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Abstract

The notion of a fuzzy set which was introduced by Zadeh, provides a natural frame-
work for generalizing the notions of general topology which may be called Fuzzy
Topology. The concept of “Fuzzy Topological Space” was propounded by C.L.. Chang
in 1968 and is regarded as the generalization of the notion of topological spae.

Our aim is to derive some results of general topology in the broader frame work
of the fuzzy setting.

1 Fuzzy Topology

A family 7 C 1% of fuzzy sets is called a fuzzy topology on X if it satisfies the following
three axioms ‘

i ¢, X eET
(ii) Forall AABeT= AAB €T

(iii) Foralli € Iif A; € tthen |J A; €T
el

Keywords and phrases : Fuzzy sets, Fuzzy topological space.
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The pair (X, ) is called a fuzzy topological space. The elements of 7 are called fuzzy
open set or 7-open fuzzy set or open fuzzy set. In other words, every member of 7 is called
topologically open fuzzy set. A fuzzy set K € I is called closed or fuzzy closed set if
and only if its complement is open that is iff K¢ € . We denote by 7€ the collection of
all fuzzy sets in this fuzzy topological space. Evidently, we have

(i) ¢¢ = X and X€ = ¢ € 7€
(i) if K, M € 7€, then KVM € 7€ and
(iii) if {k;:j € I} then A{k; : j € I} € 7€

The above definition of fuzzy topology, proposed by change in 1968 can also be stated
as follows

A fuzzy topology on X is a subset 7 C IX such that
@ 0,1er
(i) VA, BeTt= AABecT

(iii) Y(Aj)jes CT=sup A, €T
j=J

In 1976, R. Lowen suggested an alternative and more natural definition. This involves

the changing of condition (i) Namely 0,1 € 7 to ()’ for all constant o € I, @ € 7.

The mathematical reason behind this change can be expressed in the following way.
From change’s definition one can easily observe that the constant function between fuzzy

topological spaces are not necessarily continuous. In general this can be true only if one
uses the alternative definition.

R. Lown introduced the notion of fuzzy topology in the following way

2 Fuzzy Topology Redefined

A fuzzy topology is a family 7 C 1% of fuzzy sets on X which satisfies the following
condition

() Vael,aer
(i) VA, BeTt=AAB e

(iii) V(Aj)jeJ C 7 = sup Aj eET
j=J
orV\/A;er
Jjed
obviously, we have

(i) a%er¢
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(i) ifK, M € 7€ then KVM € 7€ and
(i) if (kj)jes € 7° then A{kjes} € 7€

The fuzzy topology T is termed as “discrete” if it contains all of the fuzzy sets on X
and be called as “indiscrete” fuzzy topology if it contains only ¢ and X.

3 Coarser and Finer Topologies

Let 7, and 3 are two fuzzy topologies for X if the Inclusion Relation 7y C o relation
holds, we say that 75 is finer than 71 and 71 is coarser than T3.

Example Let X = {P,q}, Let A be a fuzzy seton X defined as A(P) = 0.6, A(q) = 0.4
then 7 = {0, A, 1} is a fuzzy topology and (z, ) is a fuzzy topological space. We have
O(P) = OVP € X and 1(P) = IVa € X.

Theorem 1 The intersection of an arbitrary collection of fuzzy topologies for X is itself
a fuzzy topology for X.

Proof. LetT = {Th: A€l } be a family of fuzzy topologies for X. We have to show
that _
r = N{T) : A € I}is a fuzzy topologies for X.
FI=¢thennN{Th:Ael}=X

Thus in this case the intersection of fuzzy topologies is a discrete fuzzy topology for X.
Again, let I # ¢ then N{T) : A € I} satisfies the following properties :

i Since in T in N{7x : A € I} is a fuzzy topology for X so ¢ = T, X € 7 for all
Ael. Hencepen{r: A€ l}and X en{ry: A€ I}

ii Let A and B are any two fuzzy topologies of Ti.e. A,B €T = N{rx : A € I'} then
Aand B € 7y for all A € I. Since T} is a fuzzy topology for XV € I.
= ANBemnviel
= ANBen{n:Ael}=r
Hence N{T) : A € I} = 7 is a fuzzy topology for X.

ii Let Aaer=n{ry: A€} foralla €Ithen Ax € TA\VAE I'andVa € 1.
Since T is a fuzzy topology for X, it follows that
U{Aa:ael}en,VA=1
It follows that U{Aa : e € I} en{my : A€} =T
Therefore, 7 = U{7y : X € I} is a fuzzy topology for X.

4 Neighbourhood of a Fuzzy Set

A fuzzy set C in a fuzzy topological spae (X, 7) is said to be a neighbourhood. In short,
nbhd of a fuzzy set A iff there exists an open fuzzy set B € T such that A < B < C.
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The neighbourhood system of a fuzzy set A is defined as the family (collection) of all
neighbourhoods of the set A.

5 Neighbourhood of a Point z of X

Let (z,7) be a fuzzy topological space. Then a fuzzy set Ax in x is said to be a neigh-
bourhood of a point z belonging to X, if 3 a fuzzy open set B such that B < A, and
B(z) = Az(X) > 0 and the symbol A, stands for the neighbourhood of a point z € X, if
Az € 7. We say that A, is an open set.

Theorem 5.1 If A and B are fuzzy sets in a fuzzy topological space (z,7) such that
A, and Bx are neighbourhoods of z € X then so is A AB;.

Proof. Let (z,7) be a fuzzy topological space and let A;, B, are fuzzy sets in (z, 7).

Let = be any element of X. We further assume that C' and D are fuzzy open sets
ie. C,D € 7 and are such that C < A, and D < Bp with C(z) = Ax(X) > 0 and
D(X) = Bx(X) > 0.

In other words we can say that A, and B, are neighbourhoods of X and so we have
C < Agyand D < B, with C(X) = Ag(X) > 0and D(X) = B,(X) > 0.

Now we claim that A,AB, is a neighourhood of z € X.

We have (CAD)(X) = min{C(z), D(z)} < min{A;(X), Bz(X)} = (AzAB.)(X).
. CAD < A,AB,
We also have (CAD)(X) = min{C(X), D(X)}
=minAz(X), By (X) >0
= (AzABa:)(X)
- (CAD)(X) = (A4,AB,)(X) > 0.

This establishes that A,AB, is a neighbourhood of X.

Theorem 5.2 A fuzzy set A in a fuzzy topological space (x,7) be open if and only if
for every fuzzy set B contained in A, A is neighbourhood of B.

Proof. (=) Suppose that (z, 7) be a fuzzy topological space and A is a fuzzy open set
ie. A € 7. According to assumption there exists a fuzzy set B on X such that B < A.
This implies that A is a neighbourhood of B.

(<) Obviously, we have A C A. Therefore, there must exists an open fuzzy set O such
that A C O C A. And hence A = 0, which implies that A is an open set.

Theorem 5.3 The fuzzy set A in a fuzzy topological space (x,7) be an open fuzzy set
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if and only if for all X having A(X) > 0 there exists By < A such that A(X) = Bg(X).

Proof. (=) Let (x,7) be a fuzzy topological space and A € 7 i.e. A is an open fuzzy
set. Let X be an arbitrary element of X and is such that A(z) > 0. It follows that A(X)is
a fuzzy neighbourhood of z € X.

Let us suppose that A = B, then we get that _
B, < Aand A(X) = B,(X) (<) Let us suppose that C' = sup{ open B, < A: AX) >
0 and A(X) = Bg(X)
= V{B; <: A(X) > 0and A(X) = Bz(X)}
1

It follows that C € 7 and C = A.

6 Closure of a Fuzzy Set

Let (z,7) be a fuzzy topological space and A be a fuzzy set on z i.e. A € I*. Then the
infimum (Greatest Lower Bound) of all closed fuzzy sets containing is called closure of A
and is denoted by A. Symbolically
A=inf{K: A< K KC®er}

=inf{K:A<K,1-Ker}

Now we will establish a result which is analogues to a result of closure of sets in classi-
cal topology.

Theorem 6.1 If A be a fuzzy set in a fuzzy topological space (r,7) and A is the clo-
sure of A then

(i) A is the smallest closed fuzzy set larger than A.

(ii) A = A if and only if A is closed.

Proof. (i) Let (z,7) be a fuzzy topological space and A be a fuzzy set of X. Let A is
the closure of A. Then, from the definition of closure of a fuzzy set, we have
A=inf{K :A<K/1-Ker}
ZA{Ki:ASKi,KiC GT}
iel

It follows that A is a closed fuzzy setin X and A < A. Because A is the greatest lower
bound (infimum) of K > A such that K Cer.

Hence A is the smallest closed fuzzy set larger than Aie. A < A.
(ii) Let us assume that A = A

Since A is a closed fuzzy set and it equal to A, hence A is also a closed fuzzy set.
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Conversly, we suppose that A is a closed fuzzy set of X, then
A=inf{K:A<K1-Ker}

Now since A is closed and A > A.
LA<A
But we have A < A
A=A

7 Interior of a Fuzzy Set

Let (z,7) be a fuzzy topological space and A € IX. Then the interior of A is denoted
by A° or Int.A and is defined as the supremum (Latest Upper Bound) of all fuzzy sets 0
contained in A such that A is a neighbourhood of 0.

Thus we see that

A% =IntA=sup(0:0< A,0€T)

We can easily observe that A° is the largest open fuzzy set smaller than A. In other

words, the union of all interior fuzzy sets of A is called the interior of A and is denoted by
A°.

Next we will derive a result which is analogous to a result of interior of a set in general
topology.

Theorem 7.1 If A° is the interior of a fuzzy set in a fuzzy topological space (z, ), then
(i) A? is the largest open fuzzy set smaller than A. (ii) A is open if and only if A° = A.

Proof. Let (z, 7) be a fuzzy topological space and A is a fuzzy set in a fuzzy topological
space (z, 7). Then, from the definition of interior of a fuzzy set, we have
A% =Sup{0:0< A,0€ 7}

And there exists an open fuzzy set U such that
0<U<L A whereU €1

Therefore, sup 0 < supU < A

Let us suppose that supU = U,
LALSUI <A

But U; < A° because U is an interior fuzzy set of A.
.. U1 < Least upper bound of interior fuzzy set of A = A°
AO = U 1
and Since Uy = supU, where U is an open fuzzy set. It follows that A° is the largest open
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fuzzy set contained in A.
Next we consider that A is an open fuzzy set. Then we have A < A°.

But we also have A° < A.
. AO — A

Conversely, we assume that A° < A. Since A° is open, A is also an open fuzzy set.

Example Let A, B and C are fuzzy sets of I defined as

0 z'fo_<_ar:§l
AX) = 1 2
2r —1 zf§§x§1
/ ) 1
B(X) =< —4z+2 if%gxga
0 if -<z<l1
\ 2
( 1
0 szSmSZ
C(X):14x—1 L
g ifgses

Then 7 = {O, A, B, AV B, T} is a fuzzy topology on I.

We can easily verify that

O-(A) = B, C(B) = A® C,(AVB) =T
Int (A“) =B Int(B°)=A  andInt (AVB)® =0
PROPERTIES OF CLOSURE

Theorem 6.2 Let (z, 7) be a fuzzy topological space and A, B € 7. Then
DT =0
(i) X =z

Proof.

(1) sin¢ is a fuzzy closed set = d=¢
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(i7) Again z is a closed fuzzy set hence X = x
(#44) We know that A is the smallest closed fuzzy set larger than A, therefore A < A

(1v) From the definition of closure of a fuzzy set in a fuzzy topological space (z,7), we

have
A=inf{K: A< K,K® e} [i]
B=inf{L:B<L,L€ € 7} [ii]

But according to assumption, we have
A<B

Hence, we can say that all fuzzy closed sets L satisfying [ii] will also satisfies [i]._ .
On taking greatest lower bound (infimum) of fuzzy sets in [i] and [ii] we will get A=1B
(v) We know that A and B are closed fuzzy set therefore A U B will also be a closed fuzzy
set.

Since A > Aand B > B

~AUB>AUB

Thus A U B is a fuzzy closed set containing A U B. Therefore, from the definition of the
closure of A U B. We have

AUB>AUB [iii]

On the other hand, we also have

A<AUB=A<AUB

AndB<AUB=B<AUB

AUB

IA

AUB [iv]

Therefore, on combining [iii] & [iv] we get

AUB=AUB

(vi) Since A and B are fuzzy closed sets, therefore

A<Aand B<B

Obviously, we can say that AN Bisa fuzzy closed set.

|

Since ANB< A= ANB<

AndANB<B=ANB<B
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Therefore, ANB< ANB

(vii) Since A is a fuzzy closed set.

Hence, A= A

PROPERTIES OF INTERIOR OF A FUZZY SET

Theorem 7.2 Let (x, 7) be a fuzzy topological space and A, B € 7. Then
H¢°=¢

i) z° ==

(i) A< B= A°< B°

(iv) A°UB° < (AU B)°

V) (ANB)°=A°NB°

(vi) (A°%)° = A°

Proof. (i) & (iii) since ¢ and X are fuzzy open sets, therefore
¢°=¢andz’ ==z
(iii) From the definition of interior of a fuzzy set in a fuzzy topological space (z, 7) we have
A° = sup{0:0< Ao T} [i]
B° =sup{M : M < B,M €7} [ii]

But from the assumption, we have A < B if follows that every fuzzy open set 0 satisfy-
ing [i] will also satisfies [ii]. Therefore, on considering supremum of all open fuzzy sets in
[i] and [ii] we get A° < B°.

(iv)yWehave A < AUB = A° < (AUB)° from [iii]
B<AUB= B°<(AUB)°

- A°UB°< (AUB)°

(v) We know that for fuzzy sets A and B, A°, B are fuzzy open sets.
Consequently A° N B is an open fuzzy set. We also know that A° < A and B < B.

S A°UB°<(AUB) [i]

Since A, B € T are fuzzy open sets then so is A N B and hence A° N B° < (AN B)

Thus (i) Reduces to A° N B° < (AU B)° [ii]
(vi) We alsohave ANB < Aand (ANB)°< B
Therefore, (AN B)° < A°N B° [iii]

Hence from [ii] and [iii], we get that (AN B)° = A° N B°
(vii) Since A? is an open fuzzy set, therefore
(AO)O — AO
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Abstract

Key agreement protocol between two members of the same group is called a Secret
Handshakes (SH) scheme. Under this scheme two members share a common key if an
only if they both belong to the same group. If the protocol fails, none of the parties
involved get any idea about the group affiliation of the other. Moreover if the transcript
of communication of a successful protocol is evesdropped by a third party, she/he
does not get any information about the group affiliation of the communicating parties.
The Concept of SH was given by Balfanz et al in 2003 who also gave a practical
SH scheme using pairing based cryptography. Zhou et al in 2007 discussed two SH
schemes based on ElGamal signature and DSA signature. The present paper proposes
two SH schemes based on a variation of ElGamal signature. It is shown that proposed
schemes are not only secure under the random oracle model, but are computationally
more efficient than the schemes of Zhou et al.

1 Introduction

Balfanz et al [2] in 2003 introduced a new cryptographic primitive called Secret Hand-
shak (SH). It is a mechanism to prove group membership secretly. Using this protocol two

Keywords: Secret Handshakes, Credential, Privacy Preserving Authentication, ElGamal, DSA, Computa-
tional Complexity. :
AMS Subject Classification : 11T71.
*Research supported by the research project §144003 of the Serbian Ministry of Science, Technology and
Development.
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participants establish a secure, anonymous, unlinkable and unobservable communication
channel only if they are valid members of the same group. In a SH protocol, two members
of the same group identify and authenticate each other secretly and share a common key for
further communication. Moreover if the handshake protocol fails, the group affiliation of
the participants will not be revealed. Further, a third party observing the exchange between
two legitimate group members learns nothing about the group affiliation of the parties. In
other words, performing the successful SH is essential equivalent to computing a commnion
key between two interactive members of the same group. Hence the SH change accord-
ing to the group members involved. L. Zhou et al [14], proposed two SH scheme based
on ElGamal and DSA. In this paper we propose two new SH schemes which are based on
variations of ElGamal. We also discuss and compare the computational complexity of our
schemes. This paper is organized as follows: In section 2 we define basic terminology and
give brief account of the work done so far. In section 3 we propose two new SH schemes.
In section 4 we discuss security of our schemes. In section 5 we compare the computational
complexities of our schemes with that of Zhou et al.

2 Related Work

Balfanz, et al [2] introduced a 2-party SH scheme by adapting the key agreement protocol
of Sakai, et al [9] based on bilinear maps. The scheme is secure under the bilinear Diffie-
Hellman assumption. To achieve the unlink-ability, the scheme uses one time credentials
which means that each user must store a large number of credentials.

Castelluccia, et al [3] addressed the problem of SH through the use of so-called CA-
oblivious encryption. Though slightly more efficient, the solution does not support reusable
credentials. This solution is secure under CDH assumption.

Ateniese, et al [1] introduced SH scheme with dynamic matching. Sorniotti and Molva
[12] also proposed a similar concept of dynamic controlled matching. Both schemes allow
more flexible type of handshakes. Users holding credentials for different properties can
conduct a successful secret handshake; if credentials match the other user’s matching ref-
erences. The difference between the two schemes is the control that the GA retains over
the matching ability. However, neither of them supports revocation of credentials. Sorniotti
and Molva [11] presented an SH scheme with revocation.

Vergnaud [13] constructed a SH scheme using RSA signature and Zhou, et al [14]
constructed a SH scheme using ElGamal and DSA signature. Both the schemes rely on
random oracles for their security.

Secret Handshakes (SH) Schemes:

In SH scheme their exists three entities for a group G, a user, which may or may not belong
to the group, a member which is a user which belongs to the group and a group admin-
istrator (GA) who creates the group (by generating secret key and public key for the group).

A secret handshake scheme consists of the following algorithms:

Create Group:
This is an algorithm run by a GA, which takes Params as input and generates a key pair
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G P, (group public key) and G'Sy, (group secret key).

Add User:

Add user is an algorithm between a user U and the GA of some group. It takes, Params
and GA’s secret key G'Sy, as input and outputs a public key P, and secret key S}, for U and
makes U a valid member of the group.

Handshake:

This is an authentication protocol and it is executed between users A and B, who want to
authenticate each other on the public inputs I D4, I Dp, and Params. The private input of
each party is their secret credential, and the output of the protocol for either party is either
'reject’ or "accept’. The output is "accept’ if and only if A and B belong to the same group.

A secret handshakes scheme must have the following properties:

Completeness/Correctness:

If two honest members A, B belonging to the same group and A, B run handshake protocol
with valid credentials of their I D, and group public keys, then both members always output
“accept”.

Impersonator Resistance:

The impersonator resistance property is violated if an honest members V' of the group G
authenticates a non member A as a group members, with non negligible probability. For
this property to hold, we must have

Pr [A succeeds in making V output accept | V € Gand A ¢ G |] < €, where € is negligible.

Detector Resistance:

A detector resistance property is violated if an adversary A can decide with some non
negligible probability, whether some honest party V' is a member of some group G by de-
termining the relationship between the public message of the member and the public key of
the group, even through A is not a member of G. For this property to hold, we must have

Pr [A Knows whether V is the valid member : public information of V,and A ¢ G] < ¢
where ¢ is negligible.

We now describe two SH schemes given by Zhou et al [14]. The first scheme is based
on ElGamal signature scheme and the second one is based on DSA.

2.1 ElGamal based SH Scheme [14]:
ElGamal Signatures are generated as follows:

Key Generation: Chooses a large prime p and a generator g of group Z, select a ran-
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dom number s,1 < s < p — 1 as the secret. Compute y = g*modp. Then the public key is
{p, &, vy}, and private key s.

Signature Generation: To sign a message M, the signer chooses r € Zy, such that
ged(r,p — 1) = 1. Compute the pair (o, 8) as & = g"mod p and B = (M — o * ) *
r~'mod(p — 1), as signature on M.

Verification: Signature, are valid iff g™ = y®a®mod p.
The SH scheme runs as follows:

Create Group:

The G'A runs the EIGamal key generation algorithm to create params {p, ¢, g, v, s, H;, H 2}
where p and g are large primes. ¢ is a prime divisor of p — 1, g is generator mod p of order
9,y = g°mod p is public key of GA and s is the secret key of GA. H; : {0,1}* — Z,
and Hj : {0,1}* — {0, 1}" are two cryptographic hash functions.

Add User:

To add a user U with identity /Dy to the group, GA computes hy = H;(IDy) as U’s
public key. To compute secret key for U, GA chooses a random nonce ry €g Zy and
computes ay = g'Vmod p, and By = (hy — ay * s) * ralmod q

GA then gives the user U his signature (ay, Sy) as secret key on hy.

Handshake:
Two users A and B conduct the secret handshake as follows (— stands for ”send to™):

v B— A: (IDBaCB7T)B)’

(= agBH)mod (pq),and np = Bp * (kp + 1)1 « agBmod q, where kg €g Z,

vV A = B: (IDs,Ca,m4,Vs), €4 = aff"“)mod (Pg), ma = Ba* (ka+1)71 x
a’f{‘ mod q, where k4 €g 7Z,

=1

ka
@y
V, = H, ((y“Bmod 9 x ((p mod p)"s)"® > modp || ID4 || IDg || 0)

v B—= A:(V)), where

-1

akP
Vi = Hy (((y«wd Vo (Camodp))"% )™ modp | 1D | 105 | 1)

v A verifies, if
_1\ oA

(63
Vi = H, ( ((y<<Bmod D x (Cp mod p)s)"'? ) modp || ID4 || IDg || 1
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v’ B verifies, if
Rl ap?
V, = Hy (((y@w’d D % (Ca mod p)m)"4 ) modp || ID4 || IDg || 0

2.2 DSA based SH Scheme [14]:
DSA generates signature as follows:

Key Generation Choose a large Choose a large prime p, a prime divisor g of p — 1 and
a generator g mod p of order ¢q. Pick s as random such that 1 < s < q and compute
y = g° mod p. Then the public key is {p, g, g, y}, and private key is s.

Signature Generation: To sign a message M signer chooses a random number r < q.
Compute the pair (o, 3) as & = (¢" mod p) mod g and 8 = (M + a * s) * 1 mod q.
(e, B) as a signature-on M.

Verification: To verify the signature, the receiver first computes w = B~ mod p, Z; =
(M * w) mod q and Zy = « * w mod q. Then output true if the following equation hold
a = (g% *y??) mod q

The SH scheme runs as follows:

Create Group:

The GA runs the DSA key generation algorithm to create params {p,q,g,y,s, Hi, Hs},
where p and q are large primes. g is a prime divisor of p — 1 and g is generator mod p of
order g and y = ¢° mod p is public key of GA and s is the secret key of GA. H; : {0,1}* —
Zy and Hy : {0,1}* — {0, 1}™ for some n, are two cryptographic hash functions.

Add User:

To add a user U with identity IDy; to the group, GA computes hy = Hy(IDy) as
public key of U. for secret key GA computes ay = (¢"V mod p) mod q, and B;; =
(hu + ay * s) * r(jlmod q, where 7y €g Z,

GA gives the user U his signature (ay/, fy) on hy as secret key of U.

Handshake:
Users A and B conduct the secret handshake as follows:

> B — A:(IDp,(p,n8), where {5 = v 2 Vmod (pg), np = B * (kg + 1)~ «
|
fygBmod gand yg = (ghB * yaB)BB mod p

> A= B:(IDa,{a,na, Vo), where Ca = v¥4 D mod (pg), na = B4+ (ka+1)"1x
-1
Yi'mod g, and v4 = (¢" % y°4)83 mod p, and
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-1 'Y:ZA
Vo=Hy (((y(_‘:ﬁm"d 9 x (Cgmod p)1B)"8 ) modp || IDa || IDg || 0)

» B — A:(V1), where

v5°
Vi =H, (((y(_c“m"d 9 (CAmOdIO)"A)hA ) modp || ID4 || IDg || 1

» A verifies, if

_ ,.YkA
Vi = Hp (((y(‘CBm"d D % (CBmodp)"B)hBI) " modp | ID4 || ID || 1)

» B verifies, if
kB

-1 B
Vo = Hp (((y(—c‘“m"d D x (Camod p)4)"4 ) modp || IDa || IDp || 0

3 Proposed Scheme

In this section we present our proposed Secret Handshake (SH) Schemes. These schemes
are based on two variations of ElGamal [4] signature.

3.1 SH Scheme based ELGV-1:
First Variation of ElGamal which we denote by ELGV-1 generates signature as follows:

Key Generation: Same as in 2.1

Signature Generation: To sign a message M, the signer chooses r € Zy, such that
gcd(rp—l)—l Computes the pair (a,3) as a = ¢g" mod p and 8 = (M -»a*r)*
s~ mod (p —1).

Verification: Signature, are valid iff g™ = y2a® mod p.
The SH scheme runs as follows:

Create Group:

The GA runs the ElGamal key generation algorithm to create params {p, g, g, v, s, H1, H2},
where y = g° mod p, in which s is the group secret. GA also selects two collision- resistant
cryptographic hash functions H; : {0,1}x — Z, and Ha which takes arbitrary strings as
input.

Add User:

To add a user U to the group G, the GA allocates a unique identity 7Dy to the user
and computes hy = H1(IDy). GA generates a random nonce ry €g Zj. GA gives
the user U the corresponding signature (ay,fBy), where ay = g"Umod p and By =
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(hy —ru * ay) *x s~ mod q

Handshake:
Two users A and B conduct the secret handshake as follows:

» B > A: (IDp,(8,nB) 8 = a9 Vmod (pg), and np = Bg * (kg + 1)
a’g’ mod q, where kg €g Z,

» A— B:(IDa,{4,m4,V5), Ca = aff"ﬂ)mOd (pg), and na = Ba * (ka +1) *
aff(‘ mod q, where ko €r Zg4 and

k
h_l) (ka+1)xa A

Vo, = Ho (((y("B mod q) ((Bmodp)cB) g modp || IDy4 || IDp || 0)

» B verifies, if

1 (k:3+l)*a);3
) modp|| IDa || IDp |0

Vo=H; ((y("" mod 0) x (¢ gmod p)4)"A

B aborts if verification fails. Otherwise:

» B — A:(Vy), where

-1
Vi = Hy (((y(m mod q) , (Camod p)(A)hA

(kp+1)*a kB
) modp|| ID4 || 1D || 1

» A verifies, that

-1
no (((y("B mod @) x (¢gmod p)<B)"?

to complete the protocol.

(k:A+1)*af‘A
) modp|| ID4 || ID5 || 1

A and B computes the shared key for further communication as follows:
A computes

h—l) (kA+1)*af{‘

Ka=H, <(y(’7’3 mode)*((Bmodp)CB) ’ modp || ID4 || IDp || 2

B computes

h-—l) (k3+1)*a);33

Kp = Hp (((y("A med @) « (Camod p)<A) ! modp || ID4 || IDp || 2
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Correctness:
To see that K 4 = K g, we observe that

d B\h5' (kattyecr
= | { (ytn= ™49 x (Cpmod p)¢P)

k
hEI (k:A+1)*aAA

(kp+1)
- <yﬂ3*(k3+1)*a23 mod q) (a(gB'H)mOd p)aB )

ka
k kp e 1B+ hgh) Fathes
_ <98*BB*( s +15a}?) 4 grie(ia+) )

(kB-f—l)*al;B *(kA+1)*aZA

=9
Similarly for B.

3.2 SH Scheme based on ELGV-2: .
Second Variation of ElGamal which we denote by ELGV-2 generates signature as follows:

Key Generation: Same as in 2.1

Signature Generation: To sign a message M, the signer chooses r €p Zy, such that
ged(r,p — 1) = 1. Computes the pair (o, 3) as @ = g"modp and = (s * o + r *
M)mod(p — 1).

Verification: Signature, are valid iff ¢# = y*a™ modp.
The SH scheme runs as follows:

Create Group: Same as in 3.1

Add User:

To add a user U to the group G, the GA allocates a unique identity IDy to the user
and computes hy = Hy(IDy). GA generates a random nonce ry €g Z;. GA gives
the user U the corresponding signature (o, Si), where ay = g"Umod p, where B, =
(s xay + hy *Ty) mod q.

Handshake:
Two user A and B conduct the secret handshake as follows:

» B— A:(IDg,(B,nB), where kg € Ly,
(= achH)mod (pq), and ng = hp * (kg + 1)”1 * a%‘?mod q

» A— B:(ID4,(a,na, Vo), Where kg € Ly,
Ca = agf’“q)mod (pq), and 14 = ha * (ka +1)"! % a*4Amod g, and
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k
V, = Hy ((y(CB mod g} (¢B madp)nB)BA*QAA modp || ID4 || IDg I 0)

» B verifies, if .
* B
V, = Ho ((y(CA mod.q) 4 (Ly modp)’?")ﬁﬁ “® modp | ID4 || IDg || 0)

B aborts if verification fails. Otherwise:

» B — A:(V]), where
5 * kp
Vi = H, ((y(CA mod g 4 (C4 modp)"A)ﬁB “2 modp||ID4 || IDg || 1)

» A verifies, that
* kA
Vi = H, ((y(CB mod q) 4 (Cg modp)ns)ﬁf* “A" modp||ID4 || IDg || 1)

to complete the protocol.

A and B computes the shared key for further communication as follows:

A computes

(¢5 mod g) Baray
Ka=Hy | (4 ™19« (Cg mod p)e) modp || ID4 || IDp || 2

B computes

Kp
,GB*QB

K= H ((y«,, mod ) (¢4 mod p)™ modp || ID4 || IDj || 2)

Correctness:
To see that K4 = K g, we observe that

k
= (y¢& mod ) 4 (¢5 mod p)na)ﬂA*“AA

L1 kg BasaiA
Hlkp+1) (kp+1)\ hex(ks+1)" xay
= Yy B * aB

kA
ﬂA*CEA

(kg +1 k k k
- (gs*aBB ) g grs*hg*aBB) — gﬁa*aBB*BA*aAA

Similarly for B.

4 Security

If an adversary can forge a valid signature then he can also attack the SH protocol based on
such signatures. Therefore the probability to attack an SH scheme cannot be smaller than
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the pfobability to forge a valid signature on which the SH is based.

Theorem1: The proposed SH scheme based on ELGV-1 is impersonator resistant under
the assumption that ELGV-1 signature is existentially unforgeable in the random oracle
model.

Proof: The proposed SH scheme is impersonator resistant if there is no polynomially
bounded adversary A who can win the following game against the challenger with non-
negligible probability:

e The challenger randomly picks (p, ¢, g,y), and send to adversary A.

e The adversary responds with an 1D 4

¢ The Challenger then picks random pair ({4, 7.4), Where (4 € Zp.q, and 4 €5 Z,
and send to A.

e Then adversary outputs kf“ €R Zq.
e The adversary wins the game if (g"A)k./A = (y"™ x C_f{‘) mod p

Given an adversary A that wins the above game with probability &, we construct another
adversary B that can successfully forge the ELGV-1 with probability &.

e B3, when given the ELGV-1 public key (g, p, q,%), sends it to .A.
o Aresponds with ID 4.
 Bcomputes h4 = Hy(ID4), picks a random pair ((4,7.4) and sends to .A.

Then A output’s k,/q €Rr Z4 and send to B.

Since (ghﬂ)kaa = (y™ # Ci"‘) mod p, hence the pair (C4,7.4) can be viewed as the
ELGV-1 signature on the message k_/4 in (g"4,p, q,v).

Then B succeeds in forging the signature if and only if .4 wins the above game.

Hence, if the adversary A can impersonate a user with valid credential, a polynomial time
algorithm can be constructed to forge the ELGV-1 signature. But the assumption is that
ELGV-1 signature is existentially unforgeable. So we can see that if this assumption holds,

the probability e that A can impersonate a valid user in the protocol should be negligible in
value.

Theorem2: The proposed SH scheme is detector resistant under the Computational Diffie-
Hellman (CDH) assumption in the random oracle model.

Proof: The CDH assumption is: Given a cyclic group G, a generator g € G, and group
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elements g%, g° the probability to compute g® is negligible.

The proposed SH scheme is detector resistant if no polynomially bounded adversary wins
the following game against the challenger with non-negligible probability:

e GA holds a key for ELGV-1 (g,p, 4,9, s), and the challenger gets the (g,p,q), and

gives it to the adversary A.
e The Challenger asks the member for a triple (ID4,CA,mA), Where (4 = aﬁ(‘“modpq

and na = Ba * (ka+1)* a’j{‘modq for adversary A. ((4,7n4) is the ELGV-1 sig-
nature on I D 4

e The adversary A outputs y/ € Zy.

The adversary wins the game iﬂy/ =1y.

Given an adversary .A that wins the above game with probability &, we construct another
adversary B that can successfully break the CDH assumption with probability €.

e Given (g,p,q), B passes to A.

- _ —k - k
Given (C4,m.4), B can compute gBa Hkat)Thra Mt g2’ and gkatD=ad’ =
(14 % Ca SA)A

Let a be B;‘l x(ka+1)"1x a;k"‘ mod q and bbe (k4 + 1)~ a’j{‘mod q as defined
in the CDH problem.

B Send the pair (4, 7.4) to A. Subsequently, B obtains y from A.

=]
hiy

_ -1
e B Can compute gha = (gf{”’A %)

Then B has successfully broken the CDH assumption with probability €.

Thus if CDH assumption holds, the probability ¢ that .A can violate the detector resistance
property should be a negligible value.

Theorem 3. The proposed SH scheme based on ELGV-2 is impersonator resistant un-
der the assumption that ELGV-2 signature is existentially unforgeable in the random oracle
model.

Proof. The proof runs exactly in the same manner as the proof of Theorem 1, except

that in this case the adversary wins the game if (g)kz{\ = (yS4 * (’{*) mod p.

Similarly given an adversary A that wins the above game with probability €, an adversary
B can be constructed who can successfully forge the ELGV-2 with probability €. In this
case defining relation is
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(g)Fa = (ygA*CQA mod p, and therefore the pair ({4,74) can be viewed as the ELGV-2
signature on the message ké in (g,p,¢,y).
Using suitable modifications we can prove the following:

Theorem 4. The proposed SH scheme is detector resistant under the computational Diffie-
Hellman (CDH) assumption in the random oracle model.

S Comparison Table

In this section we compare computation complexity of the proposed schemes with two
known schemes namely SH scheme based on ElGamal and SH scheme based on DSA by
L. Zhou et al [14].

In the following table (M) denotes the number of multiplications, (I) denotes the number
of inversions, (E) denotes the number of exponentiations, and (H) denotes the number of
hash evaluations needed to complete the scheme.

Scheme Add User Handshakes Phase
M|I|E(H{MJ|[I]|E H
ElGamal | 2 [1|1]1]10]4] 8 4
DSA 2 |1|1]1(10[8]16 6
ELGV-1 | 2 [1|1[1]10]27T8 4
ELGV-2 [ 2 |[*]1]1]10]2] 8 4

In the Add User phase ElGamal Variations based SH schemes are as good as the ones based
on ElGamal and DSA. However our ELGV - 2 schemes needs one inversion less than El-
Gamal and DSA.

During the Secret Handshake phase our schemes for multiplication are comparable to El-
Gamal and DSA. For inversion our schemes are better to ElGamal and DSA. For exponen-
tiation, our schemes are better to DSA and comparable to ElGamal. For evaluation of hash
functions our schemes are better to DSA and comparable to ElGamal.

6 Cohclusion

In this paper we proposed two SH schemes based on variations of ElGamal signature. We
also compared the computational complexity of the new schemes with two known Secret
Handshakes schemes. We observed that the proposed schemes are comparable to known
schemes for most operations and better in some operations.
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Abstract

In this paper, we give a survey of recent results in the study of matrix domains
of triangles in certain sequence spaces, their dual and multiplier spaces, and matrix
transformations between them. We present our own general results on matrix domains
of arbitrary triangles in F'K spaces, and demonstrate how our results easily yield those
published in various papers. We also deal with a special treatment of matrix domains
of the matrix of partial sums.

1 Introduction

Many authors recently studied sequence spaces that are the matrix domains in certain
sequence spaces, such as the classical spaces £, for 1 < p < 00, cg, ¢ and £, and their
generalisations; the matrices include those of the difference operators, or of the classical
methods of summability. For instance, some matrix domains of the difference operator
were studied in [28, 64, 42, 43, 26, 54], of the higher order difference operator in [47, 46,
45, 44, 15, 36, 11, 49), of the Cesaro matrices in [9, 60], of the Euler matrices in [2, 5, 6],
of the Riesz matrices in [1], of the Norlund matrices in [67], and of triangles in spaces of
strongly summable ([32]) and bounded sequences [4, 8, 14, 48, 50], in particular, the sets
of A—convergent or bounded sequences in [29, 58, 36, 40, 41, 21, 22, 52, 55], and in mixed
normed spaces in [18, 19, 23, 27].

Keywords and phrases : Matrix domains, bases, dual spaces matrix transformations.
AMS Subject Classification : Primary: 40HO05; Secondary: 46H05.
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The main topics of their studies concern the topological properties, the determination of
the dual spaces, in particular the S—duals of the matrix domains, and the characterisations
of classes of matrix transformations on the matrix domains.

Almost all of the spaces are F K spaces, and all of the matrices of the matrix domains
are triangles. In a recent paper ([53]), we were able to establish general results on the
most important topological properties of matrix domains Xt of arbitrary triangles 7" in FK
spaces X. Furthermore, we reduced the determination of the f—duals of the matrix domains
Xr to the determination of the S—dual of X and the characterisation of the class (X, co).
Finally, we reduced the characterisations of the classes (X7,Y) to those of (X,Y) and
(X, o). Our general results directly yield those in the papers mentioned above as special
cases.

Here we give a survey of the general results including the special cases studied in [20]
and [43], and their applications in [25, 26, 54, 56, 57, 15, 46]

In the meanwhile, the results of [53] have frequently been applied, for instance in [11,
12, 13, 14, 46, 3, 4]

First we list the standard notations and definitions that will be used throughout the paper.

A sequence (b, )52 in a linear metric space X is called a (Schauder) basis if, for every
z € X, there exists a unique sequence (An)g2, of scalars such that 7 = Yoo Anbs.

Let w denote the set of all complex sequences z = (zk)7 - As usual, we write /., c,
co and ¢, and bs, cs and ¢; for the sets of all bounded, convergent, null and finite sequences,
and for the sets of all bounded, convergent and absolutely convergent series, and £, — {z e
w: Y 72 olzkP < 0o} for 0 < p < oo. Let e and (™ (n=0,1,...) denote the sequences
with e = 1 for all k, and e%n) = land e,(c") =0fork # n. Forz € w, ™ = ZZ’:O ze®)
denotes the m-section of .

A subspace X of w is called an FK space if it is a complete linear metric space with
continuous coordinates P, : X —C (n=101,... ), where P, () = =), for every sequence
T = (zr)72, € X. An FK space X > ¢ is said to have AK if every sequence z =
(Zr)72o in X has a unique representation x = Z,f"zoxke(k), that is, lim,,, o z[™ = 2. A
BK space is a normed F K space.

Example 1.1 (a) The space w is an FK space with AK with respect to the metric given by

o0

N L lme —
d($,y)~kz=()2k mforallm,yew.

Also convergence in (w, d) and coordinatewise convergence are equivalent. Thus the topol-
ogy of an F K space X is larger than the relative topology of w on X.

(b) Let p = (pi)$2., be a bounded sequence of positive reals and M = max{1, supy, p }.
Then the sets £(p) = {zr € w : > keolzk[Pr < o0} and co(p) = {z € w : limg_,q |y |P*
= 0}(([63, 33]) are FK spaces with AK with their natural metrics defined by dp)(z,y) =
(Li=olz — yel™) M for all 2,y € £(p) and dy,4)(z,y) = supy |ok — g™ for all
T,y € co(p) ([34, Theorem 1, Corollary 1]. Ifp > 1is a constant, then the spaces lp-e)
and co(p - e) reduce to the classical spaces Ly, and cy which are BK spaces with AK with
respect to ||zl = (3 poolzk|P) VP for all z € by and ||z||oo = supy, |z1| for all z € c
(c) The sets c and €y, are BK spaces with respect 1o || - ||oo; co is a closed subspace of ¢
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and c is a closed subspace of £ The sequence (b™)°2. | with b=V = e and b™ = (™)
forn =0,1,... is a Schauder basis for c, more precisely, every sequence x = (xy)72 , has
a unique representation * = § - e+ y 2o o(zp — €)e®) where € = limy_,o0 zx. The space
Lo has no Schauder basis since it is not separable.

(d) The spaces cs and bs are BK spaces with ||z||ps = sup,, | > _p_o zk|; cs has AK.

Remark 1.2 Here we do not consider the spaces Lo (p) = {x € w : supy |zg|P* < oo}
([63]) and c(p) = {z € w : x — & - e € co(p) for some & € C} ([33]). In general, their
natural metric dy ) of Example 1.1 (b) does not make them linear metric spaces unless
0 < infg pr < pr < supg pr < 00 in which case the spaces reduce to {, and c. Suitable
linear topologies for £ (p) and c(p) were introduced and studied in [16].

If z and y are sequences, and X and Y are subsets of w, then we write xy = (2xyx)3,.
z'xY ={a €w:azr € Y}and M(X,Y) = Neexz '*Y = {a €w:azx €
Y forall z € X} for the multiplier space of X and Y. WhenY = (1, Y = cs,or Y = s,
we use the notations z& = z7 x£1, 2% = z7 xcsand 27 = 271 xbs, and X* = M(X. ().
XP = M(X,cs) and X” = M(X, bs) for the a-, B and ~y-duals of X. It is clear that if
a sequence space X is normal, that is, if z € X and |yx| < |zk| (k = 0,1,...) for some
sequence y imply y € X, then the a—, 8- and y—duals of X coincide. The following results
are known.

Example 1.3 (a) If X D ¢ is an FK space with AK then X® = X7 ([70, Theorem 7.2.7
(ii)]).

(b) Let X and Y be subsets of w and 1 denote any of the symbols o, [3 or . Then we have
([70, Theorem 7.2.2] and [30, Lemma 2])

() X c XM, (@) Xt c XM (i) X C Y implies YT ¢ X7,
if I is an arbitrary index set and {X, : v € I} is a family of subsets X, of w, then
T
(i) (U XL> -t
el el

(c) The condition p € L is not needed here. We have (£(p))? = lo(p) = {z € w :
supy [zx[Pr < 00} if 0 < pp < 1 for all k ([63, Theorem 7]); if pr, > 1 and q, =
pr/(pr — 1) for all k then

)’ = {a Ew: Y Jag|® N7% < oo} ([35, Theorem 11]); (1.1)

N>1 k=0

also

(co(p))B = Mo = U {a Ew: Z lag | N~VPe < oc} ([35, Theorem 6]),  (1.2)

N>1 k=0
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(loa(p)) = Mo = m {a Ew: Z |ag| NYPE < oo} ([63, Theorem 7]),  (1.3)

N>1 k=0
(c(p))® = (co(p))BNecs ([30, Theorem 1]).  (1.4)

If X is a linear metric space then X' denotes the space of all continuous linear func-
tionals on X; if X is a normed space then we write X* for X’ with || f|| = sup{|f(z)| :
llz|| = 1}. The relationship between the 3 and continuous duals of an F'K space is given
by the following well-known result.

Proposition 1.4 ([70, Theorem 7.2.9]) Let X D ¢ be an FK space. Then X? ¢ X' in
the sense that each sequence a € XP can be used to represent a function f, € X' with
fa(z) = Y plgarzy forallz € X, and the map T : XP — X' with T(a) = f, is linear
and one to one. If X has AK, then T is an isomorphism.

Example 1.5 (a) If 1 < infypy < pr < Q = supgpr < oo for all k and €(q) has its
natural topology given by the linear metric d(g(a,b) = (3 peqlar — be|%)/® for all
a,b € £(q), then (£(p))’ and £(q) are linearly homeomorphic ([35, Theorem 4]).

(b) Wehavefﬁ =l for0 < p <1, Eg =Lyforl < p < ooandq = p/lp-1),
cg =cf = E'go =0, wP = ¢ and ¢? = w; furthermore, lforl < p < oo andcg are
norm isomorphic to their B—duals, and f € c* if and only if

[e.0]
f(z)=xr" klgrolosck + kz_:l ayTy where a = (f(e("c)))z"=1 € ¢y and

X =1(6) = 5 F(e®), and ] = [xs] + ol

({68, Examples 6.4.2, 6.4.3 and 6.4.4]). Finally €%, is not given by any sequence space
([68, Example 6.4.8]).

Let A = (@), be an infinite matrix of complex numbers and z = (Zk)72 € w.
Then we write An = (ank)i2o (n = 0,1,...) and A* = (an)%, (k = 0,1,...) for
the sequences in the n-th row and the k-th column of A, and A,z = Y keo0nkZk and
Az = (Anz)2, provided A, € zP. If X is a subset of w, then X 4 = {rew: Az e X}
is the matrix domain of A in X. Given any subsets X and Y of w, we write (X,Y) for
the class of all infinite matrices A that map X into Y, that is, A € (X,Y) if and only if
X C Y4

Example 1.6 (a) Let p = (pi)i2, be a bounded sequence of positive reals, and qr =
pr/(Pk — 1) if pr. > 0. If pr > 1 for all k, then we have A € (£(p), £oo) if and only if

oc
sup Z lank | B™% < oo for some real B > 1 ([31, Theorem 1 (i)]), (1.5)
" k=0
if0 < px < 1 forall k, then we have A € (£(p), £oo) if and only if

sup |ank|P* < oo ([31, Theorem 1 (i)]); (1.6)
n,k
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also A € (co(p), o) if and only if
o0
supz Iank|B"1/”’° < oo for some real B > 1 ([30, Theorem 10 (i)]). 1.7)
" k=0
As special cases, we obtain A € (€, 4 for 1 < p < oo if and only if
o0
sup Y _ |ank|? < 0o, where q = p/(p — 1) ([70, 8.4.5D] or [65, 5.])
" k=0
and, for 0 < p < 1, if and only if sup,, ; |ank| < 00, and A € (co, £o) if and only if
o0
sup Y _ |ank| < 00 ([70, 8.4.5A] or [65, 1.]). (1.8)
n P

(b) We also have (oo, L) = (¢, €so) = (€0, €oo)-
(c) We have A € (c, c) if and only if (1.8) is satisfied and

lim anr = o exists for each k (1.9
n—oo
and
o0
nlgrgo kz_oank = (v exists. (1.10)

This is the famous Silverman—Toeplitz theorem ([66], or [70, Theorem 1.3.6] or [65, 11.]).
(d) We have A € (€p, ) if and only if

(o)
nh_)n;o;)mm =0. (1.11)

This is the famous Schur theorem ([70, Theorem 1.7.19] or [65, (21.1)]).

Remark 1.7 A complete list of the known results of the characterisations of the classes
(X,Y) where X is any of the spaces £(p), co(p), c(p) or x(p), and Y is any of the spaces
£(q), co(q), c(p) or Lxo(q) is given in [17, Theorem 5.1].

An infinite matrix 7' = (tnk)fk:o is said to be a triangle if t,;;. = 0 for n > k and
tan #0(n=10,1,...).
The following result is well known, and will frequently be applied throughout.

Proposition 1.8 ([70, 1.4.8, p. 9], [10, Remark 22 (a), p. 22]) Every triangle T has a
unique inverse S = (Snk)n o Which also is a triangle, and x = T'(S(x)) = S(T'(z)) for
all z € w.
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2 The Bases of Some Matrix Domains in Triangles

In this section, we summarize some important topological properties of matrix domains of
triangles. We also determine the bases of some matrix domains of triangles.

Many of the results in this section and their proofs are taken from [70], with minor
modifications; they are stated here for the reader’s convenience.

It is well known that the topology of a locally convex metrizable space is defined by a
sequence (p,) of seminorms in the sense that z — 0 if and only if p,(z) — 0O for each
n ([70, 4.0.2] or [69, # 7-2-6, Theorem 7-2-2, Example 4-1-8]). We use the notation
(X, (py)) for a vector space X with its metrizable topology given by the sequence (pn) of
seminorms in the sense just mentioned.

Example 2.1 (a) The space (w, (|Pyn|) is an FK space where (Py,) is the sequence of coor-
dinates, and (™ — z (m — o) in w if and only if:c%m) — z, (m — o) for each n.

(b) The space c is a BK space with p(z) = ||z||co; there is only one seminorm, a norm in
this case, and z™ — 0 (m — 00) in c if and only if ||£{™||oo — 0 (m — o0).

The theory of F'K spaces can be applied to matrix domains.

Theorem 2.2 ([70, Theorem 4.3.1]) Let (X, (pn)) and (Y, (gn)) be FK spaces, A be a
matrix defined on w, thatis, X Cwa, and Z = X NYs={zx € X : Az € Y}. Then Y is
an FK space with (pn) U (gn o A); this means that Z is given all the seminorms py, pa, . . .
and g o A, gz 0 A,....

Proof. The countable set (p,) U (gn o A) of seminorms yields a metrizable topology
larger then that of X, hence of w, since (X, (p,)) is an F K space.
We have to show that Z is complete. Let (z,,) be a Cauchy sequence in Z. Then clearly it
is a Cauchy sequence in X which is convergent by the completeness of X, limy, ;00 Tm =1
in X, say, that is, limy,—00 Pn(Zm — t) = 0 for each n. Since z,, € Yj, it follows that
Az, € Y, and so (Az,,) is a Cauchy sequence in Y, because gn(Azm) = (qn © A)(Tm).
So (Az,,) is convergent by the completeness of Y, limy, 00 ATy, = bin Y, say. Then
limy,—o00 AZm = At, since the matrix map A : X — w between the FK spaces X
and w is continuous ([70, Theorem 4.2.8]). We also have lim,, ,cc AZ;, = b in w since
the topology of the FK space Y is stronger than the topology of w on Y. This yields
b= At,and sot € Z and limy 00 Pn(Zm — t) = 0 and limp,—y00(gn © A)(zZm — t) =
limy;, 00 n(Azn, — b) = 0 for each n.

The following result is obtained from Theorem 2.2.

Theorem 2.3 ([70, Theorem 4.3.3]) Let A be a row—finite matrix. Then (ca,(py)) is an
F K space where

p—1=|-|la, thatis, po(z) = ||Az||co, and pp(x) = |zn|forn=0,1,2,....
If A is a triangle, then (ca,p-1) is a BK space.

Proof. We apply Theorem 2.2 with X = w and Y = ¢, so that Z = c4. The seminorms
of X are p,, with p,(z) = |zn| forn = 0,1,.... Also Y is a BK space with g = || - ||,
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and so pg = g o A.

If A is a triangle, then A : ¢4 — c is one to one, linear and onto, so c4 becomes a Banach
space equivalent to ¢ with the norm ||z||c, = ||Az||c. To see that the coordinates P, are
continuous, let B = A~1, also a triangle by Proposition 1.8. It follows that

n n
ankAkx < (Z ,bnk|> : ”xllCA'
k=0 k=0

Since Az € cand cis a BK space by Example 1.1 (c), B,, € c*, and so P, is continuous.
The Part (a) of the next result is a special case of Theorem 2.2 when A is a diagonal
matrix with the sequence z on the diagonal.

|zn| = |Bn(Az)| =

Theorem 2.4 ([70, Theorem 4.3.6]) Let (Y, q) be an FK space and z be a sequence.
(a) Then 2~ x Y is an FK space with (Pn) U (hy) where

Pn = |Tn| and hy, = q,(z - ) for all n.
(b) IfY has AK then z~! xY has AK also.

Proof. (a) We define the diagonal matrix D = (dnk)?fk=o bydp, = 2, and dyy = 0
(k #mn)forn=0,1,..., and apply Theorem 2.2 and Example 1.1 (a) with X = w.

(b) We fix n. Then we have p,,(z — m[m]) = 0 for all m > n, that is, lim,_, o, pn(x —
zM) = 0. Since Y has AK, we also obtain hn(z — ™)) = gn(z - (z — zlm)) =
gn(z-z—2-2M) 50 (m— 00). Therefore it follows that 2™ — 2 in =1 % Y, and so
271 % X has AK.

Example 2.5 Let a = (ay)$2, be a sequence of positive reals, and z = 1 [a= (1/ag)2,.
The spaces (%, = z~1 *€pfor1l < p < oo, sg =271« s((f) =z"lxcand s, = 27! * g
were studied in [38]. They are BK spaces with ||z = (352 (|zx|/c%)P)/? for & and
llz|| = supg(|zk|/ax) in the other cases.

Theorem 2.6 ([70, Theorem 4.3.6]) Let z be a given sequence. Then (2°, (pn)) is an AK
space with

p-1(z) = ||zlles and pn(z) = |,| for alln > 0. (2.1

For any k for which zj, # 0, the seminorm Pk may be omitted. If z € ¢ then the seminorm
po may be omitted.

Proof. The space (27, (p,)) is an AK space with the seminorms given in (2.1) by
Theorem 2.4, the definition of z#, and since the space cs has AK with | - llos by Example
1.1(d).

If 2 # 0 and the matrix A = (ank) is defined by a,;, = 2 for 0 < k < nand ay,;, = 0 for
k>mn(n=0,1,...), then we obtain

|2x| = Az~ A0 < 2p_1(x),
|2k | 2|

and so py, is redundant.
If 2 € ¢ then 2P = w.
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Theorem 2.7 ([70, Theorem 4.3.8]) Let A be a matrix. Then (wa, (pn) U (hy)) isan AK

space with
m
Z ankTk

pn(x) = |Tn| and hp(x) = sup
™ k=0

for all n.

For any k such that AF has at least one nonzero term, py, may be omitted.
For any k such that A, € ¢, hn, may be omitted.

Proof. We observe that wa = [y AP, and each space A? is an AK space with
pu(x) = |@n| and hy(z) = supy, | Yjeo @nkxx| by Theorem 2.6. Also the intersection of
countably many AK spaces is an AK space by [70, Theorem 4.2.15].

If anx # O then we have |zx| = 2 - hn(2)/|ank| as in the proof of Theorem 2.6, 5o pi is
redundant.
If A,, € ¢ then h,, can be omitted by the last part of Theorem 2.6.

Theorem 2.8 ([70, Theorem 4.3.12]) Let (Y, (gy)) be an FK space and A be a matrix.
Then Y4 is an FK space with (p,) U (hy) U (gn © A) where (p,) and (hy) are as in
Theorem 2.7.

For any k such that AF has at least one nonzero term, py, may be omitted.

For any n such that A, € ¢, hy, may be omitted.

If A is a triangle, only q o A is needed.

Proof. We apply Theorem 2.2 with X = w4, which is an F'K space by Theorem 2.7.
Then Z = Y4 and the seminorms are obtained from Theorems 2.2 and 2.7.
The remaining parts follow from Theorem 2.7 and the fact that if A is a triangle then the
map A : Y4 — Y is an equivalence.

Example 2.9 We write ¥ = =) = (a,lk)szofor the triangle with oy, = 1for0 <k <n
(n=0,1,...), and A = A = (Ank);‘f"kzofor matrix with Ay, = 1, Bp_1p = —1
and A, = 0 otherwise. Let m € IN\ {1}. Then we write AM = Am=1) . A and
»0m) — 2(m=1) . 53 Since the matrices /A and ¥ are obviously inverse to one another and
matrix multiplication is associative for triangles ([70, Corollary 1.4.5]), the matrices AU™)
and ™) are also inverse to one another. It is well known that

n

Aszm)x = Z(_l)k (T}:) Tpn—k = Z (__1)n—k (nn_l k> Tk (2.2)

k=0 k=max{0,n—m}
and
n
/m+n—k—1
zﬁ{’l)ng)( - )mkforn:O,l,.... (2.3)

(a) Let p = (pr)$2., be a bounded sequence of positive reals and M = max{1, supy px }.
and m € IN. By Theorem 2.8, Example 1.1 (b), and (2.3) and (2.2), the spaces (2(p))sim).
(L(p)) aem) and co((p), A™) = (co(p)) a(m) are FK spaces with the total paranorms

pr\ /M

X & fm+k—j—1
g(Z(P))E(m) (:L“) = Z Z ( k =3 >mj ,
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Pk) 1/M

k

Yy, (krf j>ij

j=max{0,k—m}

o
9P)) s (&) = (Z

k=0

and

k

S (D (km >$;’

Jeo((p),a0m) (&) = SUP i
k j=max{0,k—m} J

In the special case of m = 1, we write bu(p) = (£(p))a, and the spaces (£(p))s., bu(p) and
(co((p), A) are FK spaces with the total paranorms

pk\ /M s 1/M
) and vu(p) (1:) = (Z |a:k = :Ek__llpk)
k=0 .

‘Pkﬂw )

k

.

3=0

9= (@) = (Z

k=0

and
Geo((p),8)(T) = sup lzk — Th-1

(b) Since co, ¢ and £ are BK spaces with || - ||loo by Example 1.1 (b) and (c), the sets
co(A™) = (co) p(m)» c(A™) = cpm) and loo(A™) = (€p) o) are BK spaces with

k

I G} i (knj j> zj

j=max{0,k—m}

20 = 5P 0.4

and the sets Csm) and (£oo)yom) are BK spaces with

k ;
Z(m“L:_?*l)xj . @5)
=0 -J

p\ /P

) 2.6)
P\ 1/p
> @.7)

= ||z||ps (Example 1.1 (d)),

121l ¢eoe) my = SUP

Also the sets (£p) aom) and (£p)som) are BK spaces with

k

Y ¥ (km )wj

k=0 |j=max{0,k—m} sl

lzllep) yomy = (Z

and

Hx”(ep)g(m) = (Z

k=0

2 (m+k——j—1>
; Zj
= k—j

)=

For m = 1, the norms in (2.4)—(2.7) reduce to

k

PBES

j=0

lzllec)s = sUP 1z — zr-1ls 1Zll(teo)s = R



104 Eberhard Malkowsky

1
ookp/p

oo 1/p
”le”bﬂp = (Z ,fL‘k = .'L‘k_l'p) and ”.’E”(ep)z = 1.“7
k=0 k=0 |7=0

The next result for the convergence domain is an immediate consequence of Theorem
2.8.

Corollary 2.10 ([70, Theorem 4.3.13]) Let A be a matrix. Then cy is an FK space with
(pn) U (hy) where p_y(z) = ||Az||oo, and p,, and hn (n = 0,1,...) are as in Theorem
2.7

For any k such that A* has at least one nonzero term, py may be omitted.

For any n such that A, € ¢, h,, may be omitted.

Theorem 2.11 ([70, Theorem 4.3.14]) Let X and Y be FK spaces, A be a matrix, and X
be a closed subspace of Y. Then X 4 is a closed subspace of Y.

Proof. Since Y is an FK space, so is Y4 by Theorem 2.11. Consequently the map
f:Ya =Y with f(z) = Az is continuous by [70, Theorem 4.2.8]. Then Xy = F~1X)
is closed.

Example 2.12 By Theorem 2.11 and Example 1.1 (c), (co)sm) is a closed subspace of
Cs(m) Which in turn is a closed subspace of (boo)smy; (o) a(my is a closed subspace of
Catm) Which in turn is a closed subspace of (boc) A(m)-

Now we study the bases of some matrix domains of triangles.
Throughout, let T be a triangle and S be its inverse (Proposition 1.8).

Theorem 2.13 ([24, Theorem 2.3] or [53, Proposition 2.1]) If (b(")):‘;o is a basis of the
linear metric sequence space (X, d), then (SbM) . is a basis of Z = X with the metric
dr defined by dr(z,%) = d(T2,T%) forall 2,5 € Z.

Proof. We write ¢(®) = gp(n) (n = 0,1,...). First, we note that ¢ € Z for all
n, since Tc(™ = T(SbM) = pn) by Proposition 1.8, and (™ € X. Let z € Z be
given. Then z = Tz € X and there is a unique sequence (A,)S2, of scalars such that
zim = B And™ 5 g (m — 00). We put z(m) = P i Anc™ for m = 0,1,....
Then it follows that '
m

m
T2 = 3" AT = D ™ = 2™ form =0,1,..

n=0 n=0
hence dp (2™, z) = d(Tzm), Tz) = d(z'™,z) - 0 (m > o0).
Since X = (X7)s by Proposition 1.8, an application of Theorem 2.13 yields

Remark 2.14 The matrix domain Xt of a linear metric sequence space has a basis if and
only if X has a basis.

Example 2.15 Since {y, has no Schauder basis by Example 1.1 (c), the spaces bs and
£ (A) have no Schauder bases either, by Remark 2.14.
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Now we consider some special cases of Theorem 2.13, in particular, when X has AK.

Corollary 2.16 ([24, Corollary 2.5] or [53, Corollary 2.3]) Let X be an FK space with
AK and the sequences ™ (n=0,1,...) and c=1) be defined by

(m _ J0 (0<k<n-1)
2 sgn (k=n)

k
and V=Y s (k=0,1,...). @28
=0

(a) Then every sequence z = (20)5% € Z = X7 has a unique representation

= Z(Tﬂz) ™. (2.9)

n=0

(b) Then every sequence v = (vy)5g € V = X1 @ e has a unique representation

v=1Le+ Z T(v — Le)c™, (2.10)

n=0

where £ is the uniquely determined complex number such that v = z + e for z € Z = Xr.
(c) Then every sequence w = (wn)72g € W = (X @ €)r has a unique representation

w =6V 4 Z(an — ), (2.11)

n=0

where £ is the uniquely determined complex number such that Tw — le € X.

Proof. First, we note that ¢ = Se(™ forn = 0,1,..., and c(=1) = Se, hence the
sequences (c(™)%; and (c(m))2e__, are bases of Z and W/, respectively, by Theorem 2.13,

(a) Let 2 = (2n)3% € Z be given. Then z = Tz € X and (2.9) follows if we take
A = Tnz (n=0,1,...) in the proof of Theorem 2.13.

) Let v = (va)%%y € V = X7 & e be given. Then there are uniquely determined
z € Z and A € C such that v = z + fe, and we have z = Z;’c’zo(Tnz)C(”) by Part (a). It
follows that v = fe + 2 = e + 3 o Tn(v — te)ct™.

() Let w = (W) € W. Thenu = Tw € U = X & e, and there are uniquely
determined z € X and £ € C such that u = = + fe. Weput z = w — ¢c{=1). Then
2 € Z, since Tz = T(w — £=1) = Tw — €T(c"V) = u — fe = = € X, and s0 we
have z = 3.0 o (Tp2)e™ = o2 o(Taw — £)c™ by Part (a). Now (2.11) is an immediate
consequence, since w = z + £c -1),

Now we apply Corollary 2.16.

Example 2.17 (a) We consider the spaces (£(p)) acm) and (co((p), A™) for bounded se-
quences p = (pr)i of positive reals and m € IN. Weput T' = A, Then § = £(™)
and so, since the spaces £(p) and co(p) are FK spaces with AK by Example 1.1 (b), the
sequences ¢\™ of the Schauder bases (™) o of (£(p)) aem) and co((p), A™) are given
by (2.3) in Example 2.9 and (2.8) in Corollary 2.16 by

C(n)_ 0 (OﬁkSn—l)
ETMERY (k2
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and so every sequence T € (£(p)) a(m) or € co((p), A™) has a unique representation, by
(2.9) in Corollary 2.16 (b), z = 3% (AT z)-c™ (147, Theorem 1] for (co((p), AT™))).
If m = 1 then we obtain ¢™ = e — e™ U for all n € Ny, where el=1 = (0)%2, and every
sequence x € (£(p))a or z € co((p), A) has a unique representation

oo
T = Z(xn —ZTp-1) - (e— e["“ll) where T = 0. (2.12)

n=0

(b) We consider the space (£(p))sm) for bounded sequences p = (p)32., of positive reals
and m € N. We put T = £(™). Then S = A™ and so, since the space ¢(p) is an FK
space with AK by Example 1.1 (b), the sequences ¢™ of a Schauder basis (c("))j'f:0 of
(€(p))s;(m) are given by (2.2) in Example 2.9 and (2.8) in Corollary 2.16 by

AP m )
Cfcn)= (=1} (k—n/ k2 n) ifn<m,
0 0<k<n-1)
and
~]}h-a( m >k>
& = (=DF"(I) (ndm2k>n) ifn > m. (2.13)
0 (0<k<n-1lork>n+m)

But since ( k’fn) = 0 for k > m + n + 1, the sequences c™ are given by (2.13) for all n.
If m = 1 then we obtain ¢ = ) — n+1) foralln = 0,1,... and every sequence
T = (Tn)nlo € (€(p))s has a unique representation x = 320 ((S"1_o zx) (e — e(*+1))
by (2.9).

(c) We consider the BK space c(A) = (co ® €)a of Example 2.9 (b). Then the sequence
=V in (2.8) of Corollary 2.16 is obviously given by cfc_l) = Ef:o sgj =k+1fork =
0,1,.... Ifwe write (k + 1) for the sequence (k+1)$2 , then every sequence w € c(A) has
a unique representation w = limp_y00 Awp, - (k + 1) + Y27 (Awy — limy 00 Awy, ) (e —
elr=11) by (2.11).

(d) Finally we consider the space cs = (co @ €)s. Then we obviously have (-1 = ¢(©)
for the sequence in (2.8) of Corollary 2.16. Now every sequence w € cs has a unique
representation by (2.11)

o0 o0 n o0
w = Z'U)n . e(o) + Z <Z Wg — Zwk> (e(n) _ e(n“l‘l))
k=0

n=0 n=0 \k=0
o0 o0 o0

= an e 4+ Z ( Z wk) - (e — (), (2.14)
n=0 n=0 \k=n+1

We write y = Tw — £ - e where £ = limy,_, o0 Tpw = limy,_ oo ZLO Wg. Then y € cy and
so the series o0, yne™ and Y2 o Yn€™ ) converge (in the Los—norm), and it follows
from (2.14)

o0 o0 o0
W, = E . 8(0) + Z yn(e(n) - e(n+l)) == _e . e(o) + Z yne(n) - Z yne(n+1)

n=0 n=0 n=0
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o0 o<
— e - 6(0) _|.. yo . e(o) + Z(yn = yn_l)e(n) — wO . 6(0) .+_ Z U)n 4 6(”)

n=1 n=1
00
- E wn . e(n)’
n=0

that is, cs has AK (Example 1.1 (d)).

We also apply Corollary 2.16 to obtain some recent results concerning the Schauder
bases of some matrix domains of certain triangles.

Example 2.18 (a) Altay, Bagar and Mursaleen in [2, 5] introduced and studied the Euler
sequence spaces, defined as follows. Let 0 < r < 1 and E" = (e} )pk—0 be the Euler
matrix of order T with

@A =rrrE (0<k<n) _
Enk_{Ok (k> n) (n=0,1,...),

and €}, = (fp)pr (1 < p < ), g = (co)er, €, = cgr and €}, = (L) pr. Writing
T = E™), for short, we observe that the inverse S = (Suk )5y Of the triangle T is given
by
(O =1k (0<k<n)
Spk = (m=0;150:4 ) (2.15)
0 (k> n)

Now [2, Theorem (i), (ii)] is an immediate consequence of (2.9) and (2.10) of Corollary
2.16 (a) and (b); Corollary 2.9 (a) also yields Schauder bases for the spaces e;.

(b) Recently Aydin and Bagar ([7]) introduced and studied the sequence spaces af(A) and
al(A) as follows. If T = (tnk)sog=o is the triangle defined by

1
n+1(rk—rk+1) 0<k<n-1)
tnk = 7::11 (k =n) fn=0,1,...
0 (k >n)

then the sets aly(A) and a’,(A) are the matrix domains of T'in co and in c. Since the inverse
matrix S = (Snk )3 =g IS given by

1 1
— < < o
(k+i)(1+rk 1+r’°+1) (0<k<n-—1)
Spk={ Nt _ (n=0,1,...), (2.16)
1+rn (k=mn)
0 (k> n)

[7, Theorem 3 (a), (b)] is an immediate consequence of (2.16) and Corollary 2.16 (a) and
(b).



108 Eberhard Malkowsky

3 The S-Duals of Matrix Domains of Triangles and Matrix Trans-
formations

In this section, we reduce the determination of the S—duals of matrix domains X7 of trian-
gles T in F'K spaces X to that of X B and the characterisation of (X, cp). We also reduce
the characterisations of the classes (X, Yr) and (X7,Y).

First, we determine the 3—duals of matrix domains of diagonal matrices which have no
zero terms on the diagonal. The result is almost trivial.

Proposition 3.1 Let u = (uy)32, be a sequence with u # 0 for k = 0,1,..., and
1/u = (1/ug)%, Then we have (u™' * X)P = (1/u)™! * XP for arbitrary subsets X of
w.

Proof. Since z € u~! * X if and only if y = uz € X and ax = by where b = a/u =
(an/u)3 g it follows that a € (u~'+X)P ifand only if b € X7, thatis, @ € (1/u)"1xX?.

Let a be a sequence and T be a triangle. Then we write B = B(a,T) = (bnk)nx=0
for the matrix with by = @nspkx for0 < k < nand by, =0fork > n (n = 0,1,---).
Furthermore, if (X, d) is a linear metric space and a € w, we write Bx (0, 8) for the open
ball of radius § > O centred at 0, and

o0

D

k=0

lalls = llallx,s = sup {

1 x € BX(O,(S)},

provided the expression on the right hand side exists and is finite which is the case whenever
X is an FK space and a € X? (Proposition 1.4).
We need the following lemma.

Lemma 3.2 ([53, Lemma 3.1]) Let X be an FK space with AK and Z = Xy. We write
R = S for the transpose of S. Then we have (X1)? C (X®)g.

Proof. First we observe that € Z* if and only if B € (X, cs), since z € X if and
only if z = Sz € Z, and az = a(Sz) = (aS)z = Bz.
We assume a € Z? and write C = £B. Then B € (X, cs), by what we have just seen, and
this is the case if and only if C' € (X, c) by [51, Theorem 3.8]. Since X is an F'K space
with AK, it follows from [51, Theorem 1.23] and [70, 8.3.6] that

oo
Rpa = ﬂlgr;o G = Z’:cajsj'k exists for each k, (3.1
J:

and sup,, ||Cy||% s < oo for some § > 0, that is, there is a constant K" such that

n
) ez

k=0

|Crt| = < K for all n and for all z € Bx(0, é). (3.2)

Let z € X be given and p = §/2. Since Bx(0, p) is absorbing ([68, Chapter 4.1, Fact
(ix)]) and X has AK, there are a real A > 0 and a non-negative integer myg such that
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yiml = A1zl € By (0, p) for all m > mg. Let m > my be given. Then we have for all
n > m by (3.2)

m m
chkwk =\ chkyl[cm] = )\lcny[ml, <K,
k=0 k=0
and so by (3.1)
m
> (Rra)zi| = A lim |Coy™| < AK.
k=0 n—o0

Since m > my was arbitrary it follows that Ra € z”, and since € X was arbitrary, we
conclude Ra € ﬂze x 27 = X7. Finally, since X has AK, we have X7 = X8 by [79,
Theorem 7.2.7], and so a € (X#)pg.

Now we reduce the determination of (X T)ﬁ to the determination of X# and (X, cp).

Theorem 3.3 ([53, Theorem 3.2]) Let X be an FK space with AK, T be a triangle, S its
inverse and R = S*. Then a € (X1)? if and only if

a€ (XP)pand W € (X, cp), (3.3)
where the matrix W is defined by

o0
> a8, (0<k<m)
=m

Wk = § j (m=0,1,...);
0 (k >m)
moreover, if a € (X1)P then we have
[o o} o0
Zakzk = Z(Rka)(Tkz)for allz € Z = Xp. (3.4)
k=0 k=0

Proof. First we assume a € ZP. Then Ra € X? by Lemma 3.2, and so wy,,;, converges
for all m and k. Thus the matrix W is defined. Furthermore we have

m—1 m m

D arzk = (Rea)(Txz) — Y " wmi Tz forall m and all z € Z. (3.5)
k=0 k=0 k=0

Letz € X be given, then z = Sz € Z andso a € 27 and a € (2) k. This implies Wz € ¢

by (3.5). Since z € X was arbitrary, we have W € (X, c) C (X, €). Furthermore, since

Ria = Z;";k a;s;i exists for each k, we have

(e 9)
Jim wp = lim Z a;js;ji =0, 3.6)
j=m

and by [70, 8.3.6, p. 123] this and W € (X, £s,) together imply W € (X, ¢).
Now if a € ZP then the conditions in (3.3) hold by what we have just shown, and (3.4)
follows from (3.6).
Conversely we assume that the conditions in (3.3) are satisfied. Then z = Tz € X and so
az € csforall z € Z by (3.5), that is a € ZP.

We obtain as an immediate consequence of Theorem 3.3
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Corollary 3.4 Let X be an FK space with AK, T be a triangle, S its inverse and R = 5%,
Then a € (X7)? if and only if

a€ (XPYpand W € (X, {s)- (3.7)

Proof. If a € (Xr)? then we have, by (3.3) in Theorem 3.3, a € (XPYp and W €
(X,co) C (X,€s), that is, the conditions in (3.7) are satisfied.
Conversely, if the conditions in (3.7) are satisfied, then it follows as in the first part of the
proof of Theorem 3.3 that W € (X, co), hence the conditions in (3.3) are satisfied, and so
a € (X7)? by Theorem 3.3.

Now we give some applications of Corollary 3.4.

Example 3.5 Let m € IN and p = (pk)k=0 be a bounded sequence of positive reals.
(a) We determine the [—duals of (£(p))am) and (co((p), A™). Since T = A™) the
matrix R = (r;)3"; =0 is given by

T71+j—k—l P>k
Thi = Sjk = ( Ik ) G 2 k) fork="01;5::4
0 (0<j<k-1)

First let 0 < pi < 1 for all k. Then we have, by Example 1.3 (c), Ra € (¢(p))? if and only
if

Pk

= m+j—k—U
sup . a;j| < o0, 3.8)

and W € (€(p),€so) by (1.6) in Example 1.6 (a) if and only if

Pk

fm+j—k-1
sup Z( j—k )aj < 00. 3.9)

kn>k j=n

Since obviously the condition in (3.9) is redundant, it follows from Corollary 3.4 that a €
((£(p)) a(m) )P if and only if the condition in (3.8) is satisfied.

Now let p, > 1 and qi, = pr/(px — 1) for all k, then we have by (1.1) in Example 1.3 (c)
that Ra € (¢(p))P if and only

qk

2= (m+j—-k-1
ZZ( ] )aj - N7% < oo for some N > 1, (3.10)
k=0 |j=k j=k

and by (1.5) in Example 1.6 (a), W € (€(p),£wo) if and only if

SUPZ Z (m i >aj - N7% < oo for some N > 1. 3.11)

Therefore it follows from Corollary 3.4 that a € ((¢(p)) aem) )? if and only if the conditions
in(3.10) and (3.11) hold.
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Now let p be any bounded sequence of positive reals. Then we have by (1.2) in Example 1.3
(¢) that Ra € (co(p))? if and only if

oo o0 5
Z Z (m+“7 _:— 1>aj NP < oo for some N > 1; (3.12)
k=0 | j=k I

also, by (1.7) in Example 1.6 (a), W € (co(p), £so) if and only if

1
bupz Z (m+] : )aj NPk < o for some real N > 1. (3.13)
" k=0 j=n

(b) Now we determine the [3—dual of (£(p))smy. Since T = v(m)  the matrix R =
(T1j)hoj=0 I8 8iven by (Example 2.17 (b))

Tei = Sik = (—l)j_k(jrfk) G 2 k) (k=0.1,...)
7k 0 0<j<k—1lorj>m+k) ’

It follows as in Part (a) that, if 0 < pp < 1 for all k, then a € ((f(p))z(m))ﬂ if and only if

m+k m 4
sup Z( 1)~ k(j—k)aj < 00 (3.14)

and, if p, > 1 for all k, then a € ((E(p))mm))ﬁ if and only if

qk

oo |m+k ' -
Z (—1)‘7“’“(. k)aj - N7% < oo for some N > 1, (3.15)

and by (1.5) in Example 1.6 (a), W € (¢(p), £xo) if and only if

dk
n |m+k
, m
S?LPZ Z(—I)J_k<7, - k) aj| - N7% < oo for some N > 1. (3.16)
k=0 |j=n *

and

n |m+k i
supz Z(—l)j“k(,mk)aj N~YPe < o0 for some N > 1. 3.17)

" k=0 |j=n J =

Remark 3.6 Ifm = 1 and p = e, then it follows from (3.14) in Example 3.5 (b) that a € bv?

if and only if supy, IZJ k0| < oo, that is, bvP = s, a well-known result ([70, Theorem
7.3.5 (iii)]).
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Remark 3.7 (a) The statement of Theorem 3.3 also holds when X — Coos
(b) We have a € (cr)P if and only if a € (t1)r and W € (c, c); moreover, ifa € (cr)?
then we have

Z axzy = Z(Rka)(Tkz) —&aforall z € cp

k=0 k=0

m
where £ = Ll_lg.lo Tyz and o = "%E)noo]gowmk. (3.18)
Proof. Let X = cor X = £oo. Then X D ¢, implies (X7) D (co)r. Since co is
a BK space with AK, it follows from Lemma 3.2 that a € (X7)8 ((co)T)? implies
a€(ch)r=()r=(XP)rand W e (X, ¢). Conversely, if a € (X#)z and W € (X, ¢)
then it it follows from (3.5) that q € (X1)8.
(a) Now let X' = /,. We have to show that IV € (€oo, c) implies W € (4o, cp). If
W € (¢, c) then it follows from [70, Theorem 1.7.18] that

(o0}
Z [Wmk | is uniformly convergent in m. (3.19)
k=0

But, as before, we also have (3.6), and this and (3.19) together imply W € (l, ¢p) by [70,
Theorem 1.7.19].

(b) It remains to show that a (er)? implies (3.18). Letq € (c7)? and z € cr. Then
r=Tz€cand ¢ = limy_, o xx exists, hence there is (0 ¢ co such that z = z(0) 4+ e.
We put 20 = §2(9 . Then it follows that (0 ¢ (co)r and 2z = Sz = Sz + ge) =
20 4 §Se, and we obtain as in 3.5)

—

m—

k=

(Bka)(Tiz) = Y wmiTi (2@ + £Se)
k=0

NgE

Eod
I
o

(Bra)(Tkz) — Wi (T20) — W, e

NE

k

Il
o

The first term on the righthand side of the last equation converges, since Ra € ¢,. The
second term on the righthand side of the last equation tends to zero, since ¢ € (er)? c
((co)r)? implies W ¢ (co, o). Furthermore, since W ¢ (c,c) implies the existence of
a = limy,_,oo Wpe ([70, Theorem 1.3.6)), the identity in (3.18) follows.

Now we give a few applications of Remark 3.7 and Corollary 3.4.

Example 3.8 We write R = Rra = Z;’_ik ajforallk =0,1,.... We have
(a) a € (£ (A))P if and only if

D IRkl < 0 (3.20)
k=0

and
(MR )se_y € co; (3.21)
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(b) a € (c(A))P if and only if the condition in (3.20) holds and
(mBRm)m=o € & (3.22)
(c) a € (co(A))? if and only if the condition in (3.20) holds and
(mBm)m=0 € oo} (3.23)

(d)if1 < p < coand g = p/(p — 1) then a € bvy, if and only if

> IRkl < 00 (3.24)
k=0
and
(ml/q Rm)°° € ... (3.25)
m=0

Proof. We have T = A and S = X, hence Rya = ) 22, a; for all k. Since, by
Example 1.5 (b), (foo)? = c? = cg = ¢y and e,’? = {, where ¢ = p/(p — 1), the conditions
in (3.20) and (3.24) in Parts (a)—(c) and (d) are the first condition in (3.3) Theorem 3.3. Also
W = Rm forallm =0,1,...,50 W € (€x,co) by (1.11) in Example 1.6 (d) if and only
if

m—0o0

m
lim > |wmk| = lim (m +1)Rm = 0 which is (3.21);
k=0

W € (c, c) by Example 1.6 (c) if and only if

oo
supz |wmk| = sup(m + 1)|Rp| < o0, (3.26)
U— m

m—00

m
lim Y wmk = lim (m +1)Ryn exists which is (3.22),
k=0

and

lim wp,r = lim R, exists for every k (3.27)
m—00 m—0oQ

and it is clear that the conditions in (3.26) and (3.27) are redundant;
w € (cg, £oo) if and only if (3.26) holds which is (3.23);
w € (€p, o) by Example 1.6 (a) if and only if

m
sup E |wmk|? = sup(m + 1)|Rm|? < oo which is (3.25).
m k=0 m

Therefore Parts (a) and (b) follow by Remark 3.7, and the remaining parts by Corollary
3.4.
We can improve the result of Example 3.8 (b).

Remark 3.9 We have (£oo(A))P = (c(A))P.
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Proof. First c(A) C £oo(A) implies (£oo(A))? C (c(A))P.
To show the converse inclusion, we assume a € (c(A))A. Since (k + 1)2, € ¢(A),
the series Y- o(k + 1)aj converges. This implies (3.21) by [51, Corollary 3.16], and so
a € (£x(A))? by Example 3.8 (a).

Both conditions are needed in each of the parts of Example 3.21, in general.

Remark 3.10 (a) The condition R € £y does not imply (mRp,)50_o € £, in general.

(b) The condition (mRy,)5°_, € co does not imply R € £, in general.

(¢) The condition R € £y for 1 < q < 0o does not imply (m/9- R,;)%_, € £y, in general.
(d) The condition (m/9. Rm) =0 € foo for 1 < q < oo does not imply R € £, in general.

Proof. (a) We define the sequence a = (ay)32, by

1 :
k=2
G+ 11)2 ( )
ag =94 — k=2 —-1) (F=01,...).
CES )
0 (otherwise)
Then we have 1
, k=2
Rp= ¢ [§+1)7 ( 4) (G=0,1,...),
0 (k # 29)
and we obtain 3 37 o Re| = 3°52,(j + 1)7% < oo, thatis, R € £, but 2/ - R,; =

2 (j+1)"2 = o0 as j — o0, that is, (MBRm)2_g ¢ £oo-
(b) We define the sequence a = (a)2 , by

1 1
ap = (k+2)log(k+2) B (k+3)10g(k+3)

Then we have

fork =0,1,....

1

Ry = fork=0,1,...
b= By logl 17 2 = aysie ey
and we obtain m
li = li =
mgnoo MEm ml—r>noo (m + 2) Iog (m + 2) &

that is, (mRm)se_y € co, but 322 | Ri| = oo, that is, R ¢ /1.
(c) We define the sequence a = (a)32, by

1

— k=20
j+% ( )
=9~ (k=92 —1 (F=0,1;:..).
J+1 ( )
0 (otherwise)
Then we have ]
— (k=27
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and we obtain 337 o|R|? = 3°72,(j +1)77 < oo, that is, R € £g, but 20/9 . R,; =
29/9. (5 + 1)~ = coas j — 0o, thatis, (MRm)Co ¢ Loo-
(d) We define the sequence a = (ax )5, by
11
(k+ 1)1 (k+2)l/a

ai = fork=0,1,....
Then we have Ry, = (k+1)~/% fork=0,1,..., and obtain sup,, mRy, = sup,, m/9-(m+
1)~1/2 < 1, that is, (MBm)T_g € Loo, but 3 5ol Rel? = Y aog(k + 1)~ = oo, that is,
R & ¢,

Now we consider matrix transformations between matrix domains of triangles.

The reduction of the characterisation of (X, Y7) to that of (X, Y) is almost trivial.

Theorem 3.11 Let X and Y be subsets of w. Then we have A € (X,Y7) if and only if
C € (X,Y), where C = TA, that is, cux = 35— tnjaje foralln,k =0,1,....

Proof. First we assume that A € (X,Yr). Then it follows that A, € X7 for all n,

and since T is a triangle, C,, = (T'A), € XP for all n. Let z € X be given. Since
z = Az € Yr and (TA)z = T'(Az) by [70, Theorem 1.4.4 (i)], we obtain Cz = (T'A)z =
T(Az) =Tz e Y. Thisshows C €Y.
To establish the converse implication, we apply what we just showed with A, Y, and T
replaced by C, Y and S. Then C € (X,Y) = (X, (Yr)s) implies SC = S(TA) =
(ST)A = A € (X, Yr) where again we applied [70, Theorem 1.4.4 (i)] for the associativity
of matrix multiplication.

We obtain the characterisations classes of matrix transformations between the matrix
domains of diagonal matrices in arbitrary subsets of w as an immediate consequence of
Theorem 3.11 and Proposition 3.1.

Corollary 3.12 Let u = (ux)}>, and v = (k)32 be sequences with uy, vy # 0 for
k=0,1,...,and X andY be arbitrary subsets of w. Then we have

oo
Ae(u '+ X, v +Y) ifand only if B = (M) € (X,Y).
Uk n,k=0

Proof. We denote by D(v) = (dnk)5y—o the diagonal matrix with the sequence v on
its diagonal. It follows from Theorem 3.11 that A € (u~! x X,v~! x Y) if and only if
C = D(u)A = (vnank)yk=o € (u! x X,Y). Furthermore, we have by Proposition 3.1
Cp, € u™! % X for all n if and only in C,/u = (Cnk/ur)iey € X# for all n. Finally,
since x € u™! » X if and only if y = uxr € X, the statement follows from the fact that
(Clu)z = Cy.

Now we reduce the characterisation of (X7, Y’) to that of (X, Y") and (X, ¢p).

Theorem 3.13 Let X be an F K space with AK, Y be an arbitrary subset of w, T be a
triangle and R = S*. Then A € (X7,Y) ifand only if A € (X,Y) and W™ € (X, )
foralln =0,1,..., where A is the matrix with the rows A,, = RA, forn=0,1,..., and
the triangles W™ are defined by wf:z = Z?im anjSjk. Moreover, if A € (X7,Y) then

Az = A(Tz) forall z € Z = Xr. (3.28)
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Proof. First, we assume A € (Z,Y’). Then A, € Z” for all n, hence W™ € (X, co)
and A, € X7 for all n by Theorem 3.3. Let z € X be given, hence z = Sx € Z. Since
An € ZP implies Apz = A n(T2) = Apz forall n by (3.4), and Az € Y forall z € Z
implies Az = Az € Y, we have A € (X,Y); moreover (3.28) holds.

Conversely, we assume A € (X,Y) and W™ € (X, co) for all . Then we have A, € X?#
for a!l n, and this and W™ € (X, cp) together imply A,, € Z# by Theorem 3.3. Now let
z € Z be given, hence z = T'z € X, and again we have A,z = A,z for all n by (3.4), and
Az € Y forall z € X implies Az = Az € Y. Hence we have A € (X,Y).

Remark 3.14 (a) The statement of Theorem 3.13 also holds for X = {.
(b) Let Y be a linear subspace of w. Then we have A € (cr,Y) if and only if

A€ (co,Y), W™ € (c,c) foralln (3.29)
and
~ oo i
Ae — (a(”))nzo €Y where o™ = "{1_131002 wf,’;‘,ﬂ fora=01...; (3.30)

moreover, if A € (cp,Y) then we have
Az = A(Tz) - ( (”)) for all z € cr where € = hm 1x2. (3.31)

Proof. (a) Part (a) is obvious from Remark 3.7 (a) and the proof of Theorem 3.3.

(b) First we assume A € (cr,Y). Then it follows that A € ((cg)7,Y) and so A €

(co,Y) by Theorem 3.3. Also A, € (cr)? for all n implies W™ € (c,¢) for all n by
Remark 3.7 (b). Furthermore, we obtain (3.30) from (3.18). If A € (c,Y) then (3.31) is
an immediate consequence of (3.18).
Conversely we assume that the conditions in (3.29) and (3.30) are satisfied. Then An =
RA, € cﬁ € £, and W™ € (c,c) together imply A, € (cr)? by Remark 3.7 (b). Let
z € cr be given. Then we have z = T'z € ¢. We put 20 =g — £e where £ = limy_ oo T.
Then 2(©) € ¢; and it follows from (3.18) that

Az = A(Tz) - ¢ (a(”)):io = 42© + ¢ (de - (a)”

n:[)) €F,

since A € (co,Y), Ae — (™) € Y and Y is a linear space.
Now we give an application of Theorem 3.13 and Remarks 3.14 and 3.9 to characterise
the classes (co(A), £eo), (€ (D), €eo) and (c(A), £oo).

Example 3.15 (a) We have A € (co(A),€s) if and only if

oo
sup Z

n k=0

o0
Y anj| < 0 (3.32)

=k

and

sup ( Z ) < oo for all n. (3.33)

.=m
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(b) We have A € (£o(A), €xo) if and only if (3.32) holds and

o0
T&iﬁnm (m z anj) = 0 forall n. (3.34)

j=m
(c) We have (c(A), £oo) = (£oo(A), £eo)-

Proof. The entries of the matrix A are d,, = Z‘;’;k an; for all n and k. Since
(e0,2s0) = (Losilis), and A € (£oo,£so) if and only if sup, >y ldnk| < oo, we get
(3.32) in Parts (a) and (b).

Furthermore the conditions (3.33) and (3.34) come from wm ¢ (co, co) ((3.23)) and
w e (£, c0) ((3.21)), respectively. Now Parts (a) and (b) follow by Theorem 3.13
and Remark 3.14.

(c) First ¢(A) C £oo(A) implies (£oo(A), £oo) T (c(A), £oo)-

Conversely, A € (c(A), ) implies A € (cg(A),£o0) and so (3.32) follows by Part (a).
Furthermore, A, € (c(A))? implies A, € (£so(A))? by Remark 3.9, hence (3.32) and
(3.34) by Part (b). Finally, (3.32) and (3.34) imply A € (€0o(2), £oo)-

Let X and Y be BK spaces and A € (X,Y). Then we define the linear operator L, :
X = Y by La(z) = Az forallz € X and L4 € B(X,Y), since matrix transformations
between BK spaces are continuous by Theorem [70, Theorem 4.2.8].

Theorem 3.16 Let X and Y be BK spaces and X have AK. If A € (Xr,Y) then we

have
ILall =1L 4l (3.35)
where A is the the matrix defined in Theorem 3.13.

Proof. We assume A € (X7,Y). Since X is a BK space, so is Z = Xr with the
norm || - ||z = ||7(-)|| by Theorem 2.8. This also means that z € Bx(0,1) if and only
if 2 = S(z) € Bz(0,1). By [70, Theorem 4.2.8], it follows that Ly € B(Z,Y), and so
L ; € B(X,Y) by Theorem 3.13. We have by (3.28)

ILill= sup [Li@)l= sup |[Az|
z€Bx (0,1 x€Bx(0,1)
= sup |[lAz|= sup [La(2)]l = [|Lall
zeBz(0,1) zeBz(0,1)

which implies (3.35).

Now we give another characterisation for matrix transformations on matrix domains of
triangles which is more convenient than Theorem 3.13 in view of the results in [2, 5] and
[7). We need a two lemmas the first of which is almost trivial.

Lemma 3.17 Let T be a triangle, S be its inverse, and X be-an arbitrary subset of w. Given
any sequence a € w, we write B = (bnk)qy—o for the matrix with

n
> asik (0<k<n)
j=k

0 (k>mn)

bnk:= n———O,l,)

Then we have a € (X1)? if and only if B € (X, ¢).
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Proof. We write Z = X7, and observe that z € Z if and only if z = Tz € X; also
z = Sz. Since

n n k n n
Z aEpzp = Z ar Z SkjTj = Z Z; Z AkSkj
k=0 k=0  j=0 =0  k=j
mn n
= z (z aijk) zr = Bpz forallnand all a € w, (3.36)
k=0 \ j=k

it is an immediate consequence of (3.36) that a € Z#, that is, az € csforall z € Z , if and
only if Bx € cforall z € X, thatis, B € (X, ¢).

We obtain as an immediate consequence of Theorem 3.13 and Lemma 3.17

Lemma 3.18 Let X be an FK space with AK, T be a triangle, S be its inverse and
R = S*. Using the notations of Theorem 3.3 and Lemma 3.17, we have

Be (X,c) (3.37)
if and only if | ;
Ra € XP (3.38)
and
W € (X, co). (3.39)

We also give an alternative characterisation of the class (X7, Y).

Theorem 3.19 Let X be an FK space with AK, T be a triangle, S be its inverse and Y
be an arbitrary subset of w. Then we have A € (Xr,Y) if and only if

Ae(X,Y) (3.40)

and
V™ € (X,¢) for all n, (3.41)

where the matrices A and V(™) (n=0,1,...) are defined as in Theorem 3.13 and by

m
(n) Zk 8kQn;j 0<k< m)
={ iz

Umk_ (m:O,l,...).
0 (k >m)

Proof. First, we assume that (3.40) and (3.41) hold. By Lemma 3.18, (3.41) implies
W™ € (X, ¢q) for all n, and this and (3.40) together imply A € (X7,Y) by Theorem
3,13
Conversely, we assume A € (Xr,Y). Then (3.40) holds, and also W(™ ¢ (X,¢;) by
Theorem 3.13. Furthermore 4, € (X7)# for all n implies V(™ & (X, ¢) for all n by
Lemma 3.18.
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Remark 3.20 (a) The statements of Lemma 3.18 and Theorem 3.19 also hold for X = £
by Remark 3.7 (a) and Lemma 3.17, and by Remark 3.14 (a) and Lemma 3.17, respectively.
(b) By Remark 3.7 (b) and Lemma 3.17, we have B € (c, c) if and only if

a€ (¢1)grand W € (c,c) (3.42)

(c) Let Y be a linear subspace of w. Then it follows by Part (b) and Remark 3.14 (b) that
A € (er,Y) if and only if

~ -~ o0
A€ (co,Y), v e (¢, c) forall n, and Ae — (a(")) o eY.
n=
Corollary 3.21 Let 0 < r < 1. Then we have
(a) (IS, Theorem 4.5]) a € (€})? if and only if
n . ) .
sup Z <J>(r - I)J“kr"’aj < 00 (3.43)
n,k i—k k
§
and
oo . . .
Z (i) (r—1)J~*p=3 a; converges for every k; (3.44)
j=k
(b) ([5, Theorem 4.5]) a € (e;)ﬁ forl <p<ooandq=p/(p—1)ifand only if (3.44)
n n j q
su r—1)"krIg; < o0; 3.45
np kz=0 ]gk (k)( Yo aj o ( )

(c) ([2, Theorem 4.2]) a € (e})? if and only if (3.44) and

sup (Z Z (i) (r— l)j“kr“jaj ) < o0; (3.46)
n —k ;

k=0 |j

(d) ([2, Theorem 4.51) a € (e7)? if and only if (3.44), (3.46) and

n n o
nli’ngoz Z (‘;) (r — 1) ~*r~Ja; exists; (3.47)
k=0 j=k
(e) a € (el,)? if and only if

315

k
(n) (r — 1) "r%a,| < 0 (3.48)
n=0 |k=n
and
: | % k k-n_—k
n}gnooz > (n)(r—l) r~Fay| = 0. (3.49)
n=0 |k=m
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Proof. (a)—(d) By (2.15), the matrix B of Lemma 3.17 is given by

n .
bk = Z (i) (r — 1)7Fr=dq; for all n and k.
=k
Applying Theorem Theorem 3.19 and Remark 3.20 we obtain Part (a)~(d) from ([70, Ex-
ample 8.4.1A; Example 8.4.5D; Example 8.4.5A].

(e) We apply Theorem 3.3 and Remark 3.7. By (2.15), the matrices R and W of Theorem
3.3 are given by

. J GiE—1E R (2w -
Tnk—{o (ng<n) (ﬂ—O,l,...).
and -
Wk = jgr:n (i) r- l)j—kr—jaj (@i %5m) o = 0 1 < )
0 (k >m)

Therefore the condition R(a) € B, = ¢, is (3.48). Finally we have W € (£, cg) by [65,
21 (21.1)] if and only if (3.49) holds.

4 Sets of partial sums of sequences

He we consider the special case of matrix domains of the matrix X of the sum operator in
certain sequence spaces.
It is useful to have a few results on multiplier spaces.

Proposition 4.1 Let X, X3, Y, Y1 C w. Then we have

(i) Y CYiimplies M(X,Y)C M(X,Y;)
(ii) X C X, implies M(X;,Y) Cc M(X,Y)
(iii) X Cc M(M(X,Y),Y)
Proof. (i), (i) Parts (i) and (ii) are trivial.

(i) Ifz € X,thenazx € Y foralla € M(X,Y),andsoz € M(M(X,Y),Y).
(iv) We replace X by M(X,Y') in (iii) to obtain

MX,)Y)C M(M(M(X,Y),Y),Y).
Conversely we have X C M(M(X,Y)) by (iii), and so by (ii)
MMM(X,Y),Y)Y)c M(X,Y).
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Example 4.2 We have (i) M (co, ¢) = £eo; (i) M(c,c) = ¢; (iii) M (£, €) = cp.

Proof. (i) If a € £, then ax € cfor all z € ¢y, and s0 £ C M(co, ).
Conversely, we assume a ¢ £o.. Then there is a subsequence ay;) of the sequence a such
that |ag;)| > j + Lforall j =0,1,.... We define the sequence x by

SO
T =4 G4) (=01,...) 4.1)
0 (k # k(4))
Then we have z € c¢o and ag(;)Tr(j) = (=1) forall j = 0,1,..., hence az & c. This

shows M (cp,¢) C €.

(ii) If a € ¢, then az € cforall z € ¢, and so ¢ C M(c,c).
Conversely, we assume a € M(c, c) and it follows that ax € c for all z € c, in particular,
for z = e € cand ae = a € c. This shows M(c,c) C c.

(iii) If @ € cg then az € cforall z € £y, and s0 ¢g C M (Lo, Co).
Conversely, we assume a ¢ co. Then there are a real b > 0 and a subsequence (ay(j))32
of the sequence a such that |ay(;)| > b forall j = 0,1,.... We define the sequence z
as in (4.1). Then we have T € £o and ag( ;) = (—1)7 forall j = 0,1,..., hence
a & M (€, c). This shows M (£s, c) = cp.

The matrix A" of the forward difference operator is defined by

N =, ~ 2 = 0,1, o)

We have AT = (21)t, where £71)! is the transpose of £~1.

First we consider the matrix domains of ¥ in the classical sequence spaces, that is
bs = (€x)x, 8 = cx, (€p)s: (Example 2.3), and csp = (cp)x. We already know that the
sets bs and cs are BK spaces with ||z||ys = sup,, | > _, T/, and that cs has AK (Example
1.1 (d)), and (6,)x is a BK space with ||z]lg,)s = (X0l 5o z[P)/? (Example 2.9
(b)); every sequence x = (zx)3, € (¢p)x has a unique representation

T = i (Xn: mk) (6(") - e(n+1)) : 4.2)
k=0

It is clear from Theorems 2.8 and 2.11 that csg is a BK space with || - ||3s and that esq
is a closed subspace of c¢s which in turn is a closed subspace of bs. It easily follows from
Corollary 2.16 (a) that every sequence z = (xx)7o, € cSo has a unique representation
(4.2); obviously the set ¢ is not contained in csg.

Let L = (Enk)ffk:() be the matrix with £, ,_1 = l and £y, = O for k # 0 (n =
0,1,...),hence Lpz = x,_; forall z € w and all n.

Example 4.3 (a) Obviously the sets €, co and €, (1 < p < o0) are normal, but c is not
normal.

(b) Obviously we have X, C X for each of the classical sequence spaces £, (1 < p < oc),
cp, ¢ and £o.
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In general, however, £(p) does not contain (£(p))r. To see this, let the sequences p =
(Pr)52p and & = (z1,)52., be defined by

2 (k =2m) 0 (k = 2m)
PEEN1 (k=oma) TIT A m2ma)
- m+1 N
Jorm =0,1,.... Thenwe have 3 32 o| Ly z|Px = 30°_((m~+1)"% < coand 32 |z [Pk =

m—o(m + 1)1 = oo, hence x € (¢(p))1 \ £(p).

We start with a result for the multiplier space of the matrix domain X7 in a subset Y of
w that satisfies Y C Y7},

Theorem 4.4 ([43, Theorem 2.3]) Let X be a subset of w, Y C w be a linear space and
YCYL Weput Zy = (M(X,Y))a+, Zo = M(X,YA) and Z3 = M(X,Y). Then we
have

Z1NZy C M(Xg,Y); 4.3)

if, in addition, X and 'Y are normal and Y, C Y then
M(Xs,Y)=2,n 2. (4.4)

Proof. We write Z = Xy and observe that z € Z if and only if z = £z € X:
furthermore, we have z = Az. We can write

az = L(zA%a) + A(az). (4.5)

First we assume a € Z; N Z3. Let 2 € Z be given. Thenz = £z € X and a € Z, imply
zATa € Y C Yy, thatis, L(xA%a) € Y. Furthermore a € Z, implies az € Y, that is
A(azx) € Y. Since Y is a linear space, the inclusion in (4.3) follows from (4.5).
Now we show that ¥ C Y7, implies

73 C Zo. (4.6)

Leta € Z3 and 2 € X be given. Then we have az € Y C Y, hence L(az) € Y and so
A(az) = ar—L(azx) € Y, since Y is a linear space. This shows that a € M(X,YA) = 2,.
Now we assume that X and Y are normal and Y, C Y, and a € M(Z,Y). Letz € X
be given. Then z = Az € Z and aAz = az € Y. Since X is normal, it follows that
# € X where T, = (—1)*|zy| for all k, hence 7 = A% € Z and a3 = (=D*a,(|zx| +
|Zn-11))72o € Y. Furthermore, |agzy| < |agZx| for all k implies az € Y, since ¥ is
normal. This shows a € Z3 which implies a € Z, by (4.6), that is, A(az) € Y. Therefore
we have L(zA%a) € Y by (4.5), since Y is a linear space, and so zA*a € Y, C Y, that
is a € Zy. This shows M (Z,Y) C Z; N Z3. Now this and the inclusions in (4.6) and (4.3)
together yield (4.4).

Since ¢, is a normal linear space with (¢1);, = ¢;, we immediately obtain the following
result for the a—duals of the matrix domains of X.

Corollary 4.5 ([43, Corollary 2.1]) We have for any subset X of w

(X%) 04 N XY C (X5)®. 4.7)
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If X is normal then we have
(Xg)® = (X¥)ar N X~ (4.8)
Remark 4.6 If X is normal with X C X, then (X3)® = X

Proof. We show that X C X, implies X* C (X®)a+. Then the statement of the
remark follows from (4.7). Leta € X and z € X be given. Then ax € ¢, and aLx € ¢y,
since X C X, and from |L,(zA%a)| < |Lnp(az)|+|(aLz),| (n = 0,1,...), we conclude
L(zA*a) € ¢1,hence zAta € ¢,andso a € (X¥)a+.

Now we give the a—duals of Xy, for the classical sequence spaces.

Example 4.7 We have bs® = cs* = (cs9)® = €1, ({p))* = €4 (1 < p < 00; ¢ =
p/(p—1)) and ((41)5)* = Loo.

Proof. Since the ¢o,, co and £, (1 < p < 00) are normal by Example 4.3 (a), and
obviously X C X for these sets, we obtain the statements for the a—duals, with the
exception of cs®, from Remark 4.6. Finally, csp C cs C bs implies £; = bs® C cs* C
(csg)® = £y, that is cs® = {.

Applying Theorem 4.4, we also obtain a result for the 3— and vy—duals of the matrix
domains of ¥.

Corollary 4.8 ([43, Corollary 2.2]) Let X be any subset of w. We put Z t = (X1)a+ for
t=B,7, Z8 = M(X,¢), Z] = M(X,lw) and Z3 = M(z, co). Then we have

Zinzl c (xg)t fort = B,7. (4.9)
If, in addition, X is normal, then we have
(X2)f = 2PN Zyand (Xz) =20 N 7], (4.10)
and ifa € (Xx)P, then

oo o0
Zakzk — Z(A;a)(zkz)for all z € Xx. 4.11)
k=0 k=0

Proof. We put Z = Xy, YIB =08, Y3 = B, YQB = cand Y) = {u. Since bs and
cs are linear spaces with ¢s C c¢sy, and bs = bsy, and since csp = ¢ and bsa = (o, (4.3)
implies (Xa+ )t N M(X, (Y])a) = (XD)a+ NM(X,Y,) = ZI n 2} ¢ Z for t = B,~.
Now let X be normal and @ € Z!. We put ¥;' = ¢y and ¥,/ = £.. First a € Z' implies

az € f’; for all z € Z. Since 172T is normal, we conclude a € M (X, f";) by (4.3). We
obtain from (4.5) with x = Xz

Yn(az) = Zp_1(zA%a) + apzy (n=0,1,...). (4.12)

Now X(az) € Y; and az € Y; together imply zA*a € Yfr for all z € X, that is,
a€ M(X,Y{)a+ = (X1)a+ = Z]. This shows

ZPcZPnzzand 2" c 27 n Z]. (4.13)
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Since Z3 C Zg by Proposition 4.1 (i), the identities in (4.10) follow from (4.13) and (4.9).
Finally (4.12) and (4.10) together imply (4.11).

Now we determine the - and <y—duals of the matrix domains of ¥ in the classical
sequence spaces. We write bug = bvNg and bve, = (foo ) A.

We need the following

Lemma 4.9 ([43, Lemma3.1]) We have (i) M (£, co) = co, (ii) M(co,c0) = Loo, (iii)
M(fp,co) =l (1<p< 00), (iv) M(fpaeoo) =ls (1 <p < 00)and(v) M(co,l) =
L.

Proof. (i) We have M (£, co) C M (oo, c) = co by Proposition 4.1 (i) and Example
4.2 (iii). To prove the converse inclusion, we assume a & cg. Then there are a positive
constant ¢ and a subsequence (ay(j))32, of the sequence a such that lak)| > c for all
J- We define the sequence z = (zk)52, by x(;) = sgn(a(;)) and xy = 0 for k # k(j)
(7 =0,1,...). Then we have x € £ and Ty (j)ak(j) = |ag()| > ¢ > 0forallj =0,1,...,
that is, ax & co and s0 a & M (Lo, co).

(i) We have M (co, co) C M(co,c) = Lo by Proposition 4.1 (i) and Example 4.2 (i).
Conversely, if a € £, then ax € co for all z € ¢y, that is a € M(co, cp).

(iii) We have M(€p,co) D M(co,c0) = €o by Proposition 4.1 (ii) and Part (ii).
To prove the converse inclusion, we assume that a & ¢,. Then there is a subsequence
(a(j))52o of the sequence a such that |a ;)| > (j + 1) for all j = 0,1,.... We define
the sequence z by zy;) = a;é.) and zy = 0 for k # k(j) ( = 0,1,...). Then we have
z € £p (1 < p < oo) and ag(j)zy(j) = 1 forall j, that is az & co, and so a ¢ My, o).

(iv) We have M (€, £oo) DO M(€p,co) = o for 1 < p < 00 by Proposition 4.1 (i)
and Part (ii). Obviously {o, C M (€s,€s). Conversely we assume a ¢ . Then there
is a subsequence (ay(j))72, of the sequence a such that lag()| > 27 for j = 0,1,.... We
define the sequence x by zy(;) = |ak(j)]‘1/2 and rp, = 0 for k # k(j) ( = 0,1,...).
Then we have z € £, for 1 < p < oo, but |ayjyzk(j)| = |ak(]-)|1/2 > (v/2)7 for all j, that
is, ar & £eo, and so a & M (£p, £oo).

(V) We have oo C M (£eo,loo) C M(co,loo) C M(€1,£00) = £oo by Proposition 4.1
(ii) and Part (iv),

Corollary 4.10 We have

(a) (i) bsP=bvg=bvNey (ii) csP = (cs0)? = by,
(iii)  ((6)5)’ = bvg Nl (1 <p < 00; ¢=p/(p— 1),
(iv)  ((t1)g)? = buso,

(b) (i) bs? =cs" = (cs9)? =bv, (ii) (b1)g)” = b,
(i) ((fp)s) =bvgNls (1<p<o0; g=p/(p— 1).

Proof. Since all the classical sequence spaces are normal, with the exception of c,
we can apply the identities in (4.10) and of Corollary 4.8 to determine the 3 and ~y—duals,
respectively.

(a) (1) We obtain from the first part of (4.10) and Lemma 4.9 (i) that bs® = (if;) A+ N
]\/[(foo, Co) = (fl)A-i- Ncy = bvo.

(ii) We obtain from first part of (4.10) and Lemma 4.9 (ii) that (csg)? = (cg)A+ NM (co, co) =
€ar Nlog = bv N lo. Butif z € bu, then there is a constant M > 0 such that lzn| £
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ko lzk — Tp—1| < M for all n, that is, z € £s. Thus we have bv C €, and conse-
quently (cso)? = bv. -

It follows from (4.9), Proposition 4.1 (i) and Example 4.2 (ii) that csP O (P)arNM(c,lxo)
5 bu N M(c,c) = buNe. Butifz € bv then |xm — Zn| < ki1 [Tk — 1)1 for all
n > mand so z € c. Thus we have bv C ¢, and consequently ¢s? D bv. On the other hand
cso C cs implies ¢s? C (cso)?, and (cs0)? = bu by Part (ii). So we also have csP c bv.
(iii), (iv) We obtain from the first part of (4.10) that ((Ep);;)ﬁ = (eﬁ)m N M (€, co). If
1 < p < oo then (Eg )a+ = bug and if p = 1 then (E? ) = bueo. Furthermore it follows from
Lemma 4.9 (ii) that M (£p, co) = £oo for 1 < p < 00.

(b) (i) It follows by the second part of (4.10) that bs” = (£3) a+ N M (Lo, £oo). Fur-
thermore, since M (£oo, £oo) = oo by Lemma 4.9 (iv), we have bs” = bvNls = bu. It also
follows by Lemma 4.9 (v) that bu = bs” C (cso)” = (cg)a+ NM(co,boo) = bvNLy = bu.
Finally csq C cs C bs implies bv = bs” C ¢s” C (cso)” = bv.

(ii), (iii) Since £ = e,‘? and M (£, co) = M (£p, £p) for 1 < p < oo by Lemma 4.9 (iii) and
(iv), the statements follow from the second part of (4.10) and Parts (a) (iv) and (iii).

Remark 4.11 (a) The results in Corollary 4.10 (a) (i), (ii) and (b) (i) can be found in [70,
Theorem 7.3.7 (v), (vi) and (vii)].

(b) Let 1 < p < o0, q = p/(p — 1). Then we neither have bvy C Lo nor Lo C bug, in
general.

Proof. (b) We have ((—1)%)22 € £oo \ buy.
To show the second part, we observe that an application of the mean value theorem yields
for0<a < landallt >0, (t+1)* —t* < at® ! <>l Weputa = (¢ —1)/2g
and z, = (k + 1)®. Then we have 0 < o < 1 and |z — z41|? < (k + 1)(e-be =
(k + 1)~(@t1)/2 for all k, and so = € buy, since ¢ > 1. On the other hand we have z & Lo,
since a > 0.

Now we reduce the characterisation of the classes (X, Y") to that of (X,Y’) and the
multiplier M (X, co).

Theorem 4.12 ([43, Theorem 2.6 (a)]) Let X and Y be subsets of w and X be normal.
Then we have A € (Xx,Y) if and only if

Ap € M(X,cp) foralln=0,1,... 4.14)

and
B e (X,Y) where B, = AT A, foralln =0,1,...; (4.15)

furthermore if A € (Xx,Y), then
Apz = By(Xz) forallz € Z = Xx. (4.16)

Proof. We write Z = Xx.
First we assume A € (Z,Y). Then it follows that A, € Z8 for all n, and so A, €
M (X, co) for all n by (4.10), that is, (4.14) holds. Let z € X be given. Thenz = Az € Z,
x = ¥z, and we conclude from (4.11) that

B,z = Apzforalln =0,1,..., 4.17)
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and Az € Y implies Bz € Y. Thus we have B ¢ (X,Y), that is (4.15) holds.
Conversely, we assume that the conditions in (4.14) and (4.15) are satisfied. It follows from
(4.15) that B, = A*An € XP for all n, hence A, € (XP)a+ for all n. This and the
condition in (4.14) together imply A,, € ZP for all n by (4.10), and again (4.17) holds by
(4.11). Therefore Az € Y for all z € Z. This shows A € (X,Y).

Now we apply Theorem 4.12 and Corollary 4.10 to give the characterisations of matrix
transformations from the matrix domains of ¥ in the classical sequence spaces into the
classical sequence spaces.

Theorem 4.13 Ler 1 < p,r < 00, g = p/(p—1)and s = r/(r —1). Then the necessary
and sufficient conditions for A € (X,Y) can be read Jfrom the following table:

F;oom bs | cso | es | (1)x (b)s
Coss 1. 1 2. | & 4. 5.
co 6. | 7. | 8. 9. 10.
c 11. | 12. | 13. | 14. 15.
2 16. | 17. | 18. | 19. 20.
4 21. | 22. | 23. | 24. | unknown
where
1. (1.1),(1.2) where (1.1) limy_,o0 api = 0 for alln
(1.2) supy, 3202 plank — an ki1] < 0o
2.3 (1.2)
(4.1), (4.2) where
(4.1) supp,  [ank — ap 1] < 00
(4.2) supy, |ank| < oo foralln
5. (4.2), (5.1) where
(5.1) supp 3542 olank — anp41]9 < 00
6. (1.1), (6.1) where
(6.1) Timpo0 3722 glank — an k| = 0
7. (1.2),(7.1) where
(7.1) limp_yo0(ans — ank+1) = 0 forall k
8. (1.2), (8.1) where (8.1) lim,_ oy an; = 0 forall k
9. (4.1), (4.2), (7.1)

10. (4.1), (5.1),(7.1)

11. (1.1),(11.1), (11.2) where
(11.1) 322 lank — n k+1| converges uniformly in n
(11.2) limy yo0(ap: — Ank+1) = oy, exists for all k

12, (1.2), (11.2)
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13. (1.2)(13.1) where
(13.1) limy_, o0 ank = Qi exists for all k

14. (4.1), (4.2), (11.2)
15. (4.2),(5.1), (11.2)

16. (1.1),(16.1) where
(16.1)  sup 320l D pen(@nk — ang1)| < 00
e
17. (16.1)
18. (16.1)
19. (4.2),(19.1) where
(19.1) supy Y oo lank — @n k1| < 00
20. (4.2),(20.1) where
(20.0)  sup 3ol Pinen(ank = an41)|? < 00
C No
N finite
21. (1.1),(21.1) where
(21.1)  sup 35070 |3 kek ank — @nk+1]” < 00
K C Ny
K finite
22. (21.1)
23. (21.1)
24. (4.2),(23.1) where

(23.1) supy Eff’:o |ank — an,lc+1|r <o

Proof. Since £, co and £, (1 < p < o00) are normal, we apply Theorem 4.12 and
Lemma 4.9 in all cases except for 3., 8., 13., 18. and 23, using the well-known results for
the characterisations of ({so, £oo) and (co, c) in [70, Example 8.4.5A] or [65, (1.1) in 1.],
of (¢1,£) in [70, Example 8.4.1A] or [65, (6.1) in 6.], of (¢,,4) for 1 < p < oo in
[70, Example 8.4.5D] or [65, (5.1) in 5.], of (£s0, ¢o) in [70, Theorem 1.7.19] or [65, (21.1)
in 21.], of (cg, co) in [70, Example 8.4.5A] or [65, (1.1), (11.2) in 23:], of (¢1,cp) in [70,
Example 8.4.1A] or [65, (6.2), (11.2) in 28.], of (£,,¢cp) for 1 < p < oo in [70, Example
8.4.5D] or [65, (5.1), (11.2) in 27.], of (400, ¢) in [70, Theorem 1.17.8] or [65, (10.1), (10.4)
in 10.], of (co, ¢) in [70, Example 8.4.5A] or [65, (1.1), (10.1) in 12], of (43, ¢) in [70, Ex-
ample 8.4.1A] or [65, (6.1), (10.1)], of (£p,c) for 1 < p < oo in [70, Example 8.4.5D] or
[65, (5.1), (10.1) in 16.], of (£, ¢1) and (co, £1) in [70, Example 8.4.9A] or [65, (72.2) in
72.], of (1, ¢1) in [70, Example 8.4.1D] or [65, (77.1) in 77.], of (¢p,4;) for 1 < p < o0
in [70, Example 8.4.8B] or [65, (76.1) in 76.], of (£co,4r) or (co,4y) for 1 < r < 0o in
[70, Example 8.4.8A] or [65, (63.1) in 63.], and finally of (¢;,4,) for 1 < r < oo in [70,
Example 8.4.1D, p. 126] or [65, (68.1) in 68.]. Condition (4.14) in Theorem 4.12 yields
(1.1)in 1., 6., 11., 16. and 21. by Lemma 4.9 (i), and (4.1) in 4., 5., 9., 10., 14., 15., 19., 20.
and 24. by Lemma 4.9 (iii); Condition (4.1) is redundant in 2., 7., 12., 17. and 22. because
of (1.2), (7.1), (1.2), (16.1) and (21.1), respectively.

The remaining conditions for the classes (Xy,Y') in those parts follow from (4.15) in The-
orem 4.12 and the corresponding conditions for the classes (X,Y') with a, replaced by
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Ank — An,k+1-

3. Since cs has AK by Example 1.1 (d), we apply [70, Theorem 8.3.9] with X = cs,
X? = bv by Corollary 4.10 (a) (ii), Z = ¢; and Y = Z# = ¢ to obtain A € (ca,de) if
and only if AT € € (41,bv). Now (1.2) follows from (1.1) if we replace a, by ank — an k41
by Theorem 3.11; 8. and 13. follow from 3. and [70, 8.3.6].

18. We apply [70, Theorem 8.3.9] with X = ¢s, X = bv, Z = cpand Y = Z8 = 4.
Then (16.1) in 18. follows from [70, 8.4.7A] and Theorem 3.11.

Similarly 24. follows by applying [70, Theorem 8.3.9] with X = cs, X# = bv, Z = £, and
Y = Z8 = ¢, from from [70, 8.4.10] and Theorem 3.11.

Remark 4.14 Some of the results of Theorem 4.4 can be found in [70] and [65]. The char-
acterisations of Part 1. of Theorem 4.13 are given in [70, Example 8.4.5C] or [65, (2.1),
(2.2)in 2.], of 2. in [65, (2.2) in 4. ], of 3. in [70, Example 8.4.5B] or [65, (3.2) in 3.],
of 6. in [70, Example 8.5.6E] or [65, (2.1), (24.1) in 24.], of 7. in [65, (2.2), (26.1) in
26.], of 8. in [70, Example 8.4.5B] or [65, (2.2), (11.2) in 25.], of 11. in [70, Example
8.4.6D] or [65, (2.1), (13.1), (13.4) in 13.], of 12. in [65, (2.2), (13.1) in 15.], of 13. in
[70, Example 8.4.5B] or [65, (2.2), (10.1), in 14.], of 16. in [70, Example 8.4.9B, p. 132]
or [65, (2.2)(73.1) in 73.], of 17. in [65, (73.1) in 75. ], of 18. in [70, Example 8.5.5A]
or [65, (74.1) in 74.], of 2. in [70, Example 8.5.6C] or [65, (2.1), (64.1) in 64.], of 22. in
[65, (64.1), in 66.], and of 23. in [70, Example 8.5.5A] or [65, (65.1) in 65].

A pair of alternative conditions in are also given [65, 3.] for the class (c8,loo) namely (2.2)
which is (1.1) in 1. and

sup
n

The conditions for the class (bs, 1) in [65, 73.] are (2.2) which is (1.1) in 1. and

< o0. (3.1)

lim ank
k—o0

sup Z Z(ank — Qpk+1)| > 00. (73.1)
NKCNo |neN kek

The condition for the class (cso, 1) is (73.1) in [65, 75.] and that for (cs, €y) in [65, 74.]
is

sup |3 D" (ank — Gn—1)| > o0 (74.1)
N‘I\ll(ﬁncileND neN keK

Remark 4.15 Applying Theorem 3.11, we obtain the characterisations of the classes (X, Yy,)
for the classical sequence spaces by replacing ay, by ang — an—1 in the corresponding
conditions in Theorem 4.13. In particular, we obtain

£ron bs | csg | cs
To
bs 1. 2. |3
csg 4.1 5. |6
cs 7.1 8 |9
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where
1. (1.1), (1.2) where
(1.1) limg_ye0 ank = 0 for every k
(1.2) supp Yopeol 2oj=0(@jk — ajk+1)| < 00
2.3. (1.2)
4., (1.1), (4.1) where
(4.1) limp_0 Zzio! Z?:o(ajk - aj,k+1)‘ =0
5.,6. (1.2),(5.1) where

(5.1) 32 gank =0 for every k

7. (1.1), (7.1), (7.2) where
(7.1) >_prol 2oi—o(ajk — ajk+1)| converges uniformly in n
(7.2) 3°2° o(ank — @n+1) converges for every k
(1.2),(7.2)

9. (1.2), (9.1) where
(9.1) S.°°  ank converges for every k

Condition (1.1) would be expected to be limy_, Z?:o ajr = 0 for all n, but it is clear
that this reduces to (1.1).
The results above can be found in [70] and [65]. The characterisations of Part 1. of
Theorem 4.13 are given in [70, Example 8.4.6C] or [65, (2.1), (33.1) in 33.], of 2. in [65,
(33.1) in 35.], of 3. in [70, Example 8.4.6B] or [65, (34.1) in 34.], of 4. in [65, (55.1) in
55.], of 5. in [65, (33.1), (57.1) in 57.], of 6. in [65, (33.1), (42.2) in 56.], of 7. in [70,
Examplé 8.5.9], of 8. in [65, (33.1), (44.4) in 46.], and of 9. in [70, Example 8.4.6B] or
[65, (34.2), (41.1) in 45.].
Pairs of alternative conditions are given for the class (cs,bs) in [65, 34.], namely (33.1)
which is 1. (1.2) and
n

s:p kli’rggjz_:oav,k < 00, (34.1)

the class (csg, csg) in [65, 57.], namely (33.1) and

mn
Jim Zo(ajk — ajk-1) = 0 for every k, (57.1)
J:

which clearly is equivalent to 5. (5.1), and an alternative condition is given for the class
(bs, cs) in [70, Example 8.5.9, p.136], namely

oo

oo
n]i)n;oz Z(“ﬂc —a;jk+1)| =0.

k=0 |j=n

Remark 4.16 The results of this section can easily be extended by Corollary 3.12 to the
characterisations of matrix transformations between spaces of generalised weighted means
given in [60, 67, 51, 43, 48, 54, 56, 56, 57, 25]
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Abstract

In this paper, we propose a method for computing the equilibrium structures and
various physical parameters of differentially rotating stars. The method utilizes the
averaging approach of Kippenhahn and Thomas and concepts of Roche-equipotential
to incorporate the effect of differential rotation on the rotationally distorted stellar
models. The inner structure and various physical parameters of differentially rotat-
ing polytropic models with the polytropic indices 2.0, 2.5, 3.0 and 3.25 have been
computed for different polytropic models of a star.

1 Introduction

Observations show that many of the observed stars are known to be rotating stars. For
many of these rotating stars, rotation is not a solid body rotation but a differential rotation
in which different parts of the stars are rotating with different angular velocities (see, for
instance, Welty et al. [17]). In the case of a rotating star it is, but natural to expect that rota-
tion will distort its otherwise spherical-symmetric configuration. Rotational forces are also
expected to influence the inner structure and dynamical stability of such stars. However,

Keywords and phrases : Differential-rotation, Polytropes, Roche-equipotential, Equilibrium-structure,
Structure-parameters.
AMS Subject Classification : 70F99.
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the mathematical problem of determining the effects of rotation on the equilibrium struc-
ture and stability of realistic models of the stars is quite complex. Approximate methods
have, therefore, been often used in literature to study such problem. The structural proper-
ties of polytropic stars mainly depend on the density distribution in the star and the ratio of
specific heat of the material of star. The polytropic models for different indices "N’ afford
a convenient series of models for the study of equilibrium structural properties.

Initially the theory of distorted polytropes to study such problems was developed by
Chandrasekhar [1]. Since then several investigators such as Kopal [10] and Geroyannis
and Valvi [4] have addressed to this problem by studying the effects of solid body rotation
on the equilibrium structures of the polytropic models of the stars. Mohan et al. [14] as-
sumed these to be members of binary system and incorporated the effects of tidal forces as
well. Authors such as Haris and Clement [6], Galli [3] and Mohan et al. [15,16] have also
discussed the problems of differentially rotating stars. Lal et al. [11, 12] have used this
approach to obtain the equilibrium structures of differentially rotating and tidally distorted
white dwarf stellar models as well as polytropic models of stars. Lal et al. [13] also studied
the effects of Coriolis force on the equilibrium structure of rotating stars and stars in binary
system. However, in all cases they have used some general laws of differential rotation;
therefore, the problem is still far from having been satisfactorily answered.

In this paper, we have tried to investigate the general problem of determining the equi-
librium structures of a class of differentially rotating polytropic models of stars, with a
specific law of differential rotation introduced by Clement [2]. The law has been assumed
of the type w(s) = (X0, aie‘bisﬂ)%, where w(s) is the angular velocity of rotation, s is
a non-dimensional cylindrical coordinate and a;, b; are some constants. Since then several
authors such as Geroyannis and Antonakopoulas [5] have used it to study the structural dis-
tortion of differentially rotating polytropic stars.

The present paper is organized as follows: In section 2, we present the modified Roche-
equipotential surfaces. The system of differential equations governing the equilibrium
structures of differentially rotating polytropic models of a star has been given in section
3. The mathematical expression determining the equipotential surface, volume, surface
area, gravity etc, are also derived in this section. Finally, in section 4, numerical results
thus obtained have been analyzed to draw some conclusions of practical significance.

2 Roche-equipotential of differentially rotating stars

In this section, we investigate the problems of equilibrium structure of a polytropic model
rotating differentially according to the law as explained in the introduction. This approach
uses the averaging technique of Kippenhahn and Thomas [8] to account for the distortional
effects caused by rotation and tidal forces. For computing the distortional effects, the ac-
tual equipotential surfaces of star are approximated by Roche-equipotentials and Kopal’s
[9] results on the Roche-equipotentials are then used to express the problem in a convenient
form for numerical work. In order to introduce the concept of Roche equipotential, we as-
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sume a component of mass M and radius R, for rotating configuration. The total potential
Q of a fluid element is given by dQ2 = dV + %w2d(32). €))

This equation is known as the equation of hydrostatic equlhbnum Q is the total poten-
tial of configuration while V/ is the gravitational potential. On using w 2(8) = 211 a;e~bis®
equation (1) reduces to

=il f: 8 (1 — ¢~hr1-47)) 2)

where 9 = G M is non-radial dimensional parameter.

Kopal [9] developed the Roche-equipotential assuming )=constant. On assuming this
approach of analysis, we develop the relation for co-ordinates (7,6, ¢) of an element of

Roche-equipotential as

1 2 4 152 8
T¢:T0R{1+—.AT8————BT05+ —Cr +—DTg—§—1——5]~'7'8 <405g—9—45 )13

105
212
+ (5 7-[+——1575.7) }

where A = Eal, B= Zazbl, €= Z Za,a], D= Zazbl, F = Z Z abiaj,

i= i=1j=1 i=1j=

3 3 8
G=73 3 3 aiajo, H=ZZaibiaj, J = EZa,baJ iy

i=1j=1k=1 i=1j=1 i=1j=

3 Equilibrium structures of differentially rotating polytropic
models of star

For a polytropic model, relations Py, = Pc¢9 ! and Py = Pcw% give pressure and den-
sity at any arbitrary point, where P, and p,y are respectively the values of Py and py, at
the centre and 6,, being some average of § on the equipotential surface 1) = constant. In the
case of polytropic models, the following equations

M,

Y — D3p,¢)‘r§ fl,
i o “)
T = ~oavf

which govern the hydrostahc equilibrium structure of rotationally distorted gaseous spheres
can be combined together as:

1 d [713dby R
o | A = 5
T8 dro <f2 d7'0> Qfl ¥ 5)
N +1)P,
where a? = LZL‘FG—)w_mﬁ and o is known as the dimension of length, f; and fs are distor-
TG p?
tion parameters, which are:
16 24 8 32
= 1+ 2 - —B — — D7l — — — D -
fl + ATO + CO + 21 To 7]:0 <315 G)

832, , 208
(?E 105 “7) -
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1 8 64 8986 8 8
> = 14+—C 6 _°9 8 e ) 9 = 2 10 oy 6)
Jo =1 5CT0— 155 77 (189 2835g) Tttt aEd ) ot ©
The boundary conditions P, and py must be maximum at the centre and zero at the
free surface. We should therefore, have 6 maximum at the centre and zero at the free sur-

face. These lead to the conditions 0y = 1and Z—i‘g = 0 at the centre and 0y = 0 at the free
surface. Thus the boundary conditions which satisfy the equation (5) are: At the centre:
0= 0,0y =1, ‘%’;— = 0 and at the surface: 75 = Tos; By = 0, 7o being the value of Tp at
the free surface.

It may be noted that the approximation of the equipotential surfaces by Roche-
equipotentials has not basically altered the structure of polytropic model because in the
absence of any distortions (f; = f2 = 1), the equation (5) reduces to the usual Lane-
Emden equation governing the equilibrium structure of an undistorted polytropic model of
index NV in non-dimensional form and not to the equation governing the equilibrium struc-
ture of an undistorted model.

If we set 7, = &, then ¢ will be a non-dimensional variable defined for equitant
spherical model. It corresponds to the usual Emden variable £ of Lane-Emden equation for
an undistorted spherical polytropic model. But, if we set R = a&y, (where &, is the value
of £ at the outermost surface of the undistorted polytropic model) in equation (5), the dif-
ferential equation governing the equilibrium structure of a differentially rotating polytropic
star can be written in non-dimensional form as

i (48e) = “e2oy i, 0
1 8 64 8986
—72|1_1p 6, O -8 0N 9

Where A = TO [1 15CT0 -+ 105.FT0 -+ (189D "—2835g) 7'0

8 8 10

(3157"["‘%‘7)7_0 + ,J’
. 16 24 . 8 44 32 32

B = QAT — =B+ L2086 O 7 Mg Rl 9

1+ 2Am; 1537'0 + 3 Cry + 21D7‘ - Fy 31573 3 G\
(B2 28N

315" 1057 )70 ’

where the terms up to fourth order of smallness in rotational parameters aj, as, ay and
by, bz, bs and up to order 74° in 7, are retained.

With the help of (3) we can obtain volume and surface enclosed by a differentially
rotating polytropic stellar model and given by:

4 . 2 4 12 8 8 ¢
Vo= grriiot) |+ drd — 2o ot Aprg s (37 556)

+ (127{4-%..7) Tos +“'},

N 2 . 4 14 4 16 ¢
ey = 47rTo“S(a§u)2 [1 + ;3.,47'33 - EBTOSS + —=C78 + iDﬂ - (-2—17 - —()Q> 7'5;

15 % " 105 o8

352 88 10
+(%H+§1-5L7>Tos+"'], (8)
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Also the polar and equatorial radius R, and R, are given by

Rp = Tos(aéu), (9)
1 1 3 1 3 1
R, = Tos(aby) [1 + 5/1735 - ZBTS’S & Zcrg‘s 1 E'DTZS — Fr8, (-é’D e Zfs‘g) o
5 5 -
— = 1
+(12H+167>ros+ ] (10)

If we follow Geroyannis and Valvi [4], oblatness o and ellipticity € are used as mea-
sures of the departure of the shape of star from spherical symmetry, may be computed using

- R.— R
o e o B (11)
Ry
The value of gravitational force gp at the pole and g at the equator are given by
g = S0 (12)
P — T 9
Glj\%;l 3 1 33 1
0 3 5 6 7 8 9
ge = =2 |14+ AT3, + Broy — 5C75 — 5 D70 + — FT, — —gr,
€ Rg |: 083 o 2 [oF] 2 0S8 4 0S8 24 0S8
+(2H+§J>ng+---] (13)

Following Ireland [7], the effective temperature at any point on the surface of the star,
is obtained as

L i>1/4 14
(Tp) <9P -

where T}, is the polar temperature. Once temperature is known as the radiative flux, L at
any point on the surface may be estimated using
4
L= —?’—‘LET3 grad T, (15)

PX
where  is the opacity, T is the gas temperature, a is the radiative constant and c is the

velocity of light.

4 Analysis of results and conclusion

The numerical solution of nonlinear differential equation (7) has been obtained in this sec-
tion. The values of rotational parameters have been taken from “Differential Rotation Pa-
rameters for the Polytropes”, as given in Table-1. The value of 7,5 thus obtained may be
used in the above formulae to determine the volume, the surface area and the shape of
outermost equipotential surface of differentially rotating polytropes. Various models are
obtained by suitable combination of the parameters a; and b;. The values of 7, for dif-
ferent polytropic indices of these models are given in Table-2. The equation (7) has been
integrated by fourth order Runge-Kutta method subjected to the boundary conditions for
the specified values of the parameters N and &,. Since the centre and surface of the star
are singularities of (7), we develop the series solution near the centre for starting numerical
integration. Taking starting values from this series solution at 79 = 0.005 and step length
0.005, integration was continued till 8y, first becomes zero. By this approach here we have
found the values of 7,5 for different differentially rotating polytropic model for different
polytropic indices. Relations (8) were then used to determine the volume and shape of the
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distorted polytropic model. In this computation, we use the value of o equal to one. The
values of Vi, Sy, 0, €, wp, we, Te /Tp and L/ Ly for various polytropic indices and various
models are reported in Table-3, which represents volume, surface area, oblatness, ellipticity,
angular velocity at pole, angular velocity at an equator, ratio of temperature at an equator
and at pole and ratio of luminosity at an equator and at the pole. The results of 6y, for dif-
ferent differentially rotating polytropic models and polytropic indices 2.0, 2.5, 3.0 and 3.25
are reported in Table-4.

In our analysis model-1 is an undistorted model which gives least volume, surface, T, /T),
and L./L,, in comparison of differentially rotating stars for every polytropic indices while
for solid body rotation oblatness, ellipticity, angular velocity at pole and angular velocity
at an equator are zero for each polytropic index. In case of differentially rotating models
for polytropic indices 2.0, model 2 gives largest volume which is 30% more than model 1,
while model 9 gives lowest volume and surface which are 10.82% and 9.4% more in com-
parison of model 1 respectively. Similarly, model-7 gives largest surface which is 18.72%
more than model 1. For polytropic index 2.0, the angular velocities at an equator of model
8 could not be calculated. For polytropic indices 2.5, 3.0 and 3.25, all stellar models give
similar behaviors as explained for polytropic index 2.0. This method approximates the ac-
tual equipotential surfaces of the star by Roche equipotential surfaces, and incorporate the
stellar structure equation the effects of rotational distortion up to fourth order of smallness.



Equilibrium Structures of Differentially Rotating Polytropic Stars 141

Table: 1
Differential rotation parameters for various polytropes (Clement [2]).

N=2.00 N=2.50 N=3.00 N=3.25
2 +0.546668 +0.263144 +0.095155 +0.048836
a, +0.544726 +0.720053 +0.555735 +0.400167
as -0.091395 +0.016858 +0.350959 +0.550992
by +0.117936 +0.097485 +0.051248 +0.037318
bz +0.387444 +0.290017 +0.203307 +0.153630
bs +0.714485 +0.021676 +0.594146 +0.490194

Table: 2-

Combinations of the parameters a; and b; for various differentially rotating polytropic models of gaseous spheres

Model Value of 1,5

No. Parameters N=2.0 N=2.5 N=3.0 N=3.25

1 0 0 0 0 0 0 1.000000 1.000000 1.000000 1.000000
2 0 a, as b, 0 b, 0.919632 0.868607 0.843076 0.837921
3 a1 0 as b, 0 by 0.920587 0.962718 0.943344 0.914943
4 0 a5 as 0 b, bs 0.924434 0.870933 0.843764 0.838209
5 0 a, as b, b, 0 0.926323 0.870929 0.842095 0.836611
6 0 a, 0 0 0 0 0.901911 0.872187 0.916681 0.952578
7 a, 0 0 0 0 by 0.901493 0.942531 0.991502 0.992746
8 a; 0 0 b, b, bs 0.902705 0.965544 0.991556 0.996442
9 aj a, 0 b, b, 0 0.796111 0.820751 0.897065 0.943926




Table: 3-

Values of various structure parameters and other physical quantity for differentially rotating polytropic models for different indices

Model* Vy x 1072 Sy x 1072 £ We Te/Tp Le/Lp
N=20 ]| N=25 N=20 N=25 N =20 N=25 N=20 N =25 N=20 N =25 N=20 N =25 N=20 N =25 N=20 N =25
1 3.45474 6.43332 2.38101 3.60391 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000
2 4.49145 8.56679 2.82108 4.39132 0.3101 0.4575 0.2367 0.3139 0.6733 0.8584 0.7381 0.8522 0.8948 0.8538 0.4893 0.3646
3 4.41184 7.78412 2.79953 4.09883 0.2880 0.1670 0.2236 0.1431 0.6747 0.5292 0.1537 0.1241 0.9201 0.9672 0.5565 0.7500
4 4.26601 8.20816 2.76915 4.32102 0.2439 0.3961 0.1961 0.2837 0.6733 0.8584 0.0058 0.0820 0.9642 0.9117 0.6948 0.4950
5 4.21945 8.20884 2.76520 4.32116 0.2281 0.3962 0.1857 0.2838 0.6733 0.8584 | -----ee- 0.1299 0.9791 0.9116 0.7484 0.4947
6 4.45403 8.61097 2.82631 4.40368 0.3435 0.4509 0.2557 0.3108 0.7381 0.8486 0.7381 0.8486 0.8948 0.8561 0.4772 0.3702
7 4.45453 7.08416 2.82662 3.84041 0.3446 0.1506 0.2563 0.1309 0.7394 0.5130 0.7394 0.5130 0.8944 0.9648 0.4760 0.7531
8 4.38321 7.70932 2.80836 4.07135 0.3229 0.1555 0.2441 0.1346 0.7394 0.5130 0.1503 0.0900 0.9173 0.9711 0.5351 0.4698
9 3.82841 7.70968 2.60493 4.15098 0.5029 0.4916 0.3346 0.3296 1.0447 0.9916 0.1494 0.0632 0.8700 0.8741 0.3812 0.3914
N=30 | N=325| N=30 |N=325| N=30 |N=325| N=30 |N=325| N=30 |N=325| N=30 |N=325| N=30 | N=325| N=30 | N=325
1 1.37417 2.15992 5.97738 8.08060 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0C00
2 1.70835 2.60462 7.10276 9.48465 0.4732 0.4677 0.3212 0.3187 0.9522 0.9753 0.7455 0.6326 0.8747 0.8848 0.3974 0.4176
3 1.71827 2.71955 7.14171 9.81630 0.2239 0.2957 0.1829 0.2282 0.6679 0.7745 0.0608 0.0409 0.9790 0.9608 0.7505 0.6577
4 1.66955 2.57069 7.04060 9.43615 0.4421 0.4507 0.3066 0.3107 0.9522 0.9753 0.0005 0.0004 0.9021 0.8996 0.4591 0.4515 |
5 1.72870 2.70275 7.11767 9.60619 0.4920 0.5191 0.3298 0.3417 0.9522 0.9753 0.5924 0.7423 0.8596 0.8409 0.3659 0.3292
6 1.95484 2.99378 7.58551 10.0500 0.3809 0.2782 0.2758 0.2176 0.7455 0.6326 0.7455 0.6326 0.8812 0.9189 0.4367 0.5577
7 1.48381 2.22232 6.28996 8.23503 0.0531 0.0256 0.0504 0.2210 0.3085 0.2210 0.3085 0.9982 0.9933 0.9982 0.9245 0.9680
8 1.48064 2.24675 6.28242 8.29565 0.0516 0.0254 0.0490 0.0248 0.3085 0.2210 0.0820 0.0631 0.9954 0.9989 0.9337 0.9709
9 1.89771 2.98911 7.51098 10.1007 0.3946 0.2884 0.2829 0.2238 0.8068 0.6701 0.0458 0.0375 0.9015 0.9326 0.4737 0.5872




Table: 4:-

Values of 6y, for certain differentially polytropes

5= To Model-1 Model-2 Model-3 Model-4 Model-5 Model-6 Model-7 Model-8

Tos | N=20 | N=25 N =20 N=25 N =20 N =25 N=20| N=25 N=20 N =25 N =20 N =25 N=20| N=25 N=20 | N=25
0.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.1 0.96922 0.95416 0.97390 0.96512 0.97384 0.95741 0.97362 0.96492 0.97350 0.96492 0.97487 0.96484 0.97489 0.95912 0.97483 0.95716
0.2 0.88284 0.83313 0.89971 0.86990 0.89951 0.84379 0.89871 0.86926 0.89832 0.86926 0.90329 0.86893 0.90338 0.84955 0.90313 0.84299
0.3 0.75804 0.67591 0.78983 0.73855 0.78944 0.69345 0.78790 0.73742 0.78714 0.73742 0.79675 0.73684 0.79691 0.70335 0.79643 0.69211
0.4 0.61548 0.51776 0.65967 0.59608 0.65911 0.53868 0.65688 0.59460 0.65578 0.59460 0.66963 0.59383 0.66987 0.55135 0.66917 0.53704
0.5 0.47311 0.37846 0.52370 0.46016 0.52302 0.39902 0.52034 0.45854 0.51901 0.45854 0.53562 0.45768 0.53593 0.41285 0.53508 0.39735
0.6 0.34289 0.26409 0.39287 0.33965 0.39217 0.28176 0.38937 0.33813 0.38797 0.33813 0.40539 0.33722 0.40570 0.29555 0.40480 0.28027
0.7 0.23059 0.17325 0.27385 0.23682 0.27323 0.18684 0.27071 0.23558 0.26942 0.23558 0.28553 0.23463 0.28582 0.19991 0.28502 0.18563
0.8 0.13733 0.10179 0.16944 0.14985 0.16901 0.11097 0.16710 0.14903 0.16610 0.14903 0.17896 0.14807 0.17919 0.12311 0.17862 0.11010
0.9 0.06143 0.04526 0.07927 0.07409 0.07908 0.05002 0.07804 0.07374 0.07746 0.07374 0.08522 0.07292 0.08537 0.06131 0.08509 0.04953
1.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

N=30 | N=325| N=30 | N=325| N=30 | N=325 | N=30 | N=325| N=30 | N=325 N=30| N=325 | N=30 | N=325| N=30 | N=325
0.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.1 0.92645 0.90350 0.94666 0.93021 0.93403 0.91791 0.94657 0.93020 0.94681 0.93050 0.93753 0.91166 0.92762 0.90477 0.92761 0.90412
0.2 0.75344 0.69704 0.81250 0.76680 0.77489 0.73351 0.81224 0.76669 0.81289 0.76741 0.78501 0.71730 0.75665 0.70014 0.75663 0.69854
0.3 0.56497 0.49860 0.65027 0.58856 0.59460 0.54399 0.64987 0.58839 0.65084 0.58935 0.60915 0.52328 0.56926 0.50232 0.56923 0.50036
0.4 0.40581 0.34729 0.49783 0.43656 0.43622 0.39083 0.49738 0.43637 0.49847 0.43736 0.45190 0.37044 0.41002 0.35077 0.40999 0.344886
0.5 0.28388 0.23886 0.36993 0.31814 0.31085 0.27633 0.36951 0.31795 0.37056 0.31885 0.32552 0.25828 0.28741 0.24179 0.28738 | 0.24009
0.6 0.19299 0.16104 0.26748 0.22793 0.21504 0.19169 0.26712 0.22776 0.26803 0.22850 0.22775 0.17646 0.19566 0.16341 0.19563 0.16193
0.7 0.12491 0.10385 0.18605 0.15845 0.14188 0.12805 0.18578 0.15829 0.18650 0.15885 0.15230 0.11559 0.12675 0.10573 0.12674 0.10444
0.8 0.07295 0.06054 0.11985 0.10285 0.08500 0.07853 0.11969 0.10269 0.12018 0.10306 0.09294 0.06888 0.07408 0.06204 0.07407 0.06090
0.9 0.03233 0.02678 0.06209 0.05437 0.03918 0.03770 0.06204 0.05416 0.06229 0.05434 0.04409 0.03155 0.03286 0.02796 0.03286 0.02695
1.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
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Abstract

Let R = D|x; 0, 8] be an Ore extension of D in an indeterminate x, where D is a
Noetherian integrally closed domain, ¢ is an automorphism of D and § is a left o-
derivation of D. The aim of this paper is to describe explicitly the group of divisors of
R. This is done by pointing out all prime v-ideals of R.

1 Introduction

In this paper, D denotes a Noetherian integrally closed domain with quotient field K except
for Lemma 1 and R = D|[x; 0, 8] denotes an Ore extension of D, where o is an automorphism
of D, and § is a left o-derivation of D. It is shown that prime v-ideals of R are either
p[x;0,8] or P by the Goodearl’s classification of prime ideals, where p is a (o, §)-prime
v-ideal of D and P is a prime ideal of R with PN D = (0) and P # (0). We apply this result
to determine the group of divisors of R. We refer the readers to the book [5] for order theory
and Ore extensions (skew polynomial rings).

Keywords and phrases : Ore extension; Noetherian integrally closed domain; Divisor class group; Prime
v-ideal.
AMS Subject Classification : Primary 16S36; Secondary 16D25.
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2 The group of divisors of an Ore extension

We use following notation. Let S be a ring with quotient ring Q(S), and let 7 (J) be a
fractional right (left) S-ideal. Then

(S:1)1={qe€Q|q/ CS} and (S:J),={g€Q|JqC S},

which is a fractional left (right) S-ideal, and I, = (S: (S: 1)), (W =(S:(S:J),))isa
right (left) S-ideal containing 7 (J). I (J) is called a right (left) v-ideal if I = I, (/ = ,J).
A fractional left and right S-ideal A is said to be a v-ideal if ,A = A = A,. If a v-ideal A is
contained in S, then we say that A is a v-ideal of S. We denote by Spec(S) the set of prime
ideals of S. In particular, Specy(R) = {P € Spec(R) | PND = (0)}.

Let P be a prime ideal of R and p = PN D. Then, in [3, Theorem 3.1], Goodearl proved
that there are two cases:

(a) pisa (o,0d)-prime ideal of D.
(b) pis a prime ideal of D and o(p) #p.

In the case (b), P is not a minimal prime ideal by following Lemma.

Lemma 1 Let P be a prime ideal of R = D|x; 0, 8], where D is a commutative Noetherian
domain, and letp = PN\ D. Ifp is a prime ideal of D with 6 (p) # v, then P is not a minimal
prime ideal of R.

Proof.  This follows implicitly from the proof of [3, Proposition 3.5], but we give the
outline of the proof for reader’s convenience by using Goodearl’s notation: Let y be an
indeterminate and ¥ = ‘rg”g[y] (p[y])- Set D° = D[y]Y~! and R° = R[y]Y ~'. Goodearl showed
that R° = D[y]Y ~![x; ¢, 8] = D°[x°; 6], where x° = x — b for some b € D° and P° = pD° +
x°R° is a prime ideal of R° such that R°/P° is a commutative domain. Hence P°NR is a
prime ideal with'p = P°N D and so, by uniqueness, P = P°NR. Put PP = x°R°, acompletely
prime ideal of R® with P° D P and so P, = P) N R is also a completely prime ideal of R
since R/P; C R°/P}. If P; = P, then P; D p and so Py 2 pD° +x°R° = P°, a contradiction.
Hence P is not a minimal prime ideal. (]

Corollary 2 Let P be a prime ideal of R and p = PN\D. Ifp is in the case (b), then P is not
a prime v-ideal,

Proof.  Since D is a Noetherian integlally closed domain, R is a maximal order by [1,
Theorem 3.1.8]. If P is a v-ideal, then P is a minimal prime ideal by [5, Proposition 5.1.9],
which contradicts Lemma 1. Hence P is not a prime v-ideal. [J

Set 6’ = 07! and §' = —§0~!. Then ¢’ is an automorphism of D and &' is a right
o’-derivation of D, and R = D[x;¢",8'] = {x"a, + - +ay | a; € D}.

Lemma 3 Let a be a fractional D-ideal. Then
(R:a[x;0,6]) = (D:a)i[x;0",6') and (R : a[x; 0", 8]), = (D : 0)/[x; 5, 8).

In particular, we have (a[x;0,8]), = a,[x.0, 8] and ,(a[x; 0", 8"]) = .a[x; 0", 8').
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Proof. Let K be the quotient field of D and let g € (R : a[x; 0, 8]);. Then ga[x;0,8] C R
and so

q € gK|x;0,8] = qaK[x;0,6] C RK[x;0,8] = K|[x;0,0].
Hence g = x"g, + --- +¢qo for some ¢; € K. Then g;a CRNK =D and so g; € (D : a);.
Thus g € (D : a)[x;0’,8'] and we have (R : a[x;0,8]); C (D : a)[x;0’,8']. The converse
inclusion is clear. Hence (R : a[x;0,8]); = (D : a);[x;0’,8']. The other statements are
proved similarly. U

It is clear that a maximal v-ideal of R is a prime v-ideal, and prime v-ideal is a minimal
prime ideal by [5, Proposition 5.1.9] because R is a maximal order. Hence a prime v-ideal
implies a maximal v-ideal.

Proposition 4 {p[x;c,8|, P|pisa (o,8)-prime v-ideal of D and P € Specy(R) with P #
(0)} is the set of prime v-ideals of R.

Proof. Let T = K[x;0,8] and let ¥ = D — {0}. Then ¥ is a regular Ore set of R such
that T = R¢. Hence there is a one-to-one correspondence between Spec,(R) and Spec(T)
(cf. [2, Theorem 9.22]) given by P+ P’ = PT and P’ — P' N R, where P € Spec,(R) and
P’ € Spec(T).

Let P € Specy(R) with P # (0). Then, since R is Noetherian and T is a principal ideal
ring, we have

Pre=Pe=lf =(F: (T : P))p=(T : T(R: P)p)y = (R [RLP)};T =HT,

and so P = P, follows. Similarly we have P = ,P and hence P is a prime v-ideal. Next let p
be a (0,8)-prime v-ideal of D. Then p[x; o, 8] is a prime ideal by [3, Proposition 3.3] and
it is a v-ideal by Lemma 3.

Conversely, let P be a prime v-ideal of R with p = PN D # (0). Then, by lemma 3,
p.lx;0,8] = (p[x;0,8])y C P,=Pandsop, C PND =yp. Hence p is a v-ideal. Furthermore,
by Corollaly 2, p is a (¢, 8)-prime ideal, and so p[x; &, 8] is a prime ideal by [3, Proposition
3,3]. Since P is minimal prime, P = p[x; 5, 8]. This completes the proof. (]

Let S be a Noetherian prime ring which is a maximal order in Q(S), and let G(S) =
{A | Aisav-ideal}. Then G(S) is an abelian group generated by prime v-ideals of § with
multiplication A o B = (AB), by [4, Theorem I, 2,6] . G(S) is called the group of divisors of
S. Similarly, let G4 5(D) = {a | ais a (0,8)-v-ideal }. Then it is an abelian group generated
by (o, 8)-prime v-ideals of D. Hence, by Proposition 4, any v-ideal is of the form
(7' [x0,8]p*lx o, 8] A" - By,

where e; and n; are integers, p; is a (0,8)-prime v-ideal of D and P; € Specy(R) with
Pj # (0). Thus we have the following:

Proposition 5 G(R) = G 5(D) ® G(T).
The correspondence is given by

(02 0,8] Pl o, 8] P Py = (000 ), P B,

where p; is a (6, 8)-prime v-ideal of D fori=1,...,k, and P; € Specy(R) with P; # (0) and
Pi=PTforj=1,...,L
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Remark. Chamarie obtained a similar result of Proposition 5 only when & or § is trivial
(cf. [1. Theorems 3.2.6 and 3.3.4]).
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Abstract

In the present paper we discuss the angle of collision occurring in the study of
transport properties of the noble gases and their binary mixtures at low density in
terms of Riemann-Liouville and Sneddon fractional integral operators.

1 Introduction

Transport properties viz. viscosity, thermal conductivity and diffusion coefficient play an
important role in the dynamics of noble gases and their binary mixtures. Kestin et al. [3]
gave a set of expressions for the calculation of the thermodynamic and transport properties
of noble gases under various configurations. A detailed account of transport properties is
credited to Chapman and Cowling [1]. Taking into consideration the experimental difficul-
ties in measuring these properties near the ionization, Xiufeng et al. [8] used Tang-Toennies
potential model to evaluate the transport propetties of the noble gases He, Ne and of their
binary mixtures over the whole range of temperature from 50K to ionization. They have
asserted that the proposed method is capable of extrapolation of values beyond ionization
range. Xiufeng et al. [8], at a particular occasion, made a mention of the. word approx-
imation while evaluating certain collision integral where the integral is approximated by

Keywords and phrases : Fractional Integral Operatdrs, Transport Properties, Noble Gases.
AMS Subject Classification : Primary: 26A33; Secondary: 33B15, 33B99.
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using 15 point Gauss-Laguerre quadrature. Further, they have used Gauss-Mehler quadra-
ture method for the evaluation of deflectionangle using approximation technique. In this
paper, we have discussed the angle of collision in terms of operators of fractional integra-
tion, in their compact forms. The significance of the use of fractional integral operators in
the study of important properties of noble gases at high temperature is shown, which jus-
tifies the physical significance of semi-derivatives. In what follows are the equations and
expressions that occur in the evaluations of transport properties using collision integral.

2 Equations and Expressions for Collision Integrals

Following Chapman and Cowling [1] the collision integral, which is Boltzman like averages
of transport cross-section, is given by

0'to)(T) = / exp(—x) X" QO (RT) dx )
0

where k is the Boltzman constant, T' is the absolute temperature, and y is dimensionless
quantity in terms of kinetic energy of collision E.

x = E/kT = pv?/2kT, where . is the reduced mass of the colliding partners. Also, the
term Q)(.) is given by

QW(.) =27r/00 (1 — cos' 8)b db, (2)
0

where b is the impact parameter and 6 is the classical angle of deflection expressed in terms
of the integral

(s.0]
Gzﬂ—gb/ dR 1/2 (3)
i V(R
[ ) o]
where R, is the distance of closest approach and is the largest root of the equation
V(R
ll - —g )] R% =2 )
Moreover, Xiufeng et al. [8] used the approximation method for the integral represented by
26 1 f(z)de
0=m— — — 5
i Ro/() (1—22)1/2 ®)
where
, 1/2
l-z
f(z) = o ; (6)
= ('m:% - _RT)

where they have used the series representation of the integral in the right hand side of (5)
given by
n/2

[ i) o
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for n = 30.
In order to interpret the deflection angle represented by (5) in terms of fractional integral

operators, we make a brief mention of the Riemann-Liouville fractional integral operator
and that due to Sneddon (see McBride and Roach [4], Ross [6]).

3 Fractional Integral Operators

Fractional calculus is the generalization of the classical calculus of nth derivatives and n-
times iterated integrals. It deals with the integrals and differentials of non-integer order,
which may be real or complex. Erdélyi [2], Ross [6], Saigo [7], among others, may be
referred to for further details. The most commonly used operators of fractional integration
of any arbitrary order real or complex R”[f(t)] is due to Riemann-Liouville, given by

RO = D10 = 55 [ @t/ 0 R0)>0 @

If v is replaced by —v in (8), this turns into fractional derivative sustaining the convergence
condition of the integral used therein. This is expressed as

R0 = DEFO) = 555 f (@ -ty L) dt, R@)>0. O

For v = 1/2, the special cases of (8) and (9) are called semi-integrals and semi-derivatives,
respectively, which are used in the analyasis of this paper. The symbolic representation for
these derivatives and integrals are

d1/2f d—1/2f

a2 0 g =9

respectiely. A wider range of applications of semi-derivatives and semi-integrals has been
embodied in Oldham and Spanier [5] may be referred to in this context and their applica-
tions to the electrical networks.
The operators of fractional integration of any order due to Sneddon over the intervals (0, z)
and (z,00) are denoted by the symbol I, o [f(t)] and K, o[f(t)], respectively, and defined
by

—20 —2n

half@) = 2 [ @ e, R@) >0 b
and

2:1:2"
Kyalf(z) f (u? — )ty f(u) du, R(a) >0, (12

respectively, for ®(a) > —1/2.
Taking & = 1/2 and 7 = —1/2, Equation (11) assumes the following representation

I_y1[f(2)] = % f:(mQ —u2)37 f(u) du. (13)
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4 Interpretation of 6 in terms of Fractional Integral Operators

This section deals with the interpretations of classical angle of collision in terms of two
types of fractional integral operators discussed in (8) and (11) for special values of the
parameters involved.’

Rewriting the integral appearing in (5), by using the quadratic transformation ¢ = ux?, we
have

/u)dt

# = 7 =y (14)
which upon simplification assumes the followmg form
2b G 1 1
f=m— / u—t)27 172 f(\/t/u)dt. (15)
S ), @0 /)

The integral (15), with an appeal to the definition (8) for » = 1/2, has the following
fractional integral interpretation, which may further be evaluated by supplying the value
of the function involved

1
20 d™2 1
S [t—a t/u)| (16)
v et UL
I |
where ;—_?%— is the semi-integral, defined in (10).
t
The transformation of the type t = ux shapes the integral (5) into following from:
=7 — = / )21 f(¢/u)dt. (17

A part of (17) resembles with the fractional integral operators of crder half as defined in
(13), that is expressed as
by/T I
R,

0=m—

L F (/0. 8)

The evaluation of these semi-integrals can be carried out with the condition that the function
f(t/u) is measurable in the interval (0, 00), i.e., f should be locally integrable along the
positive real line.

1
20

5 Discussion

In this paper, we have interpreted the integral that occur in describing the transport prop-
erties of the noble gases and their binary mixtures near ionization at low density configu-
rations. We note that when z — 0 for R, — oo, i.e., the colliding atom is coming from
infinity, the integral has no meaning in the low density area. Specially when we consider
the potential to be exponentially decreasing with respect to R, i.e., f(z) = Ae~*F and use
the substitution R = zR,, and z = t/u, we write f(t/u) = Ae~ "%t it becomes trivial in
regard to the use of semi-integrals, thus (17) implies

bA Rogb
VT ek, (19)

0=m-—

1
0 2
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where I is defined in (11). Further, if we invoke the expression for the rectangular potential,
given by
oo, forr<o
flry=< ¢ o<r<a (20)
0, r>a

then the use of semi-derivatives is justified.
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