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A brief account of research contributions of Prof. Jamil Ahmad Siddiqi, a distinguished faculty
member of the Department of Mathematics, Aligarh Musliin University, who provided a mordern
look to Indian Mathematics, are discussed here.

Prof. Jamil Ahmad Siddiqi was born on July 21, 1925 at Bahraich, U.P., India. He completed his early
education at Bahraich and Lucknow. He did B.A., M.A. and Ph.D. (D.Phil.) from Allahabad University
in 1944, 1946 and 1949, respectively. He joined Aligarh Muslim University ac a Lecturer in 1949 and went
to Paris in 1950, to work with renowned Mathematician Prof. Szolen Mandelbrotzit, uncle of inventor of
Fractals, Professor Benot Mandelbrotzit. He was awarded D. Sc. (d’ Eta) by the University of Paris in
1953. He was promoted to Reader’s post after his return from Paris. He was appinted Professor in 1959 at
Aligarh Muslim University and was the Head of the Department upto October 1966. He was also the Dean
Faculty of Science during 1964-1966. He also spent couple of months at Heidelberg University in 1961 as a
visiting Professor. When he joined University of Sherbrook, Canada as a Professor, he maintained lien with
ANLU. till 1972. He was visiting Professor in the University of Nents France, Universities of Wouppertal
and Paderborn, Germany and the University of Kuwait. Professor Siddiqi was invited speaker in several
international conferences held in the different parts of the world.

Professor Siddiqi expired in 1992 while in the active service of Laval University, Canada, where he has
moved from Sherbrook in 1975. He has supervised research work of a fairly good number of researchers
who themself became eminent mathematicians, to name a few Prof. N.X. Govil, Prof. N.D. Gupta, Prof.
AR. Reddy, Prof. Rafat Nabi Siddigi, Prof. Dress Dressi, Mostéfa Ider. He was mainly responsible for
modernizing mathematics syllabai not only in Aligarlh Mulsim University but in northern India also. He
was par excellence teacher. He has joint paper with distinuished mathematician like Prof. B.N. Prasad and
Prof. Paul Malliavin. Professor Siddigi has made outstanding research contributions in Fourier Analysis.
Functional Analysis and allied fields.” Some of his outstanding results are suinmarized in this paper.

Research Contribution of Professor J.A. Siddiqi

We would like to mention briefly his contibutions to the following broad areas of Analysis: (1) Nérlund
means of Fourier series (ii) Properties of Fourier coefficients (iii) Matrix summability (iv) Approximation
on analytic arc in the complex plane (v) Miscellaneous results, specially related to Algebra of Analytic
Functions.
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1 Norlund Means of Fourier Series

The Norlund (N, p) transformation of the sequence {s,(x)} is the sequence { Z P kSk (3 / E pr}. For
k=

n
S pk = Py # 0, aseries ) ag or its sequence of partial sums {sn} is said to be (N, p) summable to s, if

k=0
n

limi Y pu-gsi/ P, exists and equals to s. In [5], Prasad and Siddiqi have shown that the (V, p,,) transform
n—o0
L::

of any sequence of partial sums of the Fourier series of a function of L(0,27) does not exhibits the Gibbs
phenomena if p, > 0 and it is monotonic. They have also established a condition between two Nérlund
transformations under which the Gibbs phenomenan for a sequence {S,(z)} bounded in a neighbourhood
of zy can occur at xg for one of the transformations only if it also occurs for the other.

A major part of Professor Siddigi's Ph.D. thesis submitted under the supervision of Prof. B.N. Prasad
in 1947-48 at Allahabad University was devoted to Nérlund summability of Fourier series. In 1978 [20)

t
he proved that {nB,(x)} is (N.p) swnmable for p € A to D(z)/7 provided f [p(u)|du = o(t), where

=3 By(x) denotes the conjugate series of the Fourier series of a 27 permdxc and Lebesgue integrable

tun(txon f.ou( u) flz +u) f(JL —u) — D(x) = o(1) as u — 0 and A denote the class of sequences p

which satisfy the conditions n Y k|A%pg_9| = 0(|P,|) and n Z | Py|/k? = O(|Pa]). Some well known results
=l

of L. Fejer in 1913 and H.C. Chow in 1942 (MR 000512, 8(3, 10-5( )) are the special cases of the above results.

2 Properties of Fourier Coefficients

Siddiqi [6] has studied the summability of the sequence {nBy(z)}, where B,(z) is as in the previous
subsection of the triangular matrix and has derived the behaviour of the Fourier coefficients of continuous
functions of Bounded Variation. In [7], he has proved an interesting result that if f is a 2r-periodic integrable
function such that f(+0) and f(—0) exist, then (i) if « = 0 whenever {na,} is summable (C,1) to a (ii)
b=mn"Yf(+0) — f(—0)} whenever {nb,} is summable (C,1) to b.

XD
Let V'[0.2n] denoted the class of all functions F of Bounded Variation in [0,27] and Y. 6™ be its
k= -~
Fourier-Stieltjes series and put D( ) = F(z +0) — F(z — 0). For any matnx A (M), a sequence {s} is
said to be summable A if lim Z An_rsp exists and summable Fiy if lim E AnkSkyp exists uniformly in
n—oe ;o =00 4
p=0.1.2,3.---. Siddiqi [8] has obtained several theorems on the snmma‘bxhty A and Fy of the sequences
o0

{ere®® 4o e~ 1D(a)}, {Jerl® + e k])? = (20%) 71 3 |D(x;)[%}, and other related sequences. These
are generalization of classical theorem of Fejer and Wiener on the jump of a function F € V[0, 2x]. It has
been proved by Siddiqi [9] using wean values for almost periodic functions that the following conditions are
equivalent under appropriate properties of a matrix (A, 4):

(i) F is continuous
(i1) {{ex]® + Je_x|} is summable A or Fj to 0
(ii1) {lexl + |c_xl} is summable A or Fy to 0.

The main object of the paper of Siddiqi [10] is to study (C, 1) summability of {|Ax(x)|} where

{Ar(2)} = {cke™™ +c_re 7} ! D(xzj)cosk(x —xj)}.

(]2

~
i
<

Iu fact under appropriate conditions on (An, k), {|Ax(z)]} is summable (C, 1) to zero. He derived this
result as a corollary of the following interesting t}morem pmvnd by him.
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Theorem 1. Let A = (), ) be a matrix such that
oo
sup Z [Anil =M < o0
720 k=0
and suppose that F € V[0, 2] and « € [0, 27]. Then
(1) {coskt} is summable A[F4] to zero for all t # 0(mod27)

(2) {sinkt} is summable A[F4] to zero for all t Z (mod2r), the sequences { Ay (z)Bi(2)} and {Ay(z) Bi(2)}
are summable A[F] to 0;
(3) {c'**} is sumable A to zero for all t 2 o(mod2n) the sequence {Ax(x) £ iBi(x)} is smmnable A (or
e

—c_pe T —p? Zo D(z;)sink(z — xj).
J=

Fp) to zero, where 1B (x) = creth®

Riesz summability for {|cx|?} or {|ck|} has also been studied in [16]. It may be recalled that an infinite
matrix A = (A, ;) of complex numbers, a sequence {s,} is said to be summable A if

fo o]

i E AnkSkip
n—oc
k=0

oo

exists; it is said to be summable Fy if lim AnkSkyp exists uniformly in p=0,1,2,---.
n—+oC
k=0

3 Matrix Summability

In [12], necessary and sufficent conditions are given for infinite matrices to some every alimost periodic
sequence and their basic properties as summability matrices are studied. It is then shown that these matrices
enter naturally in the problem of determination of the jump or total quadratic jump of normalized functions
of bounded variation on the circle in terms of the limits of matrix transforms of certain functions of their
Fourier-Stieltjes coefficients. The results obtained generalize the classical theorems of Fejer and Wiener as
also the extensions of theorems of Wiener given by Lozinski, Keogh, Petersen and Mateev. Applications are
made to the study of coefficient properties of holomorphic functions in the unit disk with positive real part.

Bazinet and Siddiqi [15] have constructed a regular but not strongly regular positive matrix that sums
{exp{2mikt)} to O for all t € (0,1). The construction is based on the use of the coefficients of the Rudin-
Shapiro polynowiial as given by Walter Rudin [MR 0116184 (22# 6979)]. They also exhibit matrices that
sum all almost periodic sequences without possessing the Borel property, and vice versa.

4 Approximation on Analytic arc in Complex Plane

In papers [1.2.3.4,10.13]. Siddigi along with other distinguished mathematicians like Paul Malliavin
who is well known in the world for Malliavin calculus has studied approximation problem in the complex
plane. One of these resuts, which is quite interesting in cited here.

Let A = {Anx} be an increasing sequence of positive numbers with limsup T"— < oo. The conditions
under which the finite linear combinations of the functions e (A € A) are not dense in certain spaces
of C% functions defined on a rectifiable are in the complex plane (These spaces are defined by conditious
imposed on the derivatives of the functions; the topology of these spaces in the sub-norm topology). It
has been shown in [2] that under the above conditions investigated by Malliavin and Siddigi none of the

functions e*< is in the closure of the linear combinations of the functions e (A€ A, A # A).
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5 Miscelleneous Results Specially Related to Algebra of Analytic Functions

Siddiqi {13] has obtained a characterization of absolute continuity generalizing a result by G.V. Welland
in this area. More precisely his result can be stated as:

Theorem 2. Let X be a locally compact Hausdorff space, v a positive Baire measure and p a sign or
complex Baire measure defined on X. Then pu is absolutely continuous with respect to v if and ouly if
each sequence of positive continuous functions of X with compact supports converging to zero weak-star in
L>(dv) also converges to zero weak-star in L(dlpl).

It has been proved by Siddiqi [11] that in a commutative Banach algebra with unit a vector subspace
of codimensional comprised entirely of non-invertibles is a (maximal) ideal. Proofs of this result has also
been given by other mathematicians such as J.P. Kahane, W. Zelazko, A.M. Gleason and A. Browder.

In (18] the closure of linear span of a weighted sequence in LP(0, o) has been investigated. Siddigi
[19] has given a simple proof of a result by T. Itd and B.M. Schreiber, namely a functional % on a uniform
algebra satisfying conditions ¥(1) = 1 and |2(f)] < exp( [ log | f|dp), for all f and some measure 4, must be
multiplicative. It is the converse to a theorem of E. Bishop proved in 1963 [MR 0155016(27# 4958)).

Ferrier and Siddiqi [3] have studied weighted approximation. Let F be a closed subset of C™. A contin-
uous strictly positive function w of F is called a weight if, for each integer N > 0, the function |z{Vw(z) is
bounded. C,,(F) then denotes the space of continuous, complex valued functions f on F such that f, = 0
as |z| = oc on F; C{F) is given the norm sup |f(z)|w(z). A weight w is said to be fundamental if the
polynomials are dense in (', (F). The main vesult of this paper is as follows: )

o<
Theorem 3. Let @ : [0,00) — (0, o) be continuous and such that log ®(e™) is convex and [ r~1"¥log &(r)dr

0
cc. Let R: R™ — R™ be C" map with r > in+ 1 such that |R(z) — R(z')| < X' z—z'| and |R(z)| < Az|+C
for x,2’ € R"™, A\, \' and C being constants with A < \ < 1. Let X be the set of points z + iR(z), 2 € R"
and let w(z) = ;‘m‘;ﬁ Then w is fundamental on T if p > Tw-_h:rm—n/\)

A complex analogue of this theorem is also proved in the paper.

A criterion for the (e, c)-summability of Fourier series [21] has been studied. Equivalence of two classes
related to C'™ has been investigated by Siddiqi [22]. Siddiqi and Inder [23] have studied a characterization
of the inverse closed algebras of infinitely differentiable functions on a half line. In general, their result deals
with necesary and sufficient conditions that a Denjoy-Carleman-Mandelbrojt algebra of analytic functions
in a sector to be inverse-closed, that is. if f belongs to the algebra then 1 also belongs to it. Inverse
closed classes of differeatiable functions has been further studied by Siddiqi [24]. Siddiqi [27] has studied
Inverse-closed Carleman algebras of infinitely differentiable functions.

Let Cp(7) denote Carleman class of all infinitely differentiable complex functions f defined on an
interval I for which sup, {[|f™ |/ Mn}'/™ < oo, where M = {M,} is a positive sequence. Let Cy,(I)
denote the local Carleman class of functions which belong to Cum(J) for each compact subinterval J of I,
Let X = Cy(1) or X = C};(I). X is said to be inverse closed if f71is in X whenever fis in X and is
bounded away from zero.on I. Several characterization are given. Typical examples are of the following
type: i

The (local) Carleman class is inverse closed if and only if the sequence A = {AM,} fulfills some kind of
growth conditions. Similar problems for Beurling classes have been investigated by Siddigi and Inder [20].

Siddigi [28] has studied the inclusion problem of Carlemnan with respect to the LP-metrices (1 < p < o0)
for the Carleman classes of infinitely differentiable functions. A typical result can be studied as follows:

Theorem 4. If {M, : n > 0} is a sequence of positive munbers such that lim inf lﬂ,{_/n = 0, then any
f € C(R) satisfying ||f™ ||, < AfB}M, for all n > 0 is identically equal to zero. If liminf M)/ <
then for all p the Carleman subclasses of LP(R) are equal to the corresponding classes where Af,, = 1 for all
n > 0. Similar results are also obtained for arbitrary subintervals of R in the above cited paper.
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Abstract. Ever since Takahashi, in 1970, introduced convex metric spaces, efforts are being made to
extend results from the theory of Hilbert spaces, normed linear spaces and linear metric spaces to the
more general convex metric spaces. This paper is also a step in the same direction where we extend some
known results on fixed points and common fixed points of quasi non-expansive mappings in normed linear
spaces to convex metric spaces and metric spaces.

1. Introduction

A number of results on fixed points and common fixed points of non-expansive mappings are known in
different spaces. Similar results can be obtained even when the hypothesis of non-expansiveness is
weakened, when one requires the existence of at least one fixed point together with non-expansiveness
only about each fixed point i.e. for quasi non-expansive mappings, introduced by Diaz and Metcalf [3].
Some results on fixed points and common fixed points of quasi non-expansive mappings were proved by
Dotson [4], Itoh and Takahashi [5], Papini [7] and others in normed linear spaces. Here, we extend some of
these results to convex metric spaces and metric spaces. To begin with, we recall a few definitions.

Definition 1. Let K be a subset of a metric space (X,d). A mapping T': K — K is said to be
(i) non-expansive if d(T'z,Ty) < d(x,y) for all z,y € K,

(ii) quasi non-expansive if T has at least one fixed point in K and if p € K is any fixed point of T' then
d(Tz,p) < d(z,p) for all z € K,

(iii) a Banach operator if there exists a constant 3,0 < 3 < 1 such that d(T?%z,Tx) < Bd(Tz,z) for each
z e K.

The set F(T) ={x € K : Tx = x} is called fized point set of T

Definition 2. For a metric space (X,d) and a closed interval I = [0,1], a continuous mapping
W :X x X x I — X is said to be a conver structure on X if for all z,y € X, A € [

d(u, W(z,y,A)) < Md(u,z) + (1 — N)d(u,y)

for all w € X. The metric space (X, d) together with a convex structure is called a convex metric space ([9]).

Every normed linear space is a convex metric space but converse is not true (see [9]).

A convex metric space (X,d) is said to be strongly convex (see e.g., [6]) if for each pair z,y € X and
every \ € I, there exists exactly one point z € X such that z = W(z,y, A).

A strongly convex metric space (X, d) is said to be strictly convez (see e.g., [6]) if for every z,y € X
and r > 0

Keywords and phrases : Nonexpansive and quasi nonexpansive mapping, Banach operator, convex and strongly
convex metric space, convex set.
AMS Subject Classification : 47H10, 54H25.
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d(z,p) <r,d(y,p) <r imply d(W(z,y,),p) <r

unless x = y, where p is arbitrary but fixed point of X,0 < A\ < 1.
A non-empty subset K of a convex metric space (X,d) is said to be convez ([9]) if W(z,y,\) € K for
every x,y € K and A € I.

Definition 3. A point p of a subset A of a metric space (X,d) is called diameteral if
sup {d(z,p) : © € A} = sup{d(z,y) : x,y € A}. A point which is not a diameteral point is called a
non-diameteral point.

If A is a singleton, there is no question of A having a non-diameteral point.

A convex metric space (X, d) is said to have normal structure if for each closed bounded convex subset
A of X which contains at least two points, there exists x € A which is not a diameteral point of A.

It is well known (see e.g., [2, p.240]) that every bounded closed convex subset of a uniformly convex
Banach space has normal structure.

Definition 4. A convex metric space (X, d) is said to have Property (C) ([9]) if every decreasing sequence
of non-empty bounded closed convex subsets of X has non-empty intersection.

It is known (see [8]) that every complete uniformly convex metric space and so every uniformly convex
Banach space has Property (C).

We shall be using the following result of Takahashi [9] for generalising and extending a result of Dotson
[4, Theorem 1] proved in normed linear spaces to strongly convex metric spaces.

Lemma 1. In a convex metric space (X, d), we have
(i) d(z,y) = d(z, W(z,y, ) + d(W(z,y,A),y)
(ii) d(z, W(z,y,A)) = (1 = A)d(z,y)
(iil) d(W(z,y,),y) = Ad(z,y)
forxz,ye X, 0 <A< 1.

Theorem 1. If C is a closed convex subset of a strongly convex metric space (X,d) and T : C — C'is quasi
non-expansive then the fixed point set F(T) = {p € C : Tp = p} is non-empty closed convex set on which
T is continuous.

Proof. Since T : C — C is quasi non-expansive, F(T) # ¢ and T is continuous at each point p € F(T).
Let = be a limit point of F(T). There will exist a sequence < xn > in F(T') such that < zn >— x € C.
Consider

d(z,Tz) < d(z,zn)+d(z,,Tx) for all n
< d(x,zy) + d(zy, z) as T is quasi non-expansive
= 2d(z,x,) = 0asn— oco.

This implies Tz = x i.e., z € F(T) and hence F(T) is closed.

Now we show that the set F(T') is convex if the space is strongly convex. Let p,q € F(T), p # ¢
and 0 < t < 1. Consider r = W(p,q,t) € C. We claim that » € F(T). Since T is quasi non-
expansive, d(Tr,p) < d(r,p) and d(Tr,q) < d(r,q). Also d(r,p) = d(W(p,q,t),p) = (1 — t)d(q,p) and
d(r,q) = d(W(p,q,t),q) = td(p, q). Consider
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d(p,q) < d(p,Tr)+d(Tr,q)
< d(p,r) +d(r,q)

= d(p,q).

Therefore, equality holds throughout and so d(p,q) = d(p,Tr) + (T q). Since X is strongly con-
vex, Tr = W(p,q,A) for unique \,0 < XA < 1. We claim that A\ = ¢. d(Tr,p) = (1 — N)d(p,q) and
d(Tr,q) = Ad(p,q). Since Ad(p,q) = d(Tr,q) < d(r,q) = td(p,q), A < t. Since (1 — N)d(p,q) = d(Tr,p) <
d(r,p) = (1 — t)d(p,q), A < t. Therefore A =t ie., Tr = W(p,q,t) = r and so r = W (p,q,t) € F(T) and
hence F(T) is convex.

Since strictly convex metric space is strongly convex, we have

Corollary 1. If C is a closed convex subset of a strictly convex metric space (X, d) and T : C' — C is quasi
non-expansive then F'(T") is a non-empty closed convex set on which 7" is continuous.

Corollary 2. ([4, Theorem 1]). If C is a closed convex subset of a strictly convex normed linear space X
and T : C — C is quasi non-expansive then F'(T") is a non-empty closed convex set on which 7' is continuous.

There have been a number of results (see e.g., [4] and references therein) on common fixed points of
two commuting mappings, one of which is non-expansive while the other is not. We now prove some similar
results in metric spaces when one of the mapping is quasi non-expansive. We shall be using the following
result (Theorem 1, [1]):

Lemma 2. Let C be a closed subset of a complete metric space (X,d) and T : C' — C' a continuous Banach
Operator then T has a fixed point.
Using Lemma 2, we prove

Theorem 2. Let C be closed subset of a complete metric space (X,d), T : C — C is quasi non-expansive,
S : C — C is a continuous Banach operator and ST = T'S then F(T) N F(S) # 0.

Proof. Since C is a closed subset of the complete metric space (X,d) and T': C — C is a quasi non-
expansive map, as in Theorem 1 the set F(T) is a non-empty closed subset of the complete metric space
(X,d). We claim that S(F(T)) C F(T). Let x € S(F(T)). Then there exists p € F(T) such that x = S(p).
Consider Tz = T'(S(p)) = (I'S)(p) = (ST), = S(T'(p)) = S(p) = = and so z € F(T). Therefore the

restriction map

is a continuous Banach operator and so by Lemma 2, it has a fixed point in F(7T'). Hence F(T) N F(S) # 0.
The following simple example justifies the above result:

Example. Let X = R? with d(z,y) = max{| 21 —y1 |,| 22 — 2 |}, where z = (z1,22),y = (y1,92) € R?
and C = {(z1,22) : =1 <21 < 1,—1 < 29 < 1}. Then C is a closed subset of the complete metric space
(R?,d). Define T : C — C as

| (z1,z2), if o #£0
Tlar,z2) = { (e o1 ), i 2> =0

and S : C — Cas S = (z1,72) = (F,%). Then T is a quasi non-expansive mapping, S is a continuous
Banach operator and ST = T'S as (T'S)(x1,22) = (ST)(x1,22) = (%, %) if z2 # 0 and (T'S)(x1,0) =
(ST)(z1,0) = (%l,@) Thus all the conditions of Theorem 2 are satisfied and F(T) N F(S) # 0 as
(0,0) € C is a fixed point of both T" and S.
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We shall be using the following result (Remark 2 to Theorem 1, [1]), to prove our next result on common
fixed points in metric spaces which are not necessarily complete.

Lemma 3. Let C be a closed subset of a metric space (X,d), T : C — C a continuous Banach operator.
If T(C) is compact then T has a fixed point in C'.

Theorem 3. If C is a closed subset of a metric space (X,d), T : C — C' is quasi non-expansive, S : C — C
is a continuous Banach operator with S(F(T')) compact. If ST = T'S then F(T) N F(S) # 0.

Proof. Since T : C — C is quasi non-expansive and C is closed, F(T) is a closed subset of X. Since
TS =S8T, S(F(T)) C F(T) and therefore the restriction map

satisfies all the conditions of Lemma 3 and so it has a fixed point in F(7T') and hence F(S) N F(T) # 0.
Since a closed subset of a compact set is compact, we have,

Corollary 3. If C is a compact subset of a metric space (X,d), T : C — C is quasi non-expansive,
S : C — C is a continuous Banach operator and 7'S = ST then F(S) N F(T) # 0.

We now prove a result on the existence of common fixed points for two commuting mappings for spaces
satisfying property (C). We shall be using the following result of Takahashi [9, Theorem 3.1]:

Lemma 4. Let (X, d) be a convex metric space satisfying property (C) and K a non-empty bounded closed
convex subset of X with normal structure. If T" is non-expansive mapping of K into itself then 7" has a fixed
point in K.

Theorem 4. Let (X, d) be a strongly convex metric space with property (C), K, a closed bounded convex
subset of X, T : K — K is quasi non-expansive with F'(7T") having normal structure, S : K — K is
non-expansive and T'S = ST then F(T) C F(S) # 0.

Proof. As T : K — K is quasi non-expansive and K is a closed convex subset of the strongly convex space
X, Theorem 1 implies that F'(T) is a non-empty closed convex subset of K and is bounded as K is bounded.
Since ST =TS, S(F(T)) C F(T) and so by Lemma 4,

S |p(ry : F(T) = F(T)

has a fixed point in F(T') and hence F(T) N F(S) # 0.
Since every strictly convex metric space is strongly convex, we have

Corollary 4. Let (X, d) be a strictly convex metric space with property (C), K, a closed bounded convex
subset of X, T : K — K is quasi non-expansive with F'(T") having normal structure, S : K — K is non-
expansive and ST = T'S then F(T) N F(S) # 0.

Corollary 5 ([4, Theorem 3]). If K is a bounded closed convex subset of a uniformly convex Banach space
X,T: K — K is quasi non-expansive, S : K — K is non-expansive and ST = T'S then F(T) N F(S) # 0.
Proof. Since X is a uniformly convex Banach space, it has property (C). Since every uniformly convex
Banach space is strictly convex, F/(T') is a non-empty closed convex subset of K (Corollary 2 of Theorem
1) and bounded as K is bounded and therefore by the uniform convexity of X, F(T) has normal structure
and hence by Theorem 4, F(T) N F(S) # 0.
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Abstract. In the present paper, we construct p-wavelet packets associated with multiresolution p-analysis
defined by Farkov for L’ (R+ ). The collection of all dilations and translations of the wavelet packets defines
the general wavelet packets and is an overcomplete system.

1. Introduction

A simple, but powerful extension of wavelets and multiresolution analysis is wavelet packets. Wavelet
packet functions comprise a rich family of building block functions and are localized in time, but offer more
flexibility than wavelets in representing different types of signals. In particular, wavelet packets are better
at representing signals that exhibit oscillatory or periodic behavior.

In his paper, Mallat [8] first formulated the remarkable idea of multiresolution analysis (MRA) that deals
with a general formalism for the construction of an orthonormal basis of wavelet bases. A multiresolution
analysis consists of a system of embedded closed subspaces {V} : j € Z} for approximating L (R) functions.
The notion of MRA and wavelets were generalized to many different settings [1, 7, 13]. Lang [5, 6] constructed
compactly supported orthogonal wavelets on the locally compact Cantor dyadic group C by following the
procedure of Mallat [8], Meyer [9] and Daubechies [1] via scaling filters and these wavelets turn out to be
certain lacunary Walsh series on the real line. Later on, Farkov [3] extended the results of Lang [5, 6] on
the wavelets analysis on the Cantor dyadic group C to the locally compact abelian group G which is defined
for an integer p > 2 and coincides with C when p = 2. The construction of dyadic compactly supported
wavelets for L’ (}R+) have been given by Protasov and Farkov in [10] where the latter author has given the
general construction of all compactly supported orthogonal p-wavelets in L’ (R+) arising from scaling filters
with p™ many terms in [2].

Motivated by the study of compactly supported p-wavelets, we are interested in extending the results
on p-wavelet packets basis for L (RT). In this paper, we construct the p-wavelet packets associated with
multiresolution analysis based on the approach similar to that of Farkov [2, 3, 10].

2. Preliminaries and p-wavelet packets

Let p be a fixed natural number greater than 1. As usual, let R™ = [0, +00) and A {0,1,...}. Denote by
[x] the integer part of . For x € R" and any positive integer j we set

z; = [p’x](mod p), z_; = [p'Iz](mod p) (2.1)

Keywords and phrases : Multiresolution p-analysis, Wavelet packets, Walsh functions, Walsh-Fourier transform.
AMS Subject Classification : 42C15, 42C40.
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Consider the addition defined on R" as follows:

If z=2 @y, then
2= Gp T Y e
7<0 7>0

with (; = z; + yj(mod p) (j € Z\ {0}), where (; € {0,1,...,p — 1} and z;, y; are calculated by (2.1).
Moreover, we note that z =z 6y if 2z dy = x.
For z € [0,1), let mo(z) be given by

(1 ifzel0,1/p)
ro(e) = { ep ifzelp™ (C+1)pt) ((=1,...p-1)

where €, = exp(27mi/p). The extension of the function 7o to R" is denoted by the equality ro(z + 1) =
ro(z), 2 € R". Then the generalized Walsh functions {w,,(z) : m € Z} are defined by

k
wo(z) =1, wp(x) = H (ro(pjx))“j
j=0

where m = Z?:O Mjpj ) My € {07 1,2,..,p— 1}a w7 0.
For z,w € ]R+, let

27
x(z,w) = exp ?Z(%wﬂ""wﬂ'wj) (2:2)
j=1
where z;,w; are given by (2.1). Note that x(z,m/p" ') = x(z/p"1,m) = wpn(z/p" ) for all

zc[0,p" 1), me AR
The Walsh-Fourier transform of a function f € L' (R") is defined by

F©) = | f@x(§)da
R

where x(z,€) is given by (2.2). Now, if f € L*(R") and

Tuf(€) = /0 T HeX@ ) dr,  a>0

then f is defined as the limit of J,f in L’(R") as a — oo.
The properties of the Walsh-Fourier tragsform are quite similar to those of the classic Fourier transform
(see [4, 12]). In particular, if L°(R"), then f € L*(R") and

HfHL2(R+) = ”f”LZ(Rﬂ
Also the inversion formula takes the form

fl@)= [  F@)x(z€)d¢
R

for each z € R+, provided both f and f belong to Ll(R+).
If x,y,€ € R and z & y is p—adic irrational, then

x(r®y,&) =x(z,€) x(y,)

It is shown in [4] that both the systems {x(a,.)}or, and {x(.,a)}a., are orthonormal basis in L[0,1].
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As in [2] we note, that for any function ¢ € L (R+), we have

Jor @) k)de = [ [@(&)x(k,E)de,
R+
- f: PO Xk, €) de

I Mg ~—7F @

0
Therefore, the necessary and sufficient condition for the system {cp( ok): ke Z+} to be an orthonormal
in L*(R") is that

Il
S —=rT

§+e\2) D) de

> (@(gw)f =1 ae€R’. (2.3)

Now, we recall the definition of multiresolution p-analysis and some of its properties. Then we will
construct the associated wavelet packets.

Definition 2.1([2]). A sequence {V;:j € Z} of closed subspaces of L?(R") is called a multiresolution
analysis of L?(R™) if the following conditions are satisfied:

(i) Vj CVjyq forall jeZ,

(ii) UV;isdensein L*(R*) and (O V; = {0},
JEZ JEZ

(i) f e V;ifandonlyif f(p.)€ Vi,

(iv) there exists a function ¢ in Vp, called the scaling function, such that the system of functions
{o(.© k) : k € ZT} forms an orthonormal basis for V;.

Given a multiresolution p-analysis {V;:j € Z}, we define another sequence {W; : j € Z} of closed
subspaces of L2(R") by W, = V41 ©Vj}, j € Z. These subspaces inherit the scaling property of {V;},
namely

feW; ifandonlyif f(p.)e Wjii. (2.4)

Moreover, the subspaces {IWW;} are mutually orthogonal, and we have the following orthogonal decomposi-

tions:
= @Wj (2.5)
JEZ
=Vo® (@ Wj) (2'6)
Jj=0

A set of functions {11,2, - -+ ,¥p—1} in L?(RT) is said to be a set of basic p-wavelets associated with the
multiresolution p-analysis if the collection {¢y(.6k):1<{¢<p—1, k€ Z'} forms an orthonormal basis
for Wy.

Now in view of (2.4) and (2.5), it is clear that if {41, 2, ..., 9¥p_1} is a basic set of p-wavelets, then

{p"/2w(p".@k):jez, kez+,1§egp_1}

forms an orthonormal basis for L?(R*) (see [2], [13]).

We denote 99 = ¢, the scaling function, and consider p—1 functions ¢y, 1 < ¢ < p—1 in Wy as possible
candidates for wavelets. Since p~!4(./p) € V_1 C Vg, it follows from property (iv) of MRA that for each
£, 0 < /¢ <p-—1, there exists a sequence {af; ke Z+} with D 7t |a£|2 < 0o such that

p e (zpt) = ) ajp(z k) (2.7)

kezZ+
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Taking Walsh- Fourier transform, we get

e (€p) = me(€) @(€) (2.8)
where
= > aix(k.§) (29)
keZ+

The functions my, 0 < £ < p— 1, are in L?(R*) such that
_1yp—1
(mé(§ + kp 1))2].3:0
is a unitary matrix for a.e. £ € [0,1) (see [7, 11, 13]).

Lemma 2.2.(The splitting lemma). Let ¢ € L2(R™) such that the system {p*/2p(pz © k) : k € Z*, z € R}
is orthonormal. Let V be its closed linear span. Also let my and 1, are the functions defined as above. Then

{e(zok):0<l<p-1,keZ’ zcR"}
is an orthonormal system if and only if

S mé@ptym(Eep k) =06, 0<Lr<p-—1 (2.10)
keZ+

Moreover, {{p(z ©k):0< ¢ <p—1,k€Z", x € R"} is an orthonormal basis of V' whenever it is ortho-
normal.

Proof. For 0 </ <p—1and k € Z*, we have
(the(x), Ye(x 0 k) = <(W(9€))A, (Ye(z & k‘))A>
| D) Pel©)x(k. &) de

]/ mo(p €)@ (p1€) o () Bp ) x (ke €) de

= [ 3 mdo € o) mG €S R)

keZ+

Gp (€D k) p(p~H(E B k))x(k,€) dE

=Y mpe@p k)ym.(p & p Tk)

t+1 o0 -
x/ﬂ S b €@ k) Bl 1(E D k) x(k. &) d
b 4=0

= Z (p @ p k)m,(p T @ pTk)

p D k) @) x(k, &) de

teZ+t

1
N /o ( Y mup e op k) m(p i€ @p%) x(k, &) d§
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by (2.3). Therefore,
<W($)7 W(x S/ k)> = drO0k

& > mp eopk)ym(p 1l dp k) =0y, ae ERT
keZ+

s S mcep k)mE®p k) =6, ae. &R
kezZ+

We thus have proved the first part of the lemma.
We, now show the orthonormality of the system

F={¢(x0k):0<l<p-1,keZ", zcR}.

Let F is an orthonormal system, then we want to show that this system is an orthonormal basis for V. Let
f €V, so there exists {aﬁ}i:é wez+ € ¢%(Z*) such that

=" app'Pe(pr o k)
keZ+

Assume that f 1 ¢y(z© k), forall k € Z*, z € RT, 0 < ¢ < p — 1, then we claim that f = 0. For all ¢, k
such that 0 </ <p—1,k € Z*, we have

keZ+
:<(f¢g (xot)) (Zaz 1/2 px@k)>A>
keZ+
= [ SHeRED X T O k) de
RY keZ+
—p1/2/ mep P XGOS af B IO (€ k) de
keZ+
=p'2 | m(€)@( af, §(€) X (¢, p€) d¢
fraiog
02 L XD Y / (€)1 X(E pE) de
keZ+ s=0
=p"/2 3" af my(€) / G(& + ) x(t,p€) dt
keZ+
:p1/2/ (Z akmg )) x(t,p€) d€. (by (2.3))
keZ+

Since {pl/ 2x(k,p€) 1 k € Z*} is an orthonormal basis for L’ [0, 1], the above equation give

S dmd xR =0, ae. forf=1,- ,p—1.
keZ+
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Now for £ =1,--- ,p— 1, we have

AN =Y ab x(k,9) (2.11)

So we have

AL(E)my(€) =0, (=1,..,p—1. (2.12)

Equation (2.10) is equivalent to saying that for £ = 1,...,p — 1 and for a.e. £ € R™, the functions {m,} are
mutually orthogonal and each has norm 1. Equation (2.12) says that the vector

{Af(g):e:1,---,p—1,geR+} (2.13)

is orthogonal to each member of the above orthonormal basis of C'". Hence the vector in the expression
(2.13) is zero. In particular, A*(¢) = 0 for £ = 1,--- ,p — 1. That is, aﬁ =0,¢=1,...,p—1,k € Z*.
Therefore, f = 0.

Using this splitting lemma, one can split an arbitrary Hilbert space into mutually orthogonal subspaces.

Corollary 2.3. Let {Ey:k € Z"} be an orthonormal basis of a separable Hilbert space H, and my,
0 </¢<p-—1, be as in Lemma 2.2 satisfying (2.10). Define

F]ﬁ: Zp1/2ak_p€Ek7 kGZJr,OSfﬁp—l
keZ+

then {F,f tk€EZT,0<0<p— 1} is an orthonormal basis for its closed linear span Hy; and H = @f;é Hy.

Proof. Let ¢ € L?(RT) be such that {p(zxSk):kcZt, 2 € RT} is an orthonormal system. Let
V = W{p1/2<p(pa: ok):kelt ze R*}. Define a linear operator T from the Hilbert space H into
V by T(p*/?p(prSk)) = Ej. Let 1y be as in (2.7). Then, T(p'/?p(pz©k)) = Ff. The corollary now follows
from the splitting lemma.

3. Comnstruction of p-wavelet packets

Let {V} : j € Z} be a multiresolution p-analysis with scaling function ¢. Then there exists the function my
such that

P(6) = mo(p~E)p(p™'€)
where mg(§) = Z arx(§, k), Z lax|? < 4-o0.

kez+ kez+
Applying the splitting lemma to the space Vi, we get the functions wy, 0 < £ < p — 1, where

@e(€) = me(p 'R (p'E) (3.1)

such that {wy(x ©k):0<{<p—-1,k€Z", x € R"} forms an orthonormal basis for V;. Observe that
wo = ¢, the scaling function and wy, 1 < ¢ < p — 1, are the basic p-wavelets.

We now define w,, for each integer n > 0. Suppose that s > 0, w; already defined. Then define
Ws+prs OSSSP—L by

wstpr(x) = Y pajwr(pr k) (3.2)
keZ+

Note that (3.2) defines w,, for all n > 0. Taking Walsh-Fourier transform in both sides of (3.2), we get

(Watpr) () = ms(p 1@ (p7),  0<s<p-—1 (3.3)

The functions {w, : n > 0} will be called the basic p-wavelet packets associated with multiresolution p-
analysis.
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We now obtain the expression for the Fourier transform of the p-wavelet packets in terms of the func-
tions my as:

Proposition 3.1. Let {w, : n > 0} be the basic p-wavelet packets constructed above and

k
n:Zujpj . ki €{0,1,2,..,p—1}, u £0, k=k(n) € Z* (3.4)
§=0

be the unique expansion of the integer n in the base p. Then

Wn (&) = Mpyg (g)mm (pilg)m/w (p72£)“'mﬂk (pikg) @(piké) (3.5)

Proof. We say that an integer n has length k if it has an expansion as in (3.4). We use induction on the
length of n to prove the proposition. Since wy is the scaling function and wy, 1 < £ < p—1, are the wavelets,
it follows from (3.1) that the claim is true for all n of length 1. Assume that it holds for all integers of
length k. Then an integer t of length k£ + 1 is of the form ¢t = u + pn where 0 < u < p — 1, and n has length
k. Suppose that n has the expansion (3.4), then from (3.3) and (3.5), we have

@i(€) = Durpn(§)
= mu(ptE)an(p~ k)
= myu(p~t)myu, (P 1E)my, (p72€)...my,, (p~*FDE) p(p~ kD)

Since t = pu + pn, w(€) has the desired form, and the induction is complete.
The purpose of the construction of p-wavelet packets is to show that their translates form an orthonor-
mal basis for L2(R*). This is proved in the following theorem.

Theorem 3.2. Let {w, : n > 0} be the basic p-wavelet packets associated with the multiresolution p-analysis
{V; :j € Z}. Then

(i) {wn(-©k) :p! <n <p'™' — 1,k € ZT} is an orthonormal basis of W;,j > 0.
(i) {wn(.©k): 0 <n <p'™' — 1,k € ZT} is an orthonormal basis of V}, j > 0.
(iii) {wn(.© k) :n >0,k € Z*} is an orthonormal basis of L*(RT).

Proof. We prove the theorem by induction on j. Since {w, : 1 < n < p — 1} are the basic p-wavelets, so (i)
is true for j = 0. Let us assume that it holds for j. By (2.4) and the assumption, we have

{PPwnp. o) <n<pt -1 kezt)
is an orthonormal basis of Wj;1. Set E,, = Span {p1/2wn(p. ok): ke Z*} so that
P
W1 = @ E, (3.6)
n=pJ
By applying the splitting lemma to E,, we get the functions h},0 < £ < p — 1, defined by
(h)"(©) = mep'Oan(p),  0<l<p-1 (3.7)

such that {h}(.©k):0<{¢<p—1, ke Z"} is an orthonormal basis of E,.
Now, if n has the expansion as in (3.4). Then, using (3.5), we get

(h?)/\(g) = mé(pflg)mm (pflé“)mu2 (p72£)‘”muk (pf(kJrl)g) ¢(p7(k+1)£)



20 A. H. Siddiqi and Firdous Ahmad Shah

But the expression on the right-hand side is precisely &y, (€), where m = £+ puy + p?uz + ... +p’ i = £+ pn.
Hence, we get hj = wyypn. Since

{t+pn:0<t<p-1,pP<n<p -1} ={n:0<e<p-1, pPH <n<pt?-1}.

Thus we have proved (i) for j + 1 and the induction is complete. Part (ii) follows from the fact that
Vi=Vo@Wo&---®W;_1 and (iii) from the decomposition (2.5).
We define now the general p-wavelet packets of L2(RT) as:

Let {w,, : n > 0} be the basic p-wavelet packets associated with the multiresolution p-analysis {V; : j € Z}
of L2(RT). The collection of functions

F = {pf/%n(pf.@k) n>0keZ", jeR+}

will be called the general p-wavelet packets associated with {V;}.

Obviously, the system of functions in F is overcomplete in L?(R*). For example the subcollection with
j=0,n>0,k € Z", is the basic p-wavelet packet basis constructed in the previous section. Secondly,
the subcollection with n = 1,2,....p —1,j € Z,k € Z*, is the p-wavelet basis. Now, we prove several
decompositions of the wavelet subspaces W;.

For n > 0 and j € Z, define the subspaces

Uy = pam {p/ 2n(v. S k) 1k € 2T}

Since wy is the scaling function and w,, 1 < n < p — 1, are the basic p-wavelets, we observe that
p—1
0 1 .
Uy =V;, Ul =W;=@DU], jez
r=1

so that the orthogonal decomposition V1 = V; ® W}, can be written as

p—1
U1 = @ Uj-

r=0

This fact can be generalized to decompose U. 1 intop—1 orthogonal subspaces as:

Proposition 3.3. If n > 0 and j € Z, we have

p—1

n 4

o =Pu™ (3.8)
/=0

Proof. By definition

U, = m{p(ﬂ'“)/%n(pi“. ok): ke Z*} .

Let hy(z) = pUt)/20, (/1. 6 k), k € Zt. Then {hy : k € Z*} is an orthonormal basis for the Hilbert
space Uy ;. For 0 < £ < p—1, define

Fl(z) = Z p1/2af;_ptht(m), tezt
keZ+

and Hy = span {Ff it e Z+} . Then, by Corollary 2.3, we have

p—1
n__
ji =DM
=0
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Now

Fi(z)= Y p"’aj_,hi(x)
keZ+t

= Y pPajhip()
kezZ+

= Z aspit2/2, (Pt'zokopt)
keZ+

= 2N dhpun(pz o t) O k)

keZ+
= P wppn(PzO1) (by (3.2))

Hence,

p—1
_ grl+pn n o L+pn
He= U™ and Uy = DU
£=0

The above decomposition can be used to obtain various decompositions of the wavelet subspaces W;, j > 0.

Theorem 3.4. If j > 0, then

p—1 p -1 P o1
W= @ = Ui == @ Ui mE

r=1 r=p r=p™

pj+1_1

r:pj

Proof. The proof is obtained by repeated application of the previous proposition.

By using Theorem 3.4 we can construct many orthonormal bases of L2(R*). We have the following

decomposition:

LR =VoeWeoW,1aWe @ ---.

Therefore, for each j > 0, we can choose any of the decomposition of W; obtained above. For example, if
we do not want to decompose any W;, then we have the usual wavelet decomposition. On the other hand,
if we prefer the last decomposition in (3.9) for each W}, then we get the p-wavelet packet decomposition.
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Abstract. This paper deals with the study of Sobolev spaces L (R) using wavelet packets and few
results in this direction are proved.

1. Introduction

Wavelet packet analysis is an important generalization of wavelet analysis, pioneered by Coifman, Meyer,
Wickerhauser and other researchers [5, 6, 7, 15]. Wavelet packet functions comprise a rich family of building
block functions. Wavelet packet functions are still localized in time, but offer more flexibility than wavelets
in representing different types of signals. In particular, wavelet packets are better at representing signals
that exhibit oscillatory or periodic behaviour.

Discrete wavelet packets have been thoroughly studied by M.V. Wickerhauser [16] who has also
developed computer programmes and implemented them. Well known Daubechies orthogonal wavelets are a
special case of wavelet packets. Wavelet packets are organized naturally into collections, and each collection
is an orthogonal basis for L?(RR). It is a simple but very powerful extension of wavelets and multiresolution
analysis. The wavelet packets allow more flexibility in adapting the basis to the frequency contents of a
signal and it is easy to develop a fast wavelet packet transform. The power of the wavelet packet lies in the
fact that we have much more freedom in deciding which basis function is to be used to represent the given
function. The best basis selection criteria and applications to image processing can be found in [8, 15].

Wavelet packet functions are generated by scaling and translating a family of basic function shapes,
which include father wavelet ¢ and mother wavelet ¢. In addition to ¢ and v there is a whole range of
wavelet packet functions w,. These functions are parametrized by an oscillation or frequency index n. A
father wavelet corresponds to n = 0, so ¢ = wg. A mother wavelet corresponds to n = 1, so ¥ = w;. Larger
values of n correspond to wavelet packets with more oscillations and higher frequency.

Very recently, Ahmad and Kumar have studied pointwise convergence of wavelet packet series in
[2]. Fourier transforms of wavelet packets have been studied by Ahmad, Kumar and Debnath in [3] and
characterizations of Lebesgue spaces L’ (R) using wavelet packets by Garg, Abdullah and Ahmad in [11].
Motivated and inspired by the importance of wavelet packets, in the present paper, we study Sobolev spaces
L"" (R) by using wavelet packets. Our results are generalizations of the results of Herndndez and Weiss [13].

2. Preliminaries

Throughout we shall denote R?, S and S’ for the regularity class, Schwartz class and the space of tempered
distributions, respectively. For basic ideas, results on wavelets and wavelet packets, we refer to [1-4, 11, 13].

Keywords and phrases : Wavelet packets, multiresolution analysis, Hardy-Littlewood maximal function, Sobolev

spaces.
AMS Subject Classification : 42C15, 41A30, 39B99.
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Definition 2.1 ([13]). For 1 < p < 0o, s = 1,2,3,---, we define the Sobolev space L""(R) = L"” to be
the space of all functions f € L”(R) such that, V n = 1,2,3,---,s, the n'® derivative of f also belongs to
L"(R). The n'* derivative of a function f € L”(R) is considered here in the sense of distributions, i.e. it is
a function D" f such that

L0 p@eta)da = (1" [ @)D (@) do
for every test function ¢ € S. The quantity

Ifllzes = I fllze + D ID" flle (2.1)
n=1

is a norm on the space L, with respect to which it is a Banach space. There are other equivalent definitions
of the space L”*(R). One of them involve multiplier (1 + |¢]?)*/2.

Definition 2.2 ([12]). Hardy-Littlewood maximal function, M f(z), is defined by

1
Mf(z) =sup — [f(y)l dy (2.2)
r>0 27 J|y—z|<r
for a locally integrable function f on R.
It is well known that M is bounded on L’ (R), 1 < p < co. An important property of M that we shall
need is the following vector-valued inequality:

Lemma 2.3 ([10]). Suppose 1 < p, ¢ < oo; then there exists a constant C, 4 such that

< Cg {Z |f@-|q} (2:3)
i=1

LP(R)

{Z (Mfi)q}
i=1

LP(R)

for any sequence {f; :i=1,2,........ } of locally integrable functions.

Lemma 2.4 ([1]). Let wy be band-limited wavelet packets, f € S” and 0 < p < oo such that w,, 5 * f €
L"(R) for all £ € Z. Then, for any real A > 0, there exists a constant C) such that

@ah)@) < O M (|onme 5 £[7) (:v)})\, zeR, (2.4)

where

(W?,Z,Af)(x) = sup ‘ (wng% * f) (z — y)‘

vek (14 24y (25)

foralln =2%2%+1,..,2%"' —1landl=j—u, u=0if j<0and u=0,1,2,---,5if j >0, j € Z.

Lemma 2.5 ([13]). Given € > 0 and 1 < r < 1+ ¢, there exists a constant C such that for all sequences
{ser : ¢,k € Z} of complex numbers and all z € Iy,

|3Z’ k’| 1 ' e gl
’ < ' gt | T o<
(a) E Cc (M E |ser i X1, ()| i<

Lo (L4202t — 2=k ) T =

and
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|0 | -
b 2 < oo =or
(b) ,;62(1 + 202Uk — 2-Lk|)M e

[ (Dsm xf,k,><x>] it ¢ >0

k'€Z
where M is the Hardy-Littlewood maximal function defined in Definition 2.2 and I, = [2_%, 27k + 1)] .

Definition 2.6 ([13]). We say that a function ¢ defined on R belongs to the regularity class R if there
exist constants Cpy,C1,7 and € > 0 such that

(i) /R p(x)dz = 0

. Co
(11) |90(37)‘ < W forall z € R
c
(i) (@) < W for all z € R.

Lemma 2.7 ([11]). Let w, € R? be band-limited wavelet packets. Given p € (1,00), there exist two
constants A, and By, 0 < A, < B, < 0o, such that

Apll Fllr®y < W fllLr ) < Byl fll 7 ) (2.6)

for all f € L"(R), where

qutl_j 1/2

Wa f) ( ZZ Z (f: wénk| 26 IZk(x)

el kel n=2"

where /=5 —u, u=0ifj<0and u=0,1,2,---,5if j >0, j € Z.

Lemma 2.8 ([11]). Let w, € R? and wy be an orthonormal wavelet packet. Then, there exists a constant
Cp, 0<Cp<oo, 1<p<oo,such that

Weor Fllrr ) < ColWas, Fll 27 - (2.7)

Lemma 2.9 ([11]). Let w, € R° be band-limited wavelet packets. For p, 1 < p < oo, and f € L"(R), we
have

2u+1 1 1/2
Yo D W wean) P 2%, () < Clf e ) (2.8)
LkEZ n=2u '
L (R)

where f=j—u, u=0if j<O0Oand u=0,1,2,---,5if j > 0, j € Z and C independent of f.
The version of the Littlewood-Paley function, we need, is the following: For s € N, define

2utl_g 2

S (e i@) ¢

(el n=2%

where w,, are band-limited wavelet packets in S with Fourier transform supported in {f eR:27N< €] < oV }
for some N € N and
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2utl_1

> D

LeZ n=24

where = j—u, u=0if j<0and u=0,1,2,---,5if 7 >0, j € Z.

o)

=1 for ae. £€R (2.9)

Lemma 2.10 ([1]). Let w,, € S be such that

supp(Wp) C {€eR: 27V < |¢] <2V} for some N € N,

and (2.9) be satisfied. Then, for 1 <p < oo and s =1,2,---, f € L" (R) if and only if f € L"(R) and
g*(f) € L"(R). Moreover,

1fllze + lg® (Pl e

defines a norm for L”"(R) that is equivalent to || - || ;».

Lemma 2.11 ([13]). Let £ > 0. Suppose that g and h satisfy

Cy

(a) |g(1‘)| < W forall x € R and
C!
(b) |h(a:)| S W;I)”E fOI‘ all z & R,

with C7 and C5 independent of z € R. Then, there exists a constant C such that for all 4, k, ¢,k € Z and
¢ < /', we have

1 /
|(gek * he ) ()| < s 22‘3: o T 24,1{;/‘)1% forall z€R

Lemma 2.12 ([13]). Let » > ¢ > 0 and N € N. Suppose that g and h satisfy

dng Cn,l
(a) %(.’.U)‘SW for all z € R and OSTLSN—F].,
(b) /x"h(x)dmzo for all n, 0<n<N;

R
(c) |h(z)] < C: for all z € R;

(1 + |x‘)2+N+r

with (), 1, 0 <n < N + 1, and C independent of z € R. Then, there exists a constant C such that for all
0k, 0K € Z and £ < {', we have

Ot (5+N+1)

|(ge.k * her ) ()] < T 2 2% TR for all = € R

For N € NU {1}, let DV be the set of all functions f defined on R for which there exist constants
e>0and C), <oo, n=0,1,..., N + 1, such that

Ch

|D™ f(z)| < W

forall reRand0<n<N+1
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We write MY for the set of all functions f defined on R for which there exist constants v > 0 and C' < 0o
such that

/x”f(a:)da::O forn=0,1,....,N
R

1
and |f(1‘)| SCW forallz €¢ R

Definition 2.13 ([13]). For a non-negative integer s, let R® = D N M?; that is, f € R® if there exist
constants € >0, v >0, C < oo and C), < oo, n=1,2,...,5s + 1, such that

(2) /x”f(a:)da::O forn=0,1,...,s;
R

C

Ch

W fora:E]R,nzl,Z...,s—i—l.

(iii) [D" f(z)| <

3. Main Results

To study the Sobolev spaces L (R) using wavelet packets we have denoted ‘B’ as the space of all wavelet
packets w, € S, n=0,1,2,--- such that N € N for which

supp(&n) C {£ €R: 27N < g < 2N}

and
2utl_ 9
Z Z d)n(QZ{)‘ =1 for ae. £€€R
LEZ  m=2%

where / =j —u, u=0ifj<0and u=0,1,2,--- ,5if j >0, j€EZ.

Theorem 3.1. Let w, € B, n=0,1,--- be wavelet packets. Given a real number A > 1, a natural number
s >1and 1 < p < oo, there exist two constants A = A, \s and B =B, s, 0< A< B < o0, such that

qutl_ g 1/2

2
Alfllgre <1l + (330 30 2 @inad)] < B|f s (3.1)

LeZ n=2v 1P

where £ = j —u, u=01if j <0and u = 0,1,2,---,5if j >0, j € Z and Vf € L""(R), where Wyn 18
defined in Lemma 2.4 by

Wpo—t * f) (x —
(wimaf) () = sup|( na=t*f) ) y)‘, Vn=242%41,... 2utl 1 (3.2)

h yeR  (14+2y))
Proof. Suppose that f € L (R). Then, Wy o-t*f € L"(R) for all £ € Z. Now, using Lemma 2.4 and Lemma
2.3 with p = pA > 1 (since A > 1) and g = 2\, we obtain
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[N

2utl_1 9
> 2 ‘223 (winat )‘
€7 n=2u
LP
2u+1_1 L o\ %
< Cy Z Z 92ts [M (‘wn,24 *f{X)]
V€7, n=2%
P
2u+1_1 %
1N\ 72X
=C) Z Z 92ts [./\/l (“%,24 *fP)]
lEZ n=2
P
1
qut+l_q 22
SN 1S3l S e
V€7, n=2v N
LP
1
2u+171 9 2
e [{T Y [ f
VE7, n=2v
LP
= Cp |95(f)||L” :

From here the RHS of the inequalities follows immediately. The LHS inequality follows from the fact

‘wnzfz *f(x){ < (w}‘;,)\ )(3:) for any n=0,1,2,---

and Lemma 2.10.

Theorem 3.2. Let w,, € B be band-limited wavelet packets. For 1 < p < oo, and s =1,2,---, there exists
a constant Cp 5, 0 < Cp s < 00, such that

|l e (3-3)

2 20 4
Z Z Z ‘(f’ Wé,n,kﬂ (1 + 2 s) 2 X[2ilkv 2*2(k+1)] S prs

2u+1 -1 1/2
LT k€Z n=2%
LP

forall fe L™ (R)and =5 —u, u=0ifj<0and u=0,1,2,---,jif j >0, j € Z.

Proof. We note that for f € L”(R) the numbers (f, wy, 1) make sense since w;,, € L*(R) (where %—l—é =1).
In fact,

2u+1_1 2u+1_1

S 1wl < S 207 wnlo Il

n=2% n=2%
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We have
qutl_q qutl_q
S wenn)l <Y | ] @) wgan(@) da
n=2°% n=2u R
2utl—q
< Z 2/2 /f(x)wn(%x—k) dx
n=2% R
2utl_q
= Z 2t/2 /f(x)wn(2e(x—2ek))da:
n=2u R
2utl_q
= Z 242 /f(x)wn’2z(x—2ek)dx
n=2% R
2utl—q
= > 2@ HETR)]
2,"3«?12“1
< 225/2sup‘ na-t* f)(y ‘
n=2u yEng

where Iy, = [27%, 27%(k +1)] and ©n(y) = wn(—y). For each fixed ¢ € Z, we have

qutl_g

Z Z (f, wénk| 2X ($)§22)‘[(Wgn>\f)()] for any A > 0.

k€Z n=2"

Now, applying Lemma 2.9 and Theorem 3.1 with A > 1, we obtain

utl_q 1/2
S T el (142) 2%,
LT k€Z n=2 ’
LP
quil g 1/2
SNEE T el 2,
LT k€T n=2v
LP
qutl_q 1/2
1 (DD DD DRITPNETLE e 0
€T k€Z n=2 ’
LP
gutl_q 1/2
2
SClfle +Cal[§ D> D 22| (winaf)] < C| fllgrs
VEZ n=2" I

This completes the proof of the theorem.

To obtain the reverse inequality to (3.3) we shall assume that w,, is orthonormal wavelet packet. We
shall use the following notation related to the previous theorem and the next one. Given two functions f
and wy, for which (f, w,) makes sense, we define
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2u+171 1/2

W H) @ =333 3 F wennl (1+227) 2, (@) (3.4)

LEZ kel n=2%

where  =j —u, u=0if j <O0andu=0,1,2,---,jif >0, j€Z and n =2%2% +1,...,2¢1 — 1.

Theorem 3.3. Let w, € S, foralln = 0,1,2,..., be band-limited orthonormal wavelet packets. Given
p € (1,00), and s = 1,2, ..., there exist two constants Ay, s and By, 0 < A, s < By s < 00, such that

Ap sl fllrswy < WV, fllLr @) < Bp,sll fllLr= ) (3.5)

for all f € L™ (R).

Proof. By Theorem 3.2 the RHS of inequality is clearly proved so we need only to prove LHS of inequality.
For f,g € S (where ‘S’ is dense in LP*(R)), we have

/ (D* f)(z).g(z)dz = C / £(2)(D* g)(x) dx
R R

utl_q

=C[ 13 U wenidnnala)
R | grez n=2v
2u'+1_q

{3 Y Dy, we e weww(@) p da

VK EL pr—ou!

2utl_g

= lsol/2 /s —flsal/2
B C/l; Z Z <f’ w&n,k>2 2/ <D g, w@,n,k>2 2/ XIZ,k (.’17) dz

0EET n=24

Using the Cauchy-Schwartz inequality for ¢?(Z x Z), we obtain

1/2
2utl_g
[ n@awis| <c [ | S 1 wnnfe, @)
R R\ rrez n=2v :
2u+171 1/2
< Do D D g w2702, (2) | da
(€T n=2v ’
2u+171 9 1/2
< C'/R Wwg, 1) (z) Z Z ‘(Ds g, Wen )27 2ZXI“(3:) dx
(k€T n=2v ’

where { =j —u, u=0if j <0and u=0,1,2,...,5 if j > 0. Note that

(Ds g, w@,n,k>2ies - 027&9(97 Dswﬂ,n,k> = C<97 (Dswn)ﬁ,k>

Thus

/ (D* f)().g(x)dz
R

<c /R (W5, £) (2) Wpsa, 9) (2) da
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Since wy € S are band limited orthnormal wavelet packets so we can apply Holder’s inequality, Lemma 2.8
with w, = D*w,, and w1 = wp and Lemma 2.7 to obtain

IN

C W, fll» WD, gll 1o

/ (D* 1) () g(a)dz
R

IN

ClWE Al WV glle < CIWE 12 gl
Taking the Supremum over all g € S such that ||g||;« <1 we deduce that
ID* fllr < CIWE, Fll o
Clearly, W, f) (z) < (W5, f) (z) since 1 < (14 22%), for all £ € Z. Thus, by Lemma 2.7
[£lr < C W Fllr < CIWE, £l
Remark. The above theorem can be extended to more general wavelet packets.

Theorem 3.4. Let s =1,2,... and £, k,0', k' € Z and n = 2%, 2% +1,...,2"T! — 1, where £ = j — u, u = 0 if
j<0and u=0,1,2,---,5if j >0, j € Z. Then

(a) If wy € D® and wy, € M?®, there exist constants C' < oo and € > 0 such that

‘< >| . 2t —0)(5+s+1)
w wyr /
Inky W0k = (1 + ol |27£k _ 2f€’k/|)1+5

for £>1¢

(b) If w, € DY, n=0,1,2,..., there exist constants C' < co and ¢ > 0 such that

bt

'
Rw&n,k? "‘)Z’vovk'ﬂ < (1+ 2€|2*€k _ 2fl’k/‘)1+s for £< ¢

Proof. Let wy be associated with the constants ¢’ > 0 and C},, m = 0,1,..., N + 1 and w, be associated
with the constants v > 0 and C’ < co. We choose

C = max{Cy, ...,Cy,1,C'} and e =min{e’,~}

Then, wg € D? with constants C for all m = 0,1,..., N+ 1 and € > 0 and w,, € M? with constant C' and

(y=e).
Let g be a function defined on R and we write g(z) = g(—z). Then, we have

(Wen ks Wer0k) = (We 0k Wenk) = (Wer ok * @D —1)(0)

Now, to prove part (a) we apply Lemma 2.12 with N = s and to prove part (b), we apply Lemma 2.11
together with

(Wenks Werok) = (Wenk*@eo,w) (0)

Theorem 3.5. Let s =1,2,3... and w, € D°NM?*, for all n =0,1,--- . Assume that wq is an orthonormal
wavelet packet. Then, for 1 < p < oo, there exists a constant Cj, 5, 0 < Cp, s < 00, such that
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IVl @y < s

(3.6)

L*(R)
for all f € L (R), where W5 _f are defined by

qutl_q 1/2
(W3 { Z Z (f, wenk)l (1 + 2%) 24)(12”6 (:v)} (3.7)

LkeZ n=2v

where Iy, = [27%,27%(k+1)] and ¢ =j —w, u=0if j <Oand u=10,1,2,...,5if > 0.

Proof. It is sufficient to prove the result for an [ instead of W f, where

bty 1/2
(VNanf> (x) = Z Z (fs wenk)l 22682[)(,“(37)
0kEZ n=2" ’
i.e.,
HW"S’" L”(R) f LP(R) (38)

for all f € L™ (R).
We assume that (3.8) is true, by Lemma 2.8, we have

S C1 [Weo fllpr + C2 HNfJof

Wz Allge < IV fllr + |5,

< O{IWanFllr + [Weo Fll o } = 2C W Fl] o

Since wy is an orthonormal wavelet packet so

qutl_1

Wen k(T Z Z (Wen ks W0k )wWer 0,k ()
UK€l n=24
where { =j —u, u=0if j <0and ©v=0,1,2,...;5if j > 0 and j,k € Z. Thus

bl ) 1/2

(Wus;n f)(w) = Z Z Z <f= wf’,O,k’> m 225322X%k (3:)

LKET |0 K/ €7 n=2u

where Iy = [27%k, 27%(k + 1)]. Writing

(On, k) =Y Y weom) Wenks weow)

U<t k'€l

and

2(6n, k) =Y > (f, we o) Wenks werow)

>0 K'eZ

we have
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qut1_q 1/2
W3, Nla) < {ZZ > Alw,n,k)22%32%”6(@}

LeZ kEZ n=2"

- 1/2

+ Z Z Z |A2 (E’ n, k)|222es2exle,k (x)

LeZ kEZ n=2"
where f=j—u, u=0if j<0andu=0,1,2,...,5if j >0 and j,k € Z.
To estimate A;(¢,n, k) we use Theorem 3.4(a) to obtain

(£ —0)(5+s+1)

A < U /
| 1(£7nak)| = CZ,ZQMZGZRJC? wE,O,kM (1+2g/‘2_gk_2_glk,|)1+a

(fa wZ’,O,k’>

2 (14202 Tk — 2-UK/|)1+< }

k'eZ

= ¢ ) 2t-0Gts {

<t

for some C' < 0o and € > 0. By applying Lemma 2.5(a) with » = 1, we obtain

‘A1(67n7 k)| S C Z 2([’7@(%4’84’1) [M (Z|<f, WE/70,k/>|XI > (x)]
o k!

<t k'eZ
for all « € Iy;. But {I;} : k € Z} is a collection of disjoint dyadic intervals. Therefore, we have

LEZ k€Z n=2"

S 1/2
{ > 2. > i, ’0222“26"1&'@}

LP
2y 1/2

s /__ l S
<O|[{ Y22l | 3 206G p (ZW’ “’"vovk’>|xw,w>

LeL <y k'€Z
LP

1/2

2
=0y 2 | M (ZW, w,o,m2“2”/2><w>]

e | U<t k'€Z
L LP

1/2

~ 2
<C { Z M <Z|<f’ OJg/,O,k’>|2€/52€,/2XIZ,’,C,)] } |

ez L k'€Z
P

where we have used Young’s Inequality for convolutions

[{ac} = {be}|p = H{ Zaé—e'be'}
7

< [Haeklpa  [1{oe}Hl (3.10)
02

with

2t if
0, if

~ S
NIV
o o

and
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by = M (Z [{f, wlz',o,k'>\2w2xfy,k/) )

k'eZ

Now, using the vector valued-inequality for the Hardy-Littlewood maximal function with ¢ = 2, we obtain

qutl 1/2

YOS A n k)22,

UEL kEZ n=2% ok

LP
1/2
< | 5% S sz, |
VEL K'eZ ’ P
- C, HVN\/jOf‘ . (3.11)

To estimate As(¢,n,k) we use Theorem 3.4(b) (D® and M? are contained in D~!), together with
Lemma 2.5(b) with » =1 to obtain

1 /
935 (£=t')
|As(l,n, k)| < C Z Z |<f’ wé',o,k'>| (1+ 202~k — 2-Uk/|)T+e
V>0 k'€l
g g\ gl —
< C Z AR [M (Z [(f; we"o’k'ﬂx%’,k’) (33)]
>0 k'eZ

for some C' < oo and € > 0 and for all z € I . Further, since {I,}, : k € Z} is a collection of disjoint dyadic
intervals, we have

_ 1/2
D0 Y [Aaltin R)P22y,
(€T k€T n=2" -
LP
5y 1/2
<C sl —g (=) 'Ok
< D 2252t 1N o2 (FEOM A S T, wg ok,
= o>t =
LP
9y 1/2
=C (—t')s ’ / tsol!/2
3 [22 MDD IS weop[20°2 Xty
ez Lot k'eZ L?

As the series 22(4_[)8 converges for s > 1, by using Young’s inequality for convolutions and the vector-
>0
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valued inequality for the Hardy-Littlewood maximal function (Lemma 2.3) with ¢ = 2, we obtain

e 1/2
SN Y Manbatn,
LEL kEZ n=2% ’
LP
9y 1/2
<o|l S m (S sy, )
Y=Y/ k'eZ o P

1/2
<ol & S weoro,,, |

Vel k' eZ P

el

o (3.12)

Finally, inequality (3.8) follows from (3.9), (3.11) and (3.12).
Theorem 3.6. Let s = 1,2,3,..., and suppose that w, be orthonormal wavelet packets such that
wp € R% n = 0,1,2,---. Then, for 1 < p < o0, there exist two constants A,, and

B,s, 0<A,s <Bps < o0, such that

Aps If oy < 2,0

< Byps || fllps

for all f € L (R), where W, (f) is defined by (3.4).
Proof. Applying Theorem 3.3 and Theorem 3.5, we observe that all band-limited wavelet packets which
belong to Schwartz class ‘S’ are contained in R?.
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Abstract. Rheoparameters give intrinsic characterization of curve. In this paper, with the help of
rheotetrad the expressions for the rheoparameters viz., the curvature - K, torsion-7T" and the bi-torsion-B
of the world line of a particle are obtained interms of Newman-Penrose spin coefficients. These expressions
relative to the Kerr-Newman space-time are obtained and it is found that the angular momentum per
unit mass of the gravitating body influences the rheoparameters. If it is zero then the torsion and the
distortion of the world line of the particle vanish and consequently, the rheotetrad becomes singular.

The trajectory of the particle in the Kerr-Newman space-time has also been discussed.

1. Introduction

Let V, be the 4-dimensional space-time manifold with co-ordinates x', i=1, 2, 3, 4. The set of all
possible events whose space-time co-ordinates are expressible as a function of a single parameter is
referred to as a world line. The equations x' = x'(s) determines a world line in V,. At each point of

a world line one can construct a tetrad. A tetrad consists of a set of four basis vector fields. We use the
Newman and Penrose [5] tetrad formalism.

It is well known that the curvature, torsion and distortion of the curve influence the geometry of
the trajectory of a particle. Hence investigation of the curvature, torsion and distortion of the world line
of the particle in the neighborhood of a gravitating matter is imperative. In this paper, we study the
geometry of the world line of the particle in the Kerr-Newman space-time. Another tetrad introduced by
Radhakrishna [6] comes to our rescue to study the geometry of the world line of the particle in the
gravitational field characterized by a space-time metric. Thus with the help of rheotetrad the expressions
for the curvature field K, torsion field T and bi-torsion field B of the world line of the particle in terms
of NP spin coefficients are delineated in Section 2. In the Section 3, the basic equations of differential
form are expressed in NP spin coefficients. Kerr-Newman space-time manifold in the NP tetrad
formalism is described in the Section 4. The expressions for rheoparametres referred to Kerr-Newman
space-time are also obtained in the same section and are given by

1 a’ rsin@cos @ aCos@ A
K = —R*|R(r-m)-rA , T= ————— | B="——""""1
N2 [ ( ) 1] R* v2R*

The particle in the Kerr-Newman space-time will follow a cylindrical helix if %:%, where A is some

constant given by
2 2 2 2
—a“cos” @ 2
A=| 2 | LSESS O %€ ne
rcosé@ a“sin” @ a“sin26

Keywords and phrases : Rheotetrad, Rheoparameters viz., curvature, torsion and Distortion, Newman-Penrose tetrad

formalism.
AMS Subject Classification : .
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In Section 5, the expressions for the Riemannian curvature at a point of the Kerr-Newman space-time
determined by the orientations of two real and two complex null vector fields are respectively obtained in
the form:

K

;= R*i[ZezRZ—(rz—3a200826)(2mr—e2)],
—R"’(rz—3a200520)(2mr—e2).

K

1

2. Rheotetrad

It was Gursey [3] who obtained the expression for the bi-normal vector field in terms of the intrinsic
derivatives of the flow vector up to second order. Radhakrishna [6] obtain the explicit expression for tri-
normal vector field and introduced rheotetrad specially suited for the exploration of non-geodesic flow in
relativistic continuum mechanics. Rheotetrad is constructed with the help of a single time-like flow vector
field u“ and its intrinsic derivatives u™,u”,u”" together with rheoparameters K —the curvature field,
T — the torsion field and B —the bi-torsion field of the world line of the particle. Unde [7] exploited the
mathematical technique of rheotetrad to study the implications of regular relativistic thermodynamics of
Carter [1].The tetrad has the form

-1 - - —
uu, K u’u, K 1 T l(u”u —K | K/ u’u —K2 ua)’

(ua, pa’ qa, ra) — (2.1)

K'T7 B (0" = Lu™ +(T* +M)u" =N K u")

where the quantities involved in equation (2.1) and the conditions to be satisfied by the vector fields are
defined in [6]. For the following vector fields in null tetrad vectors

1

u* =%(l" +n”) , p* zﬁ(l” —n”)

q° =%(m“ +E”) y P :%(m“ —E") (2.2)

We express the intrinsic scalars K, 7 and B in terms of Newman-Penrose spin-coefficients. Thus we have

’a a b

u'=u, u
e 1
u™ :—(l.‘,', I"+15 n" +nj 1" +n nb)
o\ ; : ;

Using the intrinsic derivatives of null tetrad vector fields, we easily obtain
’a l P 5 a a e a P it
" :—2—|:(E+8+ v+ y) (1°=n )+(7r+v—x—r) m +(7r+v—rc—r) m ] (2.3)
Similarly, we have

(| (DK+AK+V2K*)1~(DK+AK -2 K*)n" -
=3 — (2.4)

2|k (7r+v+?+?) m’ —K(7—r+;+r+ K’)m

7a

where, D= 1" and A= n“ and
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{K"+K* (L+N)+K* -KTT} 1" ~{K" - K* (L+N)-KTT}n"+

”a

_ _ (2.5)
V2 +{K T L+%(€—e+ y 7)} m’® +c.c.

where c.c. denotes the complex conjugate of the preceding term and

, 1
K'=—(DK+AK
7! )

K”=—;-(D2 K+A’K+(DA+AD)K)

L:%[T“ (DT+AT)+2K™ (DK +AK)]

N:L[K‘l (DK+AK)-T" (DT+AT)]

N

M =%(L2—L N)-K*-K" K" | (2.6)

Rheoparameters. From the vectors of the tetrad, the expressions for the rheoparameters viz., curvature
field K, torsion field 7', and the bi-torsion field B of the world line of the particle are derived as

1 S —
K:$(8+€+y+y) 2.7)
T =—i[(7r+v +E+E)+c.c.], 2.8)
B:ﬁ(e—2+7——}/) 2.9)

We thus have the following theorems:

Theorem 1. K =0 iff ,1'=0 or a,n' =0, where, the acceleration a; of the particle is given by

=%[(8+E+7+;)(li—ni)—(;+;—7r—v)m,—(K+z'—7_z—1_/);,].

Theorem 2. T =0 iff (m'+m')(I,, =n, ) (I* +n*) =0.
Theorem 3. B=0 iff m m,, u* =0, where

Eim,;k = —(7—;/)lk +(a—ﬁ)m,( —(5—,B)m_k—(£—5)nk :

3. Basic Equations

At each point of the world line x' = x'(s) we choose a tetrad of four complex null basis vector
fields

€ae = (lu, n, m, E) 3.1)
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Here the Greek letter & indicates the tetrad index while the Latin indices denote the tensor indices.
l,n,m,m, are the Newman-Penrose [5] complex null vector fields. Corresponding to 4-basis vectors of

the tetrad e” , we have 4 basis 1-forms defined by

& = & dr (3.2)
Now from the Cartan’s first equations of structure [4]
do® = -y A6’ (3.3)

where (oj, are anti-symmetric connection 1-forms, we obtain the expressions in Newman-Penrose spin
coefficients as

w, = [(s+ e) (}/+}/)492 (a+,6)63+(a+73)64],

w, = -(k0'+760>+00°+p6*),

w, = -(k0'+70*°+p6°+006"),

w,, = 10 +v O +160°+ uét, (3.4)
w,, = 760'+ve*+ub6’+106°",

Wy, = (8—8) (}/—-7) —(67—,3)93+(C¥—F)04.

Consequently, from equations (3.3) and (3.4) the exterior derivatives of basis 1-forms take the form

=(7+7)0'A6" +(a+ B-7)6'A6 +(a+ B-7)0'AG" VO’ AO’ —vO*NO* (1 — 1) 8N 6*
A6 =(e+¢€)0'AG" + KO'NG + KO'NG* +(c—a- B)O°AO +(c - — B)0°AG* —(p—p) 6°A6*
d0° =—(7+7)0'NG* ~(p-£+£)0'AO’ ~00' NG +(1+y—7)0°AO° + A6’ A6 +(ar— B) 6 A6
d0* =—(7+7)0'AO” —0O' NG’ —(p—£+£)0'NO* + A6°NO +( 11+~ 7)0°A6" —(a- B)o°AE"* @2)

Equations (3.4) and (3.5) are extremely useful in calculating the spin coefficients for the given space-time
metric.

4. Kerr-Newman space-time in NP formalism

Consider a particle describing its world line in the gravitational field of a rotating charge source which is
characterized by the Kerr-Newman space-time, and is given by the metric [2]

ds = [1-R? (2mr—-&)|dr’ +2a R* (2mr-e*)sin® 6 dr dg -
R? 4.1)
— dr* —R*d6’ - [(r2 +a*) - Ad sin’ e} R sin* @ d¢’,

1

where

R

R’ =RR = r* +a*cos’ @, A = r2—2mr+a2+e2,

R = r+iacosé, R = r—iacos@
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and m = mass, a = angular momentum per unit mass e = the charge of the gravitating body. The
covariant components of the metric tensor are respectively given by

By = 1—R‘2(2mr—e2), g, = aR? (2mr—ez)sin20,
R’ 2, 2\ . .
25 :—A—’ gs = —-R, g, = —[(r“ + az) —A, a®sin’ 6’] R sin* 4. 4.2)

1

To evaluate the tetrad vectors with respect to the Kerr-Newman space-time, we express the
metric (4.1) in terms of basis 1-forms. Thus we have

ds* = 26'6*-26°6°,

4.3)
where the basis 1-forms 6% are
A
0' = dr + —dr - 28 Ginteay,
2R 2 2 R
2
6°? = dt — dr — asin®8 dg¢,
1
~ ¢ 2 i(r*+a?)sin @ “4.4)
9° = M([; + __R_*__dg _ ( __)* dg,
~2 R ~2 R ~2 R
i a sin @ R 2 i(r2+a2)sin6’
64 - = l_(lsl—n__.dt + —_de + — d .
V2 R V2 R V2 R ¢
From equations (3.2) and (4.4), the components of the tetrad vectors are obtained as
1
l“ =_(Al,—R29O5_aAlSin26)7
Al
1 .
n, :W(AI,RZ,O,—aAISIDZH),
1 ( 2 ( 2 2) ) 3}
m, = —(iasin@,0,—R*,—i(r°+a sin @ ),
‘ 2 R
— 1
mq,= ——(-iasin@,0,-R?*, i(r*+a?)sin ),
V2 R ( ) )
While the contravariant components of the tetrad vector fields are
, o=t (r*+a’, A, 0, a),
Al
e (r+a’,-A, 0, a),
| 4.6)
m' = ———=(iasin@, 0, 1, icosech),
JER( )
—a 1
m =

—(—iasind, 0, 1, —icosecd).
J2R

Taking the exterior derivative of (4.4) one can obtain

d6' =R*|R*(r-m)-Ar]6' A6 +iacosOR™A, 6°AG",

d6® = \/?ja2;i2ngcosﬁ02A93+\/§azsin_0icosﬁezl\e4+2ia1§§)s¢993A04.
R°R
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ag = NZErsinG oo g g o A 6" A6~ (R coto-iasin6) °AG".
R2R R 2R°R \/_Z_(R )

46* = Me‘ AP+ oA - B g Ag (Rcot@+iasin6)g°A6", 4.7)
R*R R 2R’R V2(R)

Using (3.3) and (4.7) we readily obtain the tetrad components of connection 1-forms as

C’)jI =—a)22 :R_4|:R2(r——m)_Alrj|92_ iasin@ &+ iasin @ o

J2(R) \/E(E*)Z

b

B V2(R) ETaa

jasi A
o, == iasin@ Pl 1

o iasind , A

—_—k ?

\/5(15*)2 2R'R

wz3=a)41= zasmé’ez_l_ 1

2 R

aﬁ:afl:%;;%u%ei

04

. , —lacos@A, , | cotf iasin@ cotd iasinf | ,

Wy;==w,= R + ‘/51_{*-\/5(7()2 . x/il_iv \/5(1_{)2

(4.8)
Now to find the NP spin coefficients with respect to the Kerr-Newman space-time one can compare
equations (3.5) and (4.7) or (3.4) with (4.8) and readily obtain

1 A
p = —_ = 5 ﬂ = = 5 * ’
R 2 R R
v = r — m r = —ia sin @
2 R * 2 R 2 ’
ia sin @ cotéd
T = , g = —_—, 4.9
vz (7)) 2 ~/2 R
a = rx - B , and
K=V =4 =0 = & =0 (4.10)

We notice from the equation (4.10) that, the null vector fields /* and n“ are geodesic and shear-free
(k= 0= v = A = 0). Consequently, we conclude on the basis of Goldberg Sachs theorem, that the Kerr-
Newman space-time is Petrov-type D with respect to the chosen basis vectors.
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Now using the expressions (4.9) in (2.7), (2.8) and (2.9) we obtain the expressions for the
rheoparameters viz., the curvature field K, the torsion field T and the bi-torsion field B as

1

K = —R*|R(r-m)-rA |,
R [R{r-m)-ra)]
a’ rsin@cos @
T = _R“— 4.11)
acos@A,

B =2527%
V2 R

Theorem 4. The trajectory of a particle in the Kerr-Newman space-time will be cylindrical helix if
2_ 2 2 2

lzl,where A=|Z ) L za.c;)s 21 szz —tanéd.

K A rcosé@ a”sin“ @ a”sin 26

It can be observed that the free falling objects in the Kerr- Newman space-time should satisfy

the equation mr’ —r(a’sin® @+e”)—ma® cos’ @ =0, and the motion of the particle will never be in the

.4
6 =— plane.
> p

S. Riemannian Curvature at a point of Kerr-Newman space-time

Following Weatherburn [8], we obtain the expression for the Riemannian curvature at a point of a given
space-time for the orientations determined by two real null vector fields /* and n° in the form
A J
e Ry 1“n” 1" n
1 - . _ la B l)/ )
(nay llﬂé‘ 770:6 ”ﬂy ) n n

where R, ; are the tetrad components of the Riemannian curvature tensor.

(5.1)

To find the tetrad components of curvature tensor, we start with the Cartan’s second equations of
structure given by
1
a _ - o ¥ ) _ o a Yy
Q% = > Ry 6" A6 = doj+05 Aol (5.2)
where Q% are the tetrad components of curvature 2-forms and are

dmr (Z»r2 —a’® cos® 6)

Q = - — 5 (2mr—e*)|6' A 6> +
+2i—a;;ﬂ[2r(2mr—ez)—mR2]63A64,
i 2 2
Q= Qf - ’f__(zmr_ez) oA, Q, = Q) = ’"_*—(zmr ez) ' A G,
KR g*(R) R’R Rz(}*)
Q& = Qf = R:n;_(Zmr_—*ez) 6" A6
* o R(F)
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m (2mr—e2)

924 = QS} = 2__ —\2 02A63’ )
R°R RZ(R)
' 2. 362 6% O Dy o
@ = -0 = %[Mz—2r(zmr—e2)]e‘1\92+(r . COSR6)( il PYV O

Hence the tetrad components of Riemannian curvature tensor are
2 2 2
dmr (3r —a’cos 9)

Rlnzz—Rmz = R’ - RS (2mr—ez)
R1134 :_R3312 ==Ry, = 2ia;289[2r(2mr_ez)_mRz],
2mr—e*
le = R2423 =Ry, = ernﬁ_ ( R (E)Z )’ (5.4)

2
m (Zmr—e )
Rl413 = R2324 =Ry = -

2—* — 2 ¥
R°R RZ(R )

R3334 =Ry = R (2m ""'62) (rz —3a’ cos’ 0).

and all other components are zero.

It can easily be obtained the tetrad components of the Ricci tensor as

2
=€

R,=Ry = ? ) (5.5)

and consequently, the Ricci scalar curvature R =R®, is zero.

The value of the non-vanishing Weyl scalar y, =—C,,,,, can be found from the equation

1 R
Copps = Ropps + 3 (UayRﬁa' +p5Ray =My Res —Nas R, ) + s (77(1577,37 /U ) )
by calculating the value of C,,,. Thus we find
2
-m e
v, = (5.6)

T v,
k] (%)
The result (5.6) is the same as that of the result derived by Chandrasekhar [2] by solving the Bianchi
identities.

Using the equations (5.4) in (5.1) we obtain the Riemannian curvature at a point of the
Kerr-Newman space-time determined by the orientations of two real null vector fields /“ and n“ as

K, = R® [ 2¢*R? —(r2 —3a’ cos? 0)(2mr—e2 ):|, (5.7)
while K, spanned by two complex null vector fields m® and m' is given by
K = —R"S(r2—3azcos2 9)(2mr—e2) (5.8)
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6. Conclusion

We observed that the angular momentum of the gravitating body influences the rheoparmeters. It is
noted that when angular momentum per unit mass of the gravitating body is zero the torsion and
bitorsion of the world line of the particle vanish and consequently the rheotetrad becomes singular. We
also see that there is no influence of the charge of the gravitating body on the torsion of the world line of
the particle. However, it influences on the curvature and bitorsion of the world line of the particle.

Acknowledgement
The author acknowledges the hospitality by Professor S. J. Bhatt the Head of Mathematics Department,
Sardar Patel University, Vallabh Vidynagar from 26" Feb. to 12" March 2008, during which period he
visited the department as the Visiting Fellow under UGC-SAP-DRS scheme. Thanks are also due to
Professor R. S. Tikekar and Dr. A Vahid Hasmani for fruitful discussions and for their valuable
comments and suggestions on the manuscript.

References

[1] Carter, B : Convective variational approach to Relativistic Thermodynamics of Dissipative fluids
Proc. R. Soc.Lond. A 433 (1991) 56.

[2] Chandrasekhar, S : The Mathematical theory of Black Holes, Oxford University, Press, (1983).

[3] Gursey, F : Relativistic Kinematics of a classical Point particle in spinor Form, IL Nuovo
Cimento, 5(4) (1957) 784-8009.

[4] Israel. W : Differential Forms in General Relativity, Dublin Uty. Press, (1970).

[5] Newman, E.T. and Penrose, R : An approach to gravitational Fields, J. Mathematical Physics 3
3) (1962).

(6] Radhakrishna, L : Advances in Gravitation and Cosmology, Wiley Eastern, Ed by B.R. Iyer et.
al. Wiley Eastern (1993) 101-103.

[7] Unde, R. B : Non-geodesic flow in continuum mechanics, Unpublished Ph.D. thesis, Shivaji
University, Kolhapur, (1993).

[8] Weatherburn, C.E : An Introduction to Riemannian Geometry and Tensor Calculus, Cambridge
University Press, (1963).



The Aligarh Bull. of Maths.
Volume 27, No. 1, 2008

A STUDY OF ELECTRIC PART OF WEYL TENSOR IN THE GODEL UNIVERSE

A H. Hasmani and L.N. Katkar*

Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar-388120, India
e-mail: ahhasmani@gmail.com
*Department of Mathematics, Shivaji University, Kolhapur-416004, India
e-mail:lnk1000@yahoo.com

(Received May 20, 2008)

Abstract. Exploiting a technique of exterior calculus, the geomtry of the Goédel universe is studied. The
expression for the electric part of the Weyl tensor is obtained in terms of basis vector fields of the complex
null tetrad. It is observed that the parameter related to the vorticity of the fluid with reference to the
Godel universe causes the elecric field.

1. Introduction

Let V4 be a four dimensional space-time of general theory of relativity. Any point of Vj is identified by 2,
i=1,2,3,4. Let £ be a curve in Vj given by equations 2! = z(s), where s is the parameter of the curve.
At each point of the curve, one can construct a tetrad consisting of four basis vectors. There exists different
types of tetrad formalisms in the genral theory of relativity. The most prominent among the formalisms is
the one proposed by Newman and Penrose [4]. The basis of the Newman-Penrose tetrad is complex null
vector fields given by

Cla)i = (li7ni7mi7mi) (11)
Here the Greek letter « indicates the tetrad index while the Latin indices denote the tensor indices. Here
l;,mi, m;, m; are the Newman-Penrose [4] complex null vector fields satisfying the conditions

Lint =1 = —mym (1.2)

and all other inner products being zero.

To study the Godel universe, we use another powerful tool of modern mathematics called the differential
forms. The use of differential forms can reduce the complexity of the computation. In differential forms the
role of forty Chirstoffel symbols, which have no invariant significance under the change of coordinates in
4-dimensional space-time of general theory of relativity, is taken care by only six components of connection
1-forms. Accordingly, we start with Cartan’s first equation of structure given by

9> = —wj A6° (1.3)

where the anti-symmetric connection 1-forms wj are defined as

w§ = g5 0° (1.4)

and Ygs are the Ricci rotation coefficients. % are the 4-basis 1-forms corresponding to four basis vectors of

the dual tetrad e(® defined as A
0% = el(-a) dz' (1.5)

Keywords and phrases : Newman-Penrose formalism, Cartan’s equations of structure, electric and magnetic parts
of Weyl tensor.
AMS Subject Classification : 83Cxx.
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The anti-symmetric connection 1-forms wg, in terms of Newman-Penrose spin coefficients can be
expressed as (cf. McIntosh et al [3])

w = —[(e+8 0" + (v+7) 0> + (@+p) 0° + (a+p) 6"
wiz = — (kO + 7602 + 06 + pot (1.6)
woy = 70 + 060 + N0 + po!

wyy = (e—8&) 0 + (v—7) 6% + (@a—08) 0 + (a—p)6*

Other 1-forms w14 and woy are complex conjugates of wis and weg, respectively. Using these expressions in
Cartan’s first equations of structure (1.4), we readily obtain

dot = (y+7) 0'A0% + (@+pB—7) 0'A0 + (a+F—n) 0'A0Y — 7 62A03
— v 02Nt — (u—p) 3A6%
do* = (e+€) 0'A0* + Kk 0'AO® + RO'NO* + (1—a—B) 0°A0® + (F—a— ) 62A6*
— (p—p) 6°A0* (1.7)
d® = —(n+7) 0IN*> — (p—E+e) 01N — G O'AO* + (u+7—~) 62A6°
+ A OPA* + (a—B) 0°A6*
df* is the complex conjugate of df> and is obtained by interchanging indices 3 and 4 and taking complex

conjugates of the complex Newman-Penrose quantities. Later, we will see that equations (1.6) and (1.7) are
extremely useful in calculating the spin coefficients for the given space-time metric.

2. The Godel universe in NP-formalism
The geometry of the Gddel universe is described by the metric
1
ds®* = dt* — da® —dy* + §e2qydz2 + 2e?dz dt (2.1)

where the parameter ¢ is related to the vorticity of the fluid. The covariant components of the metric tensor
gij are given by

1 1
g1 = g2 = —Gua = —1, g3 = §€2qyyand g3a = e, g = |gij| = —562% (2.2)

and hence the contravariant components of the metric tensor ¢¥/ are obtained as
gll — 922 — g44 - _ 17 g33 - _ 2672qy7 g34 — e2qy (23)

and all other components are zero.
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We choose the set of four basis 1-forms 0% as

0 = %(dm + eWdz + dt)

6? = %(—dm + eWdz + dt) (2.4)
0 = \/Li(dy + %eqydz)
0t = %(dy - %eqydz)

Hence the metric (2.1) reduces to

ds* = 20'9*> — ¢%¢* (2.5)

The definition of basis 1-forms 0% = e®dz’ and the equations (2.4) lead to

1
li = —=(—1,0,e",1
\/5( )
1
n; = —2(1,0,eqy,1) (2.6)
) .
m; = —=(0,—1, —=e%, 0)

V2 V2

The value of m; can be obtained by taking the complex conjugate of m;. The contravariant components
of the basis vector fields of the tetrad are obtained from the relation

i ik
€a) =9 Ca)k

This gives

' = —(1,0,0,1)

1
V2
1

n' = E(_l’o’ 0,1) (2.7)

: 1
m' = E(0, 1, —iv/2e” W, iv/?2)

The exterior derivatives of the basis 1-forms 6% now take the form
ot = do* = iq 0>A6*

1
V2

Comparing the corresponding coefficients of equations (1.7) and (2.8) and solving, we obtain the results
by Cohen et al [2] as

e’ = —do* = q 03A6* (2.8)

g € = v = ——gq (2.9)

1

g _ o, =
2\/57/)_“

and all other spin coeflicients being idntically zero.
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Substituting these values in equations (1.6), we readily obtain the tetrad components of connection
1-forms as follows:

w12 = 0
7 7
wis = wag = g q 0% wig = w = ~ 3 q6® (2.10)
7 7 q q
- _ 91 v 92 4 93 I 04

The tetrad components of curvature 2-forms Q3 are obtained from Cartan’s second equations of
structure
Q% = dwi + w A wj (2.11)

which can also be expressed as
Qop = dweg + Wal A wrg + wa2 Awig — waz A wag — waa A wsp (2.12)

By giving different values to o, 3 = 1,2,3,4 and using equations (2.10), we obtain

q2
Q= 0, Q= 56 A0

2

Q3 = Qo3 = —— (AL A + 02 A 0% (2.13)

Qup = Qou = —— (0L A6 + 62 A 6°)

The curvature 2-forms are defined by

Qup = %Raw 07 A6 (2.14)

By assigning different values to o, = 1,2,3,4 and on comparing the coefficients of the corresponding
basis 2-forms of equations (2.13), we obtain the tetrad components of curvature 2-forms as

2 2
q q
Rig1a = Rigoa = Risos = Rozou = — and R3s3q = 5 (2.15)

and all other components are zero. The tetrad components of Ricci tensor R,3 and the Ricci scalar R are
defined as
Rap = M Ryaps, R = 1™ Rap (2.16)

Solving these equations, the non-vanishing tetrad components of the Ricci tensor and the Ricci scalar are
e
R11 = R12 = R22 = — ?, and R = - q2 (2.17)

Further, the the tetrad components of the Weyl tensor are given by

Copys = Rapys + % (MarRps + NpsRay — MpyRas — NasRpy) + %(naénﬂw — Nay7gs) (2.18)
where the trace free part of the Weyl tensor is characterized by
1%Cuprs = 0 (2.19)
together with the cyclic property

Ca575 + Ca75g + 00455’)’ =0 (2.20)
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On using equations (2.15) and (2.17), the tetrad components of the Weyl tensor become

Ci212 = Caazq = %’ and Cizza = Crazz = — %2 (2:21)
Consequently, the only non-vanishing Weyl scalar ¥y becomes
Uy = Ciz4 = — %
proving the Godel universe is of Petrov type D.
3. Electric and Magnetic parts of Weyl tensor

The electric and magnetic parts F;, and H;y, respectively, of Weyl tensor Cl; ;i are defined by

Ep = Cijpu’u! (3.1)

Hy, = ijklujul (3.2)
where C’i*jkl is the dual of Cjj;j; defined as

ikl = %eklmncijmn (3.3)

where €ppny, is the Levi-Civita permutation symbol. We see that both electric and magnetic parts of Weyl
tensor are space-like, symmetric and traceless. Define the time-like vector ' = - (l’ + n’), then equation

V2
(3.1) becomes
1 ) ) ) )
En; = 5C’m’jk (l’lk + I'nf + nflF + nlnk> (3.4)

We define the tetrad components of electric part of Weyl tensor Ej; in to the following four real and three
complex scalars

Real scalars Complex scalars
Ey = By, Ei3 = Epl'md,
Eiy = Epl'n, Es3 = Epjn"m?, (3.5)
FEy = Ehjnhnj, FE33 = Ehjmhmj,
E3y = Ep;mhmd.

Equations (3.4) and (3.5) give the following relations

1 1
Ein. = —Eig = Eyp = 501212, E3y = 5(01324 + Ca314)
1 1
Ei3 = —Ey3 = 5(01213 + Ci223), Esz3 = 5(01313 + C323) (3.6)

1 1
Eiyy = —Ey = 5(01214 + Ci224), Eu = 5(01414 + Cag24) .
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Hence the expression for the electric part of the Weyl tensor in terms of the basis of the tetrad is given by

1
E;; = 5[01212 (Lil; —ling — ngly + ngng)
(Ci213 + Chag3) (im; + mgl; — myn; — nym;)
— (Cr214 + Chaza) (imy + muly — ming — nymy)
+

+ (Cizaa + Ca314) (Mmimmy; + mymy)] (3.7)

Ci313 + Cas23) mim; + (Craia + Caa24) Myt

The expression for F;; with respect tothe Godel’s universe becomes

1
Eij = 5 C1212 (lilj —lmj — nilj - mym; — miym; + ninj) (3.8)
which from equation (2.21) takes the form

2
Eij = % (lilj —linj — nilj - mym; — mym; + ninj) (39)

It has been shown by Ahsan [1] that the Weyl tensor for Goédel’s universe is purely electric, hence the
magnetic part H;; = 0. We see that the tetrad components of the electric part of the Weyl tensor relative
to the Godel’s universe are

2
Eig = E3y = —Ey = — Egg = —% (3.10)

and all complex tetrad components of electric part are zero.

4. Conclusion

Geometry of the Godel’s universe is studied by exploiting a technique of differential forms. Electric part of
the Weyl tensor is expressed as a linear combination of the basis vecors of the null tetrad. It is shown that
the parameter ¢ related to the vorticity of fluid in the Gédel’s universe causes the real electric field, where
as all complex electric parts are zero.
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Abstract. In this paper we introduce some new sequence space with elements in n-normed spaces using
an Orlicz function and give some preliminary result for matrix transformations.

1. Introduction

In this paper we introduce and study new sequence spaces, whose elements are from n-normed spaces, using
an Orlicz function, which may be considered as an extension of various sequence spaces to n-normed spaces.
We recall that the concept of a 2-normed space was first given in the works of Ghler [3, 4, 5]. Then various
generalizations to an n-normed space were proposed and studied by some authors [13, 14, 10, 9]. While
the notion of I-convergence in 2-normed spaces investigated by Sahiner et al. [16]. By taking this as a
starting point, we oer here a construction of more generalized sequences space using an n-norm and an
Orlicz function.

We begin with recalling some notations and backgrounds.

A function M : [0,00) : [0,00) is said to be an Orlicz function if it is continuous, non-decrasing and
convex with M (0) = 0, M (z) > 0 for z > 0 and M(z) : co(z — o).

An Orlicz function is said to satisfy /As-condition if there exists a positive constant K such that
M(2z) < KM(z) for all z > 0.

Note that if M is an Orlicz function then M (Azx) < AM(x) for all A with 0 < A < 1.

Let n € N and X be a real vector space of dimension d, where n < d. An n-norm on X is a function
I|+--- 5 [ X x X x--- x X - R which satisfies the following four conditions:

n—times
(i) || z1,22, -+ ,zyn ||= 0 and only if z1, 2, - - ,zy are linearly dependent;
(i) || 1,22, , @y || are invariant under permutation;
(111) || QAT1, L2, ,Tn ||:| « ||| L1, L2, ", Tn Hva € R;
(IV) || JZ’+ZB/,ZB2,--- y I ||§H Ty T2, ", Tn || + || $/7$27"' y In ||
The pair (X, || -,---,-||) is then called an n-normed space [7].

Let X = R%d < n) be equipped with the n-norm then || 1,22, - ,Zp_1, %, ||g:= the volume of the
n-dimensional parallelepiped spanned by the vectors, x1,x2, - ,Zn—1, T, which may be given explicitly by
the formula

_ o1
(x1,22) -+ (w1,70) |2
H T1,Z2, ** ,Tn—1,Tn ”S: P
<$n7931> <a7na$n> i

Keywords and phrases : sequence spaces, n-normed spaces, Orlicz function, para- normed spaces.
AMS Subject Classification : 40A05, 46A45; 46B70.
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where (-,-) denotes inner product. Let (X,| -,---,- ||) is an n-normed space of dimension d > n and
{a1;a9, - ,a,} is a linearly independent set in X. Then the function || -, [|o on X! defined by
|| L1, X2, ", Tp—1 ||oo: maX{” L1, L2y y Tn—1,04 || 1= 1a T ,TL}
defines an (n — 1) norm on X with respect to {a1,as,---,an} ([6]).
Definition 1.1. ([9]) A sequence (zj) in n-normed space (X, || -,---,- ||) is said to be convergent to an

in X (in the n-norm) if

lim || 21,22, - ,Zp—1,2, —x [|=0
k—o0
for every x1,x9, -+ ,xn_1 € X.
Definition 1.2. ([6]) A sequence (zj) in n-normed space (X, || -,---,- ) is said to be Cauchy in X (with
respect to the n-norm) if
im || 21,39, @p—1, 26 — 21 [[= 0
k,l—o00

for every x1,x9, - ,xn_1 € X.
If every Cauchy sequence converges to an z in X then X is said to be complete (with respect to n-norm).
Any complete n-normed space is said to be n-Banach space.

Definition 1.3. ([12]) Let X be a linear space. Then a map g : X — R is called a paranorm (on X) if is
satis.es the following conditions for all z,y € X and ) scalar:

(i)

(i) g(z) = g(-=) ;

(iil) g(z +y) < g(z) +9(y) ;
)

| A" — X |— 0(n — o0) and g(2™ — z) — 0(n — o0) imply g(A"z™ — A\;) — 0(n — 0).

g(0) =0 (Here 6 = (0,0,---,0,---) is zero of the space);

(iv

Recall that (X, || -,---,-||) is an n-Banach space if every Cauchy sequence in X is convergent to some
2 in X in the n-norm.

Lemma 1.1. [9] (X,| -,---,-||) is an n-Banach space if and only if (X, || -, -+, ||c) is a Banach space.

2. Main results

From now onward we assume (X,| -,---,- ||) is n-normed space and X to have dimension d, where
2 < n <d < oo, unless otherwise stated.

Lemma 2.1. A sequence (z,) in X is convergent to # € X in the m-norm if and only if
lim || z1, 29, ,Zn—2,2 — T |loo= 0.
k—o0

On the other hand, Let {e1,--- ,e,} be an orthonormal set in X then

| 1, -+, &n |loo:= max{|| 1, ,zp_1,€; [ i =1,--- ,n}

defines an (n;) norm on X.
Let (X, | -,---,-||) be any n-normed spaces and S(n — X) denotes X-valued sequences spaces. Clearly
S(n — X) is a linear space under addition and scalar multiplication.

Definition 2.1. We define the new sequences space as follows:



New sequence spaces in n-normed spaces with respect to an orlicz function 59

0 Pk
Z(M,p,” 77”) = {QZGSTI— Z|: ( 3215 %2y y2n—1 H>:| <OO:P>0}

k=1
for each 21,29, -+, 2,1 in X.
Lemma 2.2. [(M,p,|| -,---,-||) sequences space is a linear space.
Proof. We will use the well known inequality:

Let p > 0, (Vk), H = suppy and ag, by, € C' (complex numbers). Then ([12])

| ag + by [P*< D{] ag [P + | by [P}, D = max{1,2771},

Now assume that z,y € [(M,p,||-,---,-||) and «, 3 € € Then
e Tk Pk
Z [M p—,zl,zg--- s Zn—1 ] < oo for some p; > 0
1

k=1

and
o
E |: 21,22 ,2n—1
=1

Since ||, , || is @ n-norm on X and M is an Orlicz function, we get

|: (H QT 5yk > 21,22 , 2 1
ma 2 2 3 ’ ’ » N—
‘ ‘Pl’ ‘ ‘pz)

Pk
] < oo for some py > 0.

"

e T

and this completes the proof.

Theorem 2.3. [(M,p,|| -,---,- ||) space is a paranormed space with the paranorm defined by
gil(M,p,H I ||)—>Ra
1
- 0 Pr\ M
g(.’l?) = inf pﬁ : Z |: ( yR1, 22"y 2n—1 >:| < o,
k=1

where 0 < px < suppx = H,M = max(1, H).

Proof. (i) Clearly g(f) = 0 and (ii) g(—z) = g(=x). (iii) Let xp,yx € I(M,p,]|| -,---,- ||) then there exists

p1, p2 > 0 such that
0 Dk
> (] )| =

k=1
Pr
)] < co.

2 ([

) R15,22° "y 2n—1

and

220ty Zn—1
So, we have
Tk + Yk T
M y 21,22 s 2p—1|| | S M 21,227 s Zn—1]|| + 321,227 5 Zn—1
p1+ p1+ p2 p1+ p2
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< pL M( %7'2172:2"' y Zn—1 )‘I’ r2 M(H%vzlvz2"' y An—1 )
p1L+ p2 p1 p1+ p2 P2
and thus
% i
Pr Tk + Yk P
gr+y) = (p1+ p2) T - [M( — 1 ”1,%2" ", 2n-1 >]
( ) { <kz::1 p1+ p2 "
0 i
P Pk
< inf le : Z |:M< Tk 21,%2" Zn—1 >:|
—1 p1
1
P o0 yk Pk M
+ inf < py’ [M (H—,ZbZz Zn—1 >]
1 P2

= g(z) +g(y)

(iv) Now let A — 0 and g(z™ — z) — 0(n — o0). Since

) =

g(Az) = inf ﬁ)% : (Z [M (‘ %,21722”' s Zn—1

This gives us g(Az") — 0 (n — 00).

Theorem 2.4. If (X,|| -,---,- ||) is finite dimensional n - Banach space then (I(M,p,|| -,---,- |),9) is
complete.
Proof. Let (z") be a Cauchy sequence in (I(M,p,|| -,---,-||),g). Then for each € > 0 there exists Np € N

such that for each m,n > Ny we have

e 2 pm Pk ﬁ
g(mn_$m): Z|:M< L k,Zl,ZQ"',Zn,1 >:| <e
k=1
Pk 7
which implies ( #,21,22--- s Zn—1 o< e, for each k. So, (2™) is a Cauchy sequence in
(X, +---,- |) and since (X,| -,---,- ||) is n-Banach space there exists an z in X such that
|y — 2, 21, 22, -+, Zn—1]| = 0 (n — 00) and this completes the proof.
Theorem 2.5. If (X,| -,---,- ||) be any standard n-normed space and M be an Orlicz function that
satisfies Ag-condition then
VML p |y Do S UMD D s
that is, x € I(M,p,|| -+ ,- H)||.7...7.||oo szellM,p,| -, ”)H',"','ll(nq)s
Proof. From fact 2.3 in [9], we have
|| Ly 215225 5 Zn—2 ||)00 é|| Ly 215,22, * 5 Zn—2 ||)S < \/H || Ly 215225 " 5 Zn—2 ||)OO

for all 21,29, -+ ,2,—1 in X. So we get
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> Tk Pk T T Pk
Z[M( 5 R1,%2," ", Zn—2 >:| < Z M( —HR1,%2," " s Zn—2 >:|
k=1 P o k=1 " S
T Tk Pk
< Z M(\/ﬁ 21,22, "y Zn—2 >:|
k=1t P oo
T T Dk
< Z K\/EM (H_7217227"' )y Zn—2 >:|
k=1t P %
H e Tk Pk
< KHTL?SZ |:M (H_azlaz27" * oy An—2 >:|
k=1 p [e's)
as required.
Theorem 2.6. u € l, = ux € (M,p,|| +,---,- ||) where I is the space of bounded sequences and

uxr = (uRx).

Proof. Let u = (ug) € loo. Then there exists an A > 1 such that | u; |< A for each k. We want to show
(ukxk) € Z(Mapa ” Tty ”) But

O T ULTE 1Pk

Z M( 3 R1y 22y 3 Zn—25 2n—1 )

k=1 * |

T Pk

Tk

= Z M(| Uk | 3 R1,%2," " y2n—2,2n—1 |>:|

k=1 * P

0 Pk

< (KA)HZ |:M (“_7217227' y Zn—25 An—1 >:|

and this completes the proof.
Now we give some generalizations of subjects given in [11].

Definition 2.2. Let A = (a,, 1) be a non-negative matrix. Define the new sequences space as follows:

I

for each 21,29, - ,2p—1 In X. If 2 — le € wo(M,p,| -,---,- ||) then we say x is wo(M,p,| -+ -, ||)
summable to ¢, where e = (1,1,...).

A, k Tk

3 R1y 22y 3 Zn—25 2n—1

(M| -,-~-,-||>={xes<n—x>: im >~ o (

Theorem 2.7. wo(M,p,| - -+, ||) is linear.

Proof. It can be done very similar to the proof of linearity of [(M,p, | -,---,- |)-

Theorem 2.8. If A = (amnr) is the matrix of Cesaro means of order 1 then
l(M7p7 H ER H) - CUO(M,]), ” R H)

Proof. If A = (ay, ) is the matrix of Cesaro means of order 1 then
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0 Dk
Am kLk
Am(x) = Z |:M( = yR1, %25 5 Zn—25 Zn—1 >:|
k=1 P
1 — Tk Pk
< EZ |:M (H_azlaz2a"' y Zn—2y Zfn—1 >:|
k=1 p
So, if x € I(M,p, || -,---,-||) then there exists S > 0 such that
© Dk
Tk
Z[M( 3 R1,%2," "y An—25”n—1 >:| =5>0.
k=1 P
S
Hence 0 < lim A,,(z) < lim — = 0. This means = € wo(M,p, | -+ ,- |-
m—00 m—0o0
More generally, we have the following result.
Theorem 2.9. If A = (a, ) is any regular matrix then I(M,p, | -, ---,- ||) S wo(M,p, || -,--- - ||).
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Abstract. The concept of Haar-Vilenkin wavelet, Haar-Vilenkin scaling function is introduced. Basic
properties of Haar-Vilenkin wavelet series and coefficients are studied.

1. Introduction

The following system which is a generalization of Haar system is connected with the name of Vilenkin [17].
Very often it is termed as a generalized Haar system or a Haar type Vilenkin system.

Let m = (my,k € N) be a sequence of natural numbers such that my; > 2, N denotes the set of
non-negative integers. Let My = 1 and My = mp_1My_1, k € P. Let P denotes the set of possitive integers
and let k € P can be written as

k=M,+r(m,—1)+s—1. (1.1)

wheren e N, r=0,1,...,M, — 1 and s = 1,2,...,m;, — 1. This expression is unique for each k € P. Let
us write an arbitrary element ¢ € [0, 1) in the form

0
tk
t= , (0 <1t <mg). 1.2
> ) (12

It may be noted that there may exist two such expressions(1.2), for so called m-adic rational numbers. In
such cases we use the expression which contains only a finite number of terms different from zero.
Define the function system (h,,n € N) by hg = 1 and

hi(t) = mn, My = M 1.
k(t) { 0 otherwise (1.3)

This system can be extended to R (the set of real numbers) by periodicity of period 1: hy(t + 1) = hy(¢),
t € [0,1). It can be checked that {hy(t)} is a complete orthonormal system in L?(R). It is clear that

2mist,
hi(t) = X[MLH’%H(t)\/Mnexp —
Certain properties of this system have been recently studied [9,16].
Our attention was drawn towards the study of Vilenkin type wavelet through the research project [19].
In this paper we study Haar-Vilenkin type wavelet.
The Haar system H = (H,,n € N) is defined as follows:

Keywords and phrases : Vilenkin system, Haar type system, Haar-Vilenkin wavelet.
AMS Subject Classification : 42A38, 42A55, 42C15, 42C40, 43A70.
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Hy=1. For n,r € N and 0 < r < 2" the function H, is defined on [0,1) by
27 zel(2rn+1)

Honip(z)={ —2% zelI(2r+1,n+1)
0 otherwise
where
1(271, n -+ ]_) = [27"2_(n+1), (271 + 1)2—(n+1))

2r 2r+1
- )
It can be extended to R by the periodicity of period 1. Each Haar function is continous from the right and
the Haar system H is orthonormal on La(R)([17]).
Very often (see for example [25]), the function defined below is called the Haar wavelet (mother Haar
wavelet)
1 telo,3)
H(t)=4 -1 te[i1)
0  otherwise

It can be expressed in the form
H(t) = X[o,%)(t) - X[%,l)(t)

By taking translations and dilation of H(t) the system {H,, ()}, where H,,, = 2™/2H(2™t — n), has
been extensively studied. For example it has been proved that it is orthonormal basis in L?(R) ([24]).
Decomposition of a function f € LP(R),1 < p < oo with respect to the system has been studied and its
convergence investigated. The family {H,,,} is associated with multiresolution analysis, for example let
S, = span{H;} and L, = {all functions in L?*(R) constant on all intervals (k27" (k + 1)27"],k € N}. It
can be proved that L, = S, for all n € N. {L,}2_ form a multiresolution analysis. In this case, the
function

(1 teo,1)
X[0,1)(t) —{ 0 otherwise

can be taken as a scaling function. Comparison of Fourier series of a function f € L?(R) and its expansion
with respect to the Haar system has been investigated. Behaviour of Haar coefficients are also studied
(for details, see [23]). It may be observed that Haar function was introduced as back as in 1911 ([10]),
Walsh function in 1923 ([24]) and Haar type Vilenkin system in 1947 (see, for example [17,21,22]). Certain
properties of multi-dimensional generalized Haar type Fourier series has been investigated in 2000 ([20]).

In the recent years various extensions and concepts related to Haar wavelet have been studied ([1-7],
[9]-[14,16]). In the present paper we study basic properties of Haar-Vilenkin wavelets and Haar-Vilenkin
scaling function. For relevant literature of wavelet we refer to [4,18,23,25]. In section 3, we prove that the
system {¢,p},a,b € Z is an orthonormal basis in L?(R), while the convergence properties of expansion of
f namely the series >,z > ez (f) Dima Tohi(t)) Dia Tyhi (t) for arbitrary coefficients (k fixed) are studied.
Section 4 is devoted to the properties of < [y Dma Tyhy, (t)> for f in different classes. Approximation properties
of the Haar-Vilenkin type system similar to Fridli, Manchanda and Siddiqi [8] will be investigated in another
paper.

2. Haar-Vilenkin wavelet

2.1. Haar-Vilenkin mother wavelet

The function hy(t) as defined in (1.3) can also be written as

Mn 3 ]\; S t W + n+1
\/Memp%”—f: W tan o St< M + M2
hi(t) = { VMyexpEe it St<am (2.1)

Vi eap?inll oy ;3,:; <t< g
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It can be seen easily that hy(t) € L%[0,1) thy(t) € L'[0,1) for k € P and

o0 Mot Y Ty 2
/ hi(t)dt = /M ot v M dt—l—/ Mt v/ Mpexp 177’73 dt+ ...

7"” n+M7;l+1 "
r+1 2 ( 1)
M, _
+ +/ V Mpexp TS\ Tn dt
T Tt "
v M, 4 2 —1
— L [1 + exp 4 exp UL exp mis(my — 1)
M1 n mn mn
VM, |1 —exp2mis
= Mn+1 1_ expXis 2mis
=0

Thus the function hg(t) is a mother wavelet for k € P and for ¢ € [0,1).The function hy(t)is called a Haar
Vilenkin Wavelet.
Define

Vap(t) = mY2hy(mt — b) (2.2)
The collection {tq 4(t)}a pez is referred to as the Haar-Vilenkin system. 1 (¢) is supported on the interval

I, where
1 b
Loy = [mQM b m—n) ,a,bcZ.

The system 1, 5(t) can also be written as {m% hi(mgt —b)} = Dipa Tyhy(t).
2.2. Haar-Vilenkin scaling function

For k € P and ¢t € [0,1) as defined in (1.1) and (1.2) the Haar-Vilenkin scaling function is defined as:

pk(t) = \/_X ril)

M Mn
VM, - <t<Z5H (2.3)
0 otherwzse
Define
bap(t) = m 2 pr(mat — b) (2.4)

The collection {¢q5(t)}apez is referred to as the system of Haar Vilenkin scaling functions. For a given
a € 7Z, the collection {¢g () }pez is referred to as the system of scale a Haar—Vilenkin scaling functions.

$q,p(t) is supported on the interval I, and a,b € Z, where I, = [
For each a,b € Z

+ -2 _r+1 b
ma My, ma » ' ma M, me J°

1
Pap(t dtz/ Gap(t) dt =me/*\/M, = m, M, 1/
/R 0 Tab ®) mé M,

and

1
/ Gap(t)]? dt = / (Gap(t)[? dt = ma M, —1
R Toup m

Remark 2.1.
1. Haar system is a special case of Haar-Vilenkin system for m,, = 2 for all n € N.

2. Given any a € Z, the collection of scale a Haar-Vilenkin scaling functions is an orthonormal system
on R.
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Remark 2.2. We have

—-1/2 1/2
bas(t) = ma'! ¢a+1,—r("ﬂb}[1)+m (1) +ma ! ¢a+1,—’"(m%f)ﬂ+mnb(t) e (2.5)
—1/2 '
ot my / ¢a+1,(r+1)ﬂ(/gn71)+mnb(t)
and
— —1/2 27rzs 1/2
Yap(t) = mn G, rman) o (E) + expIE ¢ +1’r(mnM—;1)+1+mnb(t) +... .
ez 27rzs(mn—1)m71/2¢ (t) :
14 n a+1,(r+1)]\(/[72n71)+mnb .

The equations (2.5) and (2.6) show the relationship between Haar-Vilenkin scaling function and Haar-
Vilenkin wavelet.

Remark 2.3. For k = 1, hy(t) is the well known mother Haar wavelet.

Lemma 2.1. For a € Z, let go(x) be a scale a function which is constant on I3, b € Z. Then g,(x) can be
written as

ga(w) = ra—l(a:) + ga—l(x)

where r,_1(z) has the form

Ta— 1 Zaa 1% lb (27)

for some coefficients {a,—1(b) }pez and g,—1(z) is a scale a — 1 dyadic step function.

Proof. Since gq(x) is a function which is constant on I, 5. Suppose g,(x) has the value Cy(b) on the interval
I, . For each interval I,_; p, define the function g,—1(x) which is constant on I, 14 by

Goi(z) = molM, /
a 1,b

al _ _
== —M |:Ca (M+mnb>+0a (M—anb)—F

1 -1 1
o (T bme )
n _
1 r(my, — 1 r(m, —1)+1
- m_n{oa(—( ]\"4” )+mnb>+C’a<—( "Mn) +mnb>+...
r+1D(m, —1 |
as
Ia—l,b = Ia,ﬁ%"—:l+mnb U Ia,ﬁm"T::m+mnb Uu...u Ia,ﬂ%ernb

In other words, on I, 1, go—1(x) takes the average value of g,(z). Let 74_1(2) = ga() — ga—1(2), ga—1()
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is a function which is constant on the interval I,_14, b € Z and |I5—1 3| = ﬁ Thus
[ e = [ @i [ g
To_1p To_1 To_1
_ / (a:)dw+/ go(z) dz + ..
Ia"r mn7 1 Fmnb 'r mn 1 +1
.t / / Ga— 1 d
Z, gil%gnn_lzﬂwb
1 —1)+1
= |:Ca<r( ‘l‘mn)‘l'ca( ) ‘l'mnb)‘l'
mé M, M,
(r+1)(my, r(m, — 1)
+ Cq ( M, + myb Caq A +mpb | +

C, (%ernb) r..4C, ((T+1)]\(4n"_1) +mnb>]

=0

Thus on I,_1 3, re—1(z) must be a multiple of the Haar Vilenkin function 1,_; p(«) and must have the form
(2.7).

Theorem 2.1. Given any a € Z, the collection {¢, » }yez is an orthonormal system on R.
> Mp,

Proof. Since a € Z is fixed and suppose b.b' € Z are given. Then

¢ b
Ia,l\;nmI’AZ_/:{ImML b:bl

If b # U, then the product ¢, o (t)p, » (t) = 0 for all ¢, since the functions are supported on disjoint
> Mnp, M.

n

<¢>a_,¢> >/<z> S d=0
<¢a_,¢ > [ 1oust0Pae=1.

2.3 The Approximation Operator in context of Haar-Vilenkin system:

intervals.

Hence if b # b/

If b =0/, then

Definition 2.1. For each a € Z define the approximation operator P, on the functions f(z) € L*(R) by
Pof(x) = ; (f:@us ) b (@)

Remark 2.4.

1. For each a € Z, define the approximation space V, by

Vo = span{d)a,MLn}

beZ

Since {¢a b be Z} is an orthonormal system on R. This implies that P,f(z) is a function in V,

) Mn,
best approximating f(z) in L?-sense.
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2.
¢a_ _ a/2 /M XI , LE
S Mp, m
Thus
<f, ¢a,MLn>¢a,MLn($) = my M, (/1 b f(t) dt) XIa,MLn(x)
Rab.v e

In other words, on the interval I, T P,f(z) is the average value of f(x) on I, 2

We can prove the following facts about the operator P,:

Theorem 2.2.

1. For each a € Z, P, is linear, that is, given f(z),g(x) € L*(R) and o, 3 € C
Po(af + Bg)(z) = aPu(f)(z) + BPa(g)(2)
2. For each a € Z, P, is idempotent, that is, given f(z) € L?(R)
Pa(Paf)(x) = Pof(z)
3. Given integers a,a’ with a < a’ and g(z) €V,
Pyg(z) = g(z)

4. Given a € Z and f(x) € L*(R)
[Pafllz < |[£12

Proof.

L Pufof +fo)(a) = miM, [, (@f(0)+sal0) ] v, , @

— amnMn/Ia’ML f(t)dt.XIa,MLn( ) + Bmy My, / t)dt.x1, M%(w)
= aP,f(z) + BP.yg(x)

2. If a € Z and for f(z) € L3(R)
Pa(Paf)(a:) = <Paf an> 7MLn

= < <f a’]\z’>¢a_>¢a,MLn(m)

- Z[Z<f, Doyt >< By 1D, ]éﬁa,MLn(«T)
b 4

= Z<f,¢a7MLn>¢a’MLn($)
b

= Paf(x)

3. Follows from the fact that if g(x) € V,, then P,g(x) = g(z).
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4. Since {p, b }pez is an orthonormal system on R. Hence
"My,

1Pafl3 = /R‘Z<f’¢“’MLn>¢a7MLn‘2dx
b
= Z|<f’¢a7MLn>|2
b
2

= S|V [ swa
I, b

b

By Cauchy-Schwarz’s Inequality

2
mﬁ/Q\/Mn/ fo)dt] < / m& M, dt / |F(8)|? dt
I, I I, b
& Mn “ Mn G Mn
- [ P
I,
s

Thus
LBy /IM_ )P dt = /R F@OPdt =[£I

Theorem 2.3. Given f(z), C° on R
Tim [[Puf — fll2 = 0 28)

Proof. Suppose that f(zx) is supported in an interval of the form [—m), mX] for some integer N. Then

there exists an integer A and a function g(z) € V4 such that

€

Hf - g”oo = ma$z€R|f($) — g($)| < W

If a > A, then by Theorem 2.2(3), Pyg(z) = g(x) and by Minkowski inequality and Theorem 2.2(4)

[Paf = fllz < [1Paf =agll2 + |1 Pag = gllo + | F = gll2
= [[Pa(f = 9)llz+llg = fll2 (2.9)
< 2ff - glle
where
mly my 2 2 2
9 n 9 o€t 2e €
lo=A1= [l - s@P e [ i =T <

€
= llg— 1l < .
m

n

Combining this result with (2.9) proves (2.8).

Remark 2.5 (a) It has been observed by an anonymous refree that Theorem 2.2 can be obtained from the
fact that an projection opertor is idempotent.

(b) Theorem 2.2 can be obtained as a special case of results in [15] and references therein of papers by Kelly,
Ken, Raphel and Walter.
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3. Orthonormality of Haar-Vilenkin wavelet
We prove in the following theorem that the Haar-Vilenkin wavelet system is an orthonormal basis.
Theorem 3.1. The system {m7hy(mt — b)} = {tap},a,b € Z is an orthonormal system in L?(R).

Proof. Since

[ ViTeapits po<i<

otherwise

for ke P and te[0,1).

Thus hy(t) is supported on the interval |57, 1) and thus hy(mat — b) is supported on the interval

n

Loy = [LJr b il +ia>

a a’ o, a
maM, m& miM, ml

1,p, where

hi(mgt —b) =

2mist r b r b
VMuerpZn i g S g
0 otherwise

This function can also be written as

1
v M, . A<t <1A + ma Mo )
\/Mnea:pﬁ A+Wgt<A+W
hi(t) = \/Mne:vprg—:f A+ T <t< A+ AT
sVl 2mi n—1 n—1 1
Mne:vp MS(TZZ ) A+ ngMn+1 <t< A+ e My
_ b
where A = m%TMn -

First we will show the orthonormality with a given scale. Let a € Z be fixed and suppose b, b’ € Z are
given Then

ifb £V
Ia,b N Ia,b’ = { gIZ)ab ’l;b i y

If b # ¥, then the product ¥4 ()Ye (t) = 0, Vt since the functions are supported on the disjoint intervals.
Hence if b # b, then

< wa,by Qpa,b’ >= /Rlba,b(t)wa,b/ (t) dt = 0.

If b=10, then

< apybay > = /1 Vs ()b (t) dt = /

I,

|¢a,b(t)|2 dt

= / mgy My dt =1
Iop

Next we will show the orthonormality between the scales. Suppose a,a’ € Z with a # d/, say a > d’

and let b,b' € Z. Then we have the possibilities:

1. Iy NIy = ¢. In this case ¢q5(t) ey (t) =0, V¢ and

(Vaps Yar i) = / Yo p(t)he p () dt =0

Ia,b
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2. If a > d then either the intervals I,; and I p are disjoint or I, is contained in the one of the my,

subintervals ) ) 5
A’,A’+,7>,[A’+ - A+ — >,
[ mg My i1 mg My mg M1

mn — 1 1
A " A -
[ M T szn>

where A/ = —— + b

/ /
a' a
ma My ma

In each case, we will get

< ¢a,ba d’a’,b’ >= /I d’a,b(t)d)a’,b’(t) dt=0
a,b

Thus ¥4, a,b € Z is an orthonormal system in L?(R). The result follows.
In order to show that {tgp}apez is an orthonormal basis in L?(R), let us consider the two families of
subspaces of L2(R).
Sp = 5pan{¢a,b}a<p,b€Z (3'1)

L, = {Set of all functions which are constant on intervals I, for b € Z} (3.2)

Both of these families have the following properties:

...CS,2C571CSOC51CSQC... (3.3)
f(t) € Sp e f(2t) € Spa (3.4)
f(t)e So< f(t+k)e SoforkeZ (3.5)

In order to prove that {1,} is an orthonormal basis in L?(R) it remains to prove that
L,=5, Vpelk
Lemma 3.1. For all p € Z, we have L, = 5.

Proof. From (3.4) above it suffices to show that Ly = Sp.
Since each 14, for a < 0 is constant on any interval [u+ Man u—+ %ﬂl) we see that Sy C Lg. Also each function
in Lo can be written as »_, ., QuX [y~ gy TELY Hence by (3.5) it suffices to show that X[z ri1) € So.

M YT B, M

> Mnp,
To show this let us consider the series

S me a0 = 3 mEhi(mi).

a<0 a<0

Since ||m&hg(m&t)|2 = m%/* and a < 0, this series is absolutely convergent in L?(R). One can easily see
from the definition of hy(t), that

Zmﬁp’%,o(t) =0 for t< ML

a<0 n

and

ZmZ/%a,o(t):ZmZ\/M _ VM, for L<t<rJrl

-1 M, M
a<0 a<0 Mn n n

v v 1
For "]\an §t< %L Where’l]:]_,2,3,...0nehas

S me o) = 3 mhi(mit)

a<0 a<0
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If r=0, then
o) 1 OMist, = o
Z m, Qpa,O(t) = W V Mnexp m + Z my, Mn
a<0 n n a=v+1
1 2mist, 1
= — /M v My—————
mY neep My * "m(m, — 1)
If » # 0, then

1 2mist
Zm%ﬂd}a,o(t) = W\/Mne:vp — =
n

a<0 n

This shows that So = Lo, so Sy = L, for all p € Z. It can be easily verified that Up2_ Ly, is dense in L?(R).
Thus the system {1, }apcz is an orthonormal basis in L?(R). Hence the function f € L?(R) has a

decomposition
f = Z Z (fa ¢a,b> Qpa,b'

a€Z beZ

4. Convergence

The number
Cap = ([, %ap) (4.1)

is called the a, b*" wavelet coefficient and

Z Z <f7 Qpa,b> ¢a,b (4.2)

a€Z beZ

is called the wavelet series of f € L?(R).
We investigate the convergence of this series for any f € LP(R),1 < p < oo, and prove the following theorem:

Theorem 4.1. If f € LP(R) with 1 < p < oo or f is continous function, then

Jim By (f) = f (4.3)
where
Bo(£) =D (i %ap) Yap
a<p beZ
ie.,

T [P(F) — £llp = 0

Futhermore for each p € Z
lim Palf) + QA() = Pasa(f) 44

where

QL) =D < frtbap > Yap

b<p

It may be observed that the convergence part may be obtained from the fact that P, are conditional expec-
tations but we present here a direct proof.

Proof. For 1 < p < oo, let us consider the families of subspaces of LP(R)

SP = span{tap}a<iper

LP = {Set of all functions which are constant on intervals I, for b € Z}
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1 b
where I}, = maM + ma , mTaJSM + m—%> .

The proof of Lemma 3.1 can be easily modified to prove that S’ = LIVl € Z. Since P,(f) is an
orthonormal projection onto S, and S, = L,, we can write a different presentation of the operator P,,

namely we have
Z ma My, / ft)dt.xi,,
beZ

This equation is valid as the right hand side of this equation defines an orthogonal projection onto L.

1/p
aM )

ap/qM p/q> 1/p

— (Z mapMp If()P dtw

beZ
1/p
)P 1- p/q/ |f(t)|pdt)
beZ Lap

- ([T <>|Pdt)1/p

If f € Cy(R), then it is uniformly continuous. Then for given € > 0 we can find N such that a > N and for
each b€ Z

By Holder’s Inequality, we have

1Pa()llp = ft)

Z maP MP /

beZ

sup{|f(z) — f(y)lz,y € Lop} <€

For a given a > N and each t € R, we fix an integer b such that ¢ € I, ;.then

|Paf(t) = f(t)] = ‘mZMn/I f(s)ds — f(t)

me My, /I RO

This implies that
super|Paf(t) — f(t)| — Oasa — oo

This proves the first part of the theorem.
Since for a fixed a, {14 }pez have disjoint supports, we have

1/p

1D < fitbap > taplls = | D1 < Ftbap > Pltaplly

b<u b<u

= [ D" ma )P gl

b<p

1/p

This shows that lim,_, Q4 (f) exists in the norm of the space. Clearly it is equal to P,11(f) — Pa(f)-
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5. Behaviour of Haar-Vilenkin coefficients near jump discontinuities

Suppose that f(z) is defined on interval [Man %ﬂ with a jump discontinuity at zg € (MLn, %) and

continous at all other points in [MLR, %] . We have to check whether Haar Vilenkin coefficients < f, 1, >

such that z¢ € I, behave differently than do the Haar Vilenkin coefficients.
Let us assume that given function f(z) is C? on the intervals [0, z¢] and [zg, 1]. This means that both
f'(z) and f”(z) exist, are continous functions and hence are bounded on these intervals. Fix integers a > 0

and 0 < b <m% —1 and let x,; be the mid point of the interval I, . i.e., 2qp = :;;Z%Ii + %.

Case 1 If zg ¢ 1,3, then expanding f(x) about x4 by Taylor’s formulae, it follows that for all z € I,

f(x) = f(xa,b) + f,(xa,b)(x - xa,b) + %f”(éa,b)(w - xa,b)2

where &, is some point in I .
Since [, , Yap(x) dz =0, we have
a,

(Fobas) = /I F(2)ay(@) da
= f(zap) /Ia,b Yap(T) dz + f/(:va,b) /Ia,b Yap(x) (T — Tap) dz

_I'% /Iayb ¢a,b($)(1‘ - $a,b)2f/,(£a,b) dx

= aa,b(m) + ﬂa,b($)

where
aa,b(w) = f,(xa,b)/ ’%,b(a?)(% - xa,b) dx
Ia,b
and 1
Busl@) = 5 [ Faal@) o = ap)?F " (6ar) do
a,b
Now
laap(z)] < If’(fca,b)\/l [Vap(@)|[(z — Tap)| dz
a,b
— IF an)lm VAL [ = 2l do
Ia,b
1
a/2
= |f'(@ap)Im5/> VM, (W)
—3a/2 , ;—3/2
My, M,
= 1 () P
and

1
‘ﬁa,b(wﬂ = 5

/I Pon @) (@ — 2ap)>f" (Eap) da

1 -
< gmaveer \f'@)] [ Far@l@ - wa0)? do
Ia,b

1
= 5\/Mnmf/gmaxwe]a’b\f"(xﬂ/ (x — zzsa’b)2 dx

Ia,b

1 1
= 6\/ Mnmﬁpmaﬂfxelaﬂf”(m” ( >

dm3e M3
1

= oM Pm P mazaer, | £ ()]
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If j is large, then m,, 54/2 will be very small compared with m,, 3a/ 2, so we conclude that for the large values

of j
1 aymn
[ Fytbanh | = G 2 M 2 f )

Case II. If zg € I, then it is contained in one of the m,, subintervals of I .

Assume that zg € [ma L ma ’ Tnti/an + %} Expanding f(x) in a Taylor series about xg, we have

@) = Hag) + £ e = aha € | + ) & € o
and . b
f(‘/l") = f($ar) + f/(éJr)(x - 1‘0),1‘ € |}U07 T‘:/L%—J(;Z/LLTL + m_%> a£+ € [1‘0,1‘]
Thus

U bap) = /I (@) Pas(@) de

20 _ At —
= / f(ma)wmb(:l?) dzx + / f($ar)¢a,b(m) dx
A o

A+mn%n+1 +
+ f(@g )bap(z) dr + €ap
Aty
1
— a/2 - -
/M, [ —A+x0) + flzd)(A+ i xo)]

+ A+ m%r;\y:H»l
+f(zg) Yap(x) dr + €qp

A4+ ——rrr
+ m%Mn+1

= /R |1 A ) + )4+ —20)

m%Mn—I—l
1
/M ma/2f 430 aM ‘I’ea,b

= \/Mnm‘:/2(xo —A)[f(zy) — f(xa_)] + €ap

b and

a
my

— T
where A = a M +

A 1
+ m%Mn+1

€ = / F(E2) (@ — z0)Pap(@) d + / F(E0)(@ — 20)Ban(@) da.

]

eapl < magier, (o) £0) /I 1 — 20|[Pap(@)| da
a,b

= maier, ooy |10/ 2 / & — ol de

Ia,b
—3/2 —3a/2
M, m

< mal‘tela,b\{:voﬂf/(t”%

If j is large, then M, 3/ 2mn 3/2 Gl be very small compared with M, 1 2mn o/ 2, so for large values of j
~ 2 r +

< £t > | % sl o0 = o = o 1@g) = Fai)l

The quantity ‘a:o — ma’"M — # can be small if x¢ is close to — M + W and can even be zero. We can

expect that in middle of [ et T e ma , % + #} SO that‘xo — m+]\/fn — #

~ 1

~ 2mE My y1°
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Thus for the large values of j

< Fbap> |~ MMy |f(zy) — f(zD)]

n
2szn+1

—a/2 4 ,1/2
mn My _
= T ) — f(e)

Comparing the two cases, we see that the decay of | < f,14p > | for the large j is considerably slower if
o € Ia,b than if zg ¢ Ia,b~

The large coefficient in the Haar-Vilenkin expansion of the coefficient f(x) that persist for all scales
suggests the presence of jump discontinuity in the intervals I, corresponding to the large coefficient.
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