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GENERAL CLASS OF GENERATING FUNCTION FOR MODIFIED LAGUERRE

POLYNOMIALS

S.S. Bhati and Kamlesh

Department of Mathematics and Statistics, J.N.V. University, Jodhpur 342 005, India

(Received April 17, 2007)

Abstract. In the present paper we obtain a new class of generating function by Group-theoretic method

for the modified Laguerre polynomial L
(α−n)
n (x) and Bessel polynomials Y

(n)
s (u), Y

(n)
m (w).

1. Introduction

The modified Laguerre polynomial L
(α−n)
n (x), introduced by Srivastava and Manocha [5], is defined as

L(α−n)n (x) =
Γ(1 + α)

Γ(1 + n)Γ(1 + α− n)
1F1[−n; 1 + α− n;x] (1.1)

and also Bessel polynomial Y
(n)
s (u) is defined by same author as

Y (n)s (u) =

s∑

k=0

(
s

k

)(
n+ s+ k − 2

k

)
k!

(
u

β

)k
(1.2)

With the introduction of linear operators, we have derived a new general class of generating function of
the above polynomials, which in turn yields a number of particular generating functions of said polynomials.

2. Main Result

Our main result is given by the following

Theorem. If there exists the generating function for the modified Laguerre polynomial L
(α−n)
n (x) and

Bessel polynomials Y
(n)
s (u), Y

(n)
m (w) of the form

G(x, u, w, j) =

∞∑

n=0

anL
(α−n)
n (x)Y (n)s (u)Y (n)m (w)jn (2.1)

then the following general class of generating function holds

(
1

1 + jz

)n−1( 1

1− jw

)m−1
exp(−jxz + jβ)G

[
x(1 + jz), u,

w

1− jw
, jz

]

=
∞∑

n,p,q,r=0

an(n+ 1)pn
qβrjn+p+q+r

p! q! r!
L
(α−n−p)
n+p (x)Y (n)s (u)Y

(n−r)
m+r (w) zn+p (2.2)

where an �= 0 is arbitrary constant.
The importance of above theorem lies in the fact that all particular class of generating function can be

easily be deduced by attributing suitable values to an.

Keywords and phrases : Modified Laguerre polynomial, Bessel polynomial, Generating function.

AMS Subject Classification : 33C45, 33C99.
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Proof. Let us assume the generating function

G(x, u,w, j) =

∞∑

n=0

anL
(α−n)
n (x)Y (n)s (u)Y (n)m (w) jn (2.3)

Replacing j by jztv and multiplying both sides by ynhsfm, we get

ynhsfmG(x, u,w, jztv) = ynhsfm
∞∑

n=0

anL
(α−n)
n (x)Y (n)s (u)Y (n)m (w) (zjtv)n

or,

ynhsfmG(x, u,w, jztv) =

∞∑

n=0

anL
(α−n)
n (x)ynzn Y (n)s (u)hsvn Y (n)m (w) fmtnjn (2.4)

For modified Laguerre polynomial L
(α−n)
n (x) and Bessel polynomials Y

(n)
s (u), Y

(n)
m (w), we consider the

following three linear partial differential operators R1 ([4]) and R2, R3 ([1]).

R1 = xyz
∂

∂x
− y2z

∂

∂y
− (x− α)yz (2.5)

R2 = v
∂

∂v
(2.6)

R3 = w
2t−1f

∂

∂w
+ wf

∂

∂t
+ wt−1f2

∂

∂f
+ t−1f(β − w) (2.7)

such that

R1(L
(α−n)
n (x)ynzn) = (n+)L

(α−n−1)
n+1 (x)yn+1zn+1 (2.8)

R2(Y
(n)
s (u)hsvn) = nY (n)s (u)hsvn (2.9)

R3(Y
(n)
m (w)tnfm) = βY

(n−1)
m+1 (w)tn−1fm+1 (2.10)

and also

eR1jF (x, y, z) = (1 + jyz) exp(−jxyz)F

[
x(1 + jyz),

y

1 + jyz
, z

]
, (cf., [4]) (2.11)

eR2jF (u, v, h) = F (u, ejv, h) (cf., [1]) (2.11)

eR3jF (w, t, f) = (1− jwt−1f) exp(βjt−1f)F

[
w

1− jwt−1f
,

t

1− jwt−1f
,

f

1− jwt−1f

]
(2.13)

(cf., [1]).

Now we operating both the sides of (2.4) with eR1jeR2jeR3j , we obtain

eR1jeR2jeR3j(ynhsfmG(x, u,w, jztv)) = eR1jeR2jeR3j
∞∑

n=0

anL
(α−n)
n (x)ynzn Y (n)s (u)hsvn Y (n)m (w)fmtnjn

(2.14)

The left hand side of (2.14) becomes

(
y

1 + jyz

)n
hs
(

f

1− jwt−1f

)m
(1 + jyz)(1− jwt−1f) exp(−jxyz + βjt−1f)×

×G

[
x(1 + jyz), u,

w

1− jwt−1f
, jztv

]
(2.15)
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and the right hand side of (2.14) becomes

∞∑

n,p,q,r=0

an(n+ 1)pn
qβrjn+p+q+r

p! q! r!
yn+pzn+pvnhstn−rfm+rL

(α−n−p)
n+p (x)Y (n)s (u)Y

(n−r)
m+r (w) (2.16)

Now equating (2.15) and (2.16) and on putting y = v = h = t = f = 1, the theorem is readily estab-
lished.

3. Particular Cases

(i) If we put s = 0, we obtain

(1 + jz)1−n(1− jw)1−m exp(−jxz + jβ)G

[
x(1 + jz),

w

1− jw
, jz

]

=

∞∑

n,p,q,r=0

an(n+ 1)pβ
rjn+p+r

p! r!
L
(α−n−p)
n+p (x)Y

(n−r)
m+r (w)zn+p (3.1)

(ii) If we put x = 0, s = 0, in given theorem and proceeding as the proof of the main theorem, we get

(1− jw)1−m exp(jβ)G

[
w

1− jw
, jz

]
=

∞∑

n,r=0

anβ
rjn+r

r!
Y
(n−r)
m+r (w)zn (3.2)

which is a known result and as parallel to Kar [2].

(iii) If we put s = 0, m = 0, in given theorem and taking R1 as a linear operator, we get

(1 + jz)1−n exp(−jxz)G[x(1 + jz), jz] =

∞∑

n=0

∞∑

p=0

an(n+ 1)pj
n+p

p!
L
(α−n−p)
n+p (x)zn+p

=
∞∑

n=0

n∑

p=0

an−p(n− p+ 1)pj
n

p!
L(α−n)n (x)zn

=
∞∑

n=0

n∑

p=0

an−p(n− p+ 1)p
p!

L(α−n)n (x)(jz)n (3.3)

which is given by Majumdar [3].
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USE OF THE INTEGRAL INVOLVING LAGUERRE POLYNOMIAL,

HYPERGEOMETRIC SERIES AND FOX’S H-FUNCTION TO INTEGRAL

FUNCTIONS OF SEVERAL COMPLEX VARIABLES

S.K. Nigam*

Department of Mathematics and Astronomy, Lucknow University, Lucknow-226007, India

(Received May 09, 2007)

Abstract. An integral involving Laguerre polynomial, Hypergeometric series and Fox’s H-function with

the help of integral function of n-complex variables, has been studied.

1. Introduction

Let

F (z) ≡ F (z1, · · · , zn) =

∞∑

k1,··· ,kn=0

ak1,··· ,kn
(k1 + k2 + 1) · · · (k1 + · · ·+ kn−1 + 1)zk11 · · · z

kn
n

k1! · · · kn!
(1.1)

be an integral function of n-complex variables z1, · · · , zn. Denote

MG;ρ1,··· ,ρn(r, F ) = max
(z1··· ,zn)∈G

| F (rρ1z1, · · · , r
ρnzn) |

where G is the closed polycircular domain in the space z = (z1, · · · , zn) and ρ1, · · · , ρn being the positive
numbers, then according to Goldberg [2]:
The integral function F (z1, · · · , zn) will be called (G; ρ1, · · · , ρn)-order and (G; ρ1, · · · , ρn)-type respectively,
if

lim
r→∞

sup

{
1

log r
log logMG;ρ1,··· ,ρn(r, F )

}
= ρ

and

lim
r→∞

sup
{
r−p logMG;ρ1,··· ,ρn(r, F )

}
= σ

Mishra [3] has given the following integral involving Laguerre polynomial, Hypergeoemtric series and Fox’s
H-function

∞∫

0

xρ−1e−xLam(x)F1(x)F2(x)H(x)dx =
1

m!

∞∑

r,t=0

φ(r)ψ(t)H1(m, r, t) (1.2)

Here

φ(r) =
(αP )rc

r

(βQ)rr!
;ψ(t)

(γU )td
t

(δV )tt!

F1(x) = PFQ




αP ; cxh

βQ



 ;F2(x) = UFV




γU ; dxk

δV



 ;H(x) = Hu,v
p,q



zxλ
(ap, ep)

(bq, fq)





Keywords and phrases : Laguerre polynomial, Hypergeometric series, Fox’s H-function.

AMS Subject Classification : 33C60, 33D60.
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80 S.K. Nigam

H1(m, r, t) = Hu+1,v+1
p+2,q+1



z
(1− ρ− hr − kt, λ), (ap, ep), (α− ρ+ 1− hr − kt, λ)

(α− ρ+m+ 1− hr − kt, λ), (bq, fq)





= Hu,v+2
p+2,q+1



z
(1− ρ− hr − kt, λ), (α− ρ+ 1− hr − kt, λ), (ap, ep)

(bq, fq), (α− ρ+m+ 1− hr − kt, λ)





where

A ≡

p∑

j=1

aj −

q∑

j=1

bj < 0; B ≡
v∑

j=1

ej −

p∑

j=v+1

ej +
u∑

j=1

fj −

q∑

j=u+1

fj > 0; arg z <
1

2
Bπ,

Re

[
ρ+

λbj
fj

]
> 0

(j = 1, · · · , u), αp denotes α1, · · · , αp; h and k are positive integers; U < V (or, U + V + 1 and | d |< 1); no
one of the δv is zero or a negative integer and for sake of brevity λ is taken to be positive number.

The objective of the present paper is to obtain a new type of relationship between the integral func-
tion F (z1, · · · , zn) and the associate function f(z1, · · · , zn) by the help of the integral (1.2), on taking the
(G; ρ1, · · · , ρn)-order of the integral function F (z1, · · · , zn) to be one.

2. Main Theorem

Let

F (z1, · · · , zn) =
∞∑

k1,··· ,kn=0

ak1,··· ,kn
(k1 + k2 + 1) · · · (k1 + · · ·+ kn−1 + 1)

k1! · · · kn!
zk11 · · · z

kn
n (2.1)

be an integral function of n-complex variables z1, · · · , zn, satisfying

lim
r→∞

sup
{
r−1 logMG;ρ1,··· ,ρn(r, F )

}
≤ σ (2.2)

and let

f(z1, · · · , zn) =

∞∑

k1,··· ,kn=0

ak1,··· ,kn
(k1 + · · ·+ kn + 1)!

bk1,··· ,knz
−(k1+1)
1 · · · z−(kn+1)n (2.3)

where

bk1,··· ,kn = S−(w+k1+···+kn)
1

m!

∞∑

l,t=0

(αp)lc
l

(βQ)ll!
·
(γU )td

t

(δV )tt!

×Hu+1,v+1
p+2,q+1)



z
(1− w − kl − · · · − kn − hl − kt, λ), (ap, ep), (α−w − k1 − · · · − kn + 1− hl − kt, λ)

(α− w − k1 − · · · − kn +m+ 1− hl − kt, λ), (bq, fq)





be the function associated with F (z1, · · · , zn) and is regular for | zj |> σ(j = 1, · · · , n); then

f(z1, · · · , zn)

=
∫
∞

0 · · ·
∫
∞

0 (z1t1 + · · ·+ zn−1tn−1)
−1 · · · (z1t1 + z2t2)

−1

×HS(z1t1 + · · ·+ zntn) · F (t1, · · · , tn)dt1 · · · dtn

(2.4)
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where

HS(z1t1 + · · ·+ zntn)

= e−S(z1t1+···+zntn)Lαm{S(z1t1 + · · ·+ zntn)}

×PFQ




αP ; c{S(z1t1 + · · ·+ zntn)}

h

βQ




UFV




γU ; d{S(z1t1 + · · ·+ zntn)}

k

δV





×Hu,v
p,q



z{S(z1t1 + · · ·+ zntn)}
λ

(ap, ep)

(bq, fq)



 (z1t1 + · · ·+ zntn)
w−2

provided the changes of order of integration and summation is justified and the series involved converges
uniformly and absolutely.

Proof of Main Theorem. Let F (z1, · · · , zn) be an integral function and satisfies (2.2). Then for
Re zj = xj > σ > 0 (j = 1, · · · , n), we have

Ik1,··· ,kn(S)

=

∞∫

0

· · ·

∞∫

0

e−S(z1t1+···+zntn)Lαm{S(z1t1 + · · ·+ zntn)}PFQ




αP ; c{S(z1t1 + · · ·+ zntn)}

h

βQ





×UFV




γU ; d{S(z1t1 + · · ·+ zntn)}

k

δV



Hu,v
p,q



z{S(z1t1 + · · ·+ zntn)}
λ

(ap, ep)

(bq, fq)





×(z1t1 + · · ·+ zn−1tn−1)
−1 · · · (z1t1 + z2t2)

−1(z1t1 + · · ·+ zntn)
w−2F (t1, · · · , tn)dt1 · · · dtn

=

∞∑

k1,··· ,kn=0

ak1,··· ,kn
(k1 + k2 + 1) · · · (k1 + · · ·+ kn−1 + 1)

k1! · · · kn!

×

∞∫

0

· · ·

∞∫

0

e−S(z1t1+···+zntn)Lαm{S(z1t1 + · · ·+ zntn)}PFQ




αP ; c{S(z1t1 + · · ·+ zntn)}

h

βQ





×UFV




γU ; d{S(z1t1 + · · ·+ zntn)}

k

δV



Hu,v
p,q



z{S(z1t1 + · · ·+ zntn)}
λ

(ap, ep)

(bq, fq)





×(z1t1 + · · ·+ zn−1tn−1)
−1 · · · (z1t1 + z2t2)

−1(z1t1 + · · ·+ zntn)
w−2 tk11 , · · · , t

kn
n dt1 · · · dtn

=
∞∑

k1,··· ,kn=0

ak1,··· ,kn
(k1 + k2 + 1) · · · (k1 + · · ·+ kn−1 + 1)

k1! · · · kn!
z
−(k1+1)
1 · · · z−(kn+1)n

(2.5)
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×

∞∫

0

· · ·

∞∫

0

e−S(ζ1+···+ζn)Lαm{S(ζ1 + · · ·+ ζn)}PFQ




αP ; c{S(ζ1 + · · ·+ ζn)}

h

βQ





×UFV




γU ; d{S(ζ1 + · · ·+ ζn)}

k

δV



Hu,v
p,q



z{S(ζ1 + · · ·+ ζn)}
λ

(ap, ep)

(bq, fq)





×(ζ1 + · · ·+ ζn−1)
−1 · · · (ζ1 + ζ2)

−1(ζ1 + · · ·+ ζn)
w−2ζk11 · · · ζknn )dζ1 · · · dζn

Regarding the change of order of integration and summation in (2.5), if we replace ak1,··· ,kn by ak1,··· ,kn
and

(z1t1 + · · ·+ zn−1tn−1)
−1 · · · (z1t1 + z2t2)

−1HS(z1t1 + · · ·+ zntn) by

(z1t1 + · · ·+ zn−1tn−1)
−1 · · · (z1t1 + z2t2)

−1HS(z1t1 + · · ·+ zntn) and

Re zj = xj > σ > 0 (j = 1, 2, · · · , n), then for Re(s) > 0, the resulting series coverges uniformly, as all
the terms involved are positive. Hence the change of order of integration and summation is justified and
f(z1, · · · , zn) is a regular function of z1, · · · , zn for | zj |> σ, (j = 1, · · · , n) and Re(s) > 0.

Let us first prove the above theorem for the case when the integral function is of two variables.
So when ζ1 + ζ2 = u1, ζ2 = u1u2 (0 ≤ u2 < 1, 0 ≤ u1 <∞), we have

Ik1,k2(S)

=

∞∑

k1,k2=0

ak1,k2
k1!k2!

z
−(k1+1)
1 z

−(k2+1)
2

∞∫

0

∞∫

0

e−S(ζ1+ζ2)Lαm{S(ζ1 + ζ2)}PFQ




αP ; c{S(ζ1 + ζ2)}

h

βQ





×UFV




γU ; d{S(ζ1 + ζ2)}

k

δV



Hu,v
p,q



z{S(ζ1 + ζ2)}
λ

(ap, ep)

(bq, fq)



 (ζ1 + ζ2)
w−2ζk11 ζ

k2
2 )dζ1dζ2

=
∞∑

k1,k2=0

ak1,k2
k1!k2!

z
−(k1+1)
1 z

−(k2+1)
2

∞∫

0

1∫

0

e−su1)Lαm(su1)PFQ




αP ; c(su1)

h

βQ




UFV




γU ; d(su1)

k

δV





×Hu,v
p,q



z(su1)λ
(ap, ep)

(bq, fq)



uk1+k2+w−11 uk22 (1− u2)
k1du1du2

Evaluating u2 - integral with the help of the Eulerian-integral of the first kind [1] and making a simple
transformation, we can replace the double integral by

k1!k2!

(k1 + k2 + 1)!

∞∫

0

e−su1Lαm(su1)PFQ




αP ; c(su1)

h

βQ





×UFV




γU ; d(su1)

k

δV



Hu,v
p,q



z(su1)λ
(ap, ep)

(bq, fq)



uk1+k2+w−11 du1



Use of the integral involving laguerre polynomial, hypergeometric series and ... 83

Putting su1 = x so that sdu1 = dx, the above result becomes

k1!k2!

(k1 + k2 + 1)!
S−(w+k1+k2)

∞∫

0

e−xLαm(x)PFQ




αP ; cxh

βQ





×UFV




γU ; dxk

δV



Hu,v
p,q



zxλ
(ap, ep)

(bq, fq)



xw+k1+k2−1dx

(2.6)

Now evaluating the x-integral with the help of the integral ([3]),

∞∫

0

xρ−1e−xLαm(x)F1(x)F2(x)H(x)dx =
1

m!

∞∑

l,t=0

φ(l)ψ(t)H1(m, l, t) (2.7)

That is

∞∫

0

xρ−1e−xLαm(x)PFQ




αP ; cxh

βQ




UFV




γU ; dxk

δV



Hu,v
p,q



zxλ
(ap, ep)

(bq, fq)



 dx

=
1

m!

∞∑

l,t=0

(αP )lc
l

(βQ)l, l!
·
(γU )td

t

(δV )tt!

×Hu+1,v+1
p+2,q+1)



z
(1− ρ− hl − kt, λ), (ap, ep), (α− ρ+ 1− hl − kt, λ)

(α− ρ+m+ 1− hl − kt, λ), (bq, fq)





where

A ≡

p∑

j=1

aj −

q∑

j=1

bj < 0, B ≡
v∑

j=1

ej −

p∑

j=v+1

ej +
u∑

j=1

fj −

q∑

j=u+1

fj > 0;

arg z <
1

2
Bπ,Re(ρ+ λbj/fj) > 0 (j = 1, · · · , u)

h and k are positive integers; U < V (or, U + V + 1 and | d |< 1); no one of the δv is zero or a negative
integer. Hence (2.6) will take the form

k1!k2!

(k1 + k2 + 1)!
S−(w+k1+k2)

1

m!

∞∑

l,t=0

(αP )lc
l

(βQ)l, l!
·
(γU )td

t

(δV )tt!

×Hu+1,v+1
p+2,q+1



z
(1−w + k1 + k2 − hl − kt, λ), (ap, ep), (α− w + k1 + k2 + 1− hl − kt, λ)

(α− w + k1 + k2 +m+ 1− hl − kt, λ), (bq, fq)





after replacing ρ by w + k1 + k2 in (1.2).

Hence
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Ik1,k2(S)

=

∞∑

k1,k2=0

ak1,k2
(k1 + k2 + 1)!

z
−(k1+1)
1 z

−(k2+1)
2 S−(w+k1+k2)

1

m!

∞∑

l,t=0

(αP )lc
l

(βQ)l, l!

(γU )td
t

(δV )tt!

×Hu+1,v+1
p+2,q+1



z
(1− w − k1 − k2 − hl − kt, λ), (ap, ep), (α− w − k1 − k2 + 1− hl − kt, λ)

(α− w − k1 + k2 +m+ 1− hl − kt, λ), (bq, fq)





where Re s > 0.

This shows that the theorem is true for two variables. We next prove the above theorem for the integral
function of three and four variables. Now for three variables, let

ζ1 + ζ2 + ζ3 = u1, ζ1 + ζ2 = u1u2, ζ2 = u1u2u3; (0 ≤ u1 <∞, 0 ≤ u2 < 1, 0 ≤ u3 < 1).

We now obtain

Ik1,k2,k3(S)

=
∞∑

k1,k2,k3=0

ak1,k2,k3
k1!k2!k3!

(k1 + k2 + 1)z
−(k1+1)
1 z

−(k2+1)
2 z

−(k3+1)
3

∞∫

0

∞∫

0

∞∫

0

e−S(ζ1+ζ2+ζ3)Lαm{S(ζ1 + ζ2 + ζ3)}

×PFQ




αP ; c{S(ζ1 + ζ2 + ζ3)}

h

βQ




UFV




γU ; d{S(ζ1 + ζ2 + ζ3)}

k

δV





×Hu,v
p,q



z{S(ζ1 + ζ2 + ζ3)}
λ

(ap, ep)

(bq, fq)



 (ζ1 + ζ2)
−1(ζ1 + ζ2 + ζ3)

w−2ζk11 ζ
k2
2 ζ

k3
3 dζ1dζ2dζ3

=

∞∑

k1,k2,k3=0

ak1,k2,k3
k1!k2!k3!

(k1 + k2 + 1)z
−(k1+1)
1 z

−(k2+1)
2 z

−(k3+1)
3

∞∫

0

1∫

0

1∫

0

e−su1uk1+k2+k3+w−11 Lαm{S(su1)PFQ




αP ; c(su1)

h

βQ




UFV




γU ; d(su1)

k

δV





×Hu,v
p,q



z(su1)k
(ap, ep)

(bq, fq)



uk1+k22 (1− u2)
k3uk23 (1− u3)

k1du1du2du3

Evaluating u2 - integral and u3 - integral with the help of the Eulerian integral of the first kind [1], and
making a simple transformation, we have
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Ik1,k2,k3(S)

=
∞∑

k1,k2,k3=0

ak1,k2,k3
(k1 + k2 + k3 + 1)!

z
−(k1+1)
1 z

−(k2+1)
2 z

−(k3+1)
3

×

∞∫

0

e−xxw+k1+k2+k3−1Lαm(x)PFQ




αP ; cxh

βQ




UFV




γU ; dxk

δV



Hu,v
p,q



zxλ
(ap, ep)

(bq, fq)



S−(w+k1+k2+k3)dx

=

∞∑

k1,k2,k3=0

ak1,k2,k3
(k1 + k2 + k3 + 1)!

z
−(k1+1)
1 z

−(k2+1)
2 z

−(k3+1)
3 S−(w+k1+k2+k3)

1

m!

∞∑

l,t=0

(αP )lc
l

(βQ)l, l!

(γU )td
t

(δV )tt!

×Hu+1,v+1
p+2,q+1



z
(1− w − k1 − k2 − k3 − hl − kt, λ), (ap, ep), (α− w − k1 − k2 − k3 + 1− hl − kt, λ)

(α− w − k1 − k2 − k3 +m+ 1− hl − kt, λ), (bq, fq)





where Re s > 0.
This shows that the theorem is true in the case of three variables as well. Futher in the case of four

variables, if we put

ζ1+ζ2+ζ3+ζ4 = u1, ζ1+ζ2+ζ3 = u1u2, ζ1+ζ2 = u1u2u3u4(0 ≤ u1 <∞, 0 ≤ u2 < 1, 0 ≤ u3 < 1, 0 ≤ u4 < 1)

and proceed as in the case of three variables, we get

Ik1,k2,k3,k4(S)

=

∞∑

k1,k2,k3,k4=0

ak1,k2,k3,k4
(k1 + k2 + k3 + k4 + 1)!

z
−(k1+1)
1 z

−(k2+1)
2 z

−(k3+1)
3 z

−(k4+1)
4

×
1

m!

∞∑

l,t=0

(αP )lc
l

(βQ)l, l!

(γU )td
t

(δV )tt!

×Hu+1,v+1
p+2,q+1)



z
(1−w − k1 − k2 − k3 − k4 − hl − kt, λ), (ap, ep), (α−w − k1 − k2 − k3 − k4 + 1− hl − kt, λ

(α− w − k1 − k2 − k3 − k4 +m+ 1− hl − kt, λ), (bq, fq)

where Re s > 0, which shows that the theorem is also true for the case of four variables. Hence by symme-
try we can deduce the result in the case of an integral function n-complex variables, as stated in the theorem.

Particular Case :

If in the Main theorem , we put h = k = λ = 1 and all ep = 1, fn = 1, and if we make use of the relations
([4]

Hu,v
p,q



z
a1, · · · , ap

b1, · · · , bq



 = Gu,vp,q



z
(a1, 1), · · · , (ap, 1)

(b1, 1), · · · , (bq, 1)





then the main theorem reduces to an important result for Meijer’s G-function.
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Abstract. In this paper a unified presentation of certain subclass of univalent functions with positive

coefficients is introduced. For this purpose a fascinating technique has been adopted to generate new sub-

class of univalent functions by the use of Salageon operator. Coefficient estimates, distortion and covering

theorems, theorems involving modified Hadamard product and various other interesting properties are

obtained. In fact, our results provide generalization of those given by Uralegaddi, Ganigi and Sarangi.

1. Introduction

Let S denote the class of functions of the form f(z) = z +
∞∑

n=2
anz

n, that are analytic and univalent in the

unit disk E = {z : |z| < 1}. A function f ∈ S is said to be starlike of order α, 0 ≤ α < 1, denoted by

f ∈ S∗(α), if Rezf
′(z)
f(z) > α for z ∈ E, and is said to be convex of order α, 0 ≤ α < 1 denoted by f ∈ C(α), if

Re
{
1 + zf ′′(z)

f ′(z)

}
> α for z ∈ E, S∗(0) = S∗ and C(0) = C are respectively the classes of starlike and convex

functions in S.

For 1 < β ≤ 4
3 and z ∈ E, let M(β) = {f ∈ S : Re zf ′(z)/f(z) < β} and

L(β) = {f ∈ S : Re{1 + zf ′′(z)/f ′(z)} < β}. Further let V be the subclass of S consisting of the functions

of the form f (Z) = z +
∞∑

n=2
|an|z

n. Let V (β) = M(β) ∩ V , U(β) = L(β) ∩ V and V ∗(α) = S∗(α) ∩ V ,

Vc(α) = C(α) ∩ V . V
∗(0) = V ∗ and Vc(0) = Vc are respectively the classes of starlike and convex functions

in V .

Uralegaddi, Ganigi and Sarangi [5] determined coefficient inequalities distortion and covering theorems
for classes V (β) and U(β).

Let Sk denote the class of functions of the form

f (z) = z +
∞∑

j=k+1

ajz
j , (k ∈ N = {1, 2, 3, · · · }), (1.1)

which are analytic in the open unit disk E = {z : |z| < 1}. Also, let the operator Dn(n ∈ N0 = NU{0}) be
defined for a function f ∈ Sk, by

D0f(z) = f(z)

D1f(z) = zf ′(z)

and Dnf(z) = D(Dn−1f(z)) (n ∈ N0).

The operator Dn as the Salagean derivative operator of order n ∈ N0 [3].

For a function f (z) given by (1.1), it follows from the above definitions that Dnf(z) = z+
∞∑

j=k+1

jnajz
j,

(n ∈ N0).

Keywords and phrases : Analytic, starlike and convex functions, Salagean operators.

AMS Subject Classification :
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In the present paper a subclass Snk (β) of univalent functions in the unit disk is introduced. Thus, for
f(z) belonging to Sk is said to belong to the class S

n
k (β) if it satisfies

Re

{
Dn+1f(z)

Dnf(z)

}
< β (1.2)

for some β (1 < β ≤ 4
3) and n ∈ N0.

Note that S01(β) = M(β) and S11(β) = L(β). Further, let Vk be the subclass of Sk consisting of the
functions of the form

f (z) = z +

∞∑

j=k+1

jnajz
j, aj ≥ 0 (1.3)

Let V nk (β) = Vk ∩ S
n
k (β).

Note that, in [1] Dixit and Pathak have studied the univalent function with positive coefficients with
the help of fractional derivative. In this direction, the work of Kanas and Srivastava [2], Patel and Sahoo
[4] can also be seen.

The present paper aims at providing a systematic investigation of the various interesting properties and
characteristics of the general class V nk (β), which is introduced here. Our result involving the class V

n
k (β)

provide improvements and generalization of those given by Uralegaddi, Ganigi and Sarangi [5].

2. Coefficient Inequalities and other Basic Properties of the Class V n

k
(β)

Theorem 2.1. Let the function f be defined by (1.3). Then f ∈ V nk (β) if and only if

∞∑

j=k+1

(jn+1 − βjn)aj ≥ β − 1 (2.1)

The result is sharp.

Proof. We assume that the inequality (2.1) holds true and let |z| = 1. It suffices to show that

∣∣∣∣∣∣

Dn+1f(z)
Dnf(z) − 1

Dn+1f(z)
Dnf(z) − (2β − 1)

∣∣∣∣∣∣
< 1, z ∈ E

We have ∣∣∣∣∣∣∣∣∣∣∣∣∣

z+
∞∑

j=k+1

jn+1ajz
j

z+
∞∑

j=k+1

jnajzj
− 1

z+
∞∑

j=k+1

jn+1ajzj

z+
∞∑

j=k+1

jnajzj
− (2β − 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

≤

∞∑

j=k+1

(jn+1 − jn)aj

2(β − 1)−
∞∑

j=k+1

[jn+1 − (2β − 1)jn]aj

The last expression is bounded above by 1, if

∞∑

j=k+1

(jn+1 − jn)aj ≤ 2(β − 1)−
∞∑

j=k+1

(jn+1 − (2β − 1)jn)aj

which is equivalent to
∞∑

j=k+1

(jn+1 − βjn)aj ≤ (β − 1)

which is true by hypothsis. Hence, we have f(z) ∈ V nk (β).
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To prove the converse, we assume that f (z) is defined by (1.3) and in the class V nk (β), so that condition
(1.2) readily yields

Re

{
Dn+1f(z)

Dnf(z)

}
= Re






z +
∞∑

j=k+1

jn+1ajz
j

z +
∞∑

j=k+1

jnajzj





< β, z ∈ E (2.2)

Choose values of z on the real axes so that Dn+1f (z)/Dnf(z) is real. Upon clearing the denominator
in (2.2) and letting z → 1 through real axes, we have required assertion (2.1).

Finally, we note the assertion (2.1) of Theorem 2.1 is sharp, the external function being

f(z) = z +
β − 1

jn+1 − βjn
zj

Remark 2.1.1. When k = 1 and n = 0, Theorem 2.1 reduces to the corresponding result due to Uralegaddi,
Ganigi and Sarangi ([5], 226, Theorem 2.3). It follows immediately that V 01 (β) = V (β).

Remark 2.1.2. When k = 1 and n = 1, Theorem 2.1 reduces to the corresponding result due to Uralegaddi,
Ganigi and Sarangi ([5], 227, Corollary 2.4). It immediately gives V 11 (β) = U(β) (1 < β <

4
3). We record in

passing the following interesting and useful consequence of Theorem 2.1.

Corollary 1. Let the function f(z) defined by (1.3) belong to the class V nk (β). Then

aj ≤
β − 1

jn+1 − βjn
, (j ≥ k + 1) (2.3)

The following properties are an easy consequence of Theorem 2.1.

Theorem 2.2. Let 1 < β1 ≤ β2 ≤
4
3 . Then V

n
k (β1) ⊂ V

n
k (β2).

Proof. Let f ∈ V nk (β1). Then

∞∑

j=k+1

(jn+1 − β1j
n)aj ≤ β1 − 1

or,
∞∑

j=k+1

jn+1 − β1jn

β1 − 1
≤ 1

Now,

∞∑

j=k+1

jn+1 − β2j
n

β2 − 1
≤

∞∑

j=k+1

jn+1 − β1j
n

β1 − 1

≤ 1

since f ∈ V nk (β1). Hence f ∈ V
n
k (β2).

Theorem 2.3. Let n1 ≤ n2. Then V
n1
k (β) ⊃ V n2k (β).

Proof. Since f ∈ V n2k (β), therefore

∞∑

j=k+1

jn2+1 − β1jn2

β − 1
≤ 1.
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Now
∞∑

j=k+1

jn1+1 − βjn1

β − 1
≤

∞∑

j=k+1

jn2+1 − β1jn2

β − 1
≤ 1.

Hence f ∈ V n1k (β).
Similarly, we can prove the following

Theorem 2.4. Let k1 ≤ k2. Then V
n
k1
(β) ⊂ V nk2(β).

Theorem 2.5. If f ∈ V nk (β), then

r −
(β − 1)rk+1

(k + 1)n[k + 1− β]
≤ |f (z)| ≤ r +

(β − 1)rk+1

(k + 1)n[k + 1− β]
(2.4)

Furthermore,

r −
(β − 1)rk+1

k + 1− β
≤ |Dnf(z)| ≤ r +

(β − 1)rk+1

k + 1− β
(2.5)

The result (2.4) and (2.5) are sharp.

Proof. Note that

(k + 1)n[k + 1− β]
∞∑

j=k+1

aj ≤
∞∑

j=k+1

jn[j − β]aj < β − 1

Thus

|f(z)| ≤ r +
∞∑

j=k+1

ajr
j ≤ r + rk+1

∞∑

j=k+1

aj ≤ r +
(β − 1)rk+1

(k + 1)n[k + 1− β]
, (|z| = r),

and

|f(z)| ≥ r −
∞∑

j=k+1

ajr
j ≥ r −

(β − 1)rk+1

(k + 1)n[k + 1− β]

Next,

(k + 1− β)
∞∑

j=k+1

jnaj ≤
∞∑

j=k+1

jn[j − β]aj ≤ β − 1

Thus

|Dnf(z)| ≤ r +

∞∑

j=k+1

jnajr
j

≤ r + rk+1
∞∑

j=k+1

jnaj

≤ r +
(β − 1)

(k + 1− β)
rk+1

and

|Dnf(z)| ≥ r −
∞∑

j=k+1

jnajr
j

≥ r − rk+1
∞∑

j=k+1

jnaj

≤ r −
(β − 1)

(k + 1− β)
rk+1
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which prove the assertion (2.5).
Further, by taking the function f(z) given by

f(z) = z +
β − 1

(k + 1)n[k + 1− β]
zk+1, (z = ±r),

we can show that the result (2.4) and (2.5) are sharp.

Remark 2.5.1. Putting n = 0 and k = 1, we obtain the corresponding result given by Uralegaddi, Ganigi
and Sarangi ([5], Theorem 3.1, page 227).

Remark 2.5.2. Putting n = 1 and k = 1, we obtain the corresponding result given by Uralegaddi, Ganigi
and Sarangi ([5], Corollary 3.2, page 227).

Theorem 2.6. The disk |z| < | is mapped onto a domain that contain the disk

|w| <
(k + 1)n(k + 1− β)− (β − 1)

(k + 1)n(k + 1− β)

by any f ∈ V nk (β). The theorem is sharp for the external function

f(z) = z +
(β − 1)zk+1

(k + 1)n[k + 1− β]

Proof. By setting r → 1 in Theorem 2.5 the result is obtained.

3. Theorem Involving Hadamard Product

Let f (z) be defined by (1.3) and let

g(z) = z +

∞∑

j=k+1

bjz
j , (bj ≥ 0) (3.1)

The Hadamard product of f(z) and g(z) is defined here by

(f � g)z = z +
∞∑

j=k+1

ajbjz
j (3.2)

Theorem 3.1. Let the function f (z) defined by (1.3) and g(z) defined by (3.1) be in the class V nk (β1) and
V nk (β2) respectively. Then the Hadamard product (f � g)(z) belongs to the class V

n
k (β

2 − 2β + 2), where

β = max{β1, β2} (3.3)

Proof. Since f(z) ∈ V nk (β1) and g(z) ∈ V
n
k (β2), in view of Theorem 2.1, we have

∞∑

j=k+1

(jn+1 − β1β2j
n)ajbj ≤

∞∑

j=k+1

(jn+1 − β1j
n)ajbj

≤
β2 − 1

(k + 1)n+1 − β2(k + 1)n

∞∑

j=k+1

(jn+1 − β1j
n)

β1 − 1

jn+1 − β1jn

≤
(β1 − 1)(β2 − 1)

(k + 1)n+1 − β2(k + 1)n

≤
(β − 1)2

(k + 1)n+1[k + 1− β2]

≤ (β − 1)2 = (β2 + 2β + 2)− 1

Hence by Theorem 2.1, the Hadamard product (f � g)(z) is in the class V nk (β
2 − 2β + 2) with β given

by (3.3).
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4. Linear Combination of Functions in Class V n

k
(β)

Theorem 4.1. Let the function f1(z), f2(z), · · · , fm(z) defined by fi(z) = z +
∞∑

j=k+1

cj,iz
j ,

(k = 1, 2, 3, · · · ), (cj,i ≥ 0), by the class V nk (β). Then the function h(z) given by

h(z) =
1

m

m∑

i=1

fi(z)

is also in the class V nK(β).

Proof. By the definition of h(z), we have the expansion

h(z) = z +
m∑

i=1

[
1

m

m∑

i=1

cj,i

]

zj

Since fi(z) ∈ V
n
k (β). Therefore

∞∑

j=k+1

(jn+1 − βj
n)cj,i ≤ β − 1 (4.1)

Now

∞∑

j=k+1

[
m∑

i=1

1

m
(jn+1 − βj

n)cj,i

]

=

m∑

i=1

1

m




∞∑

j=k+1

(jn+1 − βj
n)cj,i





≤
m∑

i=1

1

m
(β − 1), by (4.1)

≤ β − 1

We conclude from Theorem 2.1, that h ∈ V nk (β).

Theorem 4.2. Let
fk(z) = z (4.2)

and

fj(z) = z +
β − 1

jn+1 − βjn
zj, (j = k + 1, k + 2, · · · ) (4.3)

Then f ∈ V nk (β) if and only if it can be expressed in the form

f(z) =

∞∑

j=k

λjfj(z), where λj ≥ 0 and

∞∑

j=k

λj = 1 (4.4)

Proof. Suppose f is given by (4.4), so that we find from (4.2) and (4.3) that

f(z) = λkz +

∞∑

j=k+1

λj

[
z +

β − 1

jn+1 − βjn
zj
]

= z +

∞∑

j=k+1

β − 1

jn+1 − βjn
λjz

j ,

where the coefficient λj are given with (4.4). Then, since

∞∑

j=k+1

(jn+1 − βjn)
β − 1

jn+1 − βjn
λj = (β − 1)

∞∑

j=k+1

λj

= (β − 1)(1− λk)

≤ (β − 1)
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we conclude from Theorem 1, that f ∈ V nk (β).
Conversely, let us assume that the function f defined by (1.3) is in the class V nk (β), then

aj ≤
β − 1

jn+1 − βjn
, (j = k + 1, k + 2, · · · ), (4.5)

which follows readily from (2.1).
Setting

λj =
jn+1 − βjn

β − 1
aj , (j = k + 1, k + 2, · · · ), (4.6)

and

λ = 1−
∞∑

j=k+1

λj (4.7)

We thus arrive at (4.4). This evidently completes the proof of Theorem 4.2.

Corollary. The extreme points of V nk (β) are given by fk(z) = z and

fj(z) = z +
β − 1

jn+1 − βjn
, (j = k + 1, k + 2, · · · ).

If we take k = 1 and n = 0 in corollary, then we have the result by Uralegaddi, Ganigi and Sarangi
([5], Theorem 5.2).
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Abstract. The inequality between the warping function of a warped product submanifold isometrically

immersed in a S-space form and the squared mean curvature has been established.

1. Introduction

Blair [1] introduced S-manifolds for manifolds with an f -structure as the analogous of the Käehler
structure in almost Hermitian case and to the Sasakian structure in the almost contact case. While
Chen [3] established sharp relationship between the warping function of a warped product submanifold
isometrically immersed in real space form and the squared mean curvature. Kim and Yoon [7], on the
other hand, derived a similar inequality for totally real warped products in locally conformal Kaehler space
forms. In this paper, we establish similar relationship for C-totally real warped products submanifolds in
S-space forms.

2. Preliminaries

Let (M1, g1) and (M1, g2) be two Riemannian manifolds of positive dimension n1 and n2, with Riemannian
metrics g1 and g2, respectively and fw a positive differentiable function on M1. The warped product of M1

and M2 is the Riemannian manifold M1 ×fw M2 = (M1 ×M2, g), where g = g1 + f2wg2 (see [2] and [3]).

Let x : M1 ×fw M2 → M(c) be an isometric immersion of a warped product M1 ×fw M2 into a
Riemannian manifold M(c) with constant sectional curvature c. We denote σ the second fundamental form
of x and Hi = 1

ni
(trace σ), where trace σ is the trace of σ restricted to Mi, and ni = dimMi(i = 1, 2). We

call Hi (i = 1, 2) the partial mean curvature vectors. The immersion x is said to be mixed totally geodesic
if h(X,Z) = 0, for any vector fields X and Z tangent to M1 and M2, respectively.

Now, let (M,g) be a (2m + s)-dimensional Riemannian manifold M is said to be a metric f -manifold
if there exist a (1, 1) tensor field f, s-global unit vector fields ξ1, · · · , ξs (called structure vector fields) and
s 1-forms η1, · · · , ηs on M such that

f2X = −X +

s∑

α=1

ηα(X)ξα, g(X, ξα) = ηα(X), (2.1)

fξα = 0, ηαo f = 0

and

g(fX, fY ) = g(X,Y )−

n∑

α=1

ηα(X)ηα(Y )

Keywords and phrases : Warped product, mean curvature, sectional curvature, S-space form, and C-totally real

submanifold.

AMS Subject Classification : 53C25, 53C40.
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for any X, Y ∈ TM , where TM denote the Lie algebra of vector fields and α = 1, · · · , s.
The f -structure is said to be normal if

[f, f ] + 2
s∑

α=1

ξα ⊗ dηα = 0 (2.2)

where [f, f ] is the Nijenhuis torsion tensor of f . Let F denote the fundamental 2-form given by
F (X,Y ) = g(X, fY ), for any X,Y ∈ TM . M is said to be an S-manifold if the f -structure is normal
and

η1 ∧ · · · ∧ ηs ∧ (dηα) �= 0, F = dηα

for any α = 1, · · · , s. When s = 1, S-manifold are Sasakian manifolds.
A plane section π in TpM is called an f -section if it is spanned by X and fX , where X is a unit tangent

vector field orthogonal to the distribution spanned by structure vector fields. The sectional curvature K(π)
of an f -section π is called f -sectional curvature. A S-manifold is said to be a S-space form if it has constant
f -sectional curvature c. We shall denote a S-manifold M with constant f -sectional curvature by M(c). The
curvature tensor of a S-space form M(c) is given by ([10])

R(X,Y, Z,W ) = g(σ(X,W ), σ(Y, Z))− g(σ(X,Z), σ(Y,W ))

+
∑

α,β

(g(fX, fW )ηα(Y )ηβ(Z)− g(fX, fZ)ηα(Y )ηβ(W ))

+g(fY, fZ)ηα(X)ηβ(W )− g(fY, fW )ηα(X)ηβ(Z))

+
c+ 3s

4
(g(fX, fW )g(fY, fZ)− g(fX, fZ)g(fY, fW ))

+
c− s

4
(F (X,W )F (Y,Z)− F (X,Z)F (Y,W )− 2F (X,Y )F (Z,W ))

(2.3)

Let M be a n-dimensional submanifold isometrically immersed in M(c) and denote by σ,∇ and ∇⊥

the second fundamental form of M , the induced connection on M and on the normal bundle T⊥M . Then
the Gauss and Weingarten formulae are given by

∇XY = ∇XY + σ(X,Y ) (2.4)

∇XN = −ANX +∇⊥XN

respectively, for vector fields X,Y tangent to M and N normal to M , where AN is the shape operator in
the direction of N . The second fundamental form and the shape operator are related by

g(σ(X,Y ), N) = g(ANX, Y ) (2.5)

Let R be Riemannian curvature tensor of M , then the Gauss equation is given by

R(X, Y, Z,W ) = R(X, Y, Z,W ) + g(σ(X,W ), σ(Y,Z))− g(σ(X,Z), σ(Y,W )) (2.6)

for all X,Y,Z,W ∈ TM .
Let p ∈ M and {e1, · · · , en, · · · , e2m+s} an orthonormal basis of the tangent space TpM(c), such that

e1, · · · , en are tangent to M at p. The mean curvature vector H(p) is defined by

H(p) =
1

n

n∑

i=1

σ(ei, ei) (2.7)
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The submanifold is said to be minimal if H vanishes identically and it said to totally geodesic if σ(X,Y ) = 0,
for any X,Y ∈ TM .
We set

σrij = g(σ(ei, ej), er), i, j ∈ {1, · · · , n}, r ∈ {n+ 1, · · · , 2m+ s} (2.8)

and

‖σ‖2 =

n∑

i,j=1

g(σ(ei, ej), σ(ei, ej))

For any X ∈ TM , we put fX = TX + NX , where TX and NX are the tangential and normal
component of fX, respectively. The submanifold is said to be invariant if N is identically zero, that is, if
fX ∈ TM , for any X ∈ TM and it is said to be anti-invariant if T is identically zero, that is, if fX ∈ T⊥M ,
for any X ∈ TM .
It is well-known that

σ(X, ξα) = −NX (2.9)

for any X ∈ TM and any α = 1, · · · , s. In particular, σ(ξα, ξβ) = 0, for any α, β = 1, · · · , s.
We recall the following Chen’s Lemma for later use.

Lemma ([1]). Let n ≥ 2 and a1, a2, · · · , an, b real numbers such that

[
n∑

i=1

ai

]2
= (n− 1)

[
n∑

i=1

a2i + b

]

Then 2a1a2 ≥ b, with equality holding if and only if a1 + a2 = a3 = · · · = an.

3. C-totally real warped product submanifolds

In this section, we investigate C-totally real warped product submanifolds in a S-space form M(c). A sub-
manifold M normal to ξα, α = 1, · · · , s in an S-space form M(c) is said to be C-totally real submanifold. It
follows that f maps any tangent space ofM into the normal space, that is, f (TpM) ⊂ T⊥p M , for every p ∈M .

Theorem 2.1. Let x : M1 ×fw M2 → M(c) be a C-totally real isometric immersion of an n-dimensional
warped productM1XfwM2 into a (2m+s)-dimensional S-space formM(c) of point wise constant f -sectional
curvature c. Then:

∆fw
fw

≤
n2

4n2
‖H‖2 + n1

c+ 3s

4
, (3.1)

where ni = dimMi, i = 1, 2, and ∆ is the Laplacian operator of M1. The equality case of (3.1) holds if and
only if x is a mixed totally geodesic immersion and n1H1 = n2H2, where Hi, i = 1, 2, are the partial mean
curvature vectors.

Proof. LetM1×fwM2 be a C-totally real warped product submanifold into a S-space formM(c) of constant
f -sectional curvature c. Since M1 ×fw M2 is a warped product, it can be easily seen that

∇XZ = ∇ZX =
1

fw
(Xfw)Z (3.2)

for any vector fields X,Z tangent to M1,M2 respectively. If X,Z are unit vector fields, it follows that the
sectional curvature K(X ∧ Z) of the plane section spanned by X and Z is given by

K(X ∧ Z) = g(∇Z∇XX −∇X∇ZX,Z) =
1

fw
{(∇XX)fw −X

2fw} (3.3)
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We consider local orthonormal basis {e1, · · · , en, en+1, · · · , e2m+1 = ξ1, · · · , e2m+s = ξs}, such that
e1, · · · , en1 are tangent to M1, en1+1, · · · , en are tangent toM2, en+1 is parallel to the mean curvature vector
H . Then, using (3.3) we obtain

∆fw
fw

=

n1∑

j=1

K(ej ∧ eu) (3.4)

for each u ∈ {n1 + 1, · · · , n}.
From equation of Gauss, we obtain

2τ = n2‖H‖2 − ‖σ‖2 + n(n− 1)
c+ 3s

4
(3.5)

where τ denotes the scalar curvature of M1 ×fw M2, i.e.

τ =
∑

1≤j<u≤n

K(ej, eu)

We set

δ = 2τ − n(n− 1)
c+ 3s

4
−
n2

2
‖H‖2 (3.6)

From (3.5) and (3.6), it follows that

n2‖H‖2 = 2
(
δ + ‖σ‖2

)
(3.7)

With respect to the above orthonormal basis, (3.7) takes the following form

[
n∑

i=1

σn+1ii

]2
= 2





δ +

n∑

i=1

(
σn+1ii

)2
+
∑

i�=j

(
σn+1ij

)2
+

2m+s∑

r=n+2

n∑

i,j=1

(
σrij
)2





From above equation, we obtain

[
3∑

i=1

ai

]2
= 2





δ +

3∑

i=1

a2i +
∑

1≤i�=j≤n

(
σn+1ij

)2
+

2m+s∑

r=n+2

n∑

i,j=1

(
σrij
)2

−
∑

2≤j �=k≤n1

σn+1jj σ
n+1
kk −

∑

n1+1≤ij �=t≤n

σn+1uu σ
n+1
u






where a1 = σn+111 , a2 =

n1∑

i=2

σn+1ii and a3 =
n∑

t=n2+1

σn+1tt .

Thus a1, a2, a3 satisfy the Lemma of Chen (for n = 3), i.e.

[
3∑

i=1

ai

]2
= 2

[

b+

3∑

i=1

a2i

]

with

b = δ +
∑

1≤i �=j≤n

(
σn+1ij

)2
+

2m+s∑

r=n+2

n∑

i,j=1

(
σrij
)2
−

∑

2≤j �=k≤n1

σn+1jj σ
n+1
kk −

∑

n1+1≤ij �=t≤n

σn+1uu σ
n+1
tt

Then 2a1a2 ≥ b, with equality holds if and only if a1 + a2 = a3.
In the case under consideration, we have
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∑

1≤j<k≤n1

σn+1jj σ
n+1
kk −

∑

n1+1≤u<t≤n

σn+1uu σ
n+1
tt ≥

δ

2
+

∑

1≤α<β≤n

(
σn+1αβ

)2
+

1

2

2m+s∑

r=n+2

n∑

α,β=1

(
σrαβ

)2
(3.8)

Equality holds if and only if we have

n1∑

i=1

σn+1ii =
n∑

t=n1+1

σn+1tt (3.9)

Again, using the Gauss equation, we have

n2
∆fw
fw

= τ −
∑

1≤j<k≤n1

K(ej ∧ ek)−
∑

n1+1≤u<1≤n

K(eu ∧ et)

= τ −
n1(n1 − 1)(c+ 3s)

8
−

2m+s∑

r=n+2

∑

1≤j<k≤n1

(
σrjjσ

r
kk − (σrjk)

2
)

−
n2(n2 − 1)(c+ 3s)

8
−

2m+s∑

r=n+1

∑

n1+1≤u<t≤n

(
σruuσ

r
tt − (σrut)

2
)

(3.10)

Combining (3.8) and (3.10) and taking account of (3.4) and (3.6), we have

n2
∆fw
fw

≤ τ −
n(n− 1)(c+ 3s)

8
+ n1n2

c+ 3s

4
−
δ

2

−
∑

1≤j≤n1;n1+1≤r≤n

(
σn+1jt

)2
−

1

2

2m+s∑

r=n+2

n∑

α,β=1

(
σrαβ

)2

+

2m+s∑

r=n+1

∑

1≤j<k≤n1

(
(σrjk)

2 − (σrjjσ
r
kk)
)2

+

2m+s∑

r=n+2

∑

n1+1≤u<t≤n

(
(σrut)

2 − (σruuσ
r
tt)
)

= τ −
n(n− 1)(c+ 3s)

8
+ n1n2

c+ 3s

4
−
δ

2
−

2m+s∑

r=n+1

n1∑

j=1

n∑

t=n1+1

(
σrjt
)2

−
1

2

2m+s∑

r=n+2




n1∑

j=1

σrjj




2

−
1

2

2m+s∑

r=n+2

(
n∑

t=n1+1

σrtt

)2

≤ τ −
n(n− 1)(c+ 3s)

8
+ n1n2

c+ 3s

4
−
δ

2

=
n2

4
‖H‖2 + n1n2

c+ 3s

4
(3.11)

which implies the inequality (3.1).

We see that the equality sign of (3.11) holds if and only if we have

σrjt = 0, 1 ≤ j ≤ n1, n1 + 1 ≤ t ≤ n, n+ 1 ≤ r ≤ 2m+ s (3.12)

and

n1∑

i=1

σrii =
n∑

t=n1+1

σrtt = 0, n+ 2 ≤ r ≤ 2m+ s (3.13)
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From (3.12) it follows that the warped product M1 ×fw M2 is mixed totally geodesic and (3.9) and
(3.13) implies n1H1 = n2H2. The converse statement is straightforward.

Corollary 3.2. Let M1 ×fw M2 be a warped product whose warping function f is harmonic.
Then

(i) M1 ×fw M2 admits no minimal C-totally real immersion into a S-space form M(c) with c < −3s.

(ii) Every minimal C-totally real immersion of M1 ×fw M2 in the standard Euclidean space R2m+s is a
warped product immersion.

Proof. Let f be a harmonic function on M1 and M1×fw M2 admits a minimal C-totally real immersion in
a S-space form M(c). Then, the equality (2.1) becomes c > −3s.

If c = −3s, the equality case of (3.1) holds. By Theorem 3.1 it follows that M1×fwM2 is mixed totally
geodesic and H1 = H2 = 0. A well-known result of Nölker [9] implies that immersion is a warped product
immersion.

Corollary 3.3. If the warping function fw of a warped product M1 ×fw M2 is an eigenfunction of the
Laplacian on M1 with corresponding eigenvalue λ > 0, then M1×fwM2 does not admit a minimal C-totally
real immersion in a S-space form M(c) with c < −3s.

Proof. If fw is an eigen function of the Laplacian onM1 with eigen value λ > 0, the inequality (2.1) implies
that

n1

4
(c+ 3s) ≥ λ > 0
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Abstract. We determine the error bound of periodic signal belonging to Hω-space (see[6]) by deferred

Cesàro - transform (see[1] p. 414 and also see [4] p.148) generalizing an earlier result of Chandra [3].

1. Definitions and Notations

Let s(t) ∈ C∗[0, 2π] be a class of 2π - periodic analog signals and let the Fourier trigonometric series be
given by

s(t) ∼
1

2
a0 +

∞∑

n=1

(an cosnt+ bn sinnt) ≡

∞∑

n=0

An(t) (1.1)

Singh [6] defined the space Hω by

Hω = {s(t) ∈ C2π :| s(t1)− s(t2) |≤ Kω(| t1 − t2 |)} (1.2)

and the norm ‖ · ‖ω∗ by

‖ s ‖ω∗=‖ s ‖c +sup
t1t2
{�ω∗s(t1, t2)} (1.3)

where

‖ s ‖c= sup
0≤t≤2π

| s(t) | (1.4)

and

�ω∗s(t1, t2) =
| s(t1)− s(t2) |

ω∗(| t1 − t2 |)
, t1 �= t2 (1.5)

and choosing �0s(t1, t2) = 0, ω(t) and ω∗(t) being increasing signals of t. If

ω(| t1 − t2 |) ≤ A | t1 − t2 |
α (1.6)

ω∗(| t1 − t2 |) ≤ K | t1 − t2 |
β, 0 ≤ β < α ≤ 1 (1.7)

A and K being positive constants, then the space

Hα = {s(t) ∈ C2π :| s(t1)− s(t2) |≤| t1 − t2 |
α, 0 < α ≤ 1} (1.8)

Keywords and phrases : Analog signal, Deferred Cesàro - transforms, modulus of continuity.
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is a Banach space (see[5]) and the metric induced by the norm ‖ ‖α on Hα is to be a Hölder metric.

Let sn(t) be the n
th partial sums of (1.1) and let {pn} and {qn} be sequences of non-negative integers

satisfying

pn < qn (1.9)

and

lim
n→∞

qn =∞ (1.10)

The processor

Dn(sn) =
1

qn − pn

qn∑

k=pn

sk(t) (1.11)

defines the deferred Cesàro- transform D(pn, qn) ([1], also see [4], p.148). It is known [1] that D(pn, qn)
is regular under conditions (1.9) and (1.10). Note that D(0, n) is the (C, 1) transform and let {λn} be
a monotone non - decreasing sequence of positive integers such that λ1 = 1 and λn+1 − λn ≤ 1, then
D(n− λn, n) is same as the nth generalized de la Vallée Poussin processor, generated by the sequence {λn}.

We shall use following notations:

φt1(t) = s(t1 + 2t) + s(t1 − 2t)− 2s(t1) (1.12)

Kn(t) =
1

2[sin t
2
]2
[sin(pn + qn + 1)t sin(qn + 1− pn)t] (1.13)

2. Introduction

Chandra [3] using the nth generalized de la Vallée Poussin processor, proved the following result on the
supremum norm.

Theorem A. Let the modulus of continuity ω(t) of s ∈ C2π be satisfying

π/2∫

t

ω(u)

u2
du = O(H(t)) (2.1)

as t→ 0+, H(t) ≥ 0 and

t∫

0

H(u)du = O{tH(t)} (2.2)

then

‖ Vn(λ)− s ‖= O

{
1

λn
H

(
π

2λn

)}
(2.3)

The purpose of the present paper is to establish a result to generalize the theorem A and to obtain a
number of interesting results. Actually, we prove:

Theorem 1. Let s ∈ Hω, 0 ≤ β < η ≤ 1, (2.1) and (2.2) be satisfied, then

‖ Dn(sn)− s ‖ω∗= O

[(
1 + log

qn

qn − pn

)β
n
{

1

qn − pn
H

(
π

2(qn − pn)

)}1−β
η

]

(2.4)
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Theorem 2. Let s ∈ Hω, 0 ≤ β < η ≤ 1, then

‖ Dn(sn)− s ‖ω∗= O




{
ω

(
π

qn

)}1−β
η

+
q
β
η
n

qn − pn

(
qn∑

k=1

ω

(
1

k

))1−β
η



 (2.5)

3. Lemma

We shall use following lemma

Lemma ([3]). Let (2.1) hold , then as t→ 0+

ω(t) = O{tH(t)} (3.1)

4. Proofs of Theorem 1 and 2

Following Zygmund [7], we have

Dn(sn)− s(t1) =
1

qn − pn

qn∑

k=pn

sk(t)− s(t1)

=
1

(qn − pn)π

π
2∫

0

{s(2t− t1) + s(2t− t1)− 2s(t1)}

(sin t)2
sin(pn + qn + 1)t sin(qn + 1− pn)t dt

=
1

(qn − pn)π

π
2∫

0

φ(t)Kn(t) dt (4.1)

It is easy to note that

| φt1(t)− φt2(t) |≤ 4Kω(| t |) (4.2)

and

| φt1(t)− φt2(t) |≤ 4Aω(| t1 − t2 |) (4.3)

We write

En(t1) = Dn(sn)− s(t1)

=
1

(qn − pn)π

π
2∫

0

φt1(t)Kn(t) dt

and

E(t1, t2) =| E(t1)−E(t2) |≤
1

π(qn − pn)

π
2∫

0

φt1(t)− φt2(t) | Kn(t) | dt

=
1

π(qn − pn)






π
2(qn−pn)∫

0

+

π
2∫

π
2(qn−pn)




 φt1(t)− φt2(t) | Kn(t) | dt
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= I1 + I2, say (4.4)

Now using (4.2), Lemma and noting that

Kn(t) =
sin(pn + qn + 1)t sin(qn + 1− pn)t

(sin t)2
≤
2(qn − pn)

t
(4.5)

we have

| I1 |= O






π
2(qn−pn)∫

0

ω(t)

t
dt






= O

[
1

(qn − pn)
H

(
π

2(qn − pn)

)]
(4.6)

Again using

Kn(t) =
sin(pn + qn + 1)t sin(qn + 1− pn)t

(sin t)2

≤
K

sin2 t
≤

K

t2
(4.7)

then we get from (2.1)

| I2 |= O






1

(qn − pn)

π
2∫

π
2(qn−pn)

ω(t)

t2
dt






= O

[
1

(qn − pn)
H

(
π

2(qn − pn)

)]
(4.8)

Now from (4.2), we have

| I1 |= O

[
1

qn − pn

]





π
2(qn−pn)∫

0

ω (| t1 − t2 |) | Kn(t) | dt






= O

[
ω(| t1 − t2 |)

qn − pn

]





1
qn∫

0

+

π
2(qn−pn)∫

1
qn




 = I11 + I12, say (4.9)

Now noting that

Kn(t) =
sin(pn + qn + 1)t sin(qn + 1− pn)t

(sin t)2

≤ (pn + qn + 1)(qn + 1− pn) ≤ qn(qn − pn)

thus

I11 = O {ω | t1 − t2 |} (4.10)

further noting that
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Kn(t) =
sin(pn + qn + 1)t sin(qn + 1− pn)t

(sin t)2
≤ K | (qn + 1− pn) sin t |≤

qn − pn

t

Thus

I12 =

{
ω (| t1 − t2 |) log

qn

2(qn − pn)

}
(4.11)

Combining I11 and I12 ,we get

I1 = O

(
ω (| t1 − t2 |) log

qn

2(qn − pn)

)
(4.12)

and again from (4.7)

| I2 |= O

[
ω (| t1 − t2 |)

(qn − pn)

]





π
2∫

π
2(qn−pn)

1

t2
dt






= O {ω (| t1 − t2 |)} (4.13)

Now noting that

Ir = I
1−

β
η

r I
β
η
r , (r = 1, 2) (4.14)

we have , from (4.6) and (4.12)

I1 = O(1) {ω (| t1 − t2 |)}
β
η

(
1 + log

qn

2(qn − pn)

)β
η
{

1

(qn − pn)
H

(
π

2(qn − pn)

)}1−β
η

(4.15)

and from (4.8) and (4.13)

I2 = O(1) {ω (| t1 − t2 |)}
β
η

{
1

(qn − pn)
H

(
π

2(qn − pn)

)}1−β
η

(4.16)

Thus from (4.15) and (4.16) , we have

sup
t1t2

| �ω∗En(t1, t2) |= sup
| En(t1)− En(t2) |

ω∗(| t1 − t2 |)

= O

[(
1 + log

qn

qn − pn

)β
η
{

1

(qn − pn)
H

(
π

2(qn − pn)

)}1−β
η

]

(4.17)

It is to be noted that

‖ En(t1) ‖c= max
0≤t1≤2π

| Dn(sn)− s |

= O

[
1

(qn − pn)
H

(
π

2(qn − pn)

)]
(4.18)

Combine ( 4.17 ) and ( 4.18) , to get

‖ Dn(sn)− s ‖ω
∗

= O

[(
1 + log

qn

qn − pn

)β
η
{

1

(qn − pn)
H

(
π

2(qn − pn)

)}1−β
η

]

This completes the proof of the theorem 1.
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Proof of Theorem 2 follows analogously as the proof of Theorem 1 with slight changes, so we omit the
details.

5. Corollaries and deductions

In this section, we deduce some corollaries. First of all we consider the corollaries based on Theorem 1.
If we put ω (| t1 − t2 |) ≤ A | t1 − t2 |

α, ω∗ (| t1 − t2 |) ≤ K | t1 − t2 |
β and

H(u) =






uα−1 , 0 < α < 1

log 1u , α = 1

and replace η by α, we get

Corollary 1. Let s ∈ Hα, 0 ≤ β < α ≤ 1, then

‖ Dn(sn)− s ‖β= O






(
1 + log qn

qn−pn

) β
α
(qn − pn)

β−α, 0 < α < 1

(
1 + log qn

qn−pn

)β (
1

qn−pn
log(qn − pn)

)1−β
, α = 1

Note that, if the case δ = lim
n→∞

sup
pn

qn
< 1, then from Corollary 1, we have

Corollary 2. Let s ∈ Hα, 0 ≤ β < α ≤ 1, then

‖ Dn(sn)− s ‖β= O






(qn − pn)
β−α , 0 < α < 1

(
1

qn−pn
log(qn − pn)

)1−β
, α = 1

If we put qn = n and pn = n − λn, then deferred Cesàro- transform reduces to nth generalized de la
Vallée Poussin means Vn(λ) and from Theorem 1 and Corollary 1, respectively, we have

Corollary 3. Let s ∈ Hω, 0 ≤ β < η ≤ 1, (2.1) and (2.2) be satisfied, then

‖ Vn(λ)− s ‖ω
∗

= O

[(
1 + log

n

λn

)β
η
(
1

λn
H

(
π

2λn

))1−β
η

]

Put β = 0 in the above corollary to get the Theorem A due to Chandra [3] in the supremum norm.

Corollary 4. Let s ∈ Hα, 0 ≤ β < α ≤ 1, then

‖ Dn(sn)− s ‖β= O






(
1 + log n

λn

) β
α
(λn)

β−α, 0 < α < 1

(
1 + log n

λn

)β (
1

λn
log(λn)

)1−β
, α = 1

If we put β = 0 in Corollary 4, then we get

Corollary 5. Let s ∈ C2π and s ∈ lip α, 0 < α ≤ 1, then

‖ Vn(λn)− s ‖= O






λ−αn , 0 < α < 1

log λn
λn

, α = 1
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If we put qn = n and pn = 0 and β = 0, then from Corollary 1 to get the following result on the Fejèr
processor, we have

Corollary 6. Let s ∈ C2π and s ∈ Lip α, 0 < α ≤ 1, then

‖ σn(s)− s ‖= O






n−α, 0 < α < 1

logn

n
, α = 1

(The above result is due to Alexits[2]).
The following corollaries are due to Theorem 2. Again we use the concept of Corollary 3, in Theorem

2, we get following.

Corollary 7. Let s ∈ Hω, 0 ≤ β < η ≤ 1, then we get

‖ Vn(λ)− s ‖ω∗= O




{
ω
(π
n

)}1−β
η
+

n
β
η

λn

(
n∑

k=1

ω

(
1

k

))1−β
η





If we put β = 0 in above, then we have

Corollary 8. Let ω(t) be the modulus of continuity of s ∈ C2π, then

‖ Vn(λ)− s ‖ω∗= O

[

ω
(π
n

)
+
1

λn

(
n∑

k=1

ω

(
1

k

))]

Several other interesting results can be deduced from the above corollaries.
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Abstract. This paper presents the notion of asymptotically lacunary statistical equivalent sequences of

multiple L. In addition to this definition inclusion theorems are also presented.

1. Introduction and Background

Before we present the new definition and main theorems we shall state a few known definitions.

Definition 1.1(Marouf [3]). Two nonnegative sequences [x], and [y] are said to be asymptotically
equivalent if

lim
k

xk

yk
= 1

(denoted by x∼y).

Definition 1.2(Fridy, [2]). The sequence [x] has statistic limit L, denoted by st− lim s = L provided that
for every ε > 0,

lim
n

1

n
{the number of k ≤ n :| xk − L |≥ ε} = 0

Recently Patterson [5] presented the following definition by combining the notion of asymptotically
equivalent and statistical convergence:

Definition 1.3. Two nonnegative sequence [x] and [y] are said to be asymptotically statistical equivalent
of multiple L provided that for every ε > 0,

lim
n

1

n
{the number of k < n :|

xk

yk
− L |≥ ε} = 0

(denoted by x
SL∼ y), and simply asymptotically statistical equivalent if L = 1.

By a lacunary sequence θ = (kr); r = 0, 1, 2, ... where k0 = 0, we shall mean an increasing sequence of
non-negative integers with kr − kr−1 → ∞ as r → ∞. The intervals determined by θ will be denoted by
Ir = (kr−1, kr] and hr = kr − kr−1. The ratio

kr
kr−1

will be denoted by qr. Following these results Patter-

son and Savas in [4] defined asymptotically lacunary statistical equivalent sequences of multiple L as follows:

Definition 1.4. Let θ be a lacunary sequence; the two nonnegative sequences [x] and [y] are said to be
asymptotically lacunary statistical equivalent of multiple L, provided that for every ε > 0

Keywords and phrases : Asymptotically statistical equivalent, lacunary sequences, statistical limit points.
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lim
r

1

hr

∣∣∣∣

{
k ∈ Ir :

∣∣∣∣
xk

yk
− L

∣∣∣∣ ≥ ε
}∣∣∣∣ = 0

(denoted by x
SL
θ∼ y)and simply asymptotically lacunary statistical equivalent, if L = 1.

We now define

Definition 1.5. Let θ be a lacunary sequence; and p = (pk) be a sequence of positive real numbers; two
number sequences [x] and [y] are strongly asymptotically lacunary equivalent of multiple L, provided that

lim
r

1

hr

∑

k∈Ir

∣∣∣∣
xk

yk
− L

∣∣∣∣
pk

= 0

(denoted by x
N
L(p)
θ∼ y) and simply strongly asymptotically lacunary equivalent if L = 1.

If we take pk = p for all k ∈ N we write x
N
Lp
θ∼ y instead of x

N
L(p)
θ∼ y.

Definition 1.6. Let p = (pk) be a sequence of positive numbers and let us consider two number sequences
[x] and [y]. The two sequences [x] and [y] are said to be strongly asymptotically, Cesáro equivalent to L
provided that

lim
n

1

n

n∑

k=1

∣∣∣∣
xk

yk
− L

∣∣∣∣
pk

= 0

(denoted by x
σ(p)
∼ y), and simply strong Cesáro asymptotically equivalent if L = 1.

Let us now consider the following theorems:

Theorem 1.1. Let θ be a lacunary sequence. Then

(1) If x
N
Lp

θ∼ y then x
SL
θ∼ y.

(2) If x, y ∈ l∞ and x
SL
θ∼ y then x

N
Lp
θ∼ y.

(3) SLθ ∩ l∞ = N
Lp
θ ∩ l∞

where l∞ denote the set of bounded sequences.

Proof. Part (1): If ε > 0 and x
N
Lp
θ∼ y then

∑

k∈Ir

|
xk

yk
− L |p ≥

∑

k∈Ir&|
xk
yk
−L|≥ε

|
xk

yk
− L |p

≥ εp |

{
k ∈ Ir :|

xk

yk
− L |≥ ε

}
|

Therefore xk → L(x
SL
θ∼ y).

Part (2): Suppose that [x] and [y] are in l∞ and x
SL
θ∼ y then we can assume that | xk

yk
− L |≤ M for all k.

Let ε > 0 be given and Nε be such that

1

hr
|

{
k ∈ Ir :|

xk

yk
− L |≥

( ε
2

) 1
p

}
| ≤

ε

2Kp
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for all r > Nε and let

Lk :=

{
k ∈ Ir :|

xk

yk
− L |≥

( ε
2

) 1
p

}

Now for all r > N we have

1

hr

∑

k∈Ir

|
xk

yk
− L |p =

1

hr

∑

k∈Lk

|
xk

yk
− L |p

+
1

hr

∑

k �∈Lk

|
xk

yk
− L |p

≥
1

hr

hrε

2Kp
Kp +

1

hr
hr
ε

2

Hence xk → L(x
N
Lp
θ∼ y).

Part 3: This immediately follows from (1) and (2).

Theorem 1.2. Let θ = {hr} be a lacunary sequence and supk pk = H then x
N
L(p)
θ∼ y implies x

SL
θ∼ y.

Proof. Let x
N
L(p)
θ∼ y and ε > 0 be given. Then

1

hr

∑

k∈Ir

|
xk

yk
− L |pk =

1

hr

∑

k∈Ir&|
xk
yk
−L|≥ε

|
xk

yk
− L |pk

+
1

hr

∑

k∈Ir&|
xk
yk
−L|<ε

|
xk

yk
− L |pk

≥
1

hr

∑

k∈Ir&|
xk
yk
−L|≥ε

|
xk

yk
− L |pk

≥
1

hr

∑

k∈Ir&|
xk
yk
−L|≥ε

(ε)pk

≥
1

hr

∑

k∈Ir&|
xk
yk
−L|≥ε

min{(ε)inf pk , (ε)H}

≥
1

hr
|

{
k ∈ Ir :|

xk

yk
− L |≥ ε

}
| min

{
(ε)inf pk , (ε)H

}

Hence x
SL
θ∼ y.

Theorem 1.3. Let [x] and [y] be bounded and 0 < h = infk pk ≤ supk pk = H < ∞. Then x
SL
θ∼ y implies

x
N
L(p)
θ∼ y.

Proof. Suppose that [x] and [y] be bounded and ε > 0 is given. Since [x] and [y] are bounded there exists
an integer K such that | xk

yk
− L |≤ K for all k; then
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1

hr

∑

k∈Ir

|
xk

yk
− L |pk =

1

hr

∑

k∈Ir&|
xk
yk
−L|≥ε

|
xk

yk
− L |pk

+
1

hr

∑

k∈Ik&|
xk
yk
−L|<ε

|
xk

yk
− L |pk

≤
1

hr

∑

k∈Ir&|
xk
yk
−L|≥ε

max{Kh, KH}

+
1

hr

∑

k∈Ir&|
xk
yk
−L|<ε

max{ε}pk

≤ max{Kh,KH}
1

hr
|

{
k ∈ Ir :|

xk

yk
− L |≥ ε

}
|

+ max{εh, εH}

Hence x
N
Lp
θ∼ y.

Theorem 1.4. Let θ = {kr} be a lacunary sequence with lim infr qr > 1 then x
σ(p)
∼ y implies x

N
L(p)
θ∼ y.

Proof. If lim infr qr > 1, then there is δ > 0 such that 1 + δ ≤ qr for all r ≥ 1. Then for x
σ(p)
∼ y,

Ar =
1

hr

∑

k∈Ir

|
xk

yk
− L |pk

=
1

hr

kr∑

k=1

|
xk

yk
− L |pk −

1

hr

kr−1∑

k=1

|
xk

yk
− L |pk

=
kr

hr

(
1

kr

kr∑

k=1

|
xk

yk
− L |pk

)

−
kr−1

hr



 1

kr−1

kr−1∑

k=1

|
xk

yk
− L |pk





Since hr = kr − kr−1, we have
kr
hr
≤ 1+δ

δ
this both

kr

kr−1

kr−1∑

k=1

|
xk

yk
− L |pk

and

1

kr

kr∑

k=1

|
xk

yk
− L |pk

converges to zero. Therefore x
N
L(p)
θ∼ y. This completes the proof.

Theorem 1.5. Let θ = {kr} be a lacunary sequence with lim supr qr > 1 then x
N
L(p)
θ∼ y implies x

σ(p)
∼ y.

Proof. If limr qr < ∞, there exists B > 0 such that qr < B for all r ≥ 1. Let x
N
L(p)
θ∼ y and ε > 0. There

exists R > 0 such that for every i ≥ R and

Ai =
1

hi

∑

k∈Ii

|
xk

yk
− L |pk≤ ε
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We can also findK > 0 such that Ai < K for all i = 1, 2, 3, . . .. Now letm be any integer with kr−1 < m ≤ kr
where r > R. Then we can write

1

m

m∑

k=1

|
xk

yk
− L |pk ≤

1

kr−1

kr∑

k=1

|
xk

yk
− L |pk

=
1

kr−1




∑

k∈I1

|
xk

yk
− L |pk +

∑

k∈I2

|
xk

yk
− L |pk + · · ·+

∑

k∈Ir

|
xk

yk
− L |pk





=
k1

kr−1
A1 +

k2 − k1
kr−1

A2 + · · ·+
kR − kR−1
kr−1

AR +
kR+1 − kR
kr−1

AR+1

+ · · ·+
kr − kr−1
kr−1

Ar

≤ (sup
i≥1

Ai)
kR

kr−1
+ (sup

i≥1
Ai)

kr − kR
kr−1

< K
kR

kr−1
+ εB

This completes the proof.
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Abstract. The problem of steady laminar flow of a non-Newtonian visco-elastic second-grade fluid under

a finite rotating disk enclosed within a coaxial cylindrical casing has been solved by finite difference

method when there is suction and equal injection applied normal to the upper and lower disc respectively.

The flow is subjected to a superposed small mass rate of symmetrical radial outflow (or inflow). The

effects of the second order terms are observed to depend on the dimensionless visco-elastic parameter T

and suction parameter A. The presence of the shroud induces circulation about the axis of rotation. It

is interesting to find that the maximum values ξ1 and ξ2 of the dimensionless radial distances at which

there is no-recirculation, for the cases of net radial outflow and net radial inflow, decrease with an increase

in the visco-elastic parameter T . The velocities at ξ1 and ξ2 as well as at some other fixed radii have

been calculated for different values of T and suction parameter A. and the associated phenomena of

recirculation∗/ no-recirculation has been discussed in detail and shown graphically. The change in the

flow phenomena due to a reversal of the direction of net radial flow has been studied. Moreover, it is

found that the moment on the rotating disk increases with T . Such flows are useful in mechanical and

chemical industries.

1. Introduction

The phenomenon arising out of the flow under a shrouded (enclosed) rotating disk finds a host of applications
in industries as its generalization could be of great help in studies concerning the air cooling of turbine disk
and pedestal bearing with centrifugal feeding of the lubricant, fiber coating applications, losses and leakage
flow in a centrifugal pump and compressor. The problem of flow over an enclosed rotating disk was first
studied by Soo [15, 16]. He has shown that the mechanism of fluid flow of an enclosed rotating disc is
distinctly different from that of a disc rotating in an infinite medium. Sharma [9] has suggested an improved
formulation for the velocity profile, assumed by Soo.

Sharma and Gupta [10], Sharma and Sharma [11], Sharma and Gupta [14] extended the study for
elastico-viscous and second order fluids respectively. Approximate methods of solution have been used in
all these investigations. Sharma and Biradar [12] have considered the effects of suction and injection to the
problem solved by Sharma and Gupta [14] using finite difference method, whose constitutive equation is
given by [7]

τ = −pI + µ1A1 + µ2A2 + µ3A
2
1 (1)

−pI is due to the incompressibility, τ is stress tensor. A1, A2 are first two Rivlin-Ericksen tensors defined
by

A1 = ∇V + (∇V )τ , A2 =
dA1
dt

+A1(∇V ) + (∇V )τA1 (2)

Keywords and phrases : Second grade fluid, enclosed rotating disk, radial inflow, shroud effect, finite difference

method.

AMS Subject Classification : 76A05, 76A10.
∗Recirculation is the phenomena arising out of a radial outflow near the rotating disc and radial inflow near the stationary

disc.
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where V is the velocity, µ1 is the coefficient of Newtonian- viscosity, µ2 and µ3 are coefficients of elastico-
viscosity and cross-viscosity respectively. The equation governing the flow of fluids of second order are of
higher order than the Navier-Stokes equations due to the presence of the term (dA1/dt) in the expression
of the stress and since only the adherent boundary condition obtains, we do not have enough boundary
conditions to make the problem determinate. To overcome this difficulty, Bhatnagar and Zago [2] have used
a numerical method which treats the higher order terms in the equations as lower iterate, thus lowering the
order of the equation. The sign of the coefficient µ2 has been a subject of much controversy and a thorough
discussion of issues involved can be found in the critical review of Dunn and Rajagopal [4]. If the fluid
modeled by equation (1) is to be compatible with thermo-dynamics, in the sense that all motions of the
fluid meet Clausius-Duhem inequality and the assumption that the specific Helmholtz free energy of the
fluid is minimum when the fluid is locally at rest, then the condition

µ1 ≥ 0, µ2 ≥ 0, µ2 + µ3 = 0 (3)

must hold. The fluids satisfying (1), (2) and (3) are termed as second grade fluids. The difference in sign
of µ2 can give rise to completely divergent results and can be appreciated by considering the flow near a
stagnation point [13]. Dunn and Fosdick [3] have demonstrated that the fluids of second grade whose material
coefficients satisfy the condition (3) exhibits acceptable stability characteristics. Fosdick and Rajagopal [5]
relaxed the requirement that µ2 + µ3 = 0 and have shown that if µ2 < 0 the fluid exhibited anomalous
behavior not to be expected in materials of rheological interest. Later, Galdi et al [6] have extended the
results of Dunn and Fosdick [3] and Fosdick and Rajagopal [5] to unbounded domain even when µ2+µ3 �= 0.
However we shall assume that the model considered satisfies (3).

In the present study, we have analyzed the flow of a second grade fluid under an enclosed rotating
disk, using the same improved formulation for the velocity profile [11] with a superposed small mass rate of
symmetrical radial outflow (or inflow) when there is uniform suction and injection. The flow equations are
solved using the finite difference method.

2. Mathematical Modeling of the Problem

The system shown in Fig. 1 consists of a disk (called rotor) rotating at a constant angular velocity Ω, about
the axis of rotation (r = 0). The incompressible second-grade fluid occupies the space between the two
disc and situated at a distance z0 (<< rs) from the stationary plate and forming the top of the cylindrical
casing. The symmetrical radial, steady outflow has a small mass rate of flow m (m < 0 for radial inflow).
The inlet condition is taken as a simple radial source flow along the z- axis starting from the radius r0. A
uniform suction and equal injection w0 is applied normal to the upper and lower disc respectively.

The equation of motion and continuity are

ρ
dV

dt
= ∇ · τ (4)

and

∇ · V = 0 (5)

where ρ is the density of the fluid assumed to be constant.
Assuming (u, v, w) to be the velocity components along the cylindrical system of coordinates (r, θ, z),

the boundary conditions of the problem are:

u = 0, v = 0, w = w0 at z = 0,

u = 0, v = rΩ, w = w0 at z = z0

(6)

where the gap length z0 is assumed small in comparison with the disk radius rs so that the edge effects are
negligible.

The improved velocity components for axisymmetric flow, compatible with the continuity criteria can
be taken as follows [11]:
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u = −rΩH ′(ζ) +
mM ′(ζ)

2πrρZ0
,

v = rΩG(ζ) +
lN(ζ)

2πrρZ0
,

w = 2ΩZ0H(ζ)

(7)

where H ′(ζ),M ′(ζ), G(ζ) and N(ζ) are non-dimensional functions of the dimensionless variable ζ

[
=
z

z0

]

and ξ =
r

z0
and m, the small mass of radial outflow is represented by

m = 2πρ

∫ z0

z

rudz

m being positive for net radial outflow and negative for net radial inflow. l is the constant associated with
induced circulatory flow, assumed to be of order m.

The boundary conditions (6) in terms of H,G,M and N become:

H(0) = A, H ′(1) = 0,

H ′(0) = 0, H(1) = A,

G(0) = 1, G(1) = 1,

M ′(0) = (0), M ′(1) = 0,

N(0) = 0, N(1) = 0

(8)

where A

[
=

w0
2Ωz0

]
is the suction parameter.

Substitution of the velocity components from expression (7) into the equation of motion (4) and making
use of equations (1) and (2) leads to

−
1

ξ

∂P

∂ξ
= (H ′2 − 2HH ′′ −G2)−

Rm
Rzξ2

(GL−HM ′′) +
1

Rz
(H ′′′ −

Rm
2Rzξ2

M ′′′)

−T [2(H ′′2 −HH iv) +
Rm
Rzξ2

(H ′M ′′′ +H ′′′M ′ +HM iv +H ′′M ′′

+H ′′M ′′ − 2G′L′ −G′′L)]

(9)

0 = 2(H ′G−HG′)−
Rm
Rzξ2

(M ′G+HL′) +
1

Rz
(G′′ +

RmL
′′

Rzξ2
)

+T [2(HG′′′ −H ′′G′) +
Rm
Rzξ2

(2M ′′G′ + 2M ′G′′ +H ′′′L+H ′L′′ ++HL′′′ +H ′′L′)]

+K[2(H ′G′′ −H ′′G′) +
Rm
Rzξ2

(2M ′′G′ +M ′G′′ +H ′′′L+H ′L′′ +HL′′′ +H ′′L′)]

(10)
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−
∂P

∂ξ
= 4(HH ′ −

2H ′′

Rz
− T [4(11H ′H ′′ +HH ′′′) + 4ξ2(H ′′H ′′′ +G′G′′)

−
Rm
Rz

(H ′′′M ′′ +H ′′M ′′′ −G′′L′ −G′L′′)]−K[28H ′H ′′ + 2ξ2(H ′′H ′′′ +G′G′′)

−
Rm
Rz

(H ′′′M ′′ +H ′′M ′′′ −G′′L′ −G′L′′)]

(11)

where ξ =
r

z0
, P =

p

πΩ2z20
and Rm = (

m

πpz0v1
), Rl = (

l

πpz0v1
) and Rz = (

Ωz20
v1

) are the Reynolds numbers

based on the radial outflow, induced circulatory flow and the gap respectively. The dimensionless quantities

T =
v2
z20

, K =
v3
z20

are the ratios of the second order and the inertial effects and L(ζ)
Rl
Rm

= N(ζ). It is

noteworthy to mention that while deriving equations (9) - (11), we have neglected the squares and higher

powers of
Rm
Rz

and
Rl
Rz

(assumed small).

Equation (9) suggests the following form for pressure:

P (ξ, ζ) = P0(ζ) + ξ
2P1(ζ) + P2(ζ) log ξ (12)

where P0, P1 and P2 are to be determined from (9) and (11).
Substituting (12) in equations (9) and (11) and equating the terms independent of ξ and coefficients of

similar powers of ξ, we have

2P1 = −(H ′2 − 2HH ′′ −G2)−
1

Rz
H ′′′ + 2T (H ′′2 −HH iv) +K(H ′′2 − 2H ′H ′′′ −G′′2),

P2 = −
Rm
Rz

(GL−HM ′′) +
Rm
2R2z

M ′′′ + T
Rm
Rz

(H ′M ′′′ +H ′′′M ′ +HM iv +H ′′M ′′ − 2G′L′ − 2G′′L)

+K
Rm
Rz

(H ′M ′′′ +H ′′′M ′ +H ′′M ′′ − 2G′L′ −G′′L),

P ′0 = −4HH ′ +
2

Rz
H ′′ + T [4(11H ′H ′′ +HH ′′′)− 2

Rm
Rz

(H ′′′M ′′ +H ′′M ′′′ −G′′L′ −G′L′′)]

+K[28H ′H ′′ −
Rm
Rz

(H ′′′M ′′ +H ′′M ′′′ −G′′L′ −G′L′′)],

P ′1 = 2T (2T +K) (H ′′′H ′′′ +G′G′′) ,

P ′2 = 0
(13)

Eliminating P ’s and their derivatives from (13), equating the coefficients of ξ and
1

ξ
from equation (10)

on both sides and using the restrictions (3) (i.e., T ≥ 0, T +K = 0), we get the following set of equations
to determine G,H, L and M :

G′′ = 2Rz(HG
′ −H ′G)− 2TRz(HG

′′′ +H ′G′′), (14)

L′′ = 2Rz(HL
′ +M ′G)− 2TRz(M

′G′′), (15)
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H iv = 2Rz(HH
′′′ +GG′)− 2TRz(G

′G′′ +HHv), (16)

M iv = 2Rz(H
′M ′′ +HM ′′′ −G′L−GL′)− 2TRz(HM

v +H ′M iv −G′′′L−G′′L′). (17)

3. Numerical Solution, Results and Discussions

Note that the order of the system of equations (14) - (17) exceeds the number of available boundary
conditions. Hence, the solution of the system can not proceed numerically using any standard integration
routine. The classical method of handling this problem was to use the perturbation technique. Beard and
Walters [1] were the first to use this approach to obtain results for the stagnation point flow of a second order
fluid. However, recent researches culminating in the development of some new algorithms have cast serious
doubts on the suitability of using the perturbation solution. Evidently, if an extra boundary condition was
available, the need to use the perturbation method would have been eliminated. Bhatnagar and Zago [2],
Sahoo and Sharma [8] have used a numerical method which treats the higher order terms in the equations
as a lower iterate, essentially once again lowering the order of the equations.

We have solved the highly nonlinear system of differential equations (14) - (17) by finite difference
method under the boundary conditions (8).

Defining the dimensionless velocity components U , V and W as

U =
u

Ωz0
, V =

v

Ωz0
, W =

w

Ωz0

the dimensionless form of radii at which there is no recirculation for the cases of net radial outflow (m > 0)
and net radial inflow (m < 0) respectively, satisfy the following conditions

[
∂U−

∂ζ

]

ζ=0

≥ 0,

[
∂U−

∂ζ

]

ζ=1

≤ 0, for Rm > 0, (18)

[
∂U−

∂ζ

]

ζ=0

≥ 0,

[
∂U−

∂ζ

]

ζ=1

≤ 0, for Rm < 0 (Rm = −Rn) (19)

The values of dimensionless radial and transverse components of velocity at maximum disk radii
ξ1(T ) (Rm > 0) and ξ2(T ) (Rm < 0)

U
(+)
ξ1(T )

=

[

U

√
Rz
Rm

]

ξ1(T )

, U
(+)
ξ2(T )

=

[

U

√
Rz
Rn

]

ξ2(T )

V
(+)
ξ1(T )

=

[

V

√
Rz
Rm

]

ξ1(T )

, V
(+)
ξ2(T )

=

[

V

√
Rz
Rn

]

ξ2(T )

have been calculated and shown through Figs. (2) to (9). The numerical calculations have been carried out
for the two cases viz.,

(i) A varying: T fixed and

(ii) T varying: A fixed.

For the first case the value of T is fixed at T = 1, and in the second case the value of suction parameter
is maintained at A = 0.001. Figs. (2) and (3) depict the behavior of the radial velocity at maximum radii
for net radial outflow and inflow respectively for the region of no-recirculation. The radial component of
velocity at ξ = ξ(T ) increases with an increase in A near the rotor and decreases near the stator for fixed
value of T or conversely the effect of increasing T for fixed A on radial velocity is to decrease near the rotor
and increase near the stator. Reverse is the case for Rm > 0. Thus the effect of increase in the suction
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parameter A for fixed values of elastico-viscous parameter T or increase in the elastico-viscous parameter
for fixed values of suction parameter A on the radial velocity are obviously opposite. Thus the application
of suction and injection is helpful in the industries such as air cooling of turbine discs etc. and the effect of
suction is to decrease the boundary layer thickness thus minimizing the chances of separation and therefore
stabilize the flow. There is no-recirculation at the radii ξ = ξ1(0) and ξ = ξ2(0) in the viscous case. This
variation is different than obtained for a second- order fluid [12]. The radial velocity for net radial outflow
at fixed radius decreases near the rotor and increases near the stator with varying A for fixed T or increase
in T for fixed A as shown in Fig. (4) and (5). Reverse is the behavior for net radial inflow.

The variation of non-dimensional velocity functions H ′,M ′, G′ and L with Reynolds number Rz and
suction parameter A for fixed T are obtained and presented graphically through Figs. (6) to (9). It is seen
that the values of H ′ for increasing values of T with fixed A are positive and increase near the stator and
are negative and decrease near the rotor with an increase in Rz. The effect of increase in suction parameter
A for fixed Rz or T is to decrease near the rotor and increase near the stator. The behavior of M ′ for
increasing values of T for fixed A for all values of Rz is to decrease both near the rotor and stator. The
increase in suction parameter A for fixed Rz or T decreases it near the rotor and increases it near the stator.
The values of G for increasing values of T with fixed A decreases, for fixed values of Rz. Similar is the effect
with increase in suction parameter. Reverse is the behavior with an increase in Rz. It is observed that the
values of L, decrease, with increasing values of Rz, near the rotor and increase near the stator for increasing
values of T for fixed A or increasing values of A for fixed T .

The transverse shearing stress at the rotating disc is given by

−[Tθz]ζ=1 = µ1Ωξ

[
1 +ARz +

3R2z
700

+
A2R2z
3

]
+
µ1ΩRm

2ξ

[
4k +

3

5
+ARz

(
2k +

1

15
+ 4T − 48kT

)]

+2Aξµ2Ω
2Rz

[
2A+Rz

(
2A2 +

k

5

)]
+
Aµ2Ω

2Rm
ξ

[
24k +ARz

(
40k +

6

5
+ 32T − 96kT

)]

(20)
where T = −K = k, a constant parameter.

The dimensionless moment coefficient Cm therefore can be written as

Cm =
1

2ξsRz

[
1 +ARz +R

2
z

(
3

700
+
A2

3

)]
+

Rm
2Rzξ3s

[
4k +

3

5
+ARz

(
2k +

1

15
+ 4T − 48kT

)]

+
AT

ξs

[
2ARz +R

2
z

(
2A2 +

k

5

)]
+
ATRm
ξ3s

[
24k +ARz

(
40k +

6

5
+ 32T − 96kT

)] (21)

The expression (21) shows that an increase in second grade effect and suction parameter increases the
moment on the rotating disc.

The radial pressure variation between any radii ξ and ξ0 can be obtained in the following form

(P−P0)ζ=0 =
ξ2 − ξ20

20
(3 + 10T )−

Rm
R2z

log

(
ξ

ξ0

)[
6− 18ARz + 12A2R2z +

24A3Rz
5

+R2z

[
263

4200
+

2k

175
−

8k2

5

)]

(22)
where P0 is the pressure at ξ = ξ0.

The average normal force on stationary disc up to a radius ξ0 is therefore
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=
1

πξ2s

∫ ξs

0
2πξ [Tzz]ζ=0 dξ

= ρΩ2z20

[
−P0 −

3

40

(
ξ2s − 2ξ20

)
−
T

4

(
ξ2s − 2ξ20

)
+
ξ2s
2
(k + T ) + 4Rm

(
k +

1

5

)]
+
RmρΩ

2z20
R2z

(
log

ξs
ξ0
−

1

2

)

[
6 +R2z

(
263

4200
+

2k

175
−

8k2

5

)
− 18ARz + 12A2R2z −

24A2Rz
5

]

(23)
Thus the non-rotating disc experiences suction or thrust according as the above expression (23) is

negative or positive. Putting T = K = 0 in (23), the average normal force without suction and injection
(with flow rate m zero) in the Newtonian case becomes

−ρΩ2z20

[
P0 +

3

40
ξ2s

]
(24)

Expression (24) is always negative which implies the well known result that stationary disc always
experiences suction in the Newtonian case.
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Abstract. This paper investigates solutions of nonhomoganeous and homogeneous partial differential

equations of Gauss type, and Gauss differential equations are discussed by means of N - fractional calculus

operator Nv .

1. Introduction

Let f(z) be an analytic function, which has no branch points inside and on a contour C(C = {C−, C+}) ,
where C− and C+ are integral curves along the cut joining points z and +∞+ iIm(z), z and +∞+ iIm(z),
respectively.

fa = cfa(z) =
Γ(α+ 1)

2πi

∫

c

f(ζ)

(ζ − z)α+1 dζ, α ∈ R [α �∈ Z−] (1.1)

defines the differintegral of the function f (z) of order α.

(f )−n = lim
v→−n

fα, (n ∈ Z+) (1.2)

whereever appear, Z− and Z+ are the set of negative and positive integers, respectively, ζ �= Z,
−π ≤ arg (ζ − z) ≤ π for C− and 0 ≤ arg (ζ − z) ≤ 2π for C+.

For α > 0, fα is the fractional derivative of order α and for α < 0, fα is called the fractional integral of
order α. In the notions of Nishimoto [3], the partial fractional derivative and the partial fractional integrals
are defined as the extensions of one variable function.

Let D = {D−,D+};C = {C−, C+} possess similar notions as explained above. D is a domain
surrounded by C− and D+ is that surrounded by C+ (here D contains the points over the curves C).
Moreover, let f = f(z) be a regular function in D(Z ∈ D),

fv = (f)v = c(f)v =
Γ(v + 1)

2πi

∫

c

f(t)

c(t− z)v+1
dt, (v �∈ Z−) (1.3)

and

(f)−m = lim
v→−m

(f)v, (m �∈ Z+) (1.4)

where t �= z, z ∈ C, v ∈ R,−π arg (t−z) ≤ π for C−, 0 ≤ arg (t−z) ≤ 2π for C+. Then (f)v, for v
>
< 0, are

, respectively, the fractional partial derivatives and the fractional partial integral of order v and −v, with
respect to z, of the function f , if | (f)v |<∞. The function f = f(z) such that | fv |<∞ in D, is called the
fractional differintegrable function of arbitrary order v and the set of them will be denoted by F , we have

| fv |<∞ ⇔ f ∈ F (in D = {D−,D+}). (1.5)

Keywords and phrases : N-fractional calculus, homogeneous and non-homogeneous Legendre and Euler Equations.

AMS Subject Classification : 26A33, 65L99.
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For the fractional calculus operator Nv, we have

Theorem A. Let fractional calculus operator ( Nishimoto’s Operator ) Nv be

Nv =

(
Γ(v + 1)

2πi

∫

c

dζ

(ζ − z)v+1
)
, (v �= Z−) (1.6)

with

N−m = lim
v→−m

Nv, (m �= Z+) (1.7)

and define the binary operation ◦ as

Nβ ◦Nαf = NβNαf = Nβ(Nαf ), (α, β ∈ R) (1.8)

Then the set {Nv} = {Nv | v ∈ R} is an Abelian product group (having continuous index v) which has the
inverse transform operator (Nv)−1 = N−v to the fractional calculus operator Nv, for the function f such
that f ∈ F = {f : 0 �=| fv |< ∞, v ∈ R}, where f = f(z) and z ∈ C (viz. −∞ < v < ∞). (For our
convenience, we call NβoNα as product of Nβ and Nα.)

Theorem B. The “F.O.G. (Fractional calculus Operator Group) {Nv}” is an “Action product group which
has continuous index v” for the set F .

2. Solutions of Partial Differential Equation

In this section, we obtain solutions of certain partial differential equations by the application of N -fractional
calculus.

Theorem 2.1. Partial differential equation of Gauss type

∂2u

∂z2
(az2 + bz + c) +

∂u

∂z
(2avz + bv − k) + u = A

∂2u

∂t2
+B

∂u

∂t
(z �= 0, 1) (2.1)

has the solutions

(1) u(z, t) =




k




[z + (b/2a)] +

[√
b2 − 4ac/2a

]

[z + (b/2a)]−
[√
b2 − 4ac/2a

]





−k√
b2−4ac

e(−B±
√
B2−4Aσ)t/2A






(v−1)(z)

(2.2)

where k, a, b, c, A and B are constants for AB �= 0,

(2) u(z, t) =




k




[z + (b/2a)] +

[√
b2 − 4ac/2a

]

[z + (b/2a)]−
[√
b2 − 4ac/2a

]





−k√
b2−4ac

e
(±
√

−σ
A
)(t)






(v−1)(z)

(2.3)

for A �= 0, B = 0,

(3) u(z, t) =




k




[z + (b/2a)] +

[√
b2 − 4ac/2a

]

[z + (b/2a)]−
[√
b2 − 4ac/2a

]





−k√
b2−4ac

e(
−α
B
)(t)






(v−1)(z)

(2.4)
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for A = 0, B �= 0, such that

σ = av(v − 1)− 1, v being arbitrary. (2.5)

Proof. Let

u(z, t) = φ(z)eλt(λ �= 0) (2.6)

Hence,

∂u

∂t
= φ(z)λeλt,

∂2u

∂t2
= φ(z)λ2eλt (2.7)

and

∂u

∂z
= φ1(z)e

λt,
∂2u

∂z2
= φ2(z)e

λt (2.8)

Substituting (2.6) - (2.8) into (2.1), we have

φ2(az
2 + bz + c) + φ1(2avz + bv − k) + φ (1−Aλ2 −Bλ) = 0 (2.9)

Choose λ such that

1−Aλ2 −Bλ = av(v − 1) (2.10)

i.e.,

Aλ2 +Bλ+ (av(v − 1)− 1) = 0 (2.11)

Thus,

λ =
{
−B ±

√
B2 − 4A(av(v − 1)− 1)

}
/2A, AB �= 0 (2.12)

λ =
{
±
√

(1− av(v − 1))
}
/A, A �= 0, B = 0 (2.13)

and

λ = {1− av(v − 1)}/B, A = 0, B �= 0 (2.14)

eventually yield

φ2(az
2 + bz + c) + φ1(2avz + bv − k) + φ av(v − 1) = 0 (2.15)

Solution of (2.15) is given by ( cf.[2] )

φ = k









[z + (b/2a)] +

[√
b2 − 4ac/2a

]

[z + (b/2a)]−
[√
b2 − 4ac/2a

]





−k√
b2−4ac






(v−1)

(2.16)

Indeed, we obtain the solution (2.2) when (2.15) and (2.16) are substituted into (2.6).

In order to verify our solution, if we write

λ =
{
−B ±

√
B2 − 4A(av(v − 1)− 1)

}
/2A = δ, (2.17)

as a consequence, we will have from (2.2) the following
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∂u

∂z
=



A
[z + (b/2a)] +

[√
b2 − 4ac/2a

]

[z + (b/2a)]−
[√
b2 − 4ac/2a

]





v

eδt (2.18)

∂2u

∂z2
=



A
[z + (b/2a)] +

[√
b2 − 4ac/2a

]

[z + (b/2a)]−
[√
b2 − 4ac/2a

]





v+1

eδt (2.19)

∂u

∂t
= δ



A
[z + (b/2a)] +

[√
b2 − 4ac/2a

]

[z + (b/2a)]−
[√
b2 − 4ac/2a

]





v−1

eδt (2.20)

and

∂2u

∂t2
= δ2



A
[z + (b/2a)] +

[√
b2 − 4ac/2a

]

[z + (b/2a)]−
[√
b2 − 4ac/2a

]





v−1

eδt (2.21)

Thus, apparently, left hand side of (2.1) becomes

{wα+2(az2 + bz + c) + wα+1(2avz + bv − k) + wα}eδt

i.e.,

wα(1− av(v − 1))eδt

i.e.,

A
∂2u

∂t2
+B

∂u

∂t

where

φ = δ




k




[z + (b/2a)] +

[√
b2 − 4ac/2a

]

[z + (b/2a)]−
[√
b2 − 4ac/2a

]





−k√
b2−4ac






(v−1)

eδt = wα

Since wα+2(az
2 + bz + c) + wα+1(2avz + bv − k) + wαav(v − 1) = 0, we have (2.3) for A �= 0, B = 0 and

(2.4) for A = 0, B �= 0 respectively.

Theorem 2.2. The homogeneous partial differential equation

∂2u

∂z2
(az2 + bz + c) +

∂u

∂t
(2avz + bv − k) + u = 0

has the solution of the form

u(z, t) =




k




[z + (b/2a)] +

[√
b2 − 4ac/2a

]

[z + (b/2a)]−
[√
b2 − 4ac/2a

]





−k√
b2−4ac






(v−1)(z)

eλt (λ �= 0)

where k, a, b, c are arbitrary constants.

The proof is similar to that of Theorem 2.1. Details are thus omitted.
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Particular Case: If a = 1, b = 0, c = −k, then the equation (2.1) reduces to

∂2u

∂z2
(z2 − k) + ∂u

∂t
(2vz − k) + u = A

∂2u

∂t2
+B

∂u

∂t
(z �= 0, 1)

Particular solution of which are

u(z, t) =



M

[
z +

√
k

z −
√
k

]− 1
2

√
k

e(−B±
√
B2−Aσ)t/2A





(v−1)(z)

(1)

where M, k,A,B are constants for AB �= 0.

u(z, t) =



M

[
z +

√
k

z −
√
k

]− 1
2

√
k

e
[±
√

−σ
A
](t)





(v−1)(z)

(2)

for A �= 0, B = 0.

u(z, t) =



M

[
z +

√
k

z −
√
k

]− 1
2

√
k

e[
−σ
B
](t)





(v−1)(z)

(3)

for A = 0, B �= 0, such that σ = v(v − 1)− 1, v being arbitrary.

3. Nv Method to Non-homogeneous and Homogeneous Gauss Equations

Theorem 3.1. Let φ ∈ ϕ = {φ|0 �= |φµ| < ∞, µ ∈ R} and f ∈ ϕ = {f |0 �= |fµ| < ∞, µ ∈ R}. Then the
non-homogeneous Gauss equation

φ2(az
2 + bz + c) + φ1(2avz + bv − k) + φav(v − 1) = f (3.1)

has a particular solution of the form
φ = (T (z)S(z))v−1 (3.2)

where

T (z) = f−v
1

az2 + bz + c









[z + (b/2a)] +

[√
b2 − 4ac/2a

]

[z + (b/2a)]−
[√
b2 − 4ac/2a

]





k/
√
b2−4ac






−1

(3.3)

S(z) =




[z + (b/2a)] +

[√
b2 − 4ac/2a

]

[z + (b/2a)]−
[√
b2 − 4ac/2a

]





k/
√
b2−4ac

(3.4)

φk = d
kφ/dzk (k = 0, 1, 2), φ0 = φ = (z) is given function. z ∈ C and α is a given constant.

Proof. Operating N -fractional calculus operator Nµ to the both sides of (3.1), we have

Nµ{φ2(az2 + bz + c) + φ1(2avz + bv − k) + φav(v − 1)} = Nµ{f} (3.5)

that is,

φ2+µ(az
2+bz+c)+µφ1+µ(2az+b)+µ(µ−1)φµ(a)+φ1+µ(2avz+bv−k)+µφµ(2av)+φµav(v−1) = fµ (3.6)

Since

Nµ(φmz
n) = (φmz

n)µ =
n∑

k=0

Γ(µ+ 1)

Γ(µ+ 1− k)Γ(k + 1)
(φm)µ−k(z

n)k,
(
n ∈ Z+

⋃
{0}

)
(3.7)
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thus, we obtain

φ2+µ(az
2 + bz + c) + φ1+µ((2az + b)µ+ 2avz + bv − k) + φµµ(µ− 1)a+ µ(2av) + av(v − 1) = fµ (3.8)

Now, choose µ such that

µ2a− µa(1− 2v) + av(v − 1) = 0 (3.9)

namely,

µ = −v, (1− v) (3.10)

Substitute µ = −v into (3.6), it gives

φ2−v(az
2 + bz + c) + φ1−vk = f−v (3.11)

Therefore, setting

φ1−v = u = u(z) (3.12)

we have

u1 − u
k

az2 + bz + c
= f−v

1

az2 + bz + c
, (z �= 0, 1) (3.13)

A particular solution of this linear first order differential equation is given by

u =



f−v
1

az2 + bz + c

[
[z + (b/2a)] + [

√
b2 − 4ac/2a]

[z + (b/2a)]− [
√
b2 − 4ac/2a]

]−k/√b2−4ac



−1

×
[
[z + (b/2a)] + [

√
b2 − 4ac/2a]

[z + (b/2a)−
√
b2 − 4ac/2a]

]−k/√b2−4ac
= T (z)S(z) (3.14)

which yields, by virtue of (3.12) and (3.14), the following

φ = uv−1 = (T (z) S(z))v−1

which justifies (3.2). Inversely, from (3.2), we have

φ1 = uv and φ2 = uv+1 (3.15)

On substituting (3.15) and (2.2) into the left-hand-side of (3.1), we obtain results of Ram and Mathur [2]
as particular case.

Changing the order of T (z) and S(z) in (3.2), we have a solution as

φ∗ = uv−1 = (S(z) T (z))v−1, (v − 1) ∈ Z+
⋃
{0}

which, indeed, is different from (3.2).

Theorem 3.2. Let φ ∈ ϕ. Then the homogeneous Gauss Equation

φ2(az
2 + bz + c) + φ1(2avz + bv − k) + φav(v − 1) = 0 (3.16)

has the solution of the form

φ = A




[
[z + (b/2a)] + [

√
b2 − 4ac/2a]

[z + (b/2a)]− [
√
b2 − 4ac/2a]

]−k/√b2−4ac



v−1

(3.17)
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where φ = φ(z), z ∈ C, and k is an arbitrary constant.

Proof. Following the proceedure of the proof of Theorem 3.1, we get

u1 − u
k

az2 + bz + c
= 0 (3.18)

which upon simplification and setting µ = −v, yields (3.17).

Theorem 3.3. Let φ ∈ ϕ and f ∈ ϕ, respectively. Then the fractional differential function

ϕ = (T (z)S(z))v−1 +A




[
[z + (b/2a)] + [

√
b2 − 4ac/2a]

[z + (b/2a)]− [
√
b2 − 4ac/2a]

]−k/√b2−4ac



v−1

(3.19)

satisfies the non-homogeneous Gauss Equation (3.1), where T (z) and S(z) are given by (2.3) and (2.4)
respectively, and A is an arbitrary constant.

Proof. The solution can be obtained by following proofs of Theorems 3.1 and 3.2 and thus, details are
omitted.

Particular Case. If a = 1, b = 0, c = −k, then the equation (3.1) becomes

φ2(z
2 − k) + φ1(2vz + bv − k) + φv(v − 1) = f

particular solution of which is

φ =







f−v
1

z2 − k

[
z +

√
k

z −
√
k

](√k/2)



−1

[
z +

√
k

z −
√
k

]−(√k/2)



v−1

which yields results of Banerji and Al-Hashemi [1] as the particular case of our result.
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Abstract. The present paper deals with the study of notions of pseudosymmetric, Ricci-pseudosymmetric,

Ricci-generalized pseudosymmetric and Weyl pseudosymmetric Lorentzian para-Sasakian manifolds.

1. Introduction

In 1989, Matsumoto [10] introduced the notion of Lorentzian-para Sasakian manifold. Independently,
Mihai and Rosca [11] also studied the same notion. An elaborated study on LP-Sasakian manifold has
been done by several authors (see [2], [9], [12] - [14], [16] and [19]). The notion of pseudosymmetric
manifolds was introduced by Chaki ([5], [6]) and later studied by several geometers ([1] and [8]). In [8],
De et. al. studied pseudosymmetric and Ricci-symmetric contact manifolds. In [17], Özgür studied Weyl
pseudosymmetric para-Sasakian manifolds and Para-Sasakian manifolds satisfying the condition C.S = 0.
In [17], he studied pseudosymmetries of Kenmotsu manifolds. The purpose of present paper is to study
Lorentzian para-Sasakian manifolds with certain pseudosymmetry conditions.

2. Preliminaries

An n-dimensional differentiable manifold is said to be Lorentzian para-Sasakian ([10] and [11]) if it admits a
(1,1)-tensor field φ, a contravariant vector field ξ, a covariant vector field η and a Lorentzian metric g which
satisfy

η(ξ) = 1 (2.1)

φ2X = X + η(X)ξ (2.2)

g(φX, φY ) = g(X, Y ) + η(X)η(Y ) (2.3)

g(X, ξ) = η(X), ∇Xξ = φX (2.4)

(∇Xφ)Y = [g(X,Y ) + η(X)η(Y )]ξ + [X + η(X)ξ]η(Y ) (2.5)

where ∇ is the covariant differentiation with respect to g. The Lorentzian metric g makes a time-like vector
field, that is, g(ξ, ξ) = −1.

From (2.1) and (2.2), it follows that

η ◦ φ = 0, φξ = 0 (2.6)

Keywords and phrases : Lorentzian para-Sasakian manifolds, Ricci-pseudosymmetric manifold, Weyl pseudosymmetric

manifold.

AMS Subject Classification : 53C20, 53C25.
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rank φ = n− 1 (2.7)

An LP-Sasakian manifold M is said to be η-Einstein if its Ricci tensor S is of the form

S(X,Y ) = ag(X, Y ) + bη(X)η(Y ) (2.8)

for any vector fields X, Y, where a, b are functions on M [21].

Further on such an n-dimensional LP-Sasakian manifold M with structure (φ, ξ, η, g), the following
relations hold ([9] and [12]).

g(R(X, Y )Z, ξ) = η(R(X,Y )Z) = g(Y, Z)η(X)− g(X,Z)η(Y ) (2.9)

R(ξ,X)Y = g(X, Y )ξ − η(Y )X (2.10)

R(X,Y )ξ = η(Y )X − η(X)Y (2.11)

R(ξ,X)ξ = X + η(X)ξ (2.12)

S(X, ξ) = (n− 1)η(X) (2.13)

S(φX, φY ) = S(X,Y ) + (n− 1)η(X)η(Y ) (2.14)

for any vector fields X, Y and Z, where R(X,Y )Z is the Riemannian curvature tensor.
Next, we define endomorphisms R(X,Y ) and X ∧ Y by

R(X, Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z (2.15)

(X ∧ Y )Z = g(Y,Z)X − g(X,Z)Y (2.16)

respectively, where X,Y,Z ∈ χ(M), χ(M) being the Lie algebra of vector fields on M . The Weyl conformal
curvature tensor is defined by

C(X,Y )Z = R(X,Y )Z − 1
n−2(S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX

−g(X,Z)QY ) + r
(n−1)(n−2)(g(Y,Z)X − g(X,Z)Y )

(2.17)

where Q is Ricci operator defined by g(QX, Y ) = S(X,Y ).
The tensors R.R, R.S, Q(g,R) and Q(g, S), are defined by

(R(X,Y ).R)(X1,X2,X3) = R(X, Y )R(X1,X2,X3)−R(R(X, Y )X1,X2)X3

−R(X1, R(X,Y )X2)X3 −R(X1,X2)R(X,Y )X3 (2.18)

(R(X,Y ).S)(X1, X2) = −S(R(X,Y )X1, X2)− S(X1, R(X,Y )X2) (2.19)

Q(g, R)(X1,X2,X3;X,Y ) = (X ∧ Y )R(X1,X2)X3 −R((X ∧ Y )X1, X2)X3

−R(X1, (X ∧ Y )X2)X3 −R(X1,X2)(X ∧ Y )X3 (2.20)

Q(g, S)(X1, X2;X,Y ) = −S((X ∧ Y )X1,X2)− S(X1, (X ∧ Y )X2) (2.21)
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respectively, where X1, X2, X3, X , Y ∈ χ(M). Also the tensors R.C and Q(g,C) are defined in the same
manner as the tensor R.R and Q(g, R) [7].

Now, we recall some definitions:

Definition 2.1. ([7]) An n-dimensional LP-Sasakian manifold M is called pseudosymmetric if the tensors
R.R and Q(g,R) are linearly dependent, i.e.,

R.R = LRQ(g, R) (2.22)

where LR is some function on the set UR, defined by

UR = {x ∈M : Q(g, R) �= 0 at x} ([7]).

Every semisymmetric manifold (i.e., manifold satisfying the relation R.R = 0) is pseudosymmetric but
the converse is not true. If ∇R = 0, then M is called locally symmetric. It is obvious that if M is locally
symmetric, then it is semi-symmetric.

Definition 2.2. ([7]) An n-dimensional LP-Sasakian manifoldM is said to be Ricci-pseudosymmetric if the
tensors R.S and Q(g, S) are linearly dependent, i.e.,

R.S = LSQ(g, S) (2.23)

where LS is some function on the set US , defined by

US =
{
x ∈M : S �=

r

n
g at x

}
([7]).

Every pseudosymmetric manifold is Ricci-pseudosymmetric but the converse is not true. Obviously,
every Ricci-semisymmetric manifold (i.e., manifold satisfying the relation R.S = 0) is Ricci-pseudosymmetric
but the converse is not true (see [7] ).

Definition 2.3. ([7]) An n-dimensional LP-Sasakian manifoldM is said to be Ricci-generalized pseudosym-
metric if the tensors R.R and Q(S,R) are linearly dependent, i.e.,

R.R = LQ(S,R) (2.24)

where L is some function on the set U defined by

U = {x ∈M : Q(S,R) �= 0 at x}

The tensors Q(S,R) and X ∧S Y are defined by

Q(S,R)(X1, X2, X3;X, Y ) = (X ∧S Y )R(X1,X2)X3 −R((X ∧S Y )X1,X2)X3

−R(X1, (X ∧S Y )X2)X3 −R(X1,X2)(X ∧S Y )X3 (2.25)

and

(X ∧S Y )Z = S(Y,Z)X − S(X,Z)Y (2.26)

respectively.

Definition 2.4. ([7]) An n-dimensional LP-Sasakian manifold M is said to be Weyl pseudosymmetric if
the tensors R.C and Q(g,C) are linearly dependent, i.e.,

R.C = LCQ(g,C) (2.27)
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where LC is some function on the set UC , defined by

UC = {x ∈M : C �= 0 at x}

EveryWeyl-semisymmetric manifold (i.e., manifold satisfying the relationR.C = 0) is Weyl-pseudosymmetric.
The converse statement is not true (see [7]).

3. Main results

In this section, we consider an n-dimensional LP-Sasakian manifold M satisfying several pseudosymmetry
conditions.

Theorem 3.1. Let M be an n-dimensional, (n ≥ 3), pseudosymmetric LP-Sasakian manifold. Then either
it is locally isometric to an unit sphere Sn(1), or LR = 1, holds on M .

Proof. IfM is semi-symmetric then it is trivially pseudosymmetric. Now, we assumeM be an n-dimensional
semi-symmetric LP-Sasakian manifold.

From equation (2.18), we have

(R(ξ,X).R)(Y,Z,W ) = R(ξ,X)R(Y,Z,W )−R(R(ξ,X)Y,Z)W

−R(Y,R(ξ,X)Z)W −R(Y, Z)R(ξ,X)W
(3.1)

As M is semi-symmetric, using (2.10) and (2.11) in (3.1), we get

R(Y,Z,W,X)ξ + g(Y,W )η(Z)X − g(Z,W )η(Y )X

−g(X, Y )g(Z,W )ξ + g(X, Y )η(W )Z + η(Y )R(X,Z)W

+g(X,Z)g(Y,W )ξ − g(X,Z)η(W )Y + η(Z)R(Y,X, )W

−g(X,W )η(Z)Y + g(X,W )η(Y )Z + η(W )R(Y, Z)X = 0

(3.2)

Taking the inner product of (3.2) with ξ, we obtain

R(X,Y )Z = g(Y,Z)X − g(X,Z)Y (3.3)

Therefore, a semi-symmetric LP-Sasakian manifold is locally isometric to an unit sphere Sn(1).

Now, assume that M is not semi-symmetric, a pseudosymmetric LP-Sasakian manifold. From (2.10)
and (2.16), we obtain

R(ξ,X)Y = −(X ∧ ξ)Y (3.4)

Now, using equation (3.4) and definition of R.R, we get

R(ξ,X).R = −(X ∧ ξ).R

which implies that the pseudosymmetry function LR = 1. This completes the proof of the theorem.

Now, we have following corollary:

Corollary 3.2. Every LP-Sasakian manifold Mn, (n ≥ 3), is a pseudosymmetric manifold of the form
R.R = Q(g,R).

Proof. Let M be semi-symmetric. Then, by Theorem 3.1, R.R = Q(g,R) = 0. IfM is not semi-symmetric,
then LR = 1, hence R.R = Q(g,R) holds on M .

Now, we shall consider LP-Sasakian manifolds satisfying the condition
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R.R = Q(S,R) (3.5)

Such manifolds belong to a subclass of Ricci-generalized pseudosymmetric manifolds.

Theorem 3.3. Let M be an n-dimensional, (n ≥ 3), LP-Sasakian manifold. Then M is locally isometric
to an unit sphere Sn(1), if and only if M satisfies the condition R.R = Q(S,R).

Proof. Let M be locally isometric to an unit sphere Sn(1). Then it is easy to see that the condition
R.R = Q(S,R) = 0 is satisfied on M . Let X, Y , Z, W be vector fields on M . From (2.18), we have

(R(ξ,X).R)(Y,Z,W ) = R(ξ,X)R(Y,Z, )W −R(R(ξ,X)Y,Z)W

−R(Y,R(ξ,X)Z)W −R(Y,Z)R(ξ,X)W.
(3.6)

Using (2.10) and taking the inner product of (3.6) with ξ, we get

g((R(ξ,X).R)(Y, Z,W ), ξ) = −R(Y,Z,W,X) + g(X, Y )g(Z,W )− g(X,Z)g(Y,W ) (3.7)

From equation (2.25), we have

Q(S,R)(Y,Z,W ; ξ,X) = (ξ ∧S X)R(Y,Z,W )−R((ξ ∧S X)Y,Z)W

−R(Y, (ξ ∧S X)Z)W −R(Y, Z)(ξ ∧S X)W
(3.8)

Therefore, using equations (2.26), (2.10), (2.13) and taking the inner product of (3.8) with ξ, we get

g(Q(S,R)(Y,Z,W ; ξ,X), ξ) = −S(X,R(Y, Z)W ) + S(X, Y )g(Z,W )

+S(X,Y )η(W )η(Z)− S(X,Z)η(Y )η(W )

−S(X,Z)g(Y,W ) + (n− 1)g(Z,X)η(Y )η(W )

−(n− 1)g(Y,X)η(W )η(Z)

(3.9)

Since the condition R.R = Q(S,R) holds on M , from (3.5) and (3.9) we obtain

(R(ξ,X).R)(Y, Z,W ) = Q(S,R)(Y, Z,W ; ξ,X) (3.10)

Taking the inner product of (3.10) with ξ, we have

g((R(ξ,X).R)(Y, Z,W ), ξ) = g(Q(S,R)(Y, Z,W ; ξ,X), ξ) (3.11)

Using equations (3.6), (3.8) and (3.11), we get

−R(Y,Z,W,X) + g(X, Y )g(Z,W )− g(X,Z)g(Y,W )

= −S(X,R(Y,Z)W ) + S(X,Y )g(Z,W ) + S(X, Y )η(W )η(Z)

−S(X,Z)η(Y )η(W )− S(X,Z)g(Y,W )

+(n− 1)g(Z,X)η(Y )η(W )− (n− 1)g(Y,X)η(W )η(Z)

(3.12)

Replacing Y by ξ in (3.12), we have

η(W )[S(X,Z)− (n− 1)g(X,Z)] = 0 (3.13)

So we have
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S(X,Z) = (n− 1)g(X,Z) (3.14)

Therefore, M is an Einstein manifold with scalar curvature r = n(n − 1). Hence putting (3.5) into
(3.14), we have

R.R = (n− 1)Q(g,R) (3.15)

But from Corollary 3.2, we have n−1 = 1. Since n ≥ 3, this is impossible. Therefore, we get R.R = 0. Then
by Theorem 3.1, M is locally isometric to an unit sphere Sn(1). This completes the theorem.

Theorem 3.4. Let M be an n-dimensional, (n ≥ 3), Ricci-generalized pseudosymmetric LP-Sasakian
manifold. If M is not semi-symmetric, then it is an Einstein manifold with scalar curvature r = n(n − 1)
and L = 1

(n−1) holds on M .

Proof. Suppose that M is a Ricci-generalized pseudosymmetric LP-Sasakian manifold and X, Y , Z be
vector fields on M . Using similar steps as in previous theorem, from equations (3.7) and (3.9) we have

−R(Y,Z,W,X) + g(X,Y )g(Z,W )− g(X,Z)g(Y,W )

= L {−S(X,R(Y,Z)W ) + S(X,Y )g(Z,W ) + S(X, Y )η(W )η(Z)

−S(X,Z)η(Y )η(W )− S(X,Z)g(Y,W ) + (n− 1)g(X,Z)η(W )η(Y )

−(n− 1)g(X,Y )η(Z)η(W )}

(3.16)

Taking Y = ξ in (3.16), we get

η(W )L[S(X,Z)− (n− 1)g(X,Z)] = 0 (3.17)

Since M is not semi-symmetric, L �= 0. Therefore, from (3.17) we have

S(X,Z) = (n− 1)g(X,Z) (3.18)

So M is an Einstein manifold with scalar curvature r = n(n − 1). Now, putting S = (n − 1)g into (2.24),
we get

R.R = (n− 1)LQ(g,R)

From Corollary 3.2, we have (n− 1)L = 1, which implies that L = 1
(n−1) . Our theorem is thus proved.

Corollary 3.5. LetM be an n-dimensional, n ≥ 4, non-semi-symmetric Ricci-generalized pseudosymmetric
LP-Sasakian manifold. Then R.R = R.C holds on M .

Proof. Putting S = (n− 1)g and r = n(n− 1) in (2.17), we get

C(X, Y )Z = R(X, Y )Z − g(Y, Z)X + g(X,Z)Y

Therefore, using equation (2.18) we get the result.

Theorem 3.6. Let M be an n-dimensional, (n ≥ 3), Ricci-pseudosymmetric LP-Sasakian manifold. Then
either

(a) M is an Einstein manifold with scalar curvature r = n(n− 1), or

(b) LS = 1
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holds on M .
Proof. If M is Ricci-semisymmetric then it is trivially pseudosymmetric. In [2], it was proved that a
Ricci-semisymmetric LP-Sasakian manifold is an Einstein manifold with scalar curvature r = n(n − 1).
Now, assume that M is not Ricci-semisymmetric, Ricci-pseudosymmetric LP-Sasakian manifold. Then
from equation (2.19), we have

(R(ξ,X).S)(Y,Z) = −S(R(ξ,X)Y, Z)− S(Y,R(ξ,X)Z) (3.19)

Using equation (3.4), we get

(R(ξ,X).S)(Y, Z) = S((X ∧ ξ)Y,Z) + S(Y, (X ∧ ξ)Z) (3.20)

Futher, from equation (2.21), we obtain

Q(g, S)(Y,Z; ξ,X) = S((X ∧ ξ)Y,Z) + S(Y, (X ∧ ξ)Z) (3.21)

Now, using equations (3.20) and (3.21), we have R.S = Q(g, S), which in view of (2.23), gives LS = 1. This
completes the proof.

From the above theorem, we have

Corollary 3.7. Every LP-Sasakian manifoldMn, (n ≥ 3), is a Ricci-pseudosymmetric manifold of the form
R.S = Q(g, S).

Theorem 3.8. Let M be an n-dimensional, (n ≥ 4), Weyl pseudosymmetric LP-Sasakian manifold. Then
either

(a) M is locally isometric to an unit sphere Sn(1), or

(b) LC = 1

holds on M .
Proof. If M is Weyl-semisymmetric then by [19], it is conformally flat and hence it is locally isometric to
an unit sphere Sn(1). Assume that M is not a Weyl-semisymmetric, Weyl pseudosymmetric LP-Sasakian
manifold. From (3.4), we have

R(ξ,X).C = −(X ∧ ξ)C

which implies that pseudosymmetry funtion LC = 1.

Now, we can state following

Corollary 3.9. Every LP-Sasakian manifold Mn, (n ≥ 4), is a Weyl pseudo- symmetric manifold of the
form R.C = Q(g,C).
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The Aligarh Bull. of Maths. 26, No. 1 (2007) 43-48;

Ashfaque A. Ansari and Rajesh Kumar Shukla.

The name of the second author should be read as Rajanish Kumar Shukla

instead of Rajesh Kumar Shukla.



     
 

INSTRUCTIONS TO AUTHORS 

 
The Department of Mathematics, Aligarh Muslim University, Aligarh (India) has been 
bringing out a Bulletin since 1971 based on a single issue. From the year 2001, each volume 
of The Aligarh Bulletin of Mathematics comprises of two issues. This journal publishes 
original papers in almost all branches of current interest in Pure and Applied Mathematics. 
The papers of the bulletin are reviewed/abstracted in Mathematical Reviews and Zentralblat 
fur Mathematik. 
 
The manuscript, intended for publication in the Bulletin, must be submitted in duplicate and 
written in English, to the Chief Editor or either of the Managing Editors   Department   

of  Mathematics,  Aligarh  Muslim  University,  Aligarh-202002 (India). The manuscript 
must be in their final form and typed on one side of the paper only with double-spacing and 
wide margins. The authors are requested to keep a copy of the manuscript. 
 
All the papers will be refereed. If necessary, the author(s) would be asked to revise the 
manuscript in view of the referee's report. The editor reserves the right to make reasonable 
editorial  modifications in the text.  
 
Authors are encouraged to submit electronically prepared manuscript (LaTex) and required 
to submit the manuscript, after acceptance, on a floppy. The manuscript should be 
accompanied by (1) an abstract not exceeding 300 characters, (2) 3-5 key words, (3) AMS 
subject classification (2000), and (4) an abbreviated title not exceeding 40 characters for 
running head. In case of a joint paper, please specify the name and address of the author of 
contact.  
 
The authors of the accepted paper shall be charged an amount of Rs.100/- (US $ 5) per page 
to meet the cost of the reprints and handling charges. 
 
Illustrations and diagrams should be submitted on separate sheets and not included in 

the text. They should be of good quality and drawn in Indian ink using clean uniform lines. 
The author should indicate in the margin of the manuscript where the illustrations and 
diagrams are to be inserted. 
 
The list of references at the end of the paper should always be in alphabetical order, 
numbered consecutively and includes the names and initials of all authors, year of 
publication, and the name and location of the publisher (see example below). 
 
Citation in the text should be numbered in square brackets, for example [1], or, Lopez-
Bonilla and Ovando [1], referring to an alphabetically ordered and numbered list. If a work 
of more than three authors or, editors  are  cited, only  the  first  author's name followed by 
'et al.' need be given, for example, Ahmad et al. [1].  
 
In the list of reference, the following examples should be observed: 
 
[1]  Cenzig, B. : A generalization of the Banach-Stone theorem,  Proc.  Amer.  Math.  

Soc. 40 (1973) 426-430. 
 
[2]  Blair, D.     :  Contact   Manifolds   in   Riemannian   Geometry,    Lecture  Notes   in 
             Mathematics, Vol. 509, Springer-Verlag, Berlin, 1976. 

 
 



Contents

General class of generating function for modified Laguerre

polynomials

S.S. Bhati and Kamlesh 75-77

Use of the integral involving Laguerre polynomial, hypergeometric series

and Fox’s H-function to integral functions of several complex variables

S.K. Nigam 79-86

On subclass of univalent functions with positive coefficients

K.K. Dixit and Vikas Chandra 87-93

C-totally real warped product submanifolds in S-space forms

S.S. Shukla and Sanjay Kumar Tiwari 95-100

Error bound of periodic signal in normed space by deferred Cesàro - transform
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