ¢, r is the rate at which the
cells proliferate and k be the killing rate of tumor cells. r can be taken constant or a function
of time t.

3 Proliferation and Killing Rate are not Time Dependent

First let us assume tumor cells proliferate at constant rate 7.

Fromeq. (1), I.F. = ] —rdt = =1t
Then solution of (1) is given by

~—

e s /er‘"dt + Cy, Where (] is integrating constant. (2

&(t) = 7 + Cie™

On applying initial condition, the solution reduces to
n k n ¢
z(t) = zoe" + - (1—-¢€") (3)

Let us integrate (2) definitely from ¢t = 0 to t = ¢, we get

t

r=e" Ty — / ke "dt (4)

0
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The critical point is given by
o

ro — / ke "dt (:

0

o

4 Proliferation Rate is Time Dependent

Now let us take r as a function of  i.e. () = 3L then (1) becomes
dr 1
d—1—3(1+51nf) —k (6)

Now I.F. = ¢/ —3(Itsint)dt _ ,—5(t-cost) Tpe solution of (6) is given by
l,.G%(C()st—t) — /—k?(j%(C()Stt)dt (7\

Instead of integrating indefinitely (7), we will solve it definitely from ¢ = 0 to t = ¢

t=t,x=z t
/ d {exp (%(cosf - t)) r} =—k /exp <%((:()st - f)) dt
0

t=0,2=xq

t

¥ = BxXp (—%(COSt — t)) xo exp(%) - k:/ exp (%(('om‘ . f)) dt (8)
0

Since exp (v%(cost —t)) > 0 therefore x(t) — 0, when

&

1
zoe'/? — k / exp <§(cost — t)) dt =0

0

t
: 1
zo = €'k /exp (g(cost — f)) dt 9)
0

The critical point is when z¢ just equals that expression and since the integral is an in-
creasing function which reaches a limit, we can say the following about the critical point

Lp.
oo
Vd/exp( (osf—f)) dt
0

T, = bk, where b= 3.1876¢~!/3

Special cases: (i) if we take r(t) = 32L then b = 5.0893¢1/3
(i) if r(t) = 2508 then b = 2.3411¢1/3
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5 Proliferation and Killing Rates are Time Dependent

If we take r(t) = 250L and k(t) = sint, then (i) reduce to

52 _ Lo +snd) int (10)
o = = Sin r=—8S1nt
dr gL THREE S
The solution of (10) is given by
1_.6%((:05171,) _ / . {e%((-()b‘f"’v)d{ (11)

On solving (11) definitely from ¢t = 0 to ¢ = ¢, we obtain

t
1 ‘ 1 g 1
T = exp (—i(cost — t)) To oxp(g) — / exp <§(msz‘ - f)) dt
0

For z(t) — 0, we must have

t

1 1 )
o exp(i) - /Sintexp (5((30s1‘ - f)) dt =0 (12)
0
In this case, the critical point is given by

o
1
r.=e /2 /sintexp <§(cost — t)) dt

0

z. = e /%0.9564 (13)

Special cases: (i) k(t) = t2, z. = e '/216.2796
(ii) k(t) = cost, z, = e~ 1/20.9864
(iii) k(t) = 1 + cost, x. = e~ 1/23.3275

Il

6 Conclusion

In summary we have studied the critical initial tumor below which the tumor will extinct at
various proliferation and killing rate of tumor cells. When we take proliferation rate 1*—}‘“5
then tumor extinction point is 3.1876e ~'/3 times of killing rate. 1f we take proliferation rate
14sint and killing rate sin ¢ then this point is e ~1/20.9564. We have calculated this critical
point for different time dependent proliferation and killing rates. The present study may be
helpful for biologists and mathematicians in tumor extinction theory.
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Numerical Results:
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Fig. (1) shows that critical points decreases when time independent
proliferation rate increases for different time independent killing rates. Fig. (2) interprets
that the critical points increases while time independent killing rate increases for various
time independent proliferation rate. Fig. (3) indicates that critical points increase even as
time independent killing rate increases for the time dependent proliferation rate. Fig. (4)
is a graph between tumor growth and time for the time dependent proliferation rate and
killing rate. It depicts that the tumor grows as time goes up to infinity.
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Abstract

In the present paper we established bilateral generating relation of Laguerre
Polynomials in to mixed trilateral generating relation in generalized form, from the
point of view of Lie group. Some applications of our result are also discussed, which
are believed to be new.

1 Introduction

The Laguerre Polynomials Ls,a ) is defined by the following generating relation.

(l—t)alexp<1-f> LL“’ )t (1.1)

n=0

Chongdar (1990) has proved the result on bilateral generating relation involving
Laguerre Polynomials as follows :

If there exists a linear generating relation of the form :

o0

Gz, t) =) anL{®(z)t" (1.2)

n=0

Keywords and phrases : Laguerre Polynomials, Trilateral Generating functions.
AMS Subject Classification : 33C25, 33C99.
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then
(1 + 2)*exp(—z2)G|x( ZZ on(z,t) (1.3)
n p
where ol t) = 3 am< " )L%a_mrm)(a:)tm
m=0 m

~In the present paper the above generating relation is generalized in the form of mixed
trilateral generating relation by the use of linear partial differential operator.

2 Main Result

Theorem : If there exists a generating relation

o)
Gz, u,t) = Y anLl® (x)g, (w)t" (2.1)
n=0
then
o
(1 +u)® exp(—wu).G(z + wi, u, tz) = Z 2o (z, u,t) (2.2)
n=0
where

oalau )= 3o C0m ot gy yom
m=0 ’

The importance of the above theorem lies in the fact that whenever there exists a
generating relation of the form (2.1), then the corresponding mixed trilateral generating
relation can be written down from (2.2), thus it is seen that one can get a large number of
mixed trilateral generating relation from (2.2) by attributing different values to a,, in (2.1)

Proof:  For Laguerre polynomials L” )(a:) we consider the following linear partial
differential operator R as :

8
R = .
Y- - (2.3)
[cf. Chongdar, 1984]
such that
R(LY (z)y2") = —LE) (z)yoH n (2.4)
and also

" f(z,y,2) = exp(—wy) f(x + wy, y, 2) (2.5)



Trilateral generating relation of laguerre polynomials from the lie group theory 11

Let us now consider the generating relation

G(z,u,t) Za L) (z)gn (u)t" (2.6)

Replacing ¢ by ¢z in above relation and multiplying it by y* on both sides, we get

y*G(x,u,tz) Zan 2")gn (u)t™ (2.7)

Further on operating both the sides of (2.7) by e“#, we have

why O‘G(;lc U 12)) = ewRZan ) (z)y*z ™) gn (u)t™ (2.8)

n=0
Applying (2.5), the left side of (2.8) becomes

(0%
@ <1 + %) exp(—wu)G(z + wu, u, tz) (2.9)

Similarly applying (2.4) , the right side of (2.8) becomes

> [Z L g ()t L™ (w>y‘”m} 4 (2.10)
n=0 [m=0 L
which further yield on simplification
o0 n
-1)"a ) ;
> [Z (Jlﬁ,mgm(wt"L£%T><m)ya<y/z>mJ (2.11)
n=0 Lm=0 :

Now equating (2.9) and (2.11), and on putting wy ™! = 1, (Q) = 1, the theorem is
z
readily established.

3 Applications

(1) By puttingw =0 =,z = 1, L(‘”m (z) = fn(r) and (—% C, in (2.2), we
get

G(z,u,t) chfn T)gn(u (3.1)

which is due to McBride (1971)

(i1) On considering following well-known bilinear generating relation (McBride, 1971,
p- 40)
—t(z + u) uxt

(1—1)" " %exp [—‘IT} oF1 [“; 1+a; =12
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(iii)

—f\j L @)L )" (32)

Now putting a,, = (1%)7? g () = 7(:1)(u) in theorem (2.1), and applying the result
(3.2), we obtain

u(z + wu)tz

tz(r + wu + u)
(1 —tz)?

(1+w)*(1—t2) " " exp | —wu —
11—tz

} oF1 [~; 1+«

o
= Z 2"on(z,u,t)

n=0
Further on simplification, we arrive at

—wu — tz(r + u) u(x + wu)tz

(1+u)*(1 —tz)" ' "“exp [ } oF [—; 14+ o

1—tz (1—tz)2
o
= Z 2"on(z,u,t) (3.3)
n=0

where

& (_1)m L(n—‘q—m)

) (a) m
(1+Oé)m n—m (I)Lm (“)t

oplz,n,t) =

m=0
which is seems to be new result.

Finally, we consider the following generating relation (Weiener 1955, p. 1037).

~—t rut
1-t) 7 L= t(1 —w)]v Fij—vil+ o 1
(1=¢) =4 “wal)(l—t)] 1[ AT TN - (1 - w)]

oo
= Z oFi (—n, vy 1+ a;u) L (2)t" (3.4)
n=0

On putting a,, = 1, gn(u) = 2F1(—n, —v; 1 + o u) in theorem (2.1), we obtain

& - , (x +wu)tz
(1+u)*(1—tz) 1 1 —tz(1 —u)]vexp (—u;u — —1_?—>

B [Mv' | (x + wu)utz ]

(1 —t2)[1 — tz(1 — u)]
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Further on simplifying, we arrive at

R S B € =]

P [—v' 15 (x + wu)utz }

(1 —t2)[1 —tz(1 — u))

o<
="y 2y (m,u,1) (3.5)

n=0
where
=~ (-pm
o |, ) = Z —‘——L,Ela_tgl)( YoF1(—m, —v:; 1 4+ oz u)t™
m=0 T
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Abstract

The effects of Mass transfer and Joule heat on transient tow-dimensional non-
Darcy magneto hydrodynamic convection flow of micropolar fluid over an infinite,
vertical, permeable, moving, flat plate embedded in a saturated porous medium with
constant suction and viscous dissipation are numerically investigated. The plate moves
with constant velocity in the longitudinal direction and the free stream velocity is
assumed to have a constant value. A uniform transverse magnetic field acts
perpendicular to the permeable plate, which absorbs the micropolar fluid with
constant suction velocity. The effects of material parameters, viscous dissipation and
Joule heating on the velocity profile, temperature fields and concentration profile as
well as on the skin friction, local couple stress and local Nusselt number are analyzed.

Keywords and phrases : MHD, Mass Transfer, Free convection, viscous dissipation, porous medium.
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1 Nomenclature:

A Dimensionless parameter(M + 1/Kx)

By Magnetic flux density

C Concentration

Cy Skin friction coefficient

Cyp Specific heat at constant pressure

D Mass diffusivity

Ec Eckert number

g Gravitational body force per unit mass

Gr Grashof number

Gm Modified Grashof number

J Microinertia per unit mass

J Dimensionless microinertia density

k Thermal conductivity

K Permeability of the porous medium

K* Dimensionless permeability of the porous medium
M Magnetic parameter

My, Wall couple stress

Nu Nussult number

p Pressure

Pr Prandtl number

Sc Schmidt number

t Time

T temperature

U,V Velocity components along and perpendicular to the plate respectively
U Dimensionless along the plate

Uy Scale of free stream velocity

Vo Suction velocity

z,y Axial and transverse coordinate respectively

X, Y Dimensionless axial and transverse coordinate respectively
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Greek Symbols:
«a Effective thermal diffusivity
B Micropolar parameter (viscosity ratio)
B, B2 Coefficient of volumetric expansions of the working fluid
Y Spin gradient viscosity
o Electrical conductivity
p Fluid density
A Coefficient of gyroviscosity
K Fluid dynamic viscosity
v Kinematic viscosity of the fluid
Uy Fluid kinematic rotational viscosity
0 Dimensionless temperature
¢ Dimensionless concentration
w Angular velocity (microrotation)
Q Dimensionless angular velocity (microrotation)
T Dimensionless time
T Local friction factor
r Forchheimer number
Subscripts:
P Plate
w Wall
00 Free stream

2 Introduction

The theory of micropolar fluids originally developed by Eringen (1966) has been a
popular field of research recently. Micropolar fluids are those consisting of randomly
oriented particles suspended in a viscous medium, which can undergo rotation that can
affect the hydrodynamics of the flow so that it can be distinctly non-Newtonian fluid.
Eringen’s theory has provided a good model to study a number of complicated fluids, such
as colloidal fluids, polymeric fluids, and blood, and they have a nonsymmetrical stress
tensor.  The analysis of the mixed convection heat transfer for an electrically
conducting micropolar fluid over a vertical plate embedded in a non-Darcy porous medium
has important applications in several geophysical and engineering fields.  These
applications include magneto hydrodynamic (MHD) generators, geothermal re-source
extraction, petroleum resources, nuclear reactors, and boundary layer control in the field
of aerodynamics (Soundalgekar and Takhar, 1977). The effects of a magnetic field of MHD
flow of a micropolar fluid without heat transfer in different configurations, such as flat plates
and wedges embedded in a Darcian porous medium, were investigated by several workers
(Takhar and Beg, 1977; Kumar, 1998).

Kim Youn (2001a, 2001b, 2001c¢) studied the case of transient two-dimensional free
convection of incompressible, electrically conducting fluid over a permeable, moving,
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vertical plate embedded in a Darcian porous medium, neglecting the effect of viscous
dissipation and Joule heating. Raptis and Kafousias (1982) considered the effect of a
magnetic field on steady free convection flow through a porous medium bounded by an
isothermal vertical plate with constant suction. Mohammadien (1999) presented a
similarity analysis of axisymmetric free convection of micropolar fluid over a horizontal
infinite plate subjected to a mixed thermal boundary condition in a clear domain. Sattar et al.
(2001) presented a local similar solution of the viscous dissipation on free
convection and mass flow rate of electrically conducting Newtonian fluid over a moving,
infinite, vertical, permeable plate in a clear domain with constant suction. Sattar et al.
(2000) studied analytically and numerically the transient free convection flow of a
Newtonian fluid over a vertical permeable plate immersed in a Darcian porous medium
with constant suction. Al-Odat (2002, 2003, 2004) analyzed the effect of the Forchheimer
extension model on transient natural convection flow of Newtonian fluid over a vertical,
permeable plate with suction, neglecting the viscous dissipation effect.  Yih (2000)
investigated numerically the effect of viscous dissipation, Joule heating, and heat source
/sink on a non-Darcy MHD flow over an isoflux permeable sphere in a porous medium.
Hossain (1992) considered the effect of viscous and Joule heating on MHD flow over a
semi-infinite plate with surface temperature varying linearly with the distance from the
leading edge in a clear domain. El-Hakiem et al. (1999) studied the effect of viscous
dissipation and Joule heating on MHD free convection of micropolar fluid over a
vertical plate in a clear domain with a variable plate temperature. El-Hakiem (2000)
investigated the effect of viscous dissipation, thermal dispersion, and Joule heating on
MHD free convection of micropolar fluid over a vertical plate in a clear domain with a
variable plate temperature. Recently, Al-Odat and Damseh (2008) have discussed on
viscous dissipation and Joule heating effects on transient non - Darcy magneto
hydrodynamic convection flow of micropolar fluids past a vertical moving plate.

It is worthwhile to note that the earlier studies on MHD flow of micropolar fluid in
a porous medium were based on the non - Darcy model. The reported works that take
into account the effect of viscous dissipation and Joule heating were conducted through a
porous medium. Therefore the objective of this work is to investigate the combined effects
of mass transfer and Joule heating on a non-Darcy MHD mixed convection of micropolar
fluid through porous medium over a permeable, moving, vertical, flat plate with constant
suction and viscous dissipation. Also, the effects of different flow and material parameters
on the thermal and hydrodynamic characteristics are investigated.

3 Mathematical Formulation

Consider the transient, two-dimensional, laminar, non-Darcy mixed convection flow of
incompressible and electrically conducting mircropolar fluid over a vertical, permeable,
moving plate embedded in a saturated porous medium with constant suction. A transverse
magnetic field of strength By is acting on the flow, as shown in fig.(a)

The plate is assumed to be of infinite extent; therefore all the flow variables depend on
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y and ¢ only (i.e., the flow variables are not dependent on the vertical or axial coordinate).
Initially, the fluid inside the porous media is stagnant at temperature 7', and concentration
Cs, and the plate is at rest. At time ¢ > 0 the whole system is allowed to move with
constant velocity, the plate temperature is heated isothermally, and its temperature is raised
to Ty, (> Tw), which is thereafter maintained constant. The induced magnetic field is
assumed to be negligible so that B = B(0, By,0). The equation of electric charge
conservation V.J gives J, = constant, where J = (Jz,Jy,J2). Since the plate is
electrically non-conducting, this constant is equal to zero, and hence ./, = 0 everywhere in
the flow. Viscous dissipation, Joule heating and the inertial term are taken into
consideration. The permeability of the porous medium is assumed to be constant. All the
fluid properties are assumed to be constant, except that the influence of density
variation with temperature is considered only in the buoyancy force term. Also, it is
assumed that both fluid and solid matrices are in thermal equilibrium. Under the above
assumptions, and along with Boussinesq approximation, the governing equations are (Kim
Youn, 2001c; El-Hakiem et al., 1999).

Equation of Continuity

ov
— =0 1
By (1)
Equation of Linear Momentum
ou n Oou 10p b4 )32u v F , oB}
—trv—=—-——+ W+ V)5 — Su-— u” - u
ot dy pox Yoy K VK P
al m ¥ aw N
+ 9B1(T — To) + 9B82(C — Cx) + 20, Dy (2)
Equation of Angular Momentum
[ 0w 4 Ow o~ (3)
) _— V— =z oY 2 JJ
PI\ ot oy " Oy? ’
Equation of Heat Transfer
or or T v (ou\® B, .,
= — =05t 5| 7 = U, 4)
Y +V(9y a e <6y> + O, (u® — uy) (4)

Equation of Mass Transfer

oC ocC 0°C ”
N + I/E = DW (5)
Where z,y are the dimensional distance along and normal to the plate, respectively,
and (u,v) are the velocity components along the x-axis and the y-axis respectively; v. v,
and ~ are the kinematic viscosity, the kinematic rotational viscosity and the spin gradi-
ent viscosity respectively, o is the electrical conductivity of the fluid, 3; and 3» are the
coefficient of volumetric expansions of the working fluid respectively, By is the magnetic
induction, Cy, is the specific heat at constant pressure, p is fluid density, « is the effective
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thermal diffusivity, D is the effective mass diffusivity, w is the component of the angular
velocity normal to the zy- plane (called the microrotation velocity), and K is the perme-
ability of the porous medium.

The appropriate boundary conditions are

Ow(t,0) 0u

u(t,O) = Up, a—y = *?y‘z, T (t,O) = Tw’ C(t ()) = C“; (6)
Wit 56 = Uy w(t,00) =0, T, o) =T, C(ie0)=0C%
and the initial conditions are
u(y,0) = 0, (y,0) =0 } 7)
T(y,0) =T, C(y,0)=Cy

From the continuity equation, it is clear that the suction velocity normal to the plate
is a function of time only, but for our convenience, we assume it is a constant velocity V.
Thus integrating eq. (1) results in

v=—-V (8)

Where 1} is the constant suction velocity normal to the plate. The negative sign in-
dicates that the suction is directed toward the plate. Outside the bounda-y layer, eq. (2)
yields.

10P v n F N ong ()
= SR — U, l
p Ox K K “p p P ’

Substituting egs. (8) and (9) into egs. (2), (3), (4) and (5), the governing equations can
be written as

ou ou ? F oB?

o e Ty T8 Xy e e gty IO,
5 Vo 3 (v+uy) 352 + K(up u) + \/ﬁ(u]D w”) + 5 (up — )
‘),
+9B81(T = Ts)B2(C — Co) + 2/"”(5%}' (10)
Ow Ow 0w P
| = — Vo | =p=—s 11
pj((?t VOOy) 752 (11)
T or T v [(Ou\® B, , N
M e o 28 22 12
o Yoy a2 G, (fay) o, Y
2

oc  oC o-C (13)

ot oy oy

For more convenience of the subsequent analysis, eqs. (10) - (13), along with their

boundary and initial conditions, can be written in dimensionless form by introducing the
following dimensionless parameters:
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LWy M w (T, (€Co
v dv Uss (Tw — Two (Cw — Cx)
v0d u U2 KV¢ jVE
Q= U =L Fe=——2 K= 0 J=Z0
Vol P Ux’ T Cp(Tw—Tw) 2 0
Tu"T— vgp: rﬂcﬁo F Uv"c v v
Gr vgb 5 ao)’ Gm = 22 2(C T ), I = 177 . Sc= -z
U Vs UsoVy VKV D
pCp v i 2 Uy oBZv .
pr=fr_Y S H__° g M="U, A=M+
= Ta Tty Ta g P VE TK

Where € is the dimensionless microrotation, M is the magnetic field parameter, K" is
the dimensionless permeability of the porous medium, .J is the dimensionless micro inertia
density, Gr is the Grashof number, G is the modified Grashof number, Pr is the Prandtl
number, Sc is the Schmidt number, /3 is the viscosity ratio, T" is the Forchheimer number,
and Ec is the Eckert number (viscous dissipation parameter).

Moreover, the spin gradient viscosity 7, which relates the coefficients of viscosity and
micro inertia, is defined as

AL U BY 5_A
7—(#—2)3w<1+2>,34” (14)

Where is the coefficient of vortex viscosity or gyroviscosity. Then the dimensionless
forms of the governing equations become

su  OU OU N A .
%—5? =(1+8) 32 + AU, - U)=T(U2 - U?
e
o0 00 10°Q ;
3 "oy nov? (16)
90 96 1 9% aU\? 2 o
- e —_— = —_— < e E'./, 7-_)7’.‘ (1™
5 "9y _ Proy? + Ec <8Y> + EcM(U U;) (17)
op 09 1 9% .
ar oy~ Scov? (18)
The corresponding boundary conditions are
oQ(1,0) 9?U
= — = ,  6(r.0)=1, p(7.0) =1
U(r,0) = U, o ( a}’ﬂ)w(,' (7.0) =1, o(7,0)
U(r,00) =1, Q(r,00) =0, O(r,00) =0, &(r,00) =0
(19)
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and the dimensionless initial conditions are

U(Y,0) =0, Y, 0) =10 20)
0(Y,0) = 0, #(Y,0) = 0 (20,
The physical quantities of great interest are the local skin friction coefficient and the

local Nusselt number. Once the velocity field in the boundary layer is obtained, the skin
friction at the wall of the plate can be written as

Taiy oU
Cr — w = 21)
T Tid BN &
The local heat transfer coefficient in terms of the Nusselt number can written as
(5)
Nu=z—lw (22)
I
00
NuRe ! = — (23)
* oY =0

The local mass transfer coefficient in terms of the sherwood number can written as

‘94
Cw - C’)c ( )

_ 0o
s=1 o T 5
ShRe, 5y - (25)

Wz .
Where Re, ! = bt is the Reynolds number.
v

The wall couple stress is defined by

o9

B yv? Ow B
y=0 o¥

M, =——
v 8\/63 Jy

(26)

y=0
By analogy with the ordinary friction factor, the wall couple stress can be explained as

a sort of friction factor associated with the angular velocity. This factor represents another
type of flow irreversibility that results from the angular velocity gradient at the wall.

4  Solution Methodology

The dimensionless governing partial differential egs. (15) - (18) with the relevant initial and
boundary condition egs. (19) - (20) were solved numerically by means of an implicit finite
difference technique that was described by Patanker (1980). Applying central differences
for time and spatial derivatives in the governing equations, a nonlinear system of equations
is set up over a non uniform grid to accommodate the steep velocity and temperature at the
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wall. The produced nonlinear algebraic system of equations was solved using the Gauss
Seidel iteration scheme. The velocity, the angular velocity, and the temperature at an ad-
vance point in time 7 = (n + 1)A7 were computed using the solution at 7 = (n)A7 (note
that n = () corresponds to the initial condition). The basic time step used in this calculation

was A7 = 5 x 107°. The iteration continued until the desired results were obtained with
the following convergence criterion:

| g d |
!.flzﬁ'l‘.[ B jn.ii < 10»—6
| fasri |

Where f stands for U, €2, 6 and ¢, n refers to time, and i refers to space coordinate.

8]
-1

A grid independence study was carried out with 41 x 41.61 x 61. and 81 x 81 mesh
sizes. The results obtained using a finer grid ot 81 x 81 do not reveal discernible changes in
the predicted heat transfer and flow field. Thus, owing to computational cost and accuracy
considerations, a 41 x 41 mesh size was used in this investigation.

5 Results and discussion

In the present investigation, the condition for ¥ — oc is replaced by an identical one at
Y,,ax, which is a sufficiently large value of y where the velocity profile approaches the
relevant free stream velocity. In this study, Y),ax. = 1.4 has been chosen.

The effects of viscosity ratio 3 on the velocity and microrotation are shown fig.-(1)
and (2). It is obvious that the velocity decreases with increasing the value of viscosity ratio
(/3) for micropolar fluid. Furthermore, the microrotation increases as the viscosity ratio (,5)
increases. The effect of the viscosity ratio (/5) on fluid temperature is insignificant and thus
not presented here.

In figures-(3), (4) and (5), shows the effect of the Forchheimer number (inertial pa-
rameter) 1" on the velocity, microrotation, and temperature profile. It is clear that the axial
velocity decreases as [' increases because " represents an additional resistance force to the
flow, thus slowing down the fluid. This. in turn, decreases the fluid temperature (as shown
in fig.- 4). However, the effect of the inertial parameter (I') on the microrotation is ploued
in fig. - (5), it shows that angular velocity of micropolar fluid increases with increasing the
values of the inertial parameter (I').

For different values of the permeability parameter A" increases, the velocity and mi-
crorotation profiles are plotted in figures - (6) and (7). Obviously, as A" increases, the
boundary layer tends to increase, then decays to the free stream velocity.

In figures - (8), (9) and (10), illustrates the variation of velocity, microrotation and
temperature for different values of the magnetic parameter A/. it is clear that increasing
the magnetic parameter results in decreasing velocity and microrotation profile across the
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boundary layer. However, an increase in M results in a significant increase in the tempera-
ture, which may be attributed to the increase in the Joule heating effect with M.

Figures - (11), (12) and (13), shows the effect of Eckert number E¢ (viscous dissi-
pation factor) on velocity, microrotation and temperature distribution. As expected, an in-
crease in Fc leads to an increase of the velocity and microrotation decreases with increasing
of the values of Eckert number Ec. The viscous dissipation has a particularly significant
effect on the temperature. A sort of self-heating may be notified, which may raise the
temperature locally above the wall temperature before it decreases to the free stream tem-
perature.

Figures - (14), (15) and (16) presents the effect of plate velocity U,, on velocity, mi-
crorotation and temperature profiles across the boundary layer. It can be seen that the peak
value of the velocity decreases as the plate velocity increases. However, the microrotation
increases as the plate velocity increases. For U, > Uy, the velocity behavior is reversed
(i.e. the fluid velocity decreases with Y until it reaches the free stream velocity), and the mi-
crorotation has a positive value and a reversed behavior. The temperature profile decreases
due to increasing the values of plate velocity (U),) in figure - (16).

The effects of Grashof number Gr on axial velocity, microrotation and temperature
distributions are displayed in figures - (17), (18) and (19). It is clear that an increase in Gr
leads to a rise in the values of both velocity and temperature but decreases the microrota-
tion. The positive values of Gr correspond to a cooling plate by natural convection.

Figures - (20), (21) and (22) present the effects of Gm on the axial velocity, microro-
tation and temperature across the boundary layer. It is observe that an increase in Gm leads
to an increase of the velocity, but microrotation profile decreases with increasing the value
of modified Grashof number. However, an increase in Gm results in a significant increase
in the temperature profile of boundary layer.

Figures - (23), (24) and (25), shows the effect of Prandtl number Pr on velocity,
microrotation and temperature profiles. It can be seen that as Pr increases, the velocity
decreases, but the microrotation increases. Also, as Pr increases the thermal boundary
layer thickness decreases and a more uniform temperature distribution across the boundary
layer is established. The reason is that reducing the value Pr is equivalent to increasing
the thermal conductivity, and hence rapid heat diffusion from the heated plate is obtained.
Therefore the boundary layer is thicker and the rate of heat transfer is reduced.

Figures - (26), (27), (28) and (29), shows the effect of Schmidt number Sc on velocity,
microrotation, temperature and concentration distribution resp. As expected, an increase
in Sc leads to decrease of the velocity and microrotation increases with increasing of the
values of Schmidt number Sc. Schmidt number (S¢) has a particularly significant effect on
the temperature. It decreases to the free stream temperature. The concentration distribution
decreases with increasing the values of Schmidt number Sc.
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The dimensionless velocity, angular velocity, temperature and concentration distribu-
tion at different dimensionless times are shown in figures - (30), (31), (32) and (33). It
can be concluded that the velocity increases with time. Near the surface, the velocity pro-
file increases to maximum, and them it decreases and, finally takes an asymptotic value
(free steam velocity). In addition, the momentum boundary layer thickness increases as
T increases. Moreover, the thermal boundary layer thickness increases, and microrotation
decreases with increasing the value of time (7). The temperature gradient at the wall de-
creases; hence the heat transfer rate decreases as 7 increases. The temperature profile is
large near the surface of the plate and decreases far away from the plate, finally taking as
asymptotic value. However, an increase in 7 results in a significant increase in the Concen-
tration profile of boundary layer.

Finally, the effect of the Eckert number (Ec), Forchhiemer number (I'), magnetic
parameter (M), Prandtl number (Pr), Schmidt number (Se) and viscosity ratio (3) on the
skin friction coefficient (C), wall couple stress (M,,) and Nusselt number (N u) are shown
in figures - (34), (35) and (36). The skin friction coefficient (Cy), wall coupled stress (M)
and Nusselt number (V,,) increases due to increasing the values of magnetic parameter (A1)
and Eckert number (Ec¢), However, As decreases with increasing the values of Forchhiemer
number ('), Prandtl number (Pr), Schmidt number (Sc) and viscosity ratio (/3).

6 Conclusions

The theoretical solution for studies the effects of mass transfer and Joule heating on tran-
sient, two - dimensional, non - Darcy MHD mixed convection flow of electrically conduct-
ing micropolar fluid over a vertical, permeable, moving, flat plate embedded in a saturated |
porous medium with constant suction and viscous dissipation and subjected to a transverse
magnetic field are numerically investigated. The study concludes the following results.

I. The velocity of micropolar fluid decreases with increasing the values of viscosity ratio
(), Forchheimer number (I'), magnetic parameter (M), Prandtl number (P7) and
Schmidt number (Sc¢). But the velocity increases due to the increasing the values of
permeability parameter (K ™), Eckert number (Ec¢), Grashof number (Gr), modified
Grashof number (G'm) and time (7).

2. The peak value of the velocity decreases as the plate velocity increases.
3. The microrotation increases as the viscosity ratio () increases.

4. The angular velocity of micropolar fluid increases with increasing the values of the
inertial parameter ('), plate velocity (U,) , Prandtl number (Pr), Schmidt number
(Sc) and permeability parameter (K ™).

5. The microrotation decreases with increasing of the values of Eckert number (£c),
Grashof number (Gr), modified Grashof number and time (7).
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6. The etfect of the viscosity ratio (,3) on fluid temperature is insignificant and thus not
presented here.

7. The temperature of micropolar fluid decreases with increasing Forchheimer number
(I'), plate velocity (U),), Prandtl number (Pr) and Schmidt number (S¢).

8. An increase in Al results in a significant increase in the temperature, which may be
attributed to the increase in the Joule heating effect with (A/). The viscous dissipation
has a particularly significant effect on the temperature. A sort of self-heating may be
notified, which may raise the temperature locally above the wall temperature before
it decreases to the free stream temperature.

9. The temperature profile increases due to increasing the values of Grashof number
(G'r), modified Grashof number (Gm) and time (7).

10. The concentration profile decreases with increasing the values of Schmidt number
(S¢). An increase in time (7) results in a significant increase in the Concentration
profile of boundary layer.

In Micropolar fluids, the skin friction and heat transfer rate arc lower than Newtonian
fluids for smaller vortex viscosity but higher for larger vortex viscosity. The numerical
result shows that the micropolar fluid reduces the drag and surtace heat transfer rate. Fur-
thermore, this study indicates that the presence of a magnetic field in micropolar fluids can
serve as an effective drag reduction mechanism.

The hydrodynamic and thermal boundary layer thicknesses increase progressively
with time. As time elapses, the local skin friction coefficient increases, whereas the lo-
cal heat transfer rate decreases.
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Abstract

If we know (n.— 1) independent solutions of the homogeneous equation associated
to an arbitrary nth order linear differential equation, n = 3,4, then here we give
expressions to construct one more solution of homogeneous equation and the particular
solution for the original equation. It is easy to generalize our approachton = 5,6, -+

1 Introduction
If for the second order linear differential equation
p(@)y” +q(x)y +r(y) = o(x), (1)
we have the solution y; (z) of its homogeneous equation
py" +ay +ry=0, (2)

then it is well known [1] how to obtain y»(z) satisfying (2), and the particular solution
yp(z) of (1) is

) =0n(@) [ Tdnupte) =wale) [ L) [ B @

Keywords and phrases : Linear differential equation, Wronskian.
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50 R. Cruz-Santiago, J. Lopez-Bonilla and Zafar Ahsan

where W is the non-null Wronskian of the independent solutions of (2)

W = exp (—/m%df). (4)

Here we generalize the results (3) to linear differential equation of third and fourth order.

2 Third order linear differential equation

Now we consider the linear differential equation

"

w(@)y" +p(@)y” + q(x)y +r(y) = o(x), (5)

with y1(z) and () verifying the corresponding homogeneous equation

wy” +py’ +qy +ry =0, (6)

and we must find one more solution of (6) and the particular solution of (5). In fact, it is
possible to prove that

z 4 i
nw Yaw %
lz) = (o) [ iy = (o) [ TR ;
L / o i3 i
T w3 ¢ Tws @ Wi @ :
Yp(T) = 1111(1‘)/ ” ;dn + yo(x) = yz(ff)/ ]_U;d”/ + y3(x) / o ;d"l- (8)

with the Wronskians

L
W = exp (—/ ]—)d§> (9)
. u

W = -Wj; = yiy; — yju, i # J. (10)

It is important to note the identities

YiWaz + oWy + y3Wia = 0,
Y\ Was + yoWar + s Wia = 0, (11)
Y1 Wos + yoWay +ysWia = W

3 Fourth order linear differential equation

This case is for the linear differential equations

/

o(@)y™ +ula)y” + )y’ + qle)y +r(z)y = ola), (12)

and we know that y1 (), y2(x) & y3(x) are solutions of its homogeneous equation
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vy ruy” oy gy 4y =0, (13)
therefore
W3 W Tw: 31 w
ya(z) = r) ————dn + y2(x) ~dn
(w123)? J (wi23)?
(14)
. _
W W
+ys(x ),
usl >./ (wr23)" }
w234 @ Wi @
@) = n) [ 2Ly (o) [ -
w v . w
(15)
. ‘ .
w412 @ / w23 @
—y;s(r)/ —dn + ya(r) / — —di),
wow ) wov
verify (13) and (12), respectively, such that
” yi Y Uk |
— u ’ 7 ’ P .
W =exp { — / —d€ |, Wi = | Y, yZ Yy (16)
. v " ¥ 7"
Yo Y Y |
with the interesting identities
—y1Waszq + 12 W34l — ysWyl2 + y,W123 = 0.
—yy Wasa + yosWaar — ysWare + y3 Wiz = 0,
(17)
=y Wazs + 4o Waas —y3Wano +y, Wiy = 0,
—Z//1” Wosy + y.'_)" Wi41 — y;/;u Wi + .(/./1”"’1 oy = WL

We consider that the relations (7), (8), (14) and (15) are originals, which can be extended to

linear differential equations of higher order.
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Abstract

A simple method to obtain the Lewis invariant associated to Ermakov -Milne-
Pinney equation is given.

We accept that y; and y» are independent solutions of the second order differential

equation
p(x)y” + q(x)y’ +r(x)y = 0, : (1)
then [1,2]
N o, y2 @
uolz) = ve(a) [ L dy— () [ 224 &)
verifies
py +aqy +ry =6, (3)
where
W = y1ys — yay; = exp (—/ % dn). (4)
For the Ermakov [3]-Milne [4]-Pinney [5] equation, we have
, a . -
p=1,¢=0, ¢=—=5, a>0, W=1, (5)

that is

Keywords and phrases : Linear differential equation, Lewis invariant.
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1" a i
V=5 ©)
Y
and from (2), we get
" ay ay:
Yp = yz/ S dn -y, / 22 an. (7)
Y ]
with
yi +ry; =0, j=1,2. (8)

It is easy to calculate the Wronskian, from (7)

T ay P \
YpYs — .l/‘zi’/;,; =- / {;/3 dn (9)
. Yy,

because W = 1, then

d <l/2> L[ ays ;
— (=) =—-= — dn,
dz \yp v J 9

therefore

y2 d [y y2 " ays 1 d ays 0\
==} =-= : dn = e - dn
Yp dr \ Yp U s (7% 2adr \, ¥

1d (y\° 1 d (i, i
2 — ) = =55 Wl — y2y,)"
2dr \y, 20 dr \IPY2 T Y2y,

thus % = 0 where [ is the Lewis invariant [6-8] given by

2

I=a (y—2> + (Ypyh — y2us)°. (10)
Yp

We thus have obtained the Lewis invariant given by (10) in a simpler manner. From
[9, 10] we find that

y = =iy, Sin (~\/aff 4 +,«3]),
(11)
Y2 = =tayp Cos (-\/Efx %2 + Bl> ,
which verify (7) and (8) ; besides [5]
Yp = \/cly% + 2com1y2 + €3y3, 1 =c3=a, ¢z =0. (12)

In (10) we can employ the expression (11) for y» to deduce the exact value of Lewis
invariant

I=vVa (13)
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Abstract

A mapping ' : R — R acts as a multiplicative homomorphism (resp. a multi-
plicative anti-homomorphism) on a subset S of a ring R if F(zy) = F(2)F(y) (resp.
F(xy) = F(y)F(zr)) forall x,y € S. Suppose that d is any function on R and J is
a non-zero Jordan ideal oR. If a 2-torsion free prime ring R admits a function F sat-
isfying F'(xy) = F(x)y + xd(y) for all .,y € .J, which also acts as a multiplicative
homomorphism ( or as a multiplicative anti-homomorphism) on ./, then it is shown
that either d = 0, F" = 0 or F is an identity map on R.

1 Introduction

Let R be an associative ring with center Z(R). R is said to be 2-torsion free if 22 = 0
yields x = 0. Recall that R is prime if aRb = 0 impliesa = Oorb = 0. For .y € R,
(z,y] = 2y — yx and x o y = Ty + yr. An additive subgroup J of R is a Jordan ideal if
zor € Jforallx € Jandr € R. We shall use without explicit mention the fact that if .J
is a Jordan ideal of R, then 2[R, R].J C J and 2J[R, R] C J ([8], Lemma 1). Moreover,
from [1] we have 4jRj C J, 4j°R C J and 4Rj? C .J forall j € .J. An additive mapping
d: R — R is called a derivation if d(2y) = d(x)y + xd(y) holds for all pairs =,y € R.
An additive mapping F' : R — R is said to be a generalized derivation associated with a
derivation d if F'(zy) = F(x)y + xd(y) holds for all pairs z.y € R.

Keywords and phrases : derivation, generalized derivation, multiplicative ecndomorphism, Jordan ideal.
AMS Subject Classification : 16W25, 16U80.
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A mapping F : R — R acts as a multiplicative homomorphism (resp. a multiplica-
tive anti-homomorphism) on a subset S of R if F(xy) = F(x)F(y) (resp. F(zy) =
F(y)F(x)) forall z.y € S.

In [2], Bell and Kappe proved that if d is a derivation of a prime ring I? which acts as a
homomorphism or as an anti-homomorphism on a nonzero right ideal / of 12. then d = 0 on
R. There has been a great deal of work concerning specified derivations acting as a homo-
morphism or an anti-homomorphism on some distinguished subsets of /2 (see for example,
[3]. [5]. [6] and [7]). In this direction, Rehman in [6] considered generalized derivations of
a 2-torsion free prime ring R acting as a homomorphism or as an anti-homomorphism on a
non-zero ideal of R. This result was further extended by Gusic [4] in a more general set-
ting by assuming a function F' on R (not necessary a generalized derivation nor an additive
function) which acts as a homomorphism or as an anti-homomorphism on a nonzero ideal
of a prime ring R. Our purpose in this paper is to extend above mentioned resuit to a Jordan
ideal of R.

2 Main results

Throughout this paper, R denotes a 2-torsion free prime ring, .J a nonzero Jordan ideal and
F:R— Randd: R — R are functions such that F'(xy) = F(x)y + xrd(y) for all
x,y € R.

We shall make some use of the following well-known facts:

Fact 1. ([8], Lemma 2.6) If aJb = 0,thena =0 orb = (.
Fact 2. (|8], Lemma 2.7) If [J, J] = {0}, then J C Z(R).

We leave the proofs of the following easy facts to the reader.

Fact 3. If R is noncommutative such that a[r,ry}b = O forall z.y € J. r € R, then
a=0o0rb=0.

Fact4. If J C Z(R), then R is commutative.

Fact 5. If [a,2%] = 0 for all € J, then a € Z(R). In particular, if [+*, y*] = 0 for all
xr,y € .J, then R is commutative.

Theorem 1 Let R be a 2-torsion free prime ring and d be any function on R (not neces-
sarily additive). let F be any function on R (not necessarily additive) satisfying F(ry) =
F(x)y + zd(y) for all x,y € R, and let .] be a non-zero Jordan ideal in R.

(1) If F acts as a multiplicative homomorphism on .J, then d = O and I' = 0 or ' = Ip.
(ii) If F acts as multiplicative anti-homomorphism on J, then d = O and I' = O or
F(r) = r forall v € R (in this case R is commutative).

For the proof of our theorem we need the following Lemmas.

Lemma 1 If F acts as a homomorphism on J and d(x) = 0 for all x € J. then d = U and
(either F = 0or F(r) =r forallr € R).
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Proof. From d(z) = 0 for all 2 € J it follows that
F(x)F(y) = F(x)y forall x.ycJ

and thus
F(x)(F(y) —y) =0 forall x,y € .J. ()

If 17 is commutative, then equation (1) together with primeness yield
F(x) =0 forall z € J or F(r)=ux forall 2 € J.
Using the fact that 2rz = rox € J forall r € J,r € R together with 2-torsion freeness,
in both the cases, it is easy to see that d = 0 and F'(r) = r forall r € R.
If R is not commutative, then replacing 2 by 2x[r, uv] in (1), in light of 2[r, uv] € J. we

get
F(x)[r,uw](F(y) —y) =0 forall u.v,z,y€.J. r€R. (2
In view of the Fact. 3, equation (2) implies that F'(x) = 0 forall + € .J or F(r)—x =0
forall 2 € J. Assume that F'(J) = {0}. Since 4x%r € J forall € J.r € R. 2-torsion
freeness forces
22d(r) =0 forall z € J,r € R. (3)

Replacing x by & + y in (3) we obtain
(roy)d(r)=0 forall z,y € J, reR. (4)

Substituting 2[s, t]y for y in (4), where s,t € R, we get [z.[s.t]]yd(r) = 0 so that

[z, [s,t]]Jd(r) =0 forall x € .J, s.t,reR. (5
In light of Fact. 1, equation (5) implies that either d = 0 or [r.[s.t] = 0 for all » €
J,s,t € R. As the later case forces R to be commutative, which contradicts our hypothesis,
then d = 0.
From 0 = F(4rz?) = 4F (r)2?, it follows that

F(r)z® =0 forall z € J,r € R. (6)

As equation (6) is similar to equation (3), arguing as above we arrive at F = 0.
Now assume that F'(z:) = x for all z € .J. Using F(4%r) = 4% we get

4r’r = F(4a®)r + 422d(r) = 40 + da2d(r)
which, because of 2-torsion freeness, forces
2%d(r) =0 forall 7 € J,r € R. (7)

Since equation (7) is the same as equation (3), reasoning as above we get d = (). Using
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4rz? = F(r(4a2?)) = 4F (r)z?, it follows that
(F(r) —7)z?=0 forall z € J.r € R
which leads to F(r) = r forall r € R.

Lemma 2 Assume that F acts as a multiplicative homomorphism on J. If F(2{r. uvi) =
2[r,uv] for all u,v € J, r € R, thend = 0 and ( either F = 0 or F(r) = r for all
r € R).

Proof. One can assume that R is not commutative, otherwise our Lemma is without interest.
We are given that

F(2[r,uv]) = 2[r,uv] forall u,v € J, reR. (8)
Replacing v by 4v?r in (8) we get [r, uv?]d(r) = 0 and thus
ulr,v?)d(r) + [r,u]v*d(r) = 0 forall u.v € J. r€ R. 9)
Substituting 2[s, tJu for u in (9) we find that [r, [s, t]juv?d(r) = 0 and hence
[r.[s,t]]Jv2d(r) =0 forall v & J, r.s.tcR. (10)

Using Fact. 1, the last equation implies that for all » € R, either d(r) = 0 or [r, |s, 1]} = 0
for all s,¢ € R in which case we find that r € Z(R).
Letr € R;ifr € Z(R) as F(2[sr,uv]) = 2[sr, uv] by (8), then it follows that

[s,uv]d(r) =0 forall u,v e J, s€ R. (1
Replacing s by st in (11) we arrive at
[s,uv]Rd(r) =0 forall u,v € .J, s€ R. (12)

In light of primeness, as R is not commutative, equation (12) assures that d(r) = 0. Hence,
in both the cases we have d(r) = 0 for all r € R and thus d = 0. Applying Lemma 1, we
have either F = Q or F(r) = r forall r € R.

Proof of Theorem 1. (i) If R is commutative, then 2r-j € J forall € R.j € .J. Since R is
2-torsion free and F' acts as a homomorphism on J, arguing as in (a) of ([4], Theorem 1},
then we conclude that d = 0, and either F' = 0 or F'(r) = r forall r € R.

Suppose that R is noncommutative; for u,v,z,y,2 € J,and r, s € R we have
F(4[r,uvl[s,zylz) = F(2[r,w](2[s,zy]z))

= F(2[r,uwv])F(2[s, zy]z)
= F(2[r,uwv]))F(2[s,xy])z + 2F(2]r. uv])[s, xyld(z).
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On the other hand

F4[r,uwv]ls,xylz) = F(4|r,uv]ls,zy])z + 4r, uvis. ryjd(z)
= FQ2[r,uw]))F(2[s.zy])z + 4jr. uvis, vy]d(2)

In such a way that
(F(2[r,uv]) — 2[r,uv])[s. xyld(z) = 0. (13)

Using Fact. 3 together with equation (13) we deduce that
F(2[r,uv]) = 2[r,uv] =0 forall w,ve J.re R, or d(z)=0 forall z€ J. (14)
Applying Lemma 1 together with Lemma 2, equation (14) assures that d = U and (/" = 0

or F(r) =z forall x € R).

(ii) Suppose that F" acts as multiplicative anti-homomorphism on .J. Using the fact that

F(4x[r,uwv)?) = F((2z[r, uv))(2[r, uv]))
= ZF ( (2[r, uv ))[1 wv] + 2z r wvd(2]r 1)
= (2[r, wv)) F(x)[r, uv] + 2z[r, uv]d(2[r. u}

together with
F(4zlr,uv]?) = F(2[r,uv])F(2z[r, ur]
= 2F(2[r,uv))F(z)[r,uv] + F(2[r, uv])xd(2{r, ur))
we deduce that
2z[r, wv]d(2[r, uv)) = F(2[r,uv])zd(2[r,uv]) forall u,v,. € J,r € R. (15)
Replacing x by 2|s, t]x in (15), where s.t € R, we get
2[s, t]z[r, wv]d(2[r, wv]) = F(2[r, uv])[s, tlxd(2]r, uv]) forall u,v.z € J v st € R.

Left multiplying equation (15) by [s, t] we find that e
2[s, tlz[r, uvld(2[r. uv]) = [s, t]F(2[r, uv])xd(2[r. ur]). (17)
Comparing (16) with (17) we conclude that
[F(2[r.uv], [s,t]]Jd(2[r,uv]) =0 forall u.v € J.or.s.t € R. (18)
By virtue of Fact. 1, equation (18) yields d(2[r,uv]) = 0 or F(2[r.urvl) € Z(R). In the
later case we claim that d(2[r, uv]) = 0. Indeed, suppose that d(2[r. uv] ) # (: we have
2F (zy)[r, uv] + xyd(2[r,uv]) = F(x(2y[r,uv]))
= F(2y[r,uv])F(x)
= F2[r,uv))F(y)F(x)
= F(y)F(2[r.uv])F(x)
= F(y)F(r2lr.uv)))

= 2F(y)F(x)lr.ue] + F(y)xd(2]r.ue})
= 2F(xy)[r, uv] + F(y)ed(2[r, ur}).
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This yields that

1

yd(2[r,wv]) = F(y)xd(2]r,uv]) forall =,y c J. (19)
Replacing x by 2[s, t]z in (19), where s, € R, we obtain
[s. tlxyd(2[r, uv]) = F(y)[s, tled(2[r, uv]). (20)
Left multiplying equation (19) by [s, t] we obtain
[s, tleyd(2[r, uv]) = [s,t]F (y)ad(2]r, uv]). (21)
Comparing (20) with (21) we conclude that
(F(y). [s, t]]Jd(2]r. uv]) = 0. (22)
In view of Fact. 1, since d(2[r, uv]) # 0, (22) yields F(r) € Z(R) for ali = € .J. Thus
F' acts as a multiplicative homomorphism on J and (i) forces ¢ = 0 which contradicis
d(2[r,uv]) # 0. Therefore, in both the case, we have d(2[r, uv]) = O forall u,v € ./, r ¢
R.
Now from
FElru))F(y)F() = FQryfr.ur)

— 2F(ay)lr, ur]

— 2Py (). uc

= F(y)F(2lr, ur)

— Py Pl u])F2)
it follows that

[F(2[r,uv]), F(y)]F(x) =0 forall u,v,z.y € J.r e R. (23)
Replacing = by 2[t, o8]z in (23), where o, 3 € J, t € R, we get
[F(2[r,uv]), F(y)][t, aBld(x) = 0. (24)
Now Fact. 3 together with equation (24) forces [F(2[r,uv]), F(y)] = 0 for all u.c.y <
J,r € Rord(r) = Oforallz € J. We claim that the later case leads to [F(2[r. ue]). I(y)] =
0. Indeed, if d(x) = 0 for all z € J then using our hypothesis we have
F(8ry*2®) = F(z(8y°2%)

8F(x)y?2% (since d(8y*z*) = 0).

Il

On the other hand
F(8zy’2?) = F
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and thus
F(2)[y*,2*] = 0 forall z,y < J. (25)

Replacing z by 2x[r, uv] in the last equation we get
F(z)[r,uw][y?, 2% =0 (26)

Using Fact 3 together with Fact 5, we conclude that R is commutative or F (z) = 0 for all
x € J. Hence in all the cases we get

[F'(2[r,uv]), F(z)] =0 forall w,v,z € J,r € R.
Therefore, in light of d(2[r, uv]) = 0, we have
2F (z)[r,wv] = F(2z[r,w]) = F(2[r, uv))F(z) = F(z)F(2[r,uv])

in such a way that
F(x)(F(2[r,uv]) — 2[r,uv]) = 0. (27)

Replacing x by 2x[s, yz] in (27), where y, z € J, s € R, we get
F(z)[s, y2](F(2[r,uv]) — 2[r,uv]) = 0. (28)

Hence Fact. 3 yields that either F'(x) = O forall z € J, so that F* = d — 0 or F(2[r, uv]) —
2[r,uv] =0forallu,v € J, r € R.
Assume that

F(2[r,uv]) = 2[r,uv] = 0 forall u,v € J, r € R. (29)

Replacing v by 4v*r we get [r, uv?]d(r) = 0 so that
ulr, 112]d(’r) + [r,ulv?d(r) = 0 forall u,v € J. r e R. (30)

Since equatlon (30) is the same as equation (9), reasoning as above we get d = (). Using
8rlr, u?v] = 8F(r)[r, u?v], it follows that

(F(r) = r)r,u*v] =0 forall w,v € J.r e R

which leads to F'(r) = r for all r € R and our hypothesis reduces to [J, J] = 0. Using Fact
2 together with Fact 4 we conclude that R is commutative.
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Abstract

We consider the space-time obtained by Pandey-Sharma and Modak, with spheri-
cal symmetry and zero Weyl tensor, to show that the Sen’s Theorem is incorrect.

Pandey-Sharma [2] and Modak [1] have obtained the space-time with spherical symmetry
whose metric is given by

/1y

ds® = dr* + r2d8* + r%sin? 0do? — (1+ B(y“)/'z‘}jdfz. (1)

where B(t) is an arbitrary function. With the relations of Synge [4], it is possible to cai-
culate the corresponding non-null components of Riemann, Ricci and Einstein tensors, and
the scalar curvature [(x') = (r, 6, ¢, t)]. These components are given by

; - 9 . 9 2B
Rinq = 2B(1 + Br?), Rygq = sin® ORogoq = r2sin® 0Ry 1. Ry = 1+ B2’
L B2
. 5 o 8 5, 128
Ryz =sin® ORa = r?sin® ORy,, Ry = —6B(1 + Br?). R = T
R 92 D an. D v ‘ (e
Gy = —g,Gg;g =sin" 0Gyy = rsin” 0G1,, G4y =0 (2)

From equations (2), it can easily be shown that the Weyl tensor equals to zero. This clearly
implies that the spacetime metric given by (1) is conformally flat.

Keywords and phrases : R, of class one; Sen Theorem.
AMS Subject Classification : 83C035, 83C20.
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On the other hand, the Sen Theorem is given by ([3])
“If R4 is conformally flat and its curvature tensor has the structure

Rijkm = E(RixRjm — RimRjk) + F(girGjm — 9imGijk ), (3)

with £ # 0 and F scalars, then R4 has class one (that is, it accepts a local and isometric
embedding into E5)”.

With (2), we find that the Riemann tensor verifies (3) for £ = —% and ' = 1% However,
the spacetime (1) is not of class one; and thus it is a counterexample for the theorem of Sen

A3D-
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Abstract

In this paper, a new class of diagram algebras which are subalgebras of G-Brauer
algebras called the ” Cyclotomic Brauer algebras of G(r, p,n) type” are introduced,
the structure and representations of such algebras are studied and the matrix units for
the Cyclotomic Brauer algebras of G(r,p,n) type are also computed. For that, we
constructed matrix units of the Complex reflection group G(r, p, n) by extending the

results of the generalized symmetric group.

1 Introduction

The complex reflection group G(r, p, n) is a normal subgroup of the generalized symmetric

group G(r,1,n). We can restrict the inequivalent irreducible representations of the gen-

Keywords and phrases : Matrix units, representations, complex reflection group and Cyclotomic Brauer

algebras.
AMS Subject Classification : 99¢:16028 16599 (16K20).
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eralized symmetric group G(r,1,n) defined in [7] to get the inequivalent irreducible rep-
resentations of the complex reflection group G(r,p,n). Also we compute the primitive
idempotents for all the paths in the Bratteli diagram of the complex Reflection group using
the primitive idempotents of the generalized symmetric group computed in [9] and hence
finally we find the matrix units for the complex Reflection group.

In [8], the representations of Z,-Brauer algebras are studied. These algebras are now
known as Cyclotomic Brauer algebras. In this paper, we introduce a new class of Brauer
algebras over the field K (IC')Ogigr—l , which are sub algebras of Z, - Brauer algebras
over the field K(zg)gez, where {z,}4ez, and {z.i }o<;<,_; are indeterminates and  is the
primitive 7" root of unity. This new class of Brauer algebras will be called as Cyclotomic
Brauer algebras of G(r, p,n) type and it is denoted by D7) Moreover, the ideal gen-
erated by (e1) in D(""P) coincides with the ideal generated by (¢} in D%, where D%
is Z,-Brauer algebra.

As in [6] and [12], the semi-simplicity of these algebras over K (J‘g,)o<i<r , are es-
tablished, where z:,0 < i < r — 1 are indeterminates and C is the r™ primitive root of
unity.

Using the matrix units of the complex reflection group computed in this paper and the

matrix units of Z,- Brauer algebras computed in [9], we compute the matrix units for the

Cyclotomic Brauer algebras of G(r, p, n) type.

2 Preliminaries

Definition 2.1. ([11], §2.1)

A partition of non - negative integer n is a sequence of non - negative integers \ =
(A, A2, oo A such that \y > Mg > ... > N\ > 0 and

A =M+X+...+N=n

The non-zero \;'s are called parts of X and the number of non - zero pars is called the
length of A. The notation \ - n denotes that X is a partition of n.

In other words, the partition of n can also be defined as

A= (n",(n— 1)1, 22 1M)
n

such that Z t.r; = nforr;’s > 0,r; denote the number of times i occur as a part.

=1
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2.1 generalized symmetric group

Definition 2.2. ([4], 34.1)

S,, is the symmetric group on n symbols and put Z.! = {f/j 1 . n} — Z,}
then define

Zo) Sy ={(f,0)/f € Z!' 0 € S,}.
Zy 1 Sy, is a group under the composition defined by
(f,o)(f' o) = (ff5.00)

where (ff)(i) = f(i) + f'(i),i € {1,2,...,n}and fo = foo ! foro € S, and

f € Z. This group is called the generalized symmetric group. The group Z, 1 Sy can also

be denoted as G(r,1,n).
Note 1. |G(r,1,n)| = |Z,|"|Sn| = r".nl.

The following are the generators of the generalized symmetric group.

iy = [gle Ig; Ie IP IP Ie,

1
Si:[(? [eu-Ic ><e [(:~~Ie Te,lg'i,g'n.‘l.
e |
The above n generators hy, s, s2, ..., S,—1 of the generalized symmetric group satisty
the following relations.

1. A =1Id

2. F=H 1<i<n-1

3. si85 = 558 li—j| >2

4. 8;8i+18 = 8i4+18i8i+1, 1<i<n-—2

=4

d. h,lslhlsl = Slhlslhl

6. h,lb‘j = th] ] Z 2
Another set of generators and relations for the generalized symmetric group is given as

follows:

Proposition 2.3. (/7], Proposition 1.1)
Put E®) — Ei-th, = LA ha+¢2 R+ (¢

r

!

where (" =Id and ci:%,1§i§n~l.
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Then ]E(t),() <t<r-—1lande;1 <1i<n—1generate the group algebra K[G(r,1,n)]

and the following relations hold good.

1. [E®])?=E® 0<t<r-—1.
2 ef:ei 1<i<n-1.
3. ejeir1€;i —ejr1€6i€i1 = i(ei - €i+1), 1<i<n-2.
4. ee; = eje; |t —j] > 2.

5. el EWeiE) — EWe;EWe; = L(e,EW — EWey).

6. ]E(t)e]- = e]-IE("), ] > 2.

2.1.1 Trreducible Representations of G (r,1,n)

Notation 2.4. ([7], Definition 2.10)

r—1

Let Ty my = {/\" = (A3, AT, ... AP) /AT F k; and Zki = 'n}. where T, )
i=0
denote the indexing set for the complete set of inequivalent irreducible representations of

G(r,1,n).

Let B be the Bratteli diagram whose vertices on the £™ floor are members of Per i
An edge from i™ vertex of the k™ floor and j" vertex of (k — )™ floor is drawn by

removing one node from one of the residues of i vertex of ™ floor to obtain j vertex of

(k — 1) floor.

Definition 2.5. ([7], Definition 2.7)
Let © be an ascending path starting from ® and ends at \ which is given as follows:
p={P,ALA2 .. A" = A},
where the multi partition A\ is obtained from the multi partition X' by removing one

node from one of its residues and \* = ( 6, PAI AL € P11 <i<n.

Notation 2.6. ([7], Notation 2.8)
Let the path p; ;2 be given as follows:
piive = { N X 2L
where the multi partition \**1 is obtained from the multi partition \'*? by removing a
node from one of its residues and the multi partition \ is obtained from the multi partition

AL by removing a node from one of its residues where Nt ¢ L(r1,i41)-
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The distance associated with the path ¢; ;> means the distance associated between
two nodes a and b where the nodes a and b are removed from the path at the (i + 2)™ and

(i + 1)™ floor respectively and the nodes a and b belong to same residue.

Definition 2.7. (/7], Definition 2.2)

Let the nodes a and b belongs to same residue of a vertex in I(,. | ;1) as in Notation
2.4.

Suppose the node a is at (i, A;) and b is at (j. \;) and a lie above b, then the distance
between the nodes a and b is denoted by dy(a, b)

di(a,b) = (A — 1) — (Aj — )

where A = X2 € T 140y

If the node a lie below b, then the distance between the nodes b and a is denoted by
dx(b. a), .

dr(b,a) = —dy(a,b),

where X = A2 € T, 119,

Notation 2.8. (/7], Notation 2.9)

Let Q.1 ) denote the collection of all paths starting from the o

the n™ floor. We define,
Q’\

(r,1,n

Sfloor and ending at

= {0 € Quiny/pendsat X €T}

Definition 2.9. (/7], Notation 2.9)
Fix A € I'(;. 1 4y, a vertex on the i floor of the Bratteli diagram.
Let V) be the K vector space with K basis {v,,}. where o runs through all the ascending

paths p starting from ®© and ends at .

Now, we shall define a representation 7y : K[G(r,1,n)] — End(Vy) for that first we

should define endomorphisms 75 (k1) and my(e;),1 < i < n — 1 of V).

Definition 2.10. (/7], Definition 2.13)
Let ¢, denote the path starting from ® and ends at j1; where
pi = 000l ]I el 1<i<r 1,
then

Ty (B1 Wy = Py 0ZLi 2 P= 1L
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Note 2. Let p be the path starting from ® and ends at A = (Ag, AV, ..., A1) € Uy 10
then
ma(h1)vp = PjUp
since when the path @ is restricted to the first floor, it will coincide with one of the path

9,0 < j <r—1,where pj is as in Definition 2.10.

Definition 2.11. (/7], Definition 2.15)

Let p be a path in QE\M'H). The path @ is given as follows:

=B A A%, L LA N L X =0,

where X' € L1, and N is obtained from A\t by removing a node from one of its
residues then there exists a unique path ¢’ starting from ® and ends at \ which differs from
the path g, only at the i floor where the path ' is given as follows:

B =B, M AP e A X AP = A,

where the multi partition \' is obtained from the multi partition \X*' by removing a
node a from one of its residue say /\fH and the multi partition \'=" is obtained from the
multi partition \' by removing a node b from one of its residue say )\};.

similarly, the multi partition ;i is obtained from the multi partition \X'*' by removing
the node b from one of its residues say /\fjl and the multi partition X'~ is obtained from
the multi partition ji* by removing the node a from one of its residues u;

Case (i) : Suppose k # 1. i.e., The nodes a and b are removed from different residues
then |

ma(e:)v, = %?}p + %UKJ/,

where A = ( )\f)“, /\’fr L e, /\ifll) and ' is the unique path which differs from the path
© only at the i floor.

Case (ii): Suppose k = . i.e., The nodes a and b are removed from same residue. Then

T8 Wp = Qg + a_gug,

where 7 s
g = ;;1 ford >0,
a_qg = 1—ag,

d = dy(a,b) (as in Definition 2.7 ) and ¢' is the unique path which differs from the path

© only at the i floor.

Note 3. Suppose the nodes a and b are removed from same row, then
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ag=1landa_4 = 0.
Therefore,
(e )vp = vp.
Also if the nodes a and b are removed from same column, then ag = 0. Thus,

malei)vp = 0.

Lemma 2.12. ([7], Lemma 2.17)
The following relations hold good for 7y (¢e;).
1. ma(e?) = ma(es), 1<i<n-—1.
2. ma(ei)ma(e;) = malej)males), i —j] =2 2.
3. ma(ed)maleir1)males) — maleir1)males)maleir)
= glm(es) = maei)], I<i<n-2
4. m(EO)mr(e;) = ma(e;)mA(EW), j=2
a(e)mA(EH)ma(en)ma(EW) — ma(EY)ma (e1)ma(EY )ma(er)
Sma(en)ma(EW) — my (B )ma(en)].
6. m(EW)? = m\(EW).

(2}

Theorem 2.13. ([7], Theorem 2.19)

{m\},A € L 1,n) is a complete set of inequivalent irreducible representations of

G(r,1,n). Letmp, = @ 7y, then my, is a faithful representation.
Ael‘(r,l,n)

Equivalently, V) is irreducible as G(r,1,n)- module, where U, .,y is as in Notation

2.4, Vi is as in Definition 2.9 and X € T'(; | ).

Example 2.14. The following example is an illustration of the irreducible representations

of generalized symmetric group diagrammatically using the Bratteli diagram.
The Bratteli diagram of the chain
Z31S0,2Z3051,Z31 S, ...
is the graph where the vertices in the k™ floor are labeled by the elements in the set
Lok k> 0and T 0) = @ Let pp € Ty gy and A € Iy g 41, an edge from A to i is

drawn if a node is removed from one of the residues of X to obtain .
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[ ]() (l) [1 . ((I)ﬂ[.z'}l (1) ((D“ ) (1)

\\/ /
(°e"H)™ (@°nhHw
\///
®

2.1.2 Primitive Idempotents

Lemma 2.15. (/9], Lemma 2.2)
Let X = [1)'1[1)2 ... [1]"7 and ¢ be the path which starts from ® and ends at A which is
given as follows:
p = {cb, VBN R L Y O O | L 5 § o 3 {6 Y }
then
mal(hy)v, = le’l,‘g‘,.
where { € QE\M,J’) and Qf\r,l,f) is as in Notation 2.8.

Corollary 2.16. ([9], Corollary 2.7)
E¢—iy, are primitive idempotents for all the paths which start from ® and ends at

i 0 <@ < r —1where u; is as in Definition 2.10.

Definition 2.17. (/9], Definition 2.8)
Define, E¢ = 1.

Definition 2.18. ( /9], (iv) - (a) of Proposition 2.12)
Let \ be a multi partition and ¢ be a path which starts from © and ends ar A which is
given as follows:
©=1{X\ Aa;s Aajass- - - Aayas...ay 13 Aajas..a, = P}
where A, denote the multi partition obtained from X after removing the node « . Let the
nodes a1 and ay belong to same residue, then the primitive idempotent £, can be computed

as follows:

E — H ELs'p'u,flEs — aq,,
ad, — Qg

m=s,m#gp m
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14+ sy1 d +1 . . .
where pp_1 = ———— and ag, = £~ d,, is the distance obtained between the
f 2 v Toq,
-
nodes a1 and a>, m € Q’(f‘r’l’”), O E QE\T’]’H) such thatm = 9, B, = E and Qi\r.l.n) is as

in Notation 2.8.

Lemma 2.19. ( [9],(iv) - b(i) of Proposition 2.12)

Let X\ be a multi partition and ¢ be a path which starts from ® and ends at X\ which is
given as follows:

P = {A Aars Adarazs - Adjageian -1y Aarasean = P

where \,, denote the multi partition obtained from X after removing the node ;. Let the
nodes a, and as belong to different residues. Let |\;| > 2. Then the primitive idempoient
E,, can be computed as follows:

E,=5n_t+1---8n—2Eqsn_2...8n—t+1

where t is the first integer such that the nodes ay and a; belong to same residue and the

path q is given as follows:

g = {/\a/\a] s /\(Ll(lt" /\alarags - Agras.an = (I)}

Lemma 2.20. ( [9], (iv) - b(ii) of Proposition 2.12)

Let \ be a multi partition and ¢ be a path which starts from ® and ends at A\ which is
given as follows:

P = {A A Aayags - - 5 Adrag.an-r s Acraz.an = D}

where \q, denote the multi partition obtained from X after removing the node a,. Let
the nodes a, and ay be removed from different residues. Let |\;| = 1 where ay is a node in
the residue \; then the primitive idempotent can be computed as follows:

Eo = Sn_t+15n—1+2--- (s.,,,v2s,zf1Eqs,l_,1sn*2 R L
where t is the first integer such that |\ | > 2, the node a; belongs to the residue Ay and

the path q is given as follows: ¢ = {\, A, Aayays- - - Aaras...a, }

Lemma 2.21. ( [9],(iv) - b(iii) of Proposition 2.12)
Let A = [1]'[1)"2 .. [1]% and ¢ be the path which starts from ® and ends ar X\ which is
given as follows:
o ={® (1], 1)), 1)) (1%, ... [l i
The primitive idempotent E,, can be computed as follows:

EKJ = EE Eq—([l +’2+m7lf)(h}hg...h,f)
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where @ is the restriction of the path o to the (f — 1) floor.

Proposition 2.22. ([9], Proposition 2.12)

Let E, be as in Definition 2.18, Lemma 2.19, Lemma 2.20 and Lemma 2.21. Then

1. EgEy = ELE,=0ifm # p,

2. Z Ep:z,\,

peQn,)\

3. ) E,=1

QGQn

2.1.3 Matrix Units For The Group Algebra K[G(r,1,n)]

Definition 2.23. ( [9], Definition 2.13)
Define E,, = E,, for all p € Q.1 1,).-

Case (i): If m, o € ., ) and T, € Q) then define
Enp = Emp inductively .
Case (ii): If m,p € er’p‘n),m € Q’(‘ﬁp‘n_]),g_a € fl?np’,,hl), choose m’ and o' €
QE\T,LH) such thatm =g and ™', m € QZ,,p.nil) and ', p € Q?r,l,nﬂ)- Define
Eﬁre o Ejl—
Emp LA a4
a—dp/
where
d+1
ag = 2_2 if the nodes belong to same residue;
1
= 5 if the nodes belong to different residues.
14+ sy
and e,_1 = %

Theorem 2.24. ( [9], Theorem 2.14)

{Emp} Q1 is as in Definition 2.23, forms a complete set of matrix units for the

group algebra K[G(r,1,n)], where K is the field Q(¢), C is a primitive " root of unity.
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2.2 Z,- Brauer Algebras

Definition 2.25. (/8],83).

Let Z, be a group. A Z.,-Brauer diagram is a Brauer diagram in which the edges are
indexed by the group elements of Z,. i.e., Suppose ai,as,...ay are the n edges of the
Brauer diagram d, define

dZr = {f:{a1}U{as} U...U{an} = Z,}
then the pair (d, f) where d € D, and f € d?r is called Z.,-Brauer diagram.
Let By = {(d,f) |d€ Dy, f € {dZT}} .

Definition 2.26. (/8], §3).

The linear span of E,, over the field K (z4,9 € Z,) where {xg} ez, is the set of in-
determinates indexed by group elements called Z.-Brauer algebras and it is denoted by
DTZL" where Z, is cyclic group. The Z,- Brauer algebras are now called Cyclotomic Brauer

algebras.
Note 4. Let G, denote the group Zy ! Sp,.

Proposition 2.27. ( [8], Proposition 5.1 )

Ly

(i) For each be D% there exists a unique € € D% . such that
que €y m—1

embem = Tee™_ (B)em and €% (b) = bforall b€ DX,
(ii) There exists a linear functional 7% on DZr defined inductively by
2 (1) = 1,
and
72 (b) = 7% (5, (8)) for be DE.
(iii) % is uniquely determined by
(b] Xb ) ?1' (b]bg) for 51,32 S D;; o
(glﬁnLE)> = E,{—T” (b]b}) for E],gz € Dr/n';l
(iv) % (E’Em,]};) = 7Lr (E’g) for be DZr b Dm i

Definition 2.28. ( /8], Definition 6.1 )
Let b be a ZL..-Brauer diagram in D,Z,{. Join each upper vertex to the corresponding

lower vertex ofg, where edges of b are indexed by the elements of group Z, and the resulting
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graph is denoted by J (b). A loop «in J(b) is a g-loop if h(«) = g where h is as in Definition
3.10f [8].

Lemma 2.29. ( /8], Lemma 6.2)
Zr

m

Letbbea diagram in D7 and let ry, g € Z, be the number of g loops in J (’1\)/) then

[Tz’
9

am "
Le

7Zr(h) =

Notation 2.30. (/8], Notation 7.1)

Let T, 1 ) denote the set of all inequivalent irreducible representations of G, ,,, as
in Notation 2.4. Let f(r’lm) denote the set of all inequivalent irreducible representations
of D% where

f(r,l,m) = UE& F(T.l.m—'zk)'
Let A € f(r.l,m) and i € f(r_yl_mﬁ) an edge from X to i is drawn whenever a node is

removed or added to one of the residues of \ to obtain ji.

Theorem 2.31. (/8], Theorem 7.4)
The F-algebra DZr is split semisimple

Ly __
Dmr - ) Dm,/\7

’\GI‘(T'.i,rn)
where Dy, y are full matrix algebras over IF. A simple D, x module V,,, \ can be written
as a direct sum of D,,,_1 x modules in the following way:
Vm,/\ = Egvm—]‘p,a
"

where Vi1, is a simple D, 1, module and ji is obtained from X either by removing

or adding a node from one of its residues.

2.2.1 Matrix units for Z, - Brauer algebras

Notation 2.32. (/9])
Let Q% denote the collection of all paths in the Bratteli diagram of the Z,-Brauer
algebras starting from the 0" floor and ending at the n™ floor. We define,
Q%;\ ={pe Q| pendsat \ € f‘(m’n)}
and

n
Q,Zli%y)\ = {gJ € Q%T/\ |pendsat A € Ty o), 0 < k < [E} } )
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Definition 2.33. (/9])

Define Ferj{l =1.Letm,p€ Q“ A € Lyt ok for some k> 1, then

"y w,'z?,r
WA n - ’1“* (Jn~]1

Foy = = e Tl
where wy, , = T (F“") re Qn 2 A E F(, Lm_2), T, 8 € Q“ gandt s -2“’
suchthats =t € Q“" e s defined as in Proposition 2.27 and w) ., is defmed indic m’el\
as follows:
Win = wtg;%

Since k > 1, such s and t exist, for that take 5 = T € Q%

n—t\"
Definition 2.34. (/9))
Ifm,pe QZ’/\ where \ € f(,‘ 1.n) then define
F,;Zl’é) = ( - z,%") Emp,

where Ep,, is as in Definition 2.23 and z;;" = E Hpta o
peQir
AEI‘(?‘J.:L,\

Theorem 2.35. (/9)])

Ly

mso}m e forms a complete set of matrix units for D= where Fr is as in Defi-

meg

nition 2.33 and Deﬁmnon 2.34, K = K(xg)gez,, and {x} yez, are indeterminates.

2.3 complex Reflection Group G(r, p.n)

Definition 2.36. (/2], [1], [3]).
Let r.p,n and d be positive integers (p need not be prime) such that r = pd. The
complex reflection group is defined as follows:
G(r,p.n) = {(f,o’) e G(r.1,n) | Zlf(/j) =0 nmdp}
and it is denoted as G(r,p,n). I
The complex Reflection group G(r,p,n) is a normal subgroup of G(r,1,n).

n

r't.n!

Note 5. The order of the group G(r,p.n) is

The following are the generators of the complex reflection group G(r, p. n).

e b b B E
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where ( is the primitive 7™ root of unity and p need not be a prime.

L 3 .
2] | |
5, = h]b‘]hl :>< 1(:’ L de
S ¢ . ;
y 1 r P
$i= |e e - E( 5 e -~ e e . 1<i<n~-1
. l . € l . .

The following are the relations satisfied by the above n + 1 generators of the complex

=

e .- ic e and

reflection group G(r,p,n).

L. (so)?=1.

2. (s)*=1 (1<i<n-1)
3. Sb18i=815% R EigEn=1)
4. s;8j = 8j5; li—j]>2

5. 808; = 550 2<j<n-1)

0. (515‘15‘2)2 = (5251""1)2'
7

5185 = S8 (3§J_

A
e
[
-
~

8. 505151 = 515150-
9. 518951 = 595|52.
Definition 2.37. ( /5], 54)

The relations in K|G(r, 1,n)] imply that there is a unique algebra automorphism a of
order p of K[G(r.1,n)] such that o(hy) = ch; and o(s;) = s;. for 1 < i < n -~ 1 where
£ is the primitive p™ root of unity. By definition, o is an automorphism of order p. Further,
applying the definitions

K[G(r,p,n)] = K[G(r,1,n)]” ={h € K|[G(r,1.n)] | o(h) = h}.
That is, K|G(r,p,n)] is the fixed point subalgebra of K[G(r,1,n)| under the group of

|

automorphisms of order p.

3 Cyclotomic Brauer algebras of G(r, p, n) type

In this section we define a class of diagrams denoted by D("("""’“”)(th;) over the fieid

th

K(x¢:), where K is any arbitrary field, ¢t isl the primitive »" root of unity, .., is an inde-

terminate and r. = r¢o. D¢ ("’P‘”)(Jtc,') are subalgebras of the G-Brauer algebras D’/ (s ).
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Also we show that the ideal generated by (¢)) in DEpn) coincides with the ideal gener-

ated by (e;) in DS

Definition 3.1. DG(”’"')(:I'C,) is the subalgebra of the Z..-Brauer algebra generated by
e, by, iLlin ,8i.1 < 4,7 < n— 1over the field K(x ). C is the primitive r'" root of unity,
G is the cyclic group Z, and x¢: is an indeterminate.

The generators ¢;, hf’. h,jhj—‘. si.1 <i.j <n—1are given as follows.

€= I(" € - € i( | € e, 1 <i<n-—-1l
l ey é i
1
1 i M *
| | = .
Si = le e - i€ >< [ € =2z @ e ,1<i<n-1
& s ‘
i
N PR S A
hj: !( !(' € }C l€ .(» |€
. Y . . .

J
1 Y
h.ihflb",,]‘ :Ie o Ie £ /¥(/. i(» l(i

J

where $; j = $iSi41.--5j-15j5j-1---Si+15; and ( is the primitive " root of unity.

The above generators satisfy the following relations:

1. (z;-f) = Le€; fisi<u—1)
2. g6 = ¢ (1<i<n-1)
3. eiei_1e; = € (1<i<n-—1)
4, ee;=e;6; li—j| >2

B ef=1 1<i<n-1)
6.  8i5i115i = Si+15iSi+1 : 1<i<n-1)
7. 8isj = 55 |t — 7] > 2

8. (WP =1 (1<i<n)

9. (hihj'sig)? =1 1<i,j<n-1)
10. e;8; = s;e; = €; (1<i<n-1)
11. (iih’f:hll’ei (2<i<n-—1)

12. ei(hihy's1) = (hihy's1)er = €1
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13. ei(hihy's1) = (hihy 's1)e; (s

3<i<n-1)
14. s;hY = hls; 2<i<n-1)
15, si(hihs's1) = (hihs ts)s; (3<i<n-1)
16. ((hlh;lsl)sl52)‘2 = (53(h1}1,51<51)51)2
17. hY(hihy's1)s1 = (hihy 's))s1hP
18. (h]h.’;lSl)SQ(h]hrEISl) = .5‘2(h,1h2_131)53
19. elhzfcl = ey
20. $;8i418:€i5i5i+15; = €41 (1Z€i€n-2)
21. .s',;.siﬂ(hhfl $;)8i418; = (h”].h,;l.zsﬂl) (1<i<n-2)
22, (hhi sl (b is) = RD,, (1<i<n-1)
23. r:ihici = et (1<i<n-1)
24. ey theZ = I¢re; (1<i<n—-1)
25. edh; hH_1 i )6 = K€ (1<i<n-1)
26, enhf 1:h§) 1€ 2<i<n-1)
27. el hl+191) (hy h;l sle; =18 (1<i<n-1)
2B. wghl 5 =hY ; (2<i<n-—1)
29. s/,-,(h,i_ghglsiﬁg) = (hi—2h; ' 5i_9)s; (3<i<n-—1)
30. ((hshisi)sisivt)? = (sip1(hih si)s:)?
31. hp(h th sp)s; = (g th1 si)sihY (1<i<n-1)
32. hieizhi‘lez- (1<i<n-1)
33. ejh,f) =g hH] (1<i<n-1)
34. sz hlsiis =R, (1<i<n-1)

Remark 3.2. The generator h.-hl_l-s'z',j can be replaced by the generator hl-h;! since

hih; Ls; j I8 the product of h;h; Y and 8i 4.
Note 6. Any diagram in DE(P1) (g z¢:) is denoted by d\"P- ],

Definition 3.3. The set of all diagrams in D“"P") () whose underlying Brauer graph

does not contain any horizontal edge is denoted by S©"P7).
Lemma 3.4. SCpn) =~ G(r p n).

Proof. The elements hl,hlelh vsi, 1 < j < n. 1 <7 < n— 1 generate the group

SGpn) in DEP) which is isomorphic to complex reflection group G(r, p, n), since the
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generators satisfy the relations in section 2.3.

Any element in S¢(P) is of the form ghf1 h,._;" ... hS" where i: i = 0mod pand g
is a permutation. o
Since SC¢(mpn) c GG(rIn),
Any diagram in S¢("P") ig of the form (d, f), where d is a permutation where
f:{1,2,...,n} > Z,
such that Z f(i) = 0mod p.
Thus, we h;ve
SErpn) = G(r, p,n).

M
Lead

Note 7. Instead of using d""P™) for an Cyclotomic Brauer diagram of G (r,p,n) type we

shall use d.

Proposition 3.5. Let I¢("P™) e an ideal of D("(”"”)(IC,) generated by {(e1). Then
D(}'(r,p,n) o~ I(l(r.p.'n) @ S(;(I‘,p.n)-
Moreover, the ideal 1¢TP™) jn DEUP) coincides with the ideal 1% | the ideal of

Z.,-Brauer algebra ,provided n > 2.

Proof. The proof is by induction on n.

Whenn = 1.

DEpY) = G(r, p, 1).

Any diagram in DS("P:1) has no horizontal edge and the group generated by 7" is
precisely isomorphic onto G(r, p, 1).

When n = 2, The group generated by sy, Y, Iy h, !5\ is isomorphic to the complex
reflection group G(r, p, 2).

Fix elhpt, then h,lhr_jlslel = el.elh‘;p e I6rP2) < s < d—1.

I(.(l'-]).'.%) = & dv]";],
s=0

d
where V}, is the linear span of {[:j(fllz’l”}(,s,-gl,,,l and E; = y Z p (Y)Y,
5=0
The irreducibility of 7¢07-2) follows from the fact that {£;} is a set of orthogonal
idempotents in K(x ) where ¢ " is the 7" primitive root of unity.

When n = 3.
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Let d be any Brauer diagram in % in which every edge is labeled by the identity
element.

Let  be any horizontal edge joining the i™ vertex and j™ vertex of d in the top row, y
be any horizontal edge joining the [ vertex and ™" vertex of d in the bottom row and = be
any vertical edge joining k' vertex in the top row of d to the ¢™ vertex in the bottom row
of d.

Let s be an integer such that s is not congruent to 0 mod p.

Then

hihy *dhohy’erm = ahid € JG(rpn)
for some o € K(z:) which implies that
h#d € [Crpm),

where ¢;,,, is a diagram in which each row (top and bottom) has a horizontal edge
connecting the /™ vertex and the /™ vertex and all the remaining edges are vertical edges
connecting the i" vertex in the top row and the ™ vertex in the bottom row and hi is a
diagram whose underlying brauer graph is identity graph in which the " edge is indexed
by ¢* and all other remaining edges are indexed by the identity element .

Similarly, we can prove that dh$, € 1¢(TP.n)

We can also show that h, °d € I¢(P™) since,

eijhihy*d = hi°d € IGTPm),
which implies that I%r ¢ jClrom),
Thus,

IZT oY I(}(r,p,n) .

By the vector space decomposition

DG‘(r,p,n) = IG(r,p,n) @SG(r,p,n)_‘ JG(rpn) o~ IZ", n> 3.

: 1
Note8. 1. The Dimension DC(P1) g (_p) rtal 4+ (2n)!n > 3.
p

2. The Dimension DE(P:2) jg

n.
p

(b) Whenr # p, =" 4 4.

P

(a) Whenr =p, =2 4 1.
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4 Construction Of Irreducible Representations of G(r,p,n) - A
Different Approach

To find the complete set of inequivalent irreducible representations of the Cyclotomic Brauer
algebras of G(r, p,n) type, we require the complete set of inequivalent irreducible repre-
sentations of the complex Reflection group G(r, p,n) which we construct in this section.

Our approach is different from that of [2] and [3].

Definition 4.1. Ler A € T'(,, ) where I'(, | ) is as in Notation 2.4. The single indexed
r-tuple of multi partition A = (Mg, A1, ..., A\r—1) can be arranged as a r-tuple of double
indexed multi partition \ = (/\(kf'l))ogkép,l such that Z 1)\““"1){ = n where the double
1<1<d ol
indexed multi partition \*V is given as follows:
ABD = Apgpio1.

This can be viewed as d circles, with p partitions on each circle as follows:

A(0.1) 200.2) A0-)
/ ~ / \ A
)\(1::1.1) /\(\/I 1) )\(7)7\1.2) )\(/,2) e ld) /\\1 d
N /
‘ : /
\/\(2;1)/ \/\(’2)/ \)\(') Pl

We call the multi partition \ as (d, p)-partition of size n.

Notation 4.2. Let T(,..p‘”) denote the collection of all (d. p)-partitions of A of size n. where

A€ L1y and U,y ) is as in Notation 2.4.
Definition 4.3. (A Z/pZ action on (d,p) partition of size 1 )

Let X be a (d, p)-partition. We define mapping o : F(,,,p‘,,l) — i,..p,”-} as follows:

ff( (AEDY ok ap ) = L Yoy 1 4
1<I<d 1<1<d

where (k1) = \(k+1.D)
The order of o is p.
Definition 4.4. If ¢ is a path in Q. | ,,) then o () is the path whose j" vertex is o (N') and

X is the j™ vertex of the path o where Q(r,1,n) is as in Notation 2.8 and o is as in Definition

4.3.



86 N. Karimilla Bi

o also acts on the basis vector v, of the vector space Vy where A € T, 1 ) and &

where Q)

Q (r,1,n

15 ) is as in Notation 2.8 and V) is as in Definition 2.9.

o(Vp) = Vg(p)-

Lemma 4.5. The map o : Vy — V() is a G(r, p,n) module isomorphism. i.e.. o com-

mutes with the action of G(r,p,n) where V) is as in Definition 2.9.

Proof. 1t is enough to check that o commutes with the generators of G(r, p.n) and hence
can be extended linearly to the whole space.

The complex reflection group G(r, p, n) is the normal subgroup of the generalized sym-
metric group G(r, 1,n) generated by A7, h,lslh,l’l,si, 1 < ¢ < n — 1.Thus, the restriction
of the irreducible representations of 7y of the generalized symmetric group gives the repre-
sentation of the complex reflection group G(r, p,n).

First we shall restrict 7y (K[G(r,1,n)]) — End (V) to obtain the representations
mx(K[G(r,p,n)]) — End Vj.

From Definition 2.10,

T, (h1 v, = plog,,

where y; = ®°®! . @ 1['@ T @" ! o, is the path which starts from & and
ends at
1,0 <14 <r —1and pis the r primitive root of unity.

Thus,

”T,ui(hil))'vf()z = (my, (h1))Pvy, = /’ml"wui

teti =kd+1—1,wherek=0,1,....p—1and! =1,2,...,d. Fix [, then

P o
Trlikd+1—1 (hzlj)vpkdw»-«] = (W#kl1+l-1 (h1 )) b.@kmhp 1

— (pkd+l_l)p'b'

= pp(l-l)vmliwq v k.

Phd+1-1

P
Tra(ﬂkdﬁ-l—l)(hll))lUU(Pderl—l) = (ﬂﬂ(uk-(tﬂuza)(hl)) Yo(o(prasi—1))

_ (pkDdt-1yp,

= pp(l_l)va(@kd+l—l) vk

o(©rd+1-1)

Thus, the rearrangement of the partition p from single index to double index is in such
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a way that

U(Wﬂ(h’lj))’{/‘g)(k,l) = Wa(,u,)(hll])n('“p“n” )w (41 )

where 1 = (/l/(k‘l)>()§k§pfl -
1<1<d

Therefore, o commutes with the action of hﬁ' .
We shall check that o commutes withe;, 1 < i <n — 1.

Using Definition 2.11, we get the following cases,

Case (i) When nodes are removed from different residues then

[
Tylei v, = Vet Uy

which implies that
~— WS, T =
n,\(bj)‘l o = Uy

where ¢ is the unique path which differs from the path ¢, only at the /" floor.

Case (ii) When the nodes are removed from same residue then
71'/\(6»5)'1’5.) = (Ld\,'l.’s‘, +a '7'4'[“'”3‘)’

which implies that 7y (s;)v, = (2a4, — vy, + 2a ~d,, Vs Where aq and a_ g | are
as in Definition 2.11 and ¢’ is the unique path which differs from the path ¢ only at

the i floor.

Case (i) When nodes are removed from different residues of A then it will be removed from

different residues of o(\). Therefore,
1

)-\ s RO | + - v
77.0(/\)((‘2)7’0('0) =5 Colp) T 5 ()

which implies that m,(5)(8i)vs(,) = to(yr), Where o(¢)) is the unique path which

differs from the path o() only at the i floor.

Case (ii) When the nodes are removed from same residue of A then it will be removed from

same residue of (). Therefore,

770()\)(‘31')7"(7(@) = ad, ., Vo(p) + a- Aoy Vor(o)
which implies that 7, x) (5i) Vo () = (2aa, ., ~1) () 20, Ve, Whereaq_
and a_gq,  are as in Definition 2.11 and a(¢') is the unique path which ditfers from

the path () only at the i" floor.
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Therefore,
o (ma (81) vp = o) (5i) o(vp), Y1<i<n-—1 (4.2)

Thus o commutes with the action of s;.1 <i <n — 1.

1

Finally, we shall check that o commutes with the action of fiys1h) .

1 1
Case (i) Suppose 7y (e1)v, = 3% + 50 where ¢ is the unique path which differs from

the path @ only at the first floor then 7y (s, )v,, = v. Therefore,

] =i
ma(hisih] v, = pima(h)oy
/

= p "puy

(il 0y
s [)\1 ) l'gx/'
Case (ii) Suppose my(eq)v, = v, then my(s;)v,, = v,,. Therefore,
& & \ § §

Tr,\(hl.slhl‘l)vw = plma(hy)ma(s ),

= plma(h)vg

= f° /)i Vg
= By
Case (iii) Suppose 7y (e1)v, = 0 then 7y (s1)v, = —v,,. Therefore,
7T)\(h151h'1_ )1‘@ = /)_i(ﬂk(hl)ﬂx\(”l))"p

= /)7i7r>\(hl)z's,
= p P

= “lUp

Similarly, we will check for 7, (y) (h1s1h} ') vg()-

Consider

=1 =1y,
To) (h181h] gy = (o) (R 7o) (51)(Toiay (1)) ™ )ta e

= p (7o) (R1)To(a) (51))Va(p)
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1 1 o 4 .
5Vo(e) T V() where o (') is the unique path which

differs from the path o () only at the first floor then 7, (x)(51)00() = Co()-

Case (i) Suppose 7?0(/\)(61 )c'ﬁ(M =

Therefore,

. B Vas — S S SV
To (P131h] ooy = p " Toa (P10 )

= p P ()

il
— p(z I"”(T(g‘)”)'

Case (ii) By the above argument, suppose Ty (x)(€1)0s () = Uo(0)-

then '/T”(/\) (.5') )z"’«’f(g.)) = 1"{7(5'.’1) . Therefore,

o A o —1 / - - )
WU(A)(}IV"I”J )('U(W) = p 7(0(/\)(‘,),1)“(7(/\)(.5])l,‘,}.(w)
) - ;
= p 'moy(h)te)
- = 77N
= P p Co{y)

=

Yooy \
O] "

Case (iii) By the above same argument, suppose 7,y (€1 )., = 0.

then 7, () (51)U0 () = —Us(p)- Theretore,
s =D _ i e Vi
“n(,\)(}ll'ﬂhl )Qﬁ(g:)) = p I(?T(,(/\’)U)l)j.ml/\,\,\.'i))lmm

Thus,

o (TT,\ (/nslh N l)) Vp = Ta(A) (h,]s]hl' l) G0, ) 4.3)

Therefore, o commutes with the action of /iy s, h.fl

Thus, o : V) — V() Is an isomorphism. L

Lemmad.6. o (E,,) = E,,) where p € QZ\M ) E,, is the primitive idempotent of the path

@ as in section 2.1.2 and .Q;\,_ | 18 @S in 2.8 and o is an automorphism of K[G(r. 1. n)].
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Proof. The proof is by induction on n.
Whenn = 1. Let A = [1]J) = k = i and | = j. Thus by Definition 4.1, kd +1 — 1 =
1d +j — 1.
Let o be the path which starts from ¢ and ends at A which is given as follows:
p = {o, [1]6).
By Corollary 2.16,

Eg) = ]EC"\/Ld*_[ =1 hy

r—1

— l Z <~(id+j—— l)mhrln
r

m=0

Consider

1 r—1 - .

o (ngl) = a <; Z gﬁ(ld‘kll)nlhlqn)
1
T

C‘('ldfj—])IILe'nlhqll) since o'(h1) = ch;

m=0

Now, we shall show that the o(E,,) = E,,, using induction hypothesis where ¢ €

o

(r,1,n)"

Case (i) Let A € I',.;,,) be a multi partition and ¢ be the path which starts from & and

ends at A which is given as follows:

= {’\’ /\m ’ )\amgs R /\(1,1 A2...Qp (I)}‘

Subcase (i) Suppose the nodes a; and a, belong to same residue, then by Definition

2.18, the primitive idempotent F, is given as follows:
. FE.e, 1 Es —a
L(, _ H stn . (1

m A Ad,, — A4,
M=8,MF (€] m
1 + S =] d i 1 ) . .
where p, | = —_— and g, = £ .d,, is the distance obtained be-
n 9 dy, 9 ¢
2 2,

Lo € Q(’\,_A}_”. such that 7n = { and

tween the nodes a; and as. m € Q’(‘,_ 1n)



Representations and Matrix units for the Cyclotomic Brauer Algebras - - - 91

Es; = Eg where Q(\T‘l‘n) is the collection of all paths which starts from ¢ and

ends at \.

Consider

11

S Esen 1Es — aq,, Ey
U(Eu) - O—(Hﬁirs.m#p )
aq, — Qq

m

Eq(s)en—1Eq(s) — dy, Eo(s)

- 1I771:S.m7£g:)
Qq,, — Ad,,

= Eﬂ(m'

Therefore, 0 (E,) = Eqy,).-

Subcase (ii) Suppose the nodes a; and a-» are removed from different residues. Let
[Ai| > 2 and ¢ is the first integer such that the nodes a; and a; belong to same
residue then by Lemma 2.19, the primitive idempotent 2, is given as follows:

Eo =580 11180142 .S‘,,,-_)Ean,-_) sS4 25n 0 1

and the path ¢ 1s given as,
q = {A, )\(Ll 9 /\(L](L{ + /\u.]().'(LQ» st )\(ll(lv;z...un . q)}

Consider

’T(Eg)) = 0(Sn—t+1--- "inﬁfE([S'Il*'Z e Sn—t+1)

o

Sn—t41---Sn-1Es(g)Sn-1...8n_g1 8ince 0(g) = g Vg € S,

Eq(p)-

Therefore, 0 (Ey,) = Eq,)-

Subcase (iii) Suppose the nodes a; and as are removed from different residue. Let
[Ail = 1 where «, is a node in the residue \; then by Lemma 2.20. the primitive
idempotent I, is given as follows:

Egt; = Sn—t+1Sn—t+2 - - - "'71—725117—1Eqsnfl-sn =2 Syt 25—+
where # is the first integer such that [A;/| > 2. the node ¢, belong to the residue
A, and the path ¢ is given as follows:

q= {)\ /\(,lf ) /\mal 50 /\aia'—’"'“” }
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Consider
O(Ep) = o(Sn—t+1--- S’II—]E(]Snfl S S'n—-iarl)
= Spt41---Sn-1Fg(g)Sn—1--- Sn—t+1 since alg) =gVg €S,
Eo(p)-

Therefore, 0 (E,;) = Ey(y)-

Case (ii) Let A = [1]%[1]®2...[1]"/ and g be the path which starts from ¢ and ends at A
which is given as follows:

o= {0, [ B, A e ey

Ll A S B

then by Lemma 2.21, the primitive idempotent F, can be computed as follows:

E53 = E@ E(..»(llﬂz *"'Hf)(hlll,g..,h,f)'

here % is the restriction of the path ¢ to the (f — 1)™ floor.

U(Ega) = U(EEEC”(ll'Hz*---’f )

"haha. iy

= FE )O'UE

- *’2+---’f)h1h,2...hf)

r—1
1 ‘
= Ea(ﬁ);(f ( E C-‘(lxﬂrlz—r...lf)m,(h}h2 o hf)m)

=)

o(p

r—1

1 Lo, , Lt
e EU“_J); Z <7(11+I'_>*.4.~]_/ )mfmf(hqh.g o }’j" i
m=0

r—1

= By 3 (O me T gy g
m=0
1 r—1
_ E@; Z C«((ll+1)+(l‘z+d)+.<.—'r‘([f*d))”l(],,1h,z o ,'?,j.)”'
m=0
= EEEC~—((11+'J>+(12+II)*-~+(lf+'l))hlhz_“h’j.

= Es(p),

where o(p) =  {®, [+, [1ard)etd, L [)ardpgerd il

[l]lﬁrd{l]lzﬂi o {1]lf+d}' L

Therefore, 0 (E,) = Eq

n
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Lemma 4.7. o(E,,,) = Ey(m)o(p) Where Enm, are the matrix units as in Definition 2.23

and m, p € Q) and o is an automorphism of K|G(r,1,n)].

(r,1,n)

Proof. We shall prove this by induction on n.
By induction hypothesis,
o(Emp) = Ea(m)a =

Ifm,p € o2 Yopm) T € O pes .‘(rp n—1)» choose m "and ' € &-U | n Such

“(rpm—1)

that m = gf) and m',m € Q ) and @', % € %3]

i1 then by case (ii) of Definition

(r,p,n—1
2.23, we have

E N FErmm en— 1EKJ o
mep =
a—d

By induction hypothesis, we have

Emm 1€n— 1F

O’(Enm) = O‘(__,_(I_:TW>
o
= (L__ldv, o (Emm )o(en—1 )O(EU%T))
- —I-E(f(”_l)d(m "en— 1Err( e
a»d“/ ) © )
= Eq(m)g(p) .

Therefore,

U(Emga) = Eo(m)rr(,gu) Vp € SZ(r.Ln)'

Definition 4.8. Fix a (d, p)-partition X of size n. Denote the stabilizer of A under the action
of Z/pZ as K. where
= {a'jo*(\) = A}.

K is a subgroup of ./ pZ. and generated by the transformation olx where o/x(\) = A
and V) is as in Definition 2.9.

We can also define Ky as follows:

Ky = {a“f* W= WNI0<a<e— 1} ,

where ¢ = |K)\| = .

I

Thus, the elements of Ky are all G(r.p,n)- module isomorphisms.
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Definition 4.9. Ler \ be a (d, p)-partition as in Definition 4.1 such that o/>(\) = \. Let V',

A

be the vector space spanned by {v{p], © €N )

. fa—1
roots of unity, where v, = 6’70 Vgi(py and QZ\T_ 1) IS as in Notation 2.8.
e

] ontaining """ primitive
over a field K containing 1" primitiy

V{,\] are G(r,1,n)-modules by equations (4.1), (4.2) and (4.3).

Definition 4.10. Let w = /¢ where ¢ is the primitive p™ root of unity.
e—1

_ 1 - g8 ;
] J— . f y .= J D
Put G[/\] = E w ' and Vil = th.[pg.

1=0
Lemma 4.11. G/, Gl = 6,;GY,, where G,  is as in Definition 4.10.

Proof.

e—1 e=1
GGy = <EZ’“’ el ) (72” [”h>

1=0 =0
e e—1
1 aE o :
= = § w i(l—7) E wil[(fj’\l'
e2
=0 1=0
- 5.9
= ;G
F
il

Definition 4.12. Let V([A:7),0 < j < e — 1 be the vector space spanned by
{v[p]], pE Q(>‘H ”)} over the field K containing " roots of unity where vigp s as in Defi-

nition 4.10.

Definition 4.13. By Lemma 4.5, we have o> : V}y; — Vi is an isomorphism as G(r.p.n)-

modules where V() is as in Definition 4.9.

Put,
e—1
= Y X Earunsiggeihtig)
X =
KJEgz(r.l‘n)z ¢
where Q)

(r1n) S asin Notation 2.8.

Lemma 4.14. Let K be the field containing v primitive roots of unity.

-1
1. wx(u) = o where u = Z u; and u;j is as in Definition 4.13.
§=0

2. u € Z(K[G(r,p,n)]) with u® = 1.
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—1

1 L

~ s ) P e — 7 ~ I'erale st

3. Put zp); = - E w7’ then Ty (“'i./\l,j) = G{/\j and zpy.; € K[G(r,p,n)}.
T =0

Proof. Proof of (1): It follows from the Definition of u that
mA(u) (V) = 1oraqp) VO E QZX,_]M.
Thus, 7y (u) = o/*.
Proof of (2): Since o(u) = wu and K[G((r.p.n)] is the fixed field subalgebra of
K[G(r,1.n)],
u € K[G(r,p,n)].
Since o/* is a G(r, p,n)-isomorphism of V),

(W (2) = mp ()7 (u) YV € K[G(r.p.n)l.

Thus,
u € Z(K[G(r.p,n)]).
a1 e—1
Since u = g E g E.ﬂ(1+l)f/\«‘—1(p)o_/f>\ () the only non-zero elements in the
1= A 1= .
J 0 KJEQ(r.l.n)L g
product u are of the form
E(Tf)\'(g.))ﬂf/\“*( ”(SJ) G EO‘""/\‘H'Z](U)(T-f/\l,l*l;(';(,') [L{_fj-;\,, £ '(‘\/;\’(7‘)'\/('\,}
Thus u“ = 1.
Proof of (3): Consider
1 e—1
, _ LT T
TGVl = TN (; E w )Z;W‘,
T i=0
= Vpp

From Definition 4.10, 7y, (z[,\“) = G’{M.
By Proof (2), it follows that z(y.; € K[G(r, p,n)] where K is the ficld containing the

" primitive roots of unity. O

Let V([A];j) = G/, Vix- Then

, p—1 )
Proposition 4.15. Put my(x) = @ 7,005 (2).
i=0

1. {V ([N;4).0 < j <e—=1,X €L ,n} areirreducible as G(r, p, n)-modules where

V ([\]; 1) are the eigen spaces for the operator o/

2. V([A;9) = @ Vv, 0 < j <e—1asG(r,p,n) modules.
N <A
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Proof. The fact that V' ([A];7) is a G(r, p, n)-module follows from equations (4.1), (4.2)
and (4.3) of Lemma 4.5.
Since o/ is a G(r, p,n)-module isomorphism.

1 e—1 N ‘
oh (%l‘) = oh (; Z‘“‘_”"f”’[p})

1=0
(—1

. § :\U—](Hr] IG+1) ,‘g

= W Vl)!

f)‘ ( ’K} ) = wj'v[p}/ (4.4)
Thus V([A];j)’s are the w’-eigenspaces for the operator o/>. Since G{/\l are G(r,p,n)-
module homomorphisms and V ([A]; j) are G(r, p, n)-modules.

Let W be any G(r, p, n)-submodule of V([A]; 7) and let X # 0 be any non-zero element
in W,

then X = > a,Glvy.

peQ(r 1,n)

ms) (820 0" (Bp)) X = mixg (020 B ) X = Glyvygy € Weforany p € .

0

Proposition 4.16. V ([\];j) and V ([N];1) are inequivalent if X # X or j # | where
V ([N]; ) is as in Definition 4.12.

Proof. Let A and \' € f(m,}n) where A = (/\(k*l))ogkgp,J and \ = (/\/(k’l))()<k<p .

1<1<d 1<i<d

Case (i) There exists at least one residue of A and of \' say AELD) and N(R2:.L2) which are
not equal and there exists X such that
X< Akl pyp X ¢ Nk2l2),
In that case,

A= (AOD ALY AE-L) 302)  Ae-1D A0 k=L,

X’ /\(A'] +1,07) /\(p—-l,ll) )\((),(1\: o /\(p—— d)}

such that A < X and A ¢ u which means V ([A];5) and V ([\];{) have different

direct sum decomposition as G(r, p,n — 1) modules.

Thus V' ([A];7) and V ([X];1) are not isomorphic as G(r. p, n) modules.
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Case (ii) Even if /\(kl*ll) = N(k2,12) and no partition B exists-such that A < Akl or
X < Xk2il2) then A1) = [2] or [12].

Since A(k1:l) £ N(k2.82) which implies either Akl = [2] and Nh2t2) = [1%] or

Alkih) — [12) and N(k2t2) = [2].

Subcase (i) There exists b\ < Aksls) for some s or N < M(ksils) Then,
= (A0 AGD L AR=LD A k=) kb,

AL AL 0D AGLD} < o

and X ¢ X' since N'(F2l2) = [12].
In this case also V ([A];7) and V ([X]; 1) are not isomorphic as G(r. p. 1) mod-
ules since they do not have same direct sum decomposition as G(r.p.n — 1)

modules.

Subcase (ii) If no such X exists implies that Aksls) = @ or N Fels) = & Thus we
are reduced to consider the following case. Suppose A = [@« ®,...,[2]tkh),
O,...,0 N = 'r@ ®,..., 12 [h2l2) (D} and let © be the path which
starts from ¢ and ends at A.

e, p={0 A= [0,0,... k) & . 0l A}
and ¢’ be the path which starts from @ and ends at A which is given as
o = {®,A=[0,®,... [1]*") &, .. 0] N}

By Proposition 4.15, we have

(A (€1) Vg = Ve and T((x);5) (e1) vy = 0.

Also oP(\) = Aand oP(X') = X which implies that [K| = 1 and IKyi=1.
By Proposition 4.15, V ([A};j) and V' ([X]; 1) are not isomorphic as G(r, p, 2)
modules.

Case (iii) Suppose A = (A\*D) <<,y such that
121<d

/\(k:l) — 1’ k — kl andl == lla

®, Otherwise.

and X = (N*)ocp<p 1 such that
1<1<d
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I, k=koand! = ly;
®, Otherwise.

AL

where A, X' € T',.,,1).Als0 both 0#(A) = X and o”(X') = X implies that Ky =1
and K y/| = 1. Thus by Proposition 4.15, V/ ([Al:7) and V ([N']: 1) are not isomorphic
as G(r,p, 1) module, when [; # [,.

Case (iv) Suppose all the residues of A and X are equal. Assume that V' ([Al: ) and
V ([N];1) are isomorphic as G(r, p, n) modules.
Suppose 71" is an isomorphism from V' ([A]; j) onto V' ([X'1:1), which implies T com-

mutes with the action of G(r, p.n).

e, T (77'([/\]:]-)(:1‘.)) Vjpli = (W([)\J}J)(I)) Ty Vo € K[G(r, p.n)).

In particular, put (w([,\]:j)(m)) = /% where € K|G(r, p. n)l
T ((ff’\> L'k)}j = (O'f)‘> T/lyfxlﬁ‘
T (woy) = ob (T(uy)

= wl (71(.133:1?.1 ))

ol

w! (T (o)
which implies that, j = /.

Thus, when j # [,V ([\];j) and V ([\];{) are not isomorphic as G(r, p. n) modules
where A € f(, o

D)

4.1 Bratteli Diagram of the complex Reflection Group

Notation 4.17. Ler F(m,.“) be as in Notation 4.2. Ler )\, € F,\,.vp_,l\,. The complere set
of inequivalent irreducible representations of G(r,p,n) is indexed by the equivalent class
(M);d),0<j <e—1wheree = TSN

Let l:(,.: p.n) be the indexing set of all inequivalent irreducible representations of G{r.p.n}

where

INj{(r,p.n) = f(r,p,n)/ ~= {([/\IL]J)() SJjxe- LA, € I“(r‘p‘n‘) and él\'/\“‘: = ‘?

The Bratteli diagram of the chain
G(r.p.0).G(r.p.1).G(r.p.2)....
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is the graph where the vertices in the £ level are labeled by the elements of f‘(rﬁ,,_’k), k>
0 and f(,.,p‘o) = ® and the edges are defined as follows:

Let A and /i be the representatives for the equivalence classes [\] and || respectively
where [\] € f(,,,‘pj,H) and [p] € f(,,p__i).

An edge from Ao ft is drawn whenever /i is obtained from A by removing a node from

one of its residues.

Example 4.18. The Bratteli diagram of the chain G(2,2.0).G(2.2.1).G(2.

bo
no
o
~—

G(2,2,3) ... is given as follows:

[Jjo@] [2—%—.1}0@1 [13]‘0(1)1 [2]();[1}1 {12]0{1}1

An edge from a vertex of I ; to an vertex of I IS drawn in the following way.
8 (r,p.i+1) (r,p.t) { )

Let X be the representative for the equivalence class iL( bR Jo<k<p- 11 € I'gp.ivryand
1<i<d

11 be the representative for the equivalence class [ (")) o</, s | S
1<s<d

An edge from A 1o piis drawn whenever [i is obtained from X by removing a node from

one of its residues.

S Matrix units for the group algebra K|[G(r, p, n)]

In this section, we compute the primitive idempotents for the equivalence classes of paths. We
shall also give the complete set of matrix units for the group algebra KiG/(r. p. n)|. where

K is the field containing 7 roots of unity.

5.1 Primitive idempotents

T
m [ZV E '(SJJ Z[ Mg
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Definition 5.1. where E,. ) is the primitive idempotent for the path o*(p). o € Q(Av:}.m

and zy).; is as in Lemma 4.14.

Theorem 5.2. [. F, [lp] is a primitive idempotent in K[G(r,p,n)|.

F FlR = Sump)(q Fl-

-
3. Z Flp) = #xja-

{QEQ

(r,1,n)

Proof. Proof of (1): By Definition 5.1 we have,
p—1
[Z E ai(p) ] SNEE

Consider

e—1
j —_— A T 29
TN (F[ga]) Vgt = T (Z EU"(SJ)'“{/\W) Ulg)t
i=0
p—1
= 60 ) T Eoi()) Vs = 3518p.q00)
Since iy (F] p]J)(V([ ];7)) is one dimensional, Fio] is a primitive idempotent in
K[G(r, p,n)], where K is an arbitrary field containing primitive ' root of unity.

Proof of (2) :

miy (i) v = 7 ([ ZE E ZEmmﬂZ{A}:m)’“{qé'”

- él,m ©,q U[plm

Proof of ¢ (3: We know that mix) (FLy) V(N 3) = KGlyvigys and FL is a primitive
idempotent in K[G(r, p, n)].

Also, we have

-1
= Z Z ZEU(Z+])f)‘“(P)G1f)‘+J(@
J=0 p€(2>‘ 1n) i=0
Thus,
w(zn + 2o Tt 2on-1) = u= 2t ze0) te T Zensiy)
é—il
1 7
By Lemma 4.14, wee have 2}, = — Zw Jiy" which implies that
e
=0
-1 Ir—1

Z[N];d Z Zgh 0y = Z Zai(A)Z[Nsd = A[Aie

1=0 =0
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Thus,
p—1
l _ ) oot
> Py = X X Eew
[@]e“ (r,1,n) ] Q?’ In) =
= D e = A
[K)JESZ(T 1,n)

™

5.2 Matrix Units F,,,

Fm’g;’ ZU me ( ) ZE(IL (m rf’(g> ] 0<i<e-1

Definition 5.3. where F [l | isasin Deﬁnm()n 5 1 and m, p € Q(

r,ln)

Theorem 5.4. F,_, ze

miptFgint = Opp).(qlFmint Where Fu 1 is as in Definition 5.3.

p—1

<<Z EU‘(m)oi(p g3> <Z Ea “q)o'(n) Eru)) H;’
i=0

= 5["] 7T[,\ ((Z Ecr (m)ot(p ]>> L‘[q]/ = 6\':1{,{i‘og)1|q117:z“

Proof. Consider

i (Fmtgt Fgint) vigy

Al ( m! quln') Ut = 5[n] [tl5[ ,lq) V[m)t- (5.1
Consider
A (le”l)v[t]l = T (Z F‘71(m)0'(n) n]) 11%” = 5‘71 mi‘
=0
A (Fm’n')'“m’ = (s[n],[t}“[m]l (5.2)

From Equations (5.1) and (5.2) we have,
FIIFI[—(s[]]FII

m q'n min

0

6 Split Semisimplicity of D(-Pm)

Theorem 6.1. The K(x ) algebra DGrpn)) s split semisimple where {z;i}o<i<r—1 are

th

indeterminates and (* is primitive r™ root of unity.
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Proof. By Proposition 3.5 we know that
D(,'('r,p,n) — I(J(r.p,n) D K{s(l(r,p,n)}

and IC(nPn) = [Zr p > 3.

By Theorem 2.31, we know that /% is split semisimple and by [3], K(z,)[S“")] is

semisimple.

Thus, by Proposition 3.5, DE("P™) is semisimple. U

Theorem 6.2. The K(x.:) algebra D) s split semisimple.
pDG(rpn) — < o) an\) s ( fasy B,iizk,#)

~ ~ =
AET (1) HET (1 0 2k)

where Dy, x and Dy, sy, are full matrix algebras over K(z ).

Let [A] € T ), then a simple D,, |y module V;, \; can be writien as a direct sun of
D,y [/} modules in the following way:
Van = & Vauo1v
AN
and let pp € T(y1 0 ok), then a simple Dy, oy, module V;, oy |, can be written as a direct
sum of Dy,_oy ,, modules in the following way:

7 7 / W =
"n—‘lk,u = /62 V'Yn~2k+'2,u’ 55 Vn~2k7-2,u”~ JUS F('r‘,l,n—Elva»2) and JURS F(r.l.n—:l!vri)-
w<p W <p

6.1 Bratteli Diagram

Notxution 6.3. Let ',
DEmPn) gpd

) denote the set of all inequivalent irreducible representations of

4]

let I_‘G(r,p,n) = F(r,p,n) U F(r,],n—ZA:)
k=1

(r.,pn

where f(r,p,n) denote the set of all inequivalent irreducible representations of G(r.p,n)
which is given in Notation 4.17 and T'(,. | ,, _oyy denote the set of all inequivalent irreducible

representations of the generalized symmetric group G(r,1,n — 2k) is as in Notation 2.4.

The vertices of the m™ floor and (m + 1)" of the Bratteli diagram belongs to f(;(,,., )

and U (r p.m+1), where

(2] (2]

2, ~ ~ - 2
IﬂG’(r,p,m) = Iﬂ(r,;f),m) kU] I“(r,l,m—2k) and FG(r,p,m+1) = F('r,p,m'rl) kL—Jl r(7',1.,m,+l —2k)
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Let X € Ty p.my and 1 € Larpms1)- An edge from a vertex X in the m™ floor 10 a

vertex juin (m + 1) floor is drawn in the following way.

Case (i) Suppose [\ € T'(, .,y and ] € Urp.mi1) then an edge from {j] 10 |\ is drawn

as follows:

Let X and ji be the representatives for the equivalence classes ‘Al and [ji). An edge
from [ito X is drawn whenever X is obtained from jt by removing a node from one of

its residues.

[%] [=4]
Case (ii) Suppose A€ U Uy oy and p e | L 1ant1-2k) Provided m > 2.
k=1 k=1
An edge from A to yu is drawn either by adding a node or removing a node from one

of the residues of A to obtain .

Subcase (i) Whenm =2 AU gvand €. .. pedees are drawn from A to
(r.1.0) / (r.1.1)- P edg J

ft by adding a node 1o one of the residues of A to obtain i, where pd = r.

Dne‘l1

Case (iii) Suppose [\ € Ix‘mp‘m) and 1 € O L ons 121y provided m # 1.
k=1

An edge from [X] to p is drawn in the following way: Let A be the representative for
the equivalence class [\]. An edge from X to juis drawn, whenever a node is removed

Jfrom one of the residues of X to obtain ju.

Subcase (i) When m = 1 then [\] € l:(r:p_]) and p € T, -

An edge from [A] is drawn by removing a node from one of the residues of A to

obtain 1 where X is the representative for the equivalence class AL
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Example 6.4. The Brarteli of the chain D¢V p&ti2.2)

7 Matrix Units for the Cyclotomic Brauer Algebras of G:(r. p, n)
type

Notation 7.1. Q.. ) denote the collection of all paths in the Bratieli diagram of ihe
cyclotomic Brauer algebras of G(r,p,n) type starting from the 0" floor and ending at the
n' floor. We define,

Q?‘:(,,J)_H) ={pe€ Qg\;(r.p‘”) | v ends at \ € fr’lir.w o

and

o,
[

An—2k ) N A . T 2
( Cingpa) = {5\) € Q(;(,,,‘m) |pendsat A €T, o). 1 <k <

[NIR

[N

Definition 7.2. Fy """ = 1.

Definition 7.3. Ler A\ € f(;(,,.‘,[,‘,,). Ifm.pe€ SZ?W(

(rp.n

G(r.p.mn) L
Fll)ga)p = (l_k”"\'F /

“n J*migs

X then define

where Fi i is as in Definition 5.3 and 27" = E el
o 2k
e )
XEL ppep i

LG (r,p,n) . NN . . . .
Theorem 7.4. ng(,'} . as in Definition 7.3 forms a complete set of matrix units for
DCrPn) over the field K [;I:C,j . where {x: Yo<i<r—1 and (' is the primitive 1" root of

unity.
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Proof. The proof is by induction on .

When n = 0 and n = 1 the proof is obvious.

A0

Whenn = 2. Letm; € Q(;(;-. , where m; = = {®, UU(U” Doy o<i<d-1.

Using Definition 2.33, we get

~ /,"'”;l" = '€ [":7;7'7
Zy . _—/“'J
mimy TeWp 10,1 )
‘1}";&7/‘1'.77;
Z., I i N
T Telp1W,, 1
p—1 1 p—1
1 _pikppk) 2: ~pjk Pk
(rz E :/’ by )” (ﬁ P
B k=0 k=0
= -y pk = i
o[z (SRZh o TR g (ST p ki
Le \/7' ( d T d
) -1
N Z ey ph
( Z p 1)11\]11) > \ }'-]A/)'—lh)
k=0

f \
I'(,,\/<1 = Zzll —pik S “m > (1 + ZA /;”I’/I\ i )
1 p—1
( Z p*lnl\hpl\) ’ (ﬁ Z p '*pJL-h;{k>
k=0

k=0

/ 2 <
\/(I( +24/\ l/) ]”A Q"A>(‘l.( =+ d /) /l/l\I I‘ e ’

p—1 p—1
( prﬂzkhpk> ( Z/’ mkhlﬂ\)
"Ly Zr
f771,r11_, En,np, o (1 X
(I =+ T /) 7;I\LLUIA)
=1
(d Z[ >pzkh1»h\ ( Zp pJ Ahpﬁ>
k=0
X
(1( + 5 1/)’“ U’>
p—1 1 p- 1
/ l N .
—pik p Pk P pim L Il)/‘-
(([Z/, h )"(Z}[ (Z/} ))(;(\“]Z,; i
- -4 h=0
- . d-1 ik £ . . \
<"'( + k1 P ”"J';f*) (“’" + 2 k1 P PR )
= 0
Thus, Fry, Flr, =0 0<4,5<d -1
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- /4
Ly Loy

m,m; = m;mny

p—1
(52 ““h’")‘ ( Z/;m,,m)
k=0 k=0

= X

(JP + Zk‘ 1 /) P ‘ICP’”) (I(i -+ Z}\;l /)771}‘].;\".’1,'(]7]»')
p—1
1 —pjkp,pk 1 —plhy pk
(E ;/’ # h'll) )el(EZp p hzf )
(e Sl provtage) (e + i oot
p—1
(5 Z p*Pil\'h/}l)k> 2 ( Zp p7kl ;1}\)

= — X

(17€+Zk JP —pik gpk)<.1 +ZA 1[) P-]}‘I pl>
( Z ; plkhpk>

k=0
d—1 _ i
(ZL’e‘lLZk:[[) ka.Té‘pk) (.1 +LA l/) I)[/‘Igp}.)
p—1 P
1 it 5 ke
(A p );lAh/l)A)

(ézp—mkhl”j. z ( Zp mlxhpk) el (j

k=0 =()

(z( +Zk 1/’ ~pik U;k>(1(+2f %p ~Pikg ,)p><1 +L” Pk m)

X

p—1

1 T
QZP‘ ”/k“'fA>

( Z p*mkhpk> ( - Z pApj/chM%l

k=0 k=0

d—1 g T . N—d—1
(,’]je + Zk ][) —pik gl)k)( - e ZA l[) pJA:I‘gpk) Ie + Z‘(/\ 4 P I‘M-[.K’i”"

e’

H~1

p—1
(5 Z[)~g;/k'}l]1)k')€]< Zp»p//\} /)A)
k=0
(Ie + Zg;i —pik ,)A) (1( + anl [’[}";1',\-;,'”-)

= F& . 0<idjl<d-Ll
Thus, FZr = FZr 0<i,jl<d-1
mlm] mjml m;my - 7.]’ .. N
d—1
Therefore, 2, G(rp.2) _ nZ{,}n,~
=0

2L 5" 1s the central primitive idempotent corresponding to ] P

Thus, {(1 — 22")F, JA €

(€] (7 P2}

m p’}m goEQ’\ A € I_‘(7'.1),2) and {Fm’ m,},” e

,1, ))
[(y,1,0) form a set of matrix units for K(z,)[DYP-2)].

From Theorem 5.4, we know that {F, i}, or» , forms a complete set of matrix
(r,1.
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p=1

units for the group algebra K[G(r, p, n)], where F, 1 = Z Egi(myo (o) F i) K is the field
i=0 '

containing ™" roots of unity and p,m € Q(AT L)

Also, from Theorem 2.35, we know that {Ffw} forms a complete set of matrix

mpEQZ”"A

e F ) Z. 4Z. . w/\.n—ZP%/‘,L(‘H.71[:12;%. )
units for K (xg)[ D7), where Fr, = — o and g € 7Z,..

Therefore, using Theorem 1.4 of [10], forall n > 3, {(1 -2, ) F,1 }”"*’“‘Q?:w,.u A€
F('I',l,?‘l) and
{F,ﬁ)} Am—2k s A € (1 n—on) form a complete set of matrix units for DErpnl gyer

m, €S Z(',(

T, p,N)

the field K (:L'C) , % is the primitive ™ root of unity. ]
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