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JAMIL AHMAD SIDDIQI AND HIS CONTRIBUTION TO THE \MOR.LD OF
MATHEMATICS

Abul Hasan Sidtlicli*, * aucl Hnzool H. Iihan*
*Fonner Pro-Vice-Chancel)or, Dean Faculty of Science and Chairman

Departurent of Mathernatics, Aligarh Muslirn University, Aligarh, Lidia
aud a Ph.D. student of Professor Janril Ahurad Siddiqi
**Present address: Professor aud Dean Acadernic, BL,IAS Engg. College

Keethar:r, Agra
Lmail: sidcliqi.abulhasautOgnrail.com

'*' Departrnent of Mathenratics
Aligalh N{uslirn flniversity, Aligarrir, hrclia

F-rnail: huzoorkhant-Oyahoo.coru

A brief a(:couut of research coritributiorrs of Prof. Jamil Ahnracl Sidcliqi. a distinguished laculty
tnetnber of thc Departrneut c.rf Mathenratics. Aligarh l\fuslirn Urrivelsit5,, r.,,,ho proviclecl a rlorden
look to Indiarr N.{athcrrratics. are d.iscusscd het'e.

Prof. Jaruil Aluuad Sidcliqi vi'as born on July 21, 1925 at Balrraich, U.P., Iutlia. He conipleted his early
educatiou at Balrraicjr artd Lnckuorr'. He did 8.A., M.A. and Ph.D. (D.Phil.) fronr Allahabad Urriversity
ir 194.1, 1946 arid 1949, respectively. He joiueci Aligalh i\{uslirn Uuiversity ar: a Lectnrer iu i9:Ig au<l weut
to Paris in 1950, to vgo:'k lgith reuowr:ed Mathematician Prof. Szolen X{andelblotzit, uncle of irrveutc)r.of
Fractals, Professol Benot I\{ancielbrotzit. He rvas awarded D. Sc. (d' Eta) by the Uuiversity of Par.is in
1953. He was prornotecl to Reader's post after' his retuur froru Paris. He was appinted Professor.iu 1959 at
Aligarh l\4uslim Univetsity and was the Head of the Departrnent upto October 1966. He was also the Dean
Facultl' of Scieuce during 196<1-1966. He also spent couple of ruonths at Heicleiberg University in 1961 as a
visitiug Professor. When ire joined University of Sherbrook, Canada as a Professor, he ruailtained lien u'ith
A.N'{ U. till 1972. He was visiting Professor irr the Urriversity of Nents Flance, Uuiver.sities of Wbr-rppertal
and Paderborn, Gernrany and the Universitl' of Kuwait. Professor Siddiqi was invitecl speaker in several
interuatioual couferences lield in the different parts of the world.

Professor Siddiqi expired in 1992 while in the acti'r,e service of Laval University, Canada, where he has
tuoved froru Sherbrook in 1975. He has snpervised research work of a fairly Bood nunlber of researchers
n'ho tiremself becanre ernileut luathematicians, to nanre a ferv Plof. N.I(. Ciovil, Prof. N.D. Clupta, Prof.
A.R. Rerldy, Prof. Rafat Nabi Siddiqi, Prof. Dress Dressi, Ir,Iostbfa Ider. He was mainly responsible for
trtoderttizing matiretnatics s1'llabai not ouly in Aligarh l\{ulsinr Urriversity but in northeur India also. Ht:
rvas Pal e'xcellence teacher. He has joint paper with distirruished matheuratician like Prof. B.N. Pr.asad a1d
Prof. Paul \,Ialliavin. Professor Sidciicli has nrade outstanding research contributiorrs in Fourier Aualysis.
Functioual Aualysis and aliied fields. Sorne of his outstarr,diug results are suuunar.ized itr this paper.

Research Contribution of Professor J.A. Siddiqi

\t/e v,'oulcl like to urention briefly his contibutions to the following broad aleas of Analysis: (i) Norluud
rneaus of Fourier selies (ii) Properties of Fourier coef[cients (iii) Matrix suuunability (ir') Approxirlatiol
on analytic arc iu the conrplex plane (v) IVliscellaneous results, specially related to Algebra of Analytic
Functious.
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1 Norlund Means of Fourier Series

Abul Hasarr Siddiqi and Huzoot H. I{han

The Nrirlurrcl (N, p) transformatiorr of the sequerce {s,, (n) } is tho sequenc" { i p, - 
^-ro 

(.'1/ i p6 }. fo.
l,-0 [:0

It

I pr = P,. f 0, a sclies f a1 or its secpence of paltial srrnrs {s,,} is saicl to he (N.p) surrurr:rble to s, if
A=0

,t
Iirrr ! pn-rsrlP,,existsan<[e(palstos. Iu[5],Prasadanrl Sidcliqihar.esho*'uthatthe(N.p,,) triurstbrnr

,r4x t=0
of auy seclueuce of partial surns of the Fourier series of a fuuction of .L(0,2zr) does not exhibits the Gibbs
pherroureua if p,, ) 0 and it is uronotonic. They have also establishecl a corrdition betrr.'een trvo Ncirlturcl
tlnnsfonrratiorrs uncler rvhich thc Gibbs phenomerarl for a sequence {S,r(r)} boun<lecL irr a ueighbourhr.ro<l
of rg can occur at :u6 ibr one of the trirusforurations only if it also occurs for the other.

A rrrajor part of Professo-.- Siddicli's Ph.D. ttresis suburitted rurcler the supen,isiou of Prof. B.N. Prasad
irr 1947-48 at Allahal-,ad Uuivelsity rvas clevnted to Norluud surnrnability of Forrrier sc.ries. Irr 1978 [20]

lre provetl that {n.B,,(:r:)} is (N,2) srruururble for p € A to D(x)lzr plovide<l .i y,1,1u110u: o(t), rvhere
0

S(/) : f, B^(r) derrotes the conjugate series of the Foulier series of a 2n perioclic aucl Lebesgue iritegrablt:
f\urctiorr t, ,l:kr) : /(z + u) -,f (, - u) - D(:u) : o(1) as u,+' 0 arrd .4 clenote the cla.ss of secFrences p

rvlriclr satisfy'the couclitions n ! &lA2p5-21 :0(lA, l) a1{ n ! lPhllk2:0(lP,, l). S9r1e rvell krrorvn resr.rlts
t=1

of L. Fejer irr 1913 ancl H.C. Chou' irr 1942 (N'IR 000512, 8(3, 105(b)) are the special ca"ses of the above results.

2 Properties of Fourier Coefficients

Sidctiqi [6] ha^s str.rdied the srunmability of the sequence {rrB,,(z)}, where ,B,,(r) is as in the previorrs
subsection of the triaugulal nratrix aucl has derivecl the l:elravioru of the Fourier coeflicierrts of coutinuotrs
liurctionsof BounrleclVrrriation. Iu[7].he hasploverl auintcrestingresultthatif /isa2n-periticliciutegrable
function srrch tliat /(+0) anct /(-0) exist. then (i) if a : 0 whenever {rza,,} is snrnrna}rle (C, 1) to o (ii)
t,: n-l{/(+0) - /(-0)} rvhenever {nl,,n} is surnrna}:le (C, 1) to D.

Let V'[0.2r'] cieuoted the class of all functions F of Bouuderl Variatiou iu [0,2ri aucl f ,'6r't'' 'n" it,

Fotrrier-Stieltjes series ancl prrt ,Jr,) : F(r + 0) - F(, -0). For auy uratrix A : (1,.,r), l r"[u",,.. 1"r,1 i,
said to be surnrnable A if ,lirx , lr-6s4 exists ancl surutrurble .fl,1 if ,glprtr,r.rs/.+p t.'xists uniforrtrly iu

p : 0, i.2, il.. . . . Sicl<lir1i f8] has obtainecl several theorems on the srunrnability A ancl F1 of the serluences

{,:1.e'k' +,: p".'ik' - r- | D(.r:)). {l"rl? + l., ui2 - (2n') 'i lOf rr)l'}, ancl othel rc.late<l sequcrices. These
J=0

arc generalizatiou ,:rf classical theorern of Fejr:r arrd Wiener ou tlie .jurup of a fiructiorr F € I/[0.22'j. It has
heeu proverl by Sicldiqi [9] usiDg rnean valtres for alrrxrst perio<lic fuuctions that the frrllowing conditions are
r:rluivaleut under appropriate propetties of a nratrix (,\r,,1):

(i) F is cot:tiuuous
(ii) {lr:112 + lt:-61} is surrunable A or F,1 to 0
(iii) {icil+ l" rl} is suurr.r.rable.\ or {,1 to 0.

The main object crf the paper of Sidcliqi [10] is to studv (C, 1) sumrnability of {1,46(;r)l} wheLe

tAA(u)) = {c6eie' 1-"-r.u-'e'} - ot' I D(ri) crx&(:u - ";)}.j-o

Irr fbr:t under appropriate couditiorrs orr (Au,f), {1,4r(r)J} is sruurrrable (C, 11 to zelo. He de'rivcd this
tesult as a corollary of the fcillorving interesting theorem proved hy hinr.
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Theorem 1. Let A: ()".r) be a nratrix such that

,,,rf l^,,r1= -1\1 < oc'
n>o_4

arrrl srrppose that F e Vl0,2r) ancl :r € [0,22r]. I'hen

(l) {coskf } is surrrrrrable A[F.a] to zero fol al] t l0(rnod2zr')

(2) {sinf:ti is sunurrable A[F1] to zero for all t # (niod2a'), the sequerrces {A1(r)81(r)} and {.4^(?')Br,(,^)}
ale sunruablc AlF,1] to 0;

(l) {"t&'} is sturunable A to zelo fol all I *o(nod2r) the sequence {A1(r) tiB6(:r)} is sunrrnable A (or

F1) to zeltr, u'herr: iBi (r;) : cke?rr - c-ke'ittt - ln'1 i Ot,rrlsiul:(c - zr).
J=O

R.iesz suurnrability for {lcil2} or {lcll} has also been studied in [16]. It nray be recalled that an iufirrite
rnatlix .4: (l,r,i,) of courplex uurubers, a sequeuce {s,,} is said to be sumnrable A if

lirr, I ln,it.sr+p
1l-& u

A-:0

exists; it is sa,icl to be surnnrable F,t if

3 Matrix Surnmability

)n,k.sk+p exists utriforutly in p : 0, 1,2,. .'

Iu [12]. necessar)'aucl snlficent couditir-rns ale given fol inflnite nratrices to some every aluost periodi<:

seqrrerrce aurl their basic properties as surnmabilitl' rnertlices are studicd. It is therr shos,n that these rnatricc's

errtr-.i rraturalll iu the probleru of deterrninatiou of tlte iuurp or total r}radratic jutnp of noluraiized fuuctious
ol bc,unclecl valiatir-ru on the circle in telurs of the linrits ol nratrix tlarrsfolurs of certaiu fiurt:tions of their'
Fourier-Stielties coeflicients. Tire resuits obtairred gerielalize the classicai t)reolerns of Feir:r aud Wieler ers

also tlre cxtensions of theorerns of Wienel given by Loziuski, I{eogh, Petersetr arrd }llateer,. Applicatious are

tuacle to thc, stucll' of coefficient pt'operties of irolc-rnrorphir-' functions iu the uuit clisk iz''ith positive r-eirl part.
Bazinet .rnd Sidcliqi [15] have constructed a regu]ar but not strongly regulal positive rnatrix that srtrns

{exp(2riA't)} to 0 for all t € (0,1). The coustructiou is based on the use of the coefficients of the Rudir-
Slrapiro polynoruial as given by Waiter Rudnr [\{R 0116184 (22# 6979)1. They aiso exhibit rnatlices that
sun.r trll alrnost periotlic seciueuces without possessing the Borel pl'op€rty, and 'r'ice versa.

4 Approximation on Analytic arc in Complex Plane

Lr pa.ptls [1.2.3.],10.13]. Siddiqi along $'itL other distinguished rnatherrraticiarrs like Paul Mailiavin
rvho is u,ell kuou,rr in thc u'ollcl for l{alliaviu calculr.s has studied apploxirnatiou probleur irr the cornpl-'x
plane. One ol'thcse lesrrts, n'hich is cluite interestiug in cited here.

Lr:t ,\ : {Ir} be an increasing se{luer)ce bf positire nttrnbers with liuisr-rp -^; a o.. f ire coriditions

uuriel s,hich the fitiile liur:al corrrbinatious of thc fuuctious elt 1l e A) ale uot dense iu certain spaces

of C*.- fuuctions clefitrecl ot a lectiiiatrle are iu the ct-rmpiex plarre (These spaces are ciefined by conditious
inrposed ol the derivatives of the functions; the topology of these spaces in the sub-rrotrn topologl'). It
has beeir siros'n irr [2] that uuder t]re above cronditions investigated by \'Iailiaviu and Siddi<1i rlorie of the

liurctious cA^t is in the closure r-:f the lineal corubiuatious of the functions eL () € A, .\ l,\A,).

F
lirn !?1+a'!_o
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5 Miscelleneous Results specially Related to Algebra of Analytic Functions

Siclctiqi [13] iras obtainecl a charscterizatiou of absolute t:ontiunity geuer-al.izing a result by G.V. Wellap<t
in this area. Morc precisel"v- his result catr be stated a.s:

Theorem 2. Let X be a locally courpact I{ausdorff space, u a positive Baire measure arrcl p a sigl or
cotnplex Baire rneasrtle defiuetl on X. Theu p is absolutelv coutinuous with respect to u if a1<l oliy if
each secluence of posit:r'e contiurrorus fu:rctions ol X with compact supports convergiug to zero weak-star irr
L*(du) also convcr'1;cs to zero weak-star. in tr*(dlpl).

It has beeu plovc'tl by Siclcliqi [tf] that in a cornrnurative Banach algebra with unit a vector sut-rspace
of codiurerrional coruplised entirely of nou-invertibl,ls is ir (rnaxinral) idea!. proofs of this resuit has also
beerr giverr by other m:rtlteuratiriaus such as J.P. Kahane, !V. Zelazho, A.lVl. Gleason ancl A. Browcier.

lu i18] tlie closurt' of liuear span of a rveightecl sequeuce in IP(O, oo) has been iuvestigate<I. Sicllicli
[19] has givetr a sir:rple plcof of a resuli hy T. Ito aud B.M. Schleiber, uaurely a functiolal y'; on a uliforur
i,rlSebra satisfying r:ouditiorrs,r(1): 1 and lq'(/)l < e_xp(J'log i"fldp), fol all / and sonre r))easure p, must be
rtrultipiicative. It is the converse to a theoleDr of E. Bishcp proved in ig63 IMR 015b016(27# 4g5g)J.

Ferrrer arlt-i Si,ldiqi [3] have st,rrdied n'eiiliited approxiruation. Let F be a closecl snbset of Cn. A corrtirr-
uoris strictly posiriue liurctiou r of F is cajled a weight if, for.each integer N > 0, the frutctiop lzirvu,(z) is
bcun,lecl. C.(F) theu denotes the space of r-:o11!11119115, compiex ralued frtnctious / on F such that /,, -+ Q

as i:i --r e'- 'Ir I; C,,(F) is given the r)orrn slrpiiQ)lw(z). A weiglrt,u, is saicl to be funclarnerrtal if the
polyuorniais are rlense in cr(F). Tire i,ain tesult of this paper is as follows:

Theorem3' LetO:[0,oo) -+(0,cc)becoutinuousandsuchthatlogQ(e') iscorrvexorrd["-]'plc.rge(r)dr
0

oc. Let R;R"-+ l?"bec"ruaprvith r>|n+isuchthatln(r)-Rkt)lgA,lr-c,l audl-R(c)l <.\l,rl+c
tor:r:,rt€ R",.\,.\/ iurd Cbeirrgconstantsu'ith A < I'< 1. Let D betheset of poiutsc+i4iz), r:€ 8,,
and lrrt ti(z): #il TLen u'is fuutlarrreutal on X if p > f"_z-;*;;X.

A courplex alalogue of this theorern is also proverl in the paper.'
A criterion fol tlie (e, c)-surruriability of Fonrier sei-ies [21] has been studiecl. Equivalelce of tw6 classes

lelated to C'-'. lias bcen ilvestigated by Siddiqi [22]. Sidcliqi and Inder [23] have stu6iecl a claracterizati.u
rrf the inverst' closr:d algebras of infiriitely diffeleutiable fuuctions on a half lipe. t1 geleral, t;cir r.esult cleals
with necesary and suificienr conclitions that a Denjov-Carleman-lt{ancielbrojt algebra of analytic firnctions
iIr a sector to be irtvcrse-closecl, that is. if / belongs to the algebra then ] also bclorrgs to it. Iu.rerse
closed classes ofdiffereirtiirble functions has heerr further stncliecl by sirtcliqi'[24]. sicl<tic1i [27] h.rs stuclie<l
Inverse-clcsed Carlem;.n algebra.s of infi nitely differentiable functions.

Let Cu(I) denot.: Carlernatr class of all infinitely cliffereutiable courplex functiorrs / 4efi1ecl o1 a1
irrter.ral 1 for w"hich sup,,{lll(')ll- f lrt,,yt/" < m, whe're AI : UvI.l is a positive seqle1ce. Let Cire)
rlerrote tlre local Carleruarr class of tirnctions which belorrg to Cy(J) for each corrlpact subinterval J of F.
LetX:CuQ)orX:C'MU).Xissaidtobeinverseclosedif/-1 isinXu'henever/isirrXaltlis
boutrdecl away fronr zero.oll .L Several characterization ale given. Typical exarnples are of t6e follorviug
tvpe:

The (local) Call,ltrran class is inverse closed if and only if the sequeuc. 17 : in/,) fulfills sorrre kilcl of
growtir conditions. Siniiar problens for Beurliug classes have been ilvestigated by Sidcliqi arrct Incler [26].

Siddiqi [2Bi has stuciied ihe inclusiou probleur of Carlernau with respect to the Zp-uretrices (1 S p 1 x)
for l,he Carlenrau classes of iufinitely differentiable fuuctions. A typical result can be studied as follows:

Theorem 4. lf {!uI": n > 0} is a sequeuce of positive nurnbers such that lirnilf Ly',}/" : 0, tSeq any
I e C*(R) satisfyirrg ll.f(")ll, ! AyB'i It[, for all n > 0 is identically equal to zeto. If lirrrinf &I,]/', < m
therr fol all p the Cirrletnatr sttbclasses of LP(R) are equal to the corresponciiug classes rvhere I/,, : 1 for. all
rr ) 0. Silnilar results are also obtained for arbi;rary subintervals of B in tlla above cited paper.
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Abstract. Ever since Takahashi, in 1970, introduced convex metric spaces, efforts are being made to

extend results from the theory of Hilbert spaces, normed linear spaces and linear metric spaces to the

more general convex metric spaces. This paper is also a step in the same direction where we extend some

known results on fixed points and common fixed points of quasi non-expansive mappings in normed linear

spaces to convex metric spaces and metric spaces.

1. Introduction

A number of results on fixed points and common fixed points of non-expansive mappings are known in
different spaces. Similar results can be obtained even when the hypothesis of non-expansiveness is
weakened, when one requires the existence of at least one fixed point together with non-expansiveness
only about each fixed point i.e. for quasi non-expansive mappings, introduced by Diaz and Metcalf [3].
Some results on fixed points and common fixed points of quasi non-expansive mappings were proved by
Dotson [4], Itoh and Takahashi [5], Papini [7] and others in normed linear spaces. Here, we extend some of
these results to convex metric spaces and metric spaces. To begin with, we recall a few definitions.

Definition 1. Let K be a subset of a metric space (X, d). A mapping T : K → K is said to be

(i) non-expansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ K,

(ii) quasi non-expansive if T has at least one fixed point in K and if p ∈ K is any fixed point of T then
d(Tx, p) ≤ d(x, p) for all x ∈ K,

(iii) a Banach operator if there exists a constant β, 0 ≤ β < 1 such that d(T 2x, Tx) ≤ βd(Tx, x) for each
x ∈ K.

The set F (T ) = {x ∈ K : Tx = x} is called fixed point set of T .

Definition 2. For a metric space (X, d) and a closed interval I = [0, 1], a continuous mapping
W : X ×X × I → X is said to be a convex structure on X if for all x, y ∈ X,λ ∈ I

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y)

for all u ∈ X . The metric space (X, d) together with a convex structure is called a convex metric space ([9]).
Every normed linear space is a convex metric space but converse is not true (see [9]).
A convex metric space (X, d) is said to be strongly convex (see e.g., [6]) if for each pair x, y ∈ X and

every λ ∈ I, there exists exactly one point z ∈ X such that z =W (x, y, λ).
A strongly convex metric space (X, d) is said to be strictly convex (see e.g., [6]) if for every x, y ∈ X

and r > 0

Keywords and phrases : Nonexpansive and quasi nonexpansive mapping, Banach operator, convex and strongly

convex metric space, convex set.

AMS Subject Classification : 47H10, 54H25.
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d(x, p) ≤ r, d(y, p) ≤ r imply d(W (x, y, λ), p) < r

unless x = y, where p is arbitrary but fixed point of X, 0 < λ < 1.

A non-empty subset K of a convex metric space (X, d) is said to be convex ([9]) if W (x, y, λ) ∈ K for
every x, y ∈ K and λ ∈ I.

Definition 3. A point p of a subset A of a metric space (X, d) is called diameteral if
sup {d(x, p) : x ∈ A} = sup{d(x, y) : x, y ∈ A}. A point which is not a diameteral point is called a
non-diameteral point.

If A is a singleton, there is no question of A having a non-diameteral point.

A convex metric space (X, d) is said to have normal structure if for each closed bounded convex subset
A of X which contains at least two points, there exists x ∈ A which is not a diameteral point of A.

It is well known (see e.g., [2, p.240]) that every bounded closed convex subset of a uniformly convex
Banach space has normal structure.

Definition 4. A convex metric space (X, d) is said to have Property (C) ([9]) if every decreasing sequence
of non-empty bounded closed convex subsets of X has non-empty intersection.

It is known (see [8]) that every complete uniformly convex metric space and so every uniformly convex
Banach space has Property (C).

We shall be using the following result of Takahashi [9] for generalising and extending a result of Dotson
[4, Theorem 1] proved in normed linear spaces to strongly convex metric spaces.

Lemma 1. In a convex metric space (X, d), we have

(i) d(x, y) = d(x,W (x, y, λ)) + d(W (x, y, λ), y)

(ii) d(x,W (x, y, λ)) = (1− λ)d(x, y)

(iii) d(W (x, y, λ), y) = λd(x, y)

for x, y ∈ X, 0 ≤ λ ≤ 1.

Theorem 1. If C is a closed convex subset of a strongly convex metric space (X, d) and T : C → C is quasi
non-expansive then the fixed point set F (T ) = {p ∈ C : Tp = p} is non-empty closed convex set on which
T is continuous.

Proof. Since T : C → C is quasi non-expansive, F (T ) �= φ and T is continuous at each point p ∈ F (T ).
Let x be a limit point of F (T ). There will exist a sequence < xn > in F (T ) such that < xn >→ x ∈ C.
Consider

d(x, Tx) ≤ d(x, xn) + d(xn, Tx) for all n

≤ d(x, xn) + d(xn, x) as T is quasi non-expansive

= 2d(x, xn)→ 0 as n→∞.

This implies Tx = x i.e., x ∈ F (T ) and hence F (T ) is closed.

Now we show that the set F (T ) is convex if the space is strongly convex. Let p, q ∈ F (T ), p �= q

and 0 < t < 1. Consider r = W (p, q, t) ∈ C. We claim that r ∈ F (T ). Since T is quasi non-
expansive, d(Tr, p) ≤ d(r, p) and d(Tr, q) ≤ d(r, q). Also d(r, p) = d(W (p, q, t), p) = (1 − t)d(q, p) and
d(r, q) = d(W (p, q, t), q) = td(p, q). Consider
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d(p, q) ≤ d(p, T r) + d(Tr, q)

≤ d(p, r) + d(r, q)

= d(p, q).

Therefore, equality holds throughout and so d(p, q) = d(p, Tr) + d(Tr, q). Since X is strongly con-
vex, Tr = W (p, q, λ) for unique λ, 0 ≤ λ ≤ 1. We claim that λ = t. d(Tr, p) = (1 − λ)d(p, q) and
d(Tr, q) = λd(p, q). Since λd(p, q) = d(Tr, q) ≤ d(r, q) = td(p, q), λ ≤ t. Since (1 − λ)d(p, q) = d(Tr, p) ≤
d(r, p) = (1 − t)d(p, q), λ ≤ t. Therefore λ = t i.e., Tr = W (p, q, t) = r and so r = W (p, q, t) ∈ F (T ) and
hence F (T ) is convex.

Since strictly convex metric space is strongly convex, we have

Corollary 1. If C is a closed convex subset of a strictly convex metric space (X, d) and T : C → C is quasi
non-expansive then F (T ) is a non-empty closed convex set on which T is continuous.

Corollary 2. ([4, Theorem 1]). If C is a closed convex subset of a strictly convex normed linear space X
and T : C → C is quasi non-expansive then F (T ) is a non-empty closed convex set on which T is continuous.

There have been a number of results (see e.g., [4] and references therein) on common fixed points of
two commuting mappings, one of which is non-expansive while the other is not. We now prove some similar
results in metric spaces when one of the mapping is quasi non-expansive. We shall be using the following
result (Theorem 1, [1]):

Lemma 2. Let C be a closed subset of a complete metric space (X, d) and T : C → C a continuous Banach
Operator then T has a fixed point.

Using Lemma 2, we prove

Theorem 2. Let C be closed subset of a complete metric space (X, d), T : C → C is quasi non-expansive,
S : C → C is a continuous Banach operator and ST = TS then F (T ) ∩ F (S) �= ∅.

Proof. Since C is a closed subset of the complete metric space (X, d) and T : C → C is a quasi non-
expansive map, as in Theorem 1 the set F (T ) is a non-empty closed subset of the complete metric space
(X, d). We claim that S(F (T )) ⊆ F (T ). Let x ∈ S(F (T )). Then there exists p ∈ F (T ) such that x = S(p).
Consider Tx = T (S(p)) = (TS)(p) = (ST )p = S(T (p)) = S(p) = x and so x ∈ F (T ). Therefore the
restriction map

S F (T ) : F (T )→ F (T )

is a continuous Banach operator and so by Lemma 2, it has a fixed point in F (T ). Hence F (T )∩F (S) �= ∅.

The following simple example justifies the above result:

Example. Let X = R2 with d(x, y) = max{| x1 − y1 |, | x2 − y2 |}, where x = (x1, x2), y = (y1, y2) ∈ R2

and C = {(x1, x2) : −1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1}. Then C is a closed subset of the complete metric space
(R2, d). Define T : C → C as

T (x1, x2) =

{
(x1, x2), if x2 �= 0
(x1, | x1 |), if x2 = 0

and S : C → C as S = (x1, x2) = (x12 ,
x2
2 ). Then T is a quasi non-expansive mapping, S is a continuous

Banach operator and ST = TS as (TS)(x1, x2) = (ST )(x1, x2) = (x12 ,
x2
2 ) if x2 �= 0 and (TS)(x1, 0) =

(ST )(x1, 0) = (x12 ,
|x1|
2 ). Thus all the conditions of Theorem 2 are satisfied and F (T ) ∩ F (S) �= ∅ as

(0, 0) ∈ C is a fixed point of both T and S.
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We shall be using the following result (Remark 2 to Theorem 1, [1]), to prove our next result on common
fixed points in metric spaces which are not necessarily complete.

Lemma 3. Let C be a closed subset of a metric space (X, d), T : C → C a continuous Banach operator.
If T (C) is compact then T has a fixed point in C.

Theorem 3. If C is a closed subset of a metric space (X, d), T : C → C is quasi non-expansive, S : C → C

is a continuous Banach operator with S(F (T )) compact. If ST = TS then F (T ) ∩ F (S) �= ∅.
Proof. Since T : C → C is quasi non-expansive and C is closed, F (T ) is a closed subset of X . Since
TS = ST , S(F (T )) ⊆ F (T ) and therefore the restriction map

S F (T ) : F (T )→ F (T )

satisfies all the conditions of Lemma 3 and so it has a fixed point in F (T ) and hence F (S) ∩ F (T ) �= ∅.
Since a closed subset of a compact set is compact, we have,

Corollary 3. If C is a compact subset of a metric space (X, d), T : C → C is quasi non-expansive,
S : C → C is a continuous Banach operator and TS = ST then F (S) ∩ F (T ) �= ∅.

We now prove a result on the existence of common fixed points for two commuting mappings for spaces
satisfying property (C). We shall be using the following result of Takahashi [9, Theorem 3.1]:

Lemma 4. Let (X, d) be a convex metric space satisfying property (C) and K a non-empty bounded closed
convex subset of X with normal structure. If T is non-expansive mapping of K into itself then T has a fixed
point in K.

Theorem 4. Let (X, d) be a strongly convex metric space with property (C), K, a closed bounded convex
subset of X, T : K → K is quasi non-expansive with F (T ) having normal structure, S : K → K is
non-expansive and TS = ST then F (T ) ⊆ F (S) �= ∅.
Proof. As T : K → K is quasi non-expansive and K is a closed convex subset of the strongly convex space
X, Theorem 1 implies that F (T ) is a non-empty closed convex subset of K and is bounded as K is bounded.
Since ST = TS, S(F (T )) ⊆ F (T ) and so by Lemma 4,

S F (T ) : F (T )→ F (T )

has a fixed point in F (T ) and hence F (T ) ∩ F (S) �= ∅.
Since every strictly convex metric space is strongly convex, we have

Corollary 4. Let (X, d) be a strictly convex metric space with property (C), K, a closed bounded convex
subset of X,T : K → K is quasi non-expansive with F (T ) having normal structure, S : K → K is non-
expansive and ST = TS then F (T ) ∩ F (S) �= ∅.

Corollary 5 ([4, Theorem 3]). If K is a bounded closed convex subset of a uniformly convex Banach space
X, T : K → K is quasi non-expansive, S : K → K is non-expansive and ST = TS then F (T ) ∩ F (S) �= ∅.
Proof. Since X is a uniformly convex Banach space, it has property (C). Since every uniformly convex
Banach space is strictly convex, F (T ) is a non-empty closed convex subset of K (Corollary 2 of Theorem
1) and bounded as K is bounded and therefore by the uniform convexity of X, F (T ) has normal structure
and hence by Theorem 4, F (T ) ∩ F (S) �= ∅.

Acknowledgement

The authors are thankful to the referee for valuable suggestions leading to an improvement of the paper.



On Fixed Points and Common Fixed Points of Quasi Non-Expansive Mappings in Metric Spaces 11

References

[1] Beg, I., Shahzad, N. and Iqbal, M. : Fixed point theorems and best approximation in convex metric spaces,
Approx. Theory & its Appl., 8 (1992) 97-105.

[2] Bose, S.C. : Introduction to Functional Analysis, Macmillan India Limited, (1992).

[3] Diaz, J.B. and Metcalf, F.T. : On the structure of the set of subsequential limit points of successive approxima-
tions, Bull. Amer. Math. Soc. 73 (1967) 516-519.

[4] Dotson, W.G., Jr. : Fixed points of quasi-non-expansive mappings, J.Aust. Math. Soc. 13 (1972) 167-170.

[5] Itoh, Shigeru and Takahashi, Wataru : The common fixed point theory of single valued mappings and multivalued
mappings, Pacific J. Math. 79(1978) 493-508.

[6] Narang, T.D. : Strict convexity and approximation in metric spaces, Caribb. J. Math. Comput. Sci. 8 (1998)
32-42.

[7] Papini, Pier Luigi : Minimal and closest points nonexpansive and quasi non-expansive retractions in Real Banach
spaces, in Convexity and Its Applications , (Ed.) Peter M.Gruber, Vienna Jorg M. and Wills, Siegen, Birkhauser
Verlag, Basel, (1983).

[8] Shimizu, Tomoo and Takahashi, Wataru : Fixed points of multivalued mappings in certain convex metric spaces,
Topological Methods in Non linear Analysis, J. Juliusz Schauder Center 8 (1996) 197-203.

[9] Takahashi, Wataru : A convexity in metric space and nonexpansive mappings I, Kodai Math. Sem. Rep.

22(1970) 142-149.



The Aligarh Bull. of Maths.
Volume 27, No. 1, 2008

CONSTRUCTION OF WAVELET PACKETS ASSOCIATED WITH

MULTIRESOLUTION p-ANALYSES

A. H. Siddiqi† and Firdous Ahmad Shah††

†Department of Mathematiccal Sciences, King Fahd University of Petroleum and Minerals
Dhahran 31621, Saudi Arabia.
E-mail: ahasan@kfupm.edu.sa

††Department of Applied Mathematics, BGSB University Rajouri -185131, Jammu and Kashmir, India.
E-mail: fashah jmi@yahoo.co.in, fashah79@gmail.com

(Received March 25, 2008)

Abstract. In the present paper, we construct p-wavelet packets associated with multiresolution p-analysis

defined by Farkov for L
2

(R
+

). The collection of all dilations and translations of the wavelet packets defines

the general wavelet packets and is an overcomplete system.

1. Introduction

A simple, but powerful extension of wavelets and multiresolution analysis is wavelet packets. Wavelet
packet functions comprise a rich family of building block functions and are localized in time, but offer more
flexibility than wavelets in representing different types of signals. In particular, wavelet packets are better
at representing signals that exhibit oscillatory or periodic behavior.

In his paper, Mallat [8] first formulated the remarkable idea of multiresolution analysis (MRA) that deals
with a general formalism for the construction of an orthonormal basis of wavelet bases. A multiresolution
analysis consists of a system of embedded closed subspaces {Vj : j ∈ Z} for approximating L

2

(R) functions.
The notion of MRA and wavelets were generalized to many different settings [1, 7, 13]. Lang [5, 6] constructed
compactly supported orthogonal wavelets on the locally compact Cantor dyadic group C by following the
procedure of Mallat [8], Meyer [9] and Daubechies [1] via scaling filters and these wavelets turn out to be
certain lacunary Walsh series on the real line. Later on, Farkov [3] extended the results of Lang [5, 6] on
the wavelets analysis on the Cantor dyadic group C to the locally compact abelian group G which is defined
for an integer p ≥ 2 and coincides with C when p = 2. The construction of dyadic compactly supported
wavelets for L

2

(R
+

) have been given by Protasov and Farkov in [10] where the latter author has given the
general construction of all compactly supported orthogonal p-wavelets in L

2

(R
+

) arising from scaling filters
with pn many terms in [2].

Motivated by the study of compactly supported p-wavelets, we are interested in extending the results
on p-wavelet packets basis for L

2

(R+). In this paper, we construct the p-wavelet packets associated with
multiresolution analysis based on the approach similar to that of Farkov [2, 3, 10].

2. Preliminaries and p-wavelet packets

Let p be a fixed natural number greater than 1. As usual, let R
+

= [0,+∞) and Z
+

= {0, 1, ...}. Denote by
[x] the integer part of x. For x ∈ R

+

and any positive integer j we set

xj = [pjx](mod p), x−j = [p1−jx](mod p) (2.1)

Keywords and phrases : Multiresolution p-analysis, Wavelet packets, Walsh functions, Walsh-Fourier transform.

AMS Subject Classification : 42C15, 42C40.
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Consider the addition defined on R
+

as follows:

If z = x⊕ y, then

z =
∑

j<0

ζjp
−j−1 +

∑

j>0

ζjp
−j

with ζj = xj + yj(mod p) (j ∈ Z \ {0}), where ζj ∈ {0, 1, ..., p− 1} and xj , yj are calculated by (2.1).
Moreover, we note that z = x
 y if z ⊕ y = x.

For x ∈ [0, 1), let r0(x) be given by

r0(x) =

{
1 if x ∈ [0, 1/p)

ε�p if x ∈ [�p−1, (�+ 1)p−1) (� = 1, ..., p− 1)

where εp = exp(2πi/p). The extension of the function r0 to R
+

is denoted by the equality r0(x + 1) =

r0(x), x ∈ R
+

. Then the generalized Walsh functions {wm(x) : m ∈ Z} are defined by

w0(x) ≡ 1, wm(x) =
k∏

j=0

(
r0(p

jx)
)µj

where m =
∑k
j=0 µjp

j , µj ∈ {0, 1, 2, ..., p− 1} , µk �= 0.

For x,w ∈ R
+

, let

χ(x, w) = exp



2πi

p

∞∑

j=1

(xjw−j + x−jwj)



 (2.2)

where xj , wj are given by (2.1). Note that χ(x,m/pn−1) = χ(x/pn−1,m) = wm(x/p
n−1) for all

x ∈ [0, pn−1), m ∈ Z
+

.

The Walsh-Fourier transform of a function f ∈ L
1

(R
+

) is defined by

f̂(ξ) =

∫

R
+
f(x)χ(x, ξ) dx

where χ(x, ξ) is given by (2.2). Now, if f ∈ L
2

(R
+

) and

Jaf(ξ) =

∫ ∞

0
f(x)χ(x, ξ) dx, a > 0

then f̂ is defined as the limit of Jaf in L
2

(R
+

) as a→∞.

The properties of the Walsh-Fourier transform are quite similar to those of the classic Fourier transform
(see [4, 12]). In particular, if L

2

(R
+

), then f̂ ∈ L
2

(R
+

) and

‖f̂‖
L2(R+ )

= ‖f‖
L2(R+ )

Also the inversion formula takes the form

f(x) =

∫

R
+
f̂(x)χ(x, ξ) dξ

for each x ∈ R
+

, provided both f and f̂ belong to L
1

(R
+

).

If x, y, ξ ∈ R
+

and x⊕ y is p−adic irrational, then

χ(x⊕ y, ξ) = χ(x, ξ)χ(y, ξ)

It is shown in [4] that both the systems {χ(α, .)}∞α=0 and {χ(., α)}∞α=0 are orthonormal basis in L
2

[0,1].
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As in [2] we note, that for any function ϕ ∈ L
2

(R
+

), we have

∫
R
+ ϕ(x)ϕ(x
 k) dx =

∫

R
+

|ϕ̂(ξ)|2 χ(k, ξ) dξ,

=
∞∑

�=0

�+1∫

�

|ϕ̂(ξ)|2 χ(k, ξ) dξ

=
1∫

0

(
∞∑

�=0

|ϕ̂(ξ + �)|2
)

χ(k, ξ) dξ

Therefore, the necessary and sufficient condition for the system
{
ϕ(.
 k) : k ∈ Z

+
}

to be an orthonormal

in L
2

(R
+

) is that
∑

�∈Z+

∣∣∣ϕ̂(ξ + �)
∣∣∣
2
= 1 a.e. ξ ∈ R

+

. (2.3)

Now, we recall the definition of multiresolution p-analysis and some of its properties. Then we will
construct the associated wavelet packets.

Definition 2.1([2]). A sequence {Vj : j ∈ Z} of closed subspaces of L2(R+) is called a multiresolution
analysis of L2(R+) if the following conditions are satisfied:

(i) Vj ⊂ Vj+1 for all j ∈ Z,

(ii)
⋃

j∈Z

Vj is dense in L2(R+) and
⋂

j∈Z

Vj = {0},

(iii) f ∈ Vj if and only if f(p.) ∈ Vj+1,

(iv) there exists a function ϕ in V0, called the scaling function, such that the system of functions
{ϕ(.
 k) : k ∈ Z+} forms an orthonormal basis for V0.

Given a multiresolution p-analysis {Vj : j ∈ Z}, we define another sequence {Wj : j ∈ Z} of closed
subspaces of L2(R+) by Wj = Vj+1 
 Vj , j ∈ Z. These subspaces inherit the scaling property of {Vj},
namely

f ∈Wj if and only if f(p.) ∈Wj+1. (2.4)

Moreover, the subspaces {Wj} are mutually orthogonal, and we have the following orthogonal decomposi-
tions:

L2(R+) =
⊕

j∈Z

Wj (2.5)

= V0 ⊕
(⊕

j≥0

Wj

)
(2.6)

A set of functions {ψ1, ψ2, · · · , ψp−1} in L2(R+) is said to be a set of basic p-wavelets associated with the
multiresolution p-analysis if the collection {ψ�(.
 k) : 1 ≤ � ≤ p− 1, k ∈ Z+} forms an orthonormal basis
for W0.

Now in view of (2.4) and (2.5), it is clear that if {ψ1, ψ2, ..., ψp−1} is a basic set of p-wavelets, then

{
pj/2ψ�(p

j .
 k) : j ∈ Z, k ∈ Z+, 1 ≤ � ≤ p− 1
}

forms an orthonormal basis for L2(R+) (see [2], [13]).

We denote ψ0 = ϕ, the scaling function, and consider p−1 functions ψ�, 1 ≤ � ≤ p−1 in W0 as possible
candidates for wavelets. Since p−1ψ�(./p) ∈ V−1 ⊂ V0, it follows from property (iv) of MRA that for each
�, 0 ≤ � ≤ p− 1, there exists a sequence

{
a�k : k ∈ Z

+
}
with

∑
k∈Z+ |a

�
k|
2 <∞ such that

p−1ψ�
(
xp−1

)
=
∑

k∈Z+

a�kϕ(x
 k) (2.7)
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Taking Walsh- Fourier transform, we get

ψ̂� (ξp) = m�(ξ)ϕ(ξ) (2.8)

where
m�(ξ) =

∑

k∈Z+

a�k χ(k, ξ) (2.9)

The functions m�, 0 ≤ � ≤ p− 1, are in L2(R+) such that

(
m�(ξ + kp−1)

)p−1
�,k=0

is a unitary matrix for a.e. ξ ∈ [0, 1) (see [7, 11, 13]).

Lemma 2.2.(The splitting lemma). Let ϕ ∈ L2(R+) such that the system
{
p1/2ϕ(px
 k) : k ∈ Z+, x ∈ R+

}

is orthonormal. Let V be its closed linear span. Also let m� and ψ� are the functions defined as above. Then

{
ψ�(x
 k) : 0 ≤ � ≤ p− 1, k ∈ Z+, x ∈ R+

}

is an orthonormal system if and only if

∑

k∈Z+

m�(ξ ⊕ p−1k)mr(ξ ⊕ p−1k) = δ�r , 0 ≤ �, r ≤ p− 1 (2.10)

Moreover, {ψ�(x
 k) : 0 ≤ � ≤ p− 1, k ∈ Z+, x ∈ R+} is an orthonormal basis of V whenever it is ortho-
normal.

Proof. For 0 ≤ � ≤ p− 1 and k ∈ Z+, we have

〈
ψ�(x), ψ�(x
 k)

〉
=
〈(

ψ�(x)
)∧

,
(
ψ�(x
 k)

)∧〉

=

∫

R
+
ψ̂�(ξ) ψ̂�(ξ)χ(k, ξ) dξ

=

∫

R
+
m�(p

−1ξ)ϕ̂(p−1ξ)mr(p−1ξ)ϕ̂(p−1ξ)χ(k, ξ) dξ

=

∫

R
+

∑

k∈Z+

m�(p
−1(ξ ⊕ k))mr(p−1(ξ ⊕ k))

× ϕ̂(p−1(ξ ⊕ k)) ϕ̂(p−1(ξ ⊕ k))χ(k, ξ) dξ

=
∑

k∈Z+

m�(p
−1ξ ⊕ p−1k)mr(p−1ξ ⊕ p−1k)

×

∫ t+1

t

∞∑

t=0

ϕ̂
(
p−1(ξ ⊕ k)

)
ϕ̂
(
p−1(ξ ⊕ k)

)
χ(k, ξ) dξ

=
∑

k∈Z+

m�(p
−1ξ ⊕ p−1k)mr(p−1ξ ⊕ p−1k)

×

∫ 1

0

∑

t∈Z+

∣∣ϕ̂
(
p−1(ξ ⊕ k)⊕ t

)∣∣2 χ(k, ξ) dξ

=

∫ 1

0




∑

k∈Z+

m�(p
−1ξ ⊕ p−1k)mr(p−1ξ ⊕ p−1k)



χ(k, ξ) dξ
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by (2.3). Therefore, 〈
ψ�(x), ψ�(x
 k)

〉
= δ�rδ0k

⇔
∑

k∈Z+

m�(p
−1ξ ⊕ p−1k)mr(p−1ξ ⊕ p−1k) = δ�r, a.e. ξ ∈ R+

⇔
∑

k∈Z+

m�(ξ ⊕ p−1k)mr(ξ ⊕ p−1k) = δ�r, a.e. ξ ∈ R+

We thus have proved the first part of the lemma.

We, now show the orthonormality of the system

F =
{
ψ�(x
 k) : 0 ≤ � ≤ p− 1, k ∈ Z+, x ∈ R+

}
.

Let F is an orthonormal system, then we want to show that this system is an orthonormal basis for V . Let

f ∈ V , so there exists
{
a�k
}p−1
�=0,k∈Z+

∈ �2(Z+) such that

f(x) =
∑

k∈Z+

a�k p
1/2ϕ(px
 k)

Assume that f ⊥ ψ�(x
 k), for all k ∈ Z+, x ∈ R+, 0 ≤ � ≤ p − 1, then we claim that f = 0. For all �, k
such that 0 ≤ � ≤ p− 1, k ∈ Z+, we have

0 =
〈
ψ�(x
 t), f (x)

〉

=
〈
ψ�(x
 t),

∑

k∈Z+

a�k p
1/2ϕ(px
 k)

〉

=

〈

(ψ�(x
 t))∧ ,
( ∑

k∈Z+

a�kp
1/2ϕ(px
 k)

)∧
〉

=

∫

R
+
ψ̂�(ξ)χ(t, ξ)

∑

k∈Z+

a�k p
−1/2ϕ̂(p−1ξ)χ(p−1ξ, k) dξ

= p−1/2
∫

R
+
m�(p

−1ξ)ϕ̂(p−1ξ)χ(t, ξ)
∑

k∈Z+

a�k ϕ̂(p
−1ξ)χ(p−1ξ, k) dξ

= p1/2
∫

R
+
m�(ξ)ϕ̂(ξ)χ(k, ξ)

∑

k∈Z+

a�k ϕ̂(ξ)χ(t, pξ) dξ

= p1/2
∑

k∈Z+

a�km�(ξ)χ(k, ξ)

∞∑

s=0

∫ s+1

s
|ϕ̂(ξ)|2 χ(t, pξ) dξ

= p1/2
∑

k∈Z+

a�km�(ξ)χ(k, ξ)

∫ 1

0

∞∑

s=0

|ϕ̂(ξ + s)|2 χ(t, pξ) dξ

= p1/2
∫ 1

0




∑

k∈Z+

a�km�(ξ)χ(k, ξ)



χ(t, pξ) dξ.
(
by (2.3)

)

Since
{
p1/2χ(k, pξ) : k ∈ Z+

}
is an orthonormal basis for L

2

[0, 1], the above equation give

∑

k∈Z+

a�km�(ξ)χ(k, ξ) = 0, a.e. for � = 1, · · · , p− 1.
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Now for � = 1, · · · , p− 1, we have

A�(ξ) =
∑

k∈Z+

a�k χ(k, ξ) (2.11)

So we have
A�(ξ)m�(ξ) = 0, � = 1, ..., p− 1. (2.12)

Equation (2.10) is equivalent to saying that for � = 1, ..., p − 1 and for a.e. ξ ∈ R+, the functions {m�} are
mutually orthogonal and each has norm 1. Equation (2.12) says that the vector

{
A�(ξ) : � = 1, · · · , p− 1, ξ ∈ R+

}
(2.13)

is orthogonal to each member of the above orthonormal basis of C
+p
. Hence the vector in the expression

(2.13) is zero. In particular, A�(ξ) = 0 for � = 1, · · · , p − 1. That is, a�k = 0, � = 1, ..., p − 1, k ∈ Z+.
Therefore, f = 0.

Using this splitting lemma, one can split an arbitrary Hilbert space into mutually orthogonal subspaces.

Corollary 2.3. Let {Ek : k ∈ Z
+} be an orthonormal basis of a separable Hilbert space H, and m�,

0 ≤ � ≤ p− 1, be as in Lemma 2.2 satisfying (2.10). Define

F �k =
∑

k∈Z+

p1/2ak−p�Ek, k ∈ Z+, 0 ≤ � ≤ p− 1

then
{
F �k : k ∈ Z+, 0 ≤ � ≤ p− 1

}
is an orthonormal basis for its closed linear span H� and H =

⊕p−1
�=0 H�.

Proof. Let ϕ ∈ L2(R+) be such that {ϕ(x
 k) : k ∈ Z+, x ∈ R+} is an orthonormal system. Let
V = span

{
p1/2ϕ(px
 k) : k ∈ Z+, x ∈ R+

}
. Define a linear operator T from the Hilbert space H into

V by T (p1/2ϕ(px
k)) = Ek. Let ψ� be as in (2.7). Then, T (p1/2ϕ(px
k)) = F �k . The corollary now follows
from the splitting lemma.

3. Construction of p-wavelet packets

Let {Vj : j ∈ Z} be a multiresolution p-analysis with scaling function ϕ. Then there exists the function m0

such that
ϕ̂(ξ) = m0(p

−1ξ)ϕ̂(p−1ξ)

where m0(ξ) =
∑

k∈Z+

akχ(ξ, k),
∑

k∈Z+

|ak|
2 < +∞.

Applying the splitting lemma to the space V1, we get the functions ω�, 0 ≤ � ≤ p− 1, where

ω̂�(ξ) = m�(p
−1ξ)ϕ̂(p−1ξ) (3.1)

such that {ω�(x
 k) : 0 ≤ � ≤ p− 1, k ∈ Z+, x ∈ R+} forms an orthonormal basis for V1. Observe that
ω0 = ϕ, the scaling function and ω�, 1 ≤ � ≤ p− 1, are the basic p-wavelets.

We now define ωn for each integer n ≥ 0. Suppose that s ≥ 0, ωs already defined. Then define
ωs+pr, 0 ≤ s ≤ p− 1, by

ωs+pr(x) =
∑

k∈Z+

p ask ωr(px
 k) (3.2)

Note that (3.2) defines ωn for all n ≥ 0. Taking Walsh-Fourier transform in both sides of (3.2), we get

(
ωs+pr

)∧
(ξ) = ms(p

−1ξ)ω̂r(p
−1ξ), 0 ≤ s ≤ p− 1 (3.3)

The functions {ωn : n ≥ 0} will be called the basic p-wavelet packets associated with multiresolution p-
analysis.



Construction of wavelet packets associated with multiresolution p-analyses 19

We now obtain the expression for the Fourier transform of the p-wavelet packets in terms of the func-
tions m� as:

Proposition 3.1. Let {ωn : n ≥ 0} be the basic p-wavelet packets constructed above and

n =
k∑

j=0

µjp
j , µj ∈ {0, 1, 2, ..., p− 1} , µk �= 0, k = k(n) ∈ Z+ (3.4)

be the unique expansion of the integer n in the base p. Then

ω̂n(ξ) = mµ0(ξ)mµ1(p
−1ξ)mµ2(p

−2ξ)...mµk(p
−kξ) ϕ̂(p−kξ) (3.5)

Proof. We say that an integer n has length k if it has an expansion as in (3.4). We use induction on the
length of n to prove the proposition. Since ω0 is the scaling function and ω�, 1 ≤ � ≤ p−1, are the wavelets,
it follows from (3.1) that the claim is true for all n of length 1. Assume that it holds for all integers of
length k. Then an integer t of length k+ 1 is of the form t = µ+ pn where 0 ≤ µ ≤ p− 1, and n has length
k. Suppose that n has the expansion (3.4), then from (3.3) and (3.5), we have

ω̂t(ξ) = ω̂µ+pn(ξ)
= mµ(p

−1ξ)ω̂n(p
−1ξ)

= mµ(p
−1ξ)mµ1(p

−1ξ)mµ2(p
−2ξ)...mµk(p

−(k+1)ξ) ϕ̂(p−(k+1)ξ)

Since t = µ+ pn, ωt(ξ) has the desired form, and the induction is complete.

The purpose of the construction of p-wavelet packets is to show that their translates form an orthonor-
mal basis for L2(R+). This is proved in the following theorem.

Theorem 3.2. Let {ωn : n ≥ 0} be the basic p-wavelet packets associated with the multiresolution p-analysis
{Vj : j ∈ Z}. Then

(i)
{
ωn(.
 k) : pj ≤ n ≤ pj+1 − 1, k ∈ Z+

}
is an orthonormal basis of Wj , j ≥ 0.

(ii)
{
ωn(.
 k) : 0 ≤ n ≤ pj+1 − 1, k ∈ Z+

}
is an orthonormal basis of Vj, j ≥ 0.

(iii) {ωn(.
 k) : n ≥ 0, k ∈ Z+} is an orthonormal basis of L2(R+).

Proof. We prove the theorem by induction on j. Since {ωn : 1 ≤ n ≤ p− 1} are the basic p-wavelets, so (i)
is true for j = 0. Let us assume that it holds for j. By (2.4) and the assumption, we have

{
p1/2ωn(p.
 k) : pj ≤ n ≤ pj+1 − 1, k ∈ Z+

}

is an orthonormal basis of Wj+1. Set En = span
{
p1/2ωn(p.
 k) : k ∈ Z+

}
so that

Wj+1 =

pj+1−1⊕

n=pj

En (3.6)

By applying the splitting lemma to En, we get the functions hn� , 0 ≤ � ≤ p− 1, defined by

(
hn�
)∧

(ξ) = m�(p
−1ξ)ω̂n(p

−1ξ), 0 ≤ � ≤ p− 1 (3.7)

such that {hn� (.
 k) : 0 ≤ � ≤ p− 1, k ∈ Z+} is an orthonormal basis of En.

Now, if n has the expansion as in (3.4). Then, using (3.5), we get

(
hn�
)∧

(ξ) = m�(p
−1ξ)mµ1(p

−1ξ)mµ2(p
−2ξ)...mµk(p

−(k+1)ξ) ϕ̂(p−(k+1)ξ)
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But the expression on the right-hand side is precisely ω̂m(ξ), where m = �+ pµ1+p2µ2+ ...+pjµj = �+pn.
Hence, we get hn� = ω�+pn. Since

{
�+ pn : 0 ≤ � ≤ p− 1, pj ≤ n ≤ pj+1 − 1

}
=
{
n : 0 ≤ � ≤ p− 1, pj+1 ≤ n ≤ pj+2 − 1

}
.

Thus we have proved (i) for j + 1 and the induction is complete. Part (ii) follows from the fact that
Vj = V0 ⊕W0 ⊕ · · · ⊕Wj−1 and (iii) from the decomposition (2.5).

We define now the general p-wavelet packets of L2(R+) as:

Let {ωn : n ≥ 0} be the basic p-wavelet packets associated with the multiresolution p-analysis {Vj : j ∈ Z}
of L2(R+). The collection of functions

F =
{
pj/2ωn(p

j.
 k) : n ≥ 0, k ∈ Z+, j ∈ R+
}

will be called the general p-wavelet packets associated with {Vj}.

Obviously, the system of functions in F is overcomplete in L2(R+). For example the subcollection with
j = 0, n ≥ 0, k ∈ Z+, is the basic p-wavelet packet basis constructed in the previous section. Secondly,
the subcollection with n = 1, 2, ..., p − 1, j ∈ Z , k ∈ Z+, is the p-wavelet basis. Now, we prove several
decompositions of the wavelet subspaces Wj.

For n ≥ 0 and j ∈ Z, define the subspaces

Unj = span
{
pj/2ωn(p

j .
 k) : k ∈ Z+
}

Since ω0 is the scaling function and ωn, 1 ≤ n ≤ p− 1, are the basic p-wavelets, we observe that

U0j = Vj, U1j = Wj =

p−1⊕

r=1

U rj , j ∈ Z

so that the orthogonal decomposition Vj+1 = Vj ⊕Wj , can be written as

U0j+1 =

p−1⊕

r=0

U rj .

This fact can be generalized to decompose Unj+1 into p− 1 orthogonal subspaces as:

Proposition 3.3. If n ≥ 0 and j ∈ Z, we have

Unj+1 =

p−1⊕

�=0

U �+pnj (3.8)

Proof. By definition

Unj+1 = span
{
p(j+1)/2ωn(p

j+1.
 k) : k ∈ Z+
}
.

Let hk(x) = p(j+1)/2ωn(p
j+1. 
 k), k ∈ Z+. Then {hk : k ∈ Z

+} is an orthonormal basis for the Hilbert
space Unj+1. For 0 ≤ � ≤ p− 1, define

F �t (x) =
∑

k∈Z+

p1/2a�k−ptht(x), t ∈ Z+

and H� = span
{
F �t : t ∈ Z+

}
. Then, by Corollary 2.3, we have

Unj+1 =

p−1⊕

�=0

H�
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Now

F �t (x) =
∑

k∈Z+

p1/2a�k−ptht(x)

=
∑

k∈Z+

p1/2a�kht+pt(x)

=
∑

k∈Z+

a�kp
(j+2)/2ωn

(
pj+1x
 k 
 pt

)

= pj/2
∑

k∈Z+

a�k pωn
(
p(pjx
 t)
 k

)

= pj/2ω�+pn
(
pjx
 t

) (
by (3.2)

)

Hence,

H� = U �+pnj and Unj+1 =

p−1⊕

�=0

U �+pnj

The above decomposition can be used to obtain various decompositions of the wavelet subspaces Wj , j ≥ 0.

Theorem 3.4. If j ≥ 0, then

Wj =

p−1⊕

r=1

U rj =

p
2
−1⊕

r=p

U rj−1 = · · · · · · =

p
m+1

−1⊕

r=pm

U rj−m, m ≤ j

=

p
j+1

−1⊕

r=p
j

U r0 . (3.9)

Proof. The proof is obtained by repeated application of the previous proposition.
By using Theorem 3.4 we can construct many orthonormal bases of L2(R+). We have the following

decomposition:
L2(R+) = V0 ⊕W0 ⊕W1 ⊕W2 ⊕ · · · .

Therefore, for each j ≥ 0, we can choose any of the decomposition of Wj obtained above. For example, if
we do not want to decompose any Wj , then we have the usual wavelet decomposition. On the other hand,
if we prefer the last decomposition in (3.9) for each Wj, then we get the p-wavelet packet decomposition.
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Abstract. This paper deals with the study of Sobolev spaces L
p,s

(R) using wavelet packets and few

results in this direction are proved.

1. Introduction

Wavelet packet analysis is an important generalization of wavelet analysis, pioneered by Coifman, Meyer,
Wickerhauser and other researchers [5, 6, 7, 15]. Wavelet packet functions comprise a rich family of building
block functions. Wavelet packet functions are still localized in time, but offer more flexibility than wavelets
in representing different types of signals. In particular, wavelet packets are better at representing signals
that exhibit oscillatory or periodic behaviour.

Discrete wavelet packets have been thoroughly studied by M.V. Wickerhauser [16] who has also
developed computer programmes and implemented them. Well known Daubechies orthogonal wavelets are a
special case of wavelet packets. Wavelet packets are organized naturally into collections, and each collection
is an orthogonal basis for L2(R). It is a simple but very powerful extension of wavelets and multiresolution
analysis. The wavelet packets allow more flexibility in adapting the basis to the frequency contents of a
signal and it is easy to develop a fast wavelet packet transform. The power of the wavelet packet lies in the
fact that we have much more freedom in deciding which basis function is to be used to represent the given
function. The best basis selection criteria and applications to image processing can be found in [8, 15].

Wavelet packet functions are generated by scaling and translating a family of basic function shapes,
which include father wavelet ϕ and mother wavelet ψ. In addition to ϕ and ψ there is a whole range of
wavelet packet functions ωn. These functions are parametrized by an oscillation or frequency index n. A
father wavelet corresponds to n = 0, so ϕ = ω0. A mother wavelet corresponds to n = 1, so ψ = ω1. Larger
values of n correspond to wavelet packets with more oscillations and higher frequency.

Very recently, Ahmad and Kumar have studied pointwise convergence of wavelet packet series in
[2]. Fourier transforms of wavelet packets have been studied by Ahmad, Kumar and Debnath in [3] and
characterizations of Lebesgue spaces L

p

(R) using wavelet packets by Garg, Abdullah and Ahmad in [11].
Motivated and inspired by the importance of wavelet packets, in the present paper, we study Sobolev spaces
L
p,s
(R) by using wavelet packets. Our results are generalizations of the results of Hernández and Weiss [13].

2. Preliminaries

Throughout we shall denote R0, S and S′ for the regularity class, Schwartz class and the space of tempered
distributions, respectively. For basic ideas, results on wavelets and wavelet packets, we refer to [1-4, 11, 13].

Keywords and phrases : Wavelet packets, multiresolution analysis, Hardy-Littlewood maximal function, Sobolev

spaces.

AMS Subject Classification : 42C15, 41A30, 39B99.
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Definition 2.1 ([13]). For 1 < p < ∞, s = 1, 2, 3, · · · , we define the Sobolev space L
p,s

(R) ≡ L
p,s

to be
the space of all functions f ∈ L

p

(R) such that, ∀ n = 1, 2, 3, · · · , s, the nth derivative of f also belongs to
L
p

(R). The nth derivative of a function f ∈ L
p

(R) is considered here in the sense of distributions, i.e. it is
a function Dnf such that

∫

R

(Dnf)(x)ϕ(x) dx = (−1)n
∫

R

f(x)Dnϕ(x) dx

for every test function ϕ ∈ S. The quantity

‖f‖Lp,s = ‖f‖Lp +
s∑

n=1

‖Dnf‖Lp (2.1)

is a norm on the space L
p,s
, with respect to which it is a Banach space. There are other equivalent definitions

of the space L
p,s
(R). One of them involve multiplier (1 + |ξ|2)s/2.

Definition 2.2 ([12]). Hardy-Littlewood maximal function, Mf(x), is defined by

Mf(x) = sup
r>0

1

2r

∫

|y−x|≤r
|f(y)| dy (2.2)

for a locally integrable function f on R.

It is well known that M is bounded on L
p
(R), 1 < p ≤ ∞. An important property of M that we shall

need is the following vector-valued inequality:

Lemma 2.3 ([10]). Suppose 1 < p, q <∞; then there exists a constant Cp,q such that

∥∥∥∥∥∥

{
∞∑

i=1

(Mfi)
q

} 1
q

∥∥∥∥∥∥
Lp(R)

≤ Cp,q

∥∥∥∥∥∥

{
∞∑

i=1

|fi|
q

} 1
q

∥∥∥∥∥∥
Lp(R)

(2.3)

for any sequence {fi : i = 1, 2, .........} of locally integrable functions.

Lemma 2.4 ([1]). Let ωn be band-limited wavelet packets, f ∈ S′ and 0 < p ≤ ∞ such that ωn,2−� ∗ f ∈

L
p
(R) for all � ∈ Z. Then, for any real λ > 0, there exists a constant Cλ such that

(ω∗∗�,n,λf)(x) ≤ Cλ

{
M
(∣∣ωn,2−� ∗ f

∣∣ 1λ
)
(x)
}λ

, x ∈ R, (2.4)

where

(ω∗∗�,n,λf)(x) ≡ sup
y∈R

∣∣(ωn,2−� ∗ f
)
(x− y)

∣∣

(1 + 2�|y|)
λ

(2.5)

for all n = 2u, 2u + 1, ..., 2u+1 − 1 and � = j − u, u = 0 if j ≤ 0 and u = 0, 1, 2, · · · , j if j > 0, j ∈ Z.

Lemma 2.5 ([13]). Given ε > 0 and 1 ≤ r < 1 + ε, there exists a constant C such that for all sequences
{s�,k : �, k ∈ Z} of complex numbers and all x ∈ I�,k,

(a)
∑

k′∈Z

|s�′,k′ |

(1 + 2�′ |2−�k − 2−�′k′|)
1+ε ≤ C

[
M

(
∑

k′∈Z

|s�′,k′ |
1
rχ

I
�′,k′

)
(x)

]r
if �′ ≤ �

and



Sobolev Spaces L
p,s
(R) and Wavelet Packets 25

(b)
∑

k′∈Z

|s�′,k′ |

(1 + 2�|2−�
′

k′ − 2−�k|)
1+ε ≤ C2(�

′−�)r

×

[
M

(
∑

k′∈Z

|s�′,k′ |
1
rχ

I
�′,k′

)
(x)

]r
if �′ ≥ �;

whereM is the Hardy-Littlewood maximal function defined in Definition 2.2 and I�,k =
[
2−�k, 2−�(k + 1)

]
.

Definition 2.6 ([13]). We say that a function ϕ defined on R belongs to the regularity class R0 if there
exist constants C0, C1, γ and ε > 0 such that

(i)

∫

R

ϕ(x)dx = 0

(ii) |ϕ(x)| ≤
C0

(1 + |α|)2+γ
for all x ∈ R

(iii) |ϕ′(x)| ≤
C1

(1 + |α|)1+ε
for all x ∈ R.

Lemma 2.7 ([11]). Let ωn ∈ R
0 be band-limited wavelet packets. Given p ∈ (1,∞), there exist two

constants Ap and Bp, 0 < Ap ≤ Bp <∞, such that

Ap‖f‖Lp(R) ≤ ‖Wωnf‖Lp(R) ≤ Bp‖f‖Lp (R) (2.6)

for all f ∈ L
p

(R), where

(Wωnf) (x) =




∑

�∈Z

∑

k∈Z

2u+1−1∑

n=2u

|〈f, ω�,n,k〉|
2 2�χ

I�,k
(x)





1/2

where � = j − u, u = 0 if j ≤ 0 and u = 0, 1, 2, · · · , j if j > 0, j ∈ Z.

Lemma 2.8 ([11]). Let ωn ∈ R
0 and ω0 be an orthonormal wavelet packet. Then, there exists a constant

Cp, 0 < Cp <∞, 1 < p <∞, such that

‖Wωnf‖Lp (R) ≤ Cp‖Wω0
f‖Lp (R). (2.7)

Lemma 2.9 ([11]). Let ωn ∈ R
0 be band-limited wavelet packets. For p, 1 < p < ∞, and f ∈ L

p

(R), we
have

∥∥∥∥∥∥∥




∑

�,k∈Z

2u+1−1∑

n=2u

|〈f, ω�,n,k〉|
2 2�χ

I�,k
(x)





1/2
∥∥∥∥∥∥∥
L
p
(R)

≤ C ‖f‖Lp(R) (2.8)

where � = j − u, u = 0 if j ≤ 0 and u = 0, 1, 2, · · · , j if j > 0, j ∈ Z and C independent of f.

The version of the Littlewood-Paley function, we need, is the following: For s ∈ N, define

gs(f)(x) =




∑

�∈Z

2u+1−1∑

n=2u

(
2�s|ωn,2−� ∗ f(x)|

)2




1
2

,

where ωn are band-limited wavelet packets in S with Fourier transform supported in
{
ξ ∈ R : 2−N ≤ |ξ| ≤ 2N

}

for some N ∈ N and
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∑

�∈Z

2u+1−1∑

n=2u

∣∣∣ω̂n(2�ξ)
∣∣∣
2
= 1 for a.e. ξ ∈ R (2.9)

where � = j − u, u = 0 if j ≤ 0 and u = 0, 1, 2, · · · , j if j > 0, j ∈ Z.

Lemma 2.10 ([1]). Let ωn ∈ S be such that

supp(ω̂n) ⊂
{
ξ ∈ R : 2−N ≤ |ξ| ≤ 2N

}
for some N ∈ N,

and (2.9) be satisfied. Then, for 1 < p < ∞ and s = 1, 2, · · · , f ∈ L
p,s

(R) if and only if f ∈ L
p

(R) and
gs(f) ∈ L

p

(R). Moreover,

‖f‖Lp + ‖g
s(f)‖Lp

defines a norm for L
p,s
(R) that is equivalent to ‖ · ‖Lp,s .

Lemma 2.11 ([13]). Let ε > 0. Suppose that g and h satisfy

(a) |g(x)| ≤
C1

(1 + |x|)1+ε
for all x ∈ R and

(b) |h(x)| ≤
C2

(1 + |x|)1+ε
for all x ∈ R,

with C1 and C2 independent of x ∈ R. Then, there exists a constant C such that for all �, k, �′, k′ ∈ Z and
� ≤ �′, we have

|(g�,k ∗ h�′,k′)(x)| ≤
C2

1
2
(�−�′)

(1 + 2�|x− 2−�k − 2−�
′

k′|)1+ε
for all x ∈ R

Lemma 2.12 ([13]). Let r ≥ ε > 0 and N ∈ N. Suppose that g and h satisfy

(a)

∣∣∣∣
dng

dxn
(x)

∣∣∣∣ ≤
Cn,1

(1 + |x|)1+ε
for all x ∈ R and 0 ≤ n ≤ N + 1;

(b)

∫

R

xn h(x) dx = 0 for all n, 0 ≤ n ≤ N ;

(c) |h(x)| ≤
C2

(1 + |x|)2+N+r
for all x ∈ R;

with Cn,1, 0 ≤ n ≤ N + 1, and C2 independent of x ∈ R. Then, there exists a constant C such that for all
�, k, �′, k′ ∈ Z and � ≤ �′, we have

|(g�,k ∗ h�′,k′)(x)| ≤
C2(�−�

′)( 1
2
+N+1)

(1 + 2�|x− 2−�k − 2−�′k′|)1+ε
for all x ∈ R

For N ∈ N ∪ {−1}, let DN be the set of all functions f defined on R for which there exist constants
ε > 0 and Cn <∞, n = 0, 1, ..., N + 1, such that

|Dn f (x)| ≤
Cn

(1 + |x|)1+ε
for all x ∈ R and 0 ≤ n ≤ N + 1
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We write MN for the set of all functions f defined on R for which there exist constants γ > 0 and C <∞
such that

∫

R

xn f(x) dx = 0 for n = 0, 1, ..., N

and |f(x)| ≤ C
1

(1 + |x|)2+N+γ
for all x ∈ R

Definition 2.13 ([13]). For a non-negative integer s, let Rs = Ds ∩ Ms; that is, f ∈ Rs if there exist
constants ε > 0, γ > 0, C <∞ and Cn <∞, n = 1, 2, ..., s+ 1, such that

(i)

∫

R

xn f(x) dx = 0 for n = 0, 1, ..., s;

(ii) |f (x)| ≤
C

(1 + |x|)2+s+γ
for x ∈ R;

(iii) |Dnf (x)| ≤
Cn

(1 + |x|)1+ε
for x ∈ R, n = 1, 2, ..., s+ 1.

3. Main Results

To study the Sobolev spaces L
p,s

(R) using wavelet packets we have denoted ‘B’ as the space of all wavelet
packets ωn ∈ S, n = 0, 1, 2, · · · such that N ∈ N for which

supp(ω̂n) ⊂
{
ξ ∈ R : 2−N ≤ |ξ| ≤ 2N

}

and

∑

�∈Z

2u+1−1∑

n=2u

∣∣∣ω̂n(2�ξ)
∣∣∣
2
= 1 for a.e. ξ ∈ R

where � = j − u, u = 0 if j ≤ 0 and u = 0, 1, 2, · · · , j if j > 0, j ∈ Z.

Theorem 3.1. Let ωn ∈ B, n = 0, 1, · · · be wavelet packets. Given a real number λ ≥ 1, a natural number
s ≥ 1 and 1 < p <∞, there exist two constants A = Ap,λ,s and B = Bp,λ,s, 0 < A ≤ B <∞, such that

A‖f‖Lp,s ≤ ‖f‖Lp +

∥∥∥∥∥∥∥




∑

�∈Z

2u+1−1∑

n=2u

[
2�s
(
ω∗∗�,n,λf

)]2




1/2
∥∥∥∥∥∥∥
L
p

≤ B‖f‖Lp,s (3.1)

where � = j − u, u = 0 if j ≤ 0 and u = 0, 1, 2, · · · , j if j > 0, j ∈ Z and ∀f ∈ L
p,s

(R), where ω∗∗�,n,λ is
defined in Lemma 2.4 by

(
ω∗∗�,n,λf

)
(x) = sup

y∈R

∣∣(ωn,2−� ∗ f
)
(x− y)

∣∣

(1 + 2�|y|)
λ

, ∀n = 2u, 2u + 1, · · · , 2u+1 − 1 (3.2)

Proof. Suppose that f ∈ L
p,s
(R). Then, ωn,2−� ∗f ∈ L

p
(R) for all � ∈ Z. Now, using Lemma 2.4 and Lemma

2.3 with p = pλ > 1 (since λ ≥ 1) and q = 2λ, we obtain
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∥∥∥∥∥∥∥




∑

�∈Z

2u+1−1∑

n=2u

∣∣∣2�s
(
ω∗∗�,n,λf

)∣∣∣
2





1
2

∥∥∥∥∥∥∥
L
p

≤ Cλ

∥∥∥∥∥∥∥




∑

�∈Z

2u+1−1∑

n=2u

22�s
[
M
(∣∣ωn,2−� ∗ f

∣∣ 1λ
)]2λ





1
2

∥∥∥∥∥∥∥
L
p

= Cλ

∥∥∥∥∥∥∥




∑

�∈Z

2u+1−1∑

n=2u

22�s
[
M
(∣∣ωn,2−� ∗ f

∣∣ 1λ
)]2λ





1
2λ

∥∥∥∥∥∥∥
L
pλ

≤ Cp,λ

∥∥∥∥∥∥∥




∑

�∈Z

2u+1−1∑

n=2u

22�s
∣∣ωn,2−� ∗ f

∣∣2




1
2λ

∥∥∥∥∥∥∥
L
pλ

= Cp,λ

∥∥∥∥∥∥∥




∑

�∈Z

2u+1−1∑

n=2u

∣∣∣2�sωn,2−� ∗ f
∣∣∣
2





1
2

∥∥∥∥∥∥∥
L
p

= Cp,λ ‖g
s(f)‖Lp .

From here the RHS of the inequalities follows immediately. The LHS inequality follows from the fact

∣∣ωn,2−� ∗ f (x)
∣∣ ≤
(
ω∗∗�,n,λf

)
(x) for any n = 0, 1, 2, · · ·

and Lemma 2.10.

Theorem 3.2. Let ωn ∈ B be band-limited wavelet packets. For 1 < p <∞, and s = 1, 2, · · · , there exists
a constant Cp,s, 0 < Cp,s <∞, such that

∥∥∥∥∥∥∥




∑

�∈Z

∑

k∈Z

2u+1−1∑

n=2u

|〈f, ω�,n,k〉|
2
(
1 + 22�s

)
2�χ

[2−�k, 2−�(k+1)]





1/2
∥∥∥∥∥∥∥
L
p

≤ Cp,s ‖f‖Lp,s (3.3)

for all f ∈ L
p,s

(R) and � = j − u, u = 0 if j ≤ 0 and u = 0, 1, 2, · · · , j if j > 0, j ∈ Z.

Proof. We note that for f ∈ L
p
(R) the numbers 〈f, ω�,n,k〉 make sense since ωn ∈ L

q
(R) (where 1

p +
1
q = 1).

In fact,

2u+1−1∑

n=2u

|〈f, ω�,n,k〉| ≤

2u+1−1∑

n=2u

2
�
(
1
p
− 1
2

)

‖ωn‖Lq (R)‖f‖Lp(R)
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We have
2u+1−1∑

n=2u

|〈f, ω�,n,k〉| ≤
2u+1−1∑

n=2u

∣∣∣∣
∫

R

f (x)ω�,n,k(x) dx

∣∣∣∣

≤

2u+1−1∑

n=2u

2�/2
∣∣∣∣
∫

R

f (x)ωn(2�x− k) dx

∣∣∣∣

=

2u+1−1∑

n=2u

2�/2
∣∣∣∣
∫

R

f (x)ωn(2�(x− 2−�k)) dx

∣∣∣∣

=

2u+1−1∑

n=2u

2−�/2
∣∣∣∣
∫

R

f(x)ωn,2−�(x− 2−�k) dx

∣∣∣∣

=
2u+1−1∑

n=2u

2−�/2
∣∣∣(ω̃n,2−� ∗ f)(2−�k)

∣∣∣

≤

2u+1−1∑

n=2u

2−�/2 sup
y∈I�,k

∣∣(ω̃n,2−� ∗ f)(y)
∣∣

where I�,k =
[
2−�k, 2−�(k + 1)

]
and ω̃n(y) = ωn(−y). For each fixed � ∈ Z, we have

∑

k∈Z

2u+1−1∑

n=2u

|〈f, ω�,n,k〉|
2 2�χ

I�,k

(x) ≤ 22λ
[(
ω∗∗�,n,λf

)
(x)
]2

for any λ > 0.

Now, applying Lemma 2.9 and Theorem 3.1 with λ ≥ 1, we obtain
∥∥∥∥∥∥∥




∑

�∈Z

∑

k∈Z

2u+1−1∑

n=2u

|〈f, ω�,n,k〉|
2
(
1 + 22�s

)
2�χ

I�,k





1/2
∥∥∥∥∥∥∥
L
p

≤

∥∥∥∥∥∥∥




∑

�∈Z

∑

k∈Z

2u+1−1∑

n=2u

|〈f, ω�,n,k〉|
2 2�χ

I�,k





1/2
∥∥∥∥∥∥∥
L
p

+

∥∥∥∥∥∥∥




∑

�∈Z

∑

k∈Z

2u+1−1∑

n=2u

|〈f, ω�,n,k〉|
2 22�s2�χ

I�,k





1/2
∥∥∥∥∥∥∥
L
p

≤ C‖f‖Lp + Cλ

∥∥∥∥∥∥∥




∑

�∈Z

2u+1−1∑

n=2u

22�s
∣∣(ω∗∗�,n,λf

)∣∣2




1/2
∥∥∥∥∥∥∥
Lp

≤ C‖f‖Lp,s

This completes the proof of the theorem.
To obtain the reverse inequality to (3.3) we shall assume that ωn is orthonormal wavelet packet. We

shall use the following notation related to the previous theorem and the next one. Given two functions f
and ωn for which 〈f, ωn〉 makes sense, we define



30 Khalil Ahmad, Abdullah and Firdous Ahmad Shah

(
Ws
ωnf
)
(x) =




∑

�∈Z

∑

k∈Z

2u+1−1∑

n=2u

|〈f, ω�,n,k〉|
2
(
1 + 22�s

)
2�χ

I�,k
(x)





1/2

(3.4)

where � = j − u, u = 0 if j ≤ 0 and u = 0, 1, 2, · · · , j if j > 0, j ∈ Z and n = 2u, 2u + 1, ..., 2u+1 − 1.

Theorem 3.3. Let ωn ∈ S, for all n = 0, 1, 2, ..., be band-limited orthonormal wavelet packets. Given
p ∈ (1,∞), and s = 1, 2, ..., there exist two constants Ap,s and Bp,s, 0 < Ap,s ≤ Bp,s <∞, such that

Ap,s‖f‖Lp,s (R) ≤ ‖W
s
ωnf‖Lp(R) ≤ Bp,s‖f‖Lp,s (R) (3.5)

for all f ∈ L
p,s
(R).

Proof. By Theorem 3.2 the RHS of inequality is clearly proved so we need only to prove LHS of inequality.
For f, g ∈ S (where ‘S’ is dense in Lp,s(R)), we have

∫

R

(Ds f)(x).g(x)dx = C

∫

R

f(x)(Ds g)(x) dx

= C

∫

R




∑

�,k∈Z

2u+1−1∑

n=2u

〈f, ω�,n,k〉ω�,n,k(x)





×




∑

�′,k′∈Z

2u
′+1−1∑

n′=2u′

〈Dsg, ω�′,n′,k′〉ω�′,n′,k′(x)



 dx

= C

∫

R

∑

�,k∈Z

2u+1−1∑

n=2u

〈f, ω�,n,k〉2
�s2�/2〈Dsg, ω�,n,k〉2

−�s2�/2χ
I�,k

(x) dx

Using the Cauchy-Schwartz inequality for �2(Z× Z), we obtain

∣∣∣∣
∫

R

(Ds f)(x).g(x)dx

∣∣∣∣ ≤ C

∫

R


 ∑

�,k∈Z

2u+1−1∑

n=2u

|〈f, ω�,n,k〉|
2 22�s2�χ

I�,k

(x)



1/2

×


∑

�,k∈Z

2u+1−1∑

n=2u

|〈Ds g, ω�,n,k〉|
2 2−2�s2�χ

I�,k
(x)



1/2

dx

≤ C

∫

R

(
Ws
ωn f

)
(x)


∑

�,k∈Z

2u+1−1∑

n=2u

∣∣∣〈Ds g, ω�,n,k〉2
−�s
∣∣∣
2
2�χ

I�,k

(x)



1/2

dx

where � = j − u, u = 0 if j ≤ 0 and u = 0, 1, 2, ..., j if j > 0. Note that

〈Ds g, ω�,n,k〉2
−�s = C2−�s〈g, Dsω�,n,k〉 = C〈g, (Dsωn)�,k〉

Thus

∣∣∣∣
∫

R

(Ds f )(x).g(x)dx

∣∣∣∣ ≤ C

∫

R

(
Ws
ωn f

)
(x) (WDsωn g) (x) dx
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Since ωn ∈ S are band limited orthnormal wavelet packets so we can apply Hölder’s inequality, Lemma 2.8
with ωn = Dsωn and ω1 = ω0 and Lemma 2.7 to obtain

∣∣∣∣
∫

R

(Ds f )(x).g(x)dx

∣∣∣∣ ≤ C
∥∥Ws

ωn f
∥∥
L
p ‖WDsωn g‖Lq

≤ C
∥∥Ws

ωnf
∥∥
L
p ‖Wωn g‖Lq ≤ C

∥∥Ws
ωnf
∥∥
L
p ‖g‖Lq

Taking the Supremum over all g ∈ S such that ‖g‖Lq ≤ 1 we deduce that

‖Ds f‖Lp ≤ C
∥∥Ws

ωn f
∥∥
L
p

Clearly, (Wωn f) (x) ≤
(
Ws
ωn f

)
(x) since 1 ≤

(
1 + 22�s

)
, for all � ∈ Z. Thus, by Lemma 2.7

‖f‖Lp ≤ C ‖Wωn f‖Lp ≤ C
∥∥Ws

ωn f
∥∥
L
p

Remark. The above theorem can be extended to more general wavelet packets.

Theorem 3.4. Let s = 1, 2, ... and �, k, �′, k′ ∈ Z and n = 2u, 2u + 1, ..., 2u+1 − 1, where � = j − u, u = 0 if
j ≤ 0 and u = 0, 1, 2, · · · , j if j > 0, j ∈ Z. Then

(a) If ω0 ∈ D
s and ωn ∈ M

s, there exist constants C <∞ and ε > 0 such that

∣∣〈ω�,n,k, ω�′,0,k′〉
∣∣ ≤ C2(�

′−�)( 1
2
+s+1)

(1 + 2�′ |2−�k − 2−�′k′|)1+ε
for � ≥ �′

(b) If ωn ∈ D
−1, n = 0, 1, 2, ..., there exist constants C <∞ and ε > 0 such that

∣∣〈ω�,n,k, ω�′,0,k′〉
∣∣ ≤ C2

1
2
(�−�′)

(1 + 2�|2−�k − 2−�
′

k′|)1+ε
for � ≤ �′

Proof. Let ω0 be associated with the constants ε′ > 0 and C ′m, m = 0, 1, ..., N + 1 and ωn be associated
with the constants γ > 0 and C ′ <∞. We choose

C = max{C ′0, ..., C
′
N+1, C

′} and ε = min{ε′, γ}

Then, ω0 ∈ D
s with constants C for all m = 0, 1, ..., N + 1 and ε > 0 and ωn ∈ M

s with constant C and
(γ ≥ ε).

Let g be a function defined on R and we write g̃(x) = g(−x). Then, we have

〈ω�,n,k, ω�′,0,k′〉 = 〈ω�′,0,k′ , ω�,n,k〉 = (ω�′,0,k′ ∗ ω̃�,n,−k)(0)

Now, to prove part (a) we apply Lemma 2.12 with N = s and to prove part (b), we apply Lemma 2.11
together with

〈ω�,n,k, ω�′,0,k′〉 =
(
ω�,n,k ∗ ω̃�′,0,−k′

)
(0)

Theorem 3.5. Let s = 1, 2, 3... and ωn ∈ D
s ∩Ms, for all n = 0, 1, · · · . Assume that ω0 is an orthonormal

wavelet packet. Then, for 1 < p <∞, there exists a constant Cp,s, 0 < Cp,s <∞, such that
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∥∥Ws
ωnf
∥∥
L
p
(R)
≤ Cp,s

∥∥∥Ws
ω0
f
∥∥∥
L
p
(R)

(3.6)

for all f ∈ L
p,s
(R), where Ws

ωnf are defined by

(
Ws
ωnf
)
(x) =




∑

�,k∈Z

2u+1−1∑

n=2u

|〈f, ω�,n,k〉|
2
(
1 + 22�s

)
2�χ

I�,k

(x)





1/2

(3.7)

where I�,k =
[
2−�k, 2−�(k + 1)

]
and � = j − u, u = 0 if j ≤ 0 and u = 0, 1, 2, ..., j if j > 0 .

Proof. It is sufficient to prove the result for W̃s
ωnf instead of Ws

ωnf , where

(
W̃s
ωnf
)
(x) =




∑

�,k∈Z

2u+1−1∑

n=2u

|〈f, ω�,n,k〉|
2 22�s2�χ

I�,k
(x)





1/2

i.e.,

∥∥∥W̃s
ωnf
∥∥∥
L
p
(R)
≤ Cp,s

∥∥∥W̃s
ω0
f
∥∥∥
L
p
(R)

(3.8)

for all f ∈ L
p,s
(R).

We assume that (3.8) is true, by Lemma 2.8, we have

∥∥Ws
ωnf
∥∥
L
p ≤ ‖Wωnf‖Lp +

∥∥∥W̃s
ωnf
∥∥∥
L
p
≤ C1 ‖Wω0f‖Lp + C2

∥∥∥W̃s
ω0f
∥∥∥
L
p

≤ C
{
‖Wω0f‖Lp +

∥∥Ws
ω0f
∥∥
L
p

}
= 2C

∥∥Ws
ω0f
∥∥
L
p

Since ω0 is an orthonormal wavelet packet so

ω�,n,k(x) =
∑

�′,k′∈Z

2u+1−1∑

n=2u

〈ω�,n,k, ω�′,0,k′〉ω�′,0,k′(x)

where � = j − u, u = 0 if j ≤ 0 and u = 0, 1, 2, ..., j if j > 0 and j, k ∈ Z. Thus

(Ws
ωn
f)(x) =




∑

�,k∈Z

∣∣∣∣∣∣

∑

�′,k′∈Z

2u+1−1∑

n=2u

〈f, ω�′,0,k′〉 〈ω�,n,k, ω�′,0,k′〉

∣∣∣∣∣∣

2

22�s2�χ
I�,k

(x)





1/2

where I�,k = [2−�k, 2−�(k + 1)]. Writing

A1(�, n, k) =
∑

�′≤�

∑

k′∈Z

〈f, ω�′,0,k′〉 〈ω�,n,k, ω�′,0,k′〉

and

A2(�, n, k) =
∑

�′>�

∑

k′∈Z

〈f, ω�′,0,k′〉 〈ω�,n,k, ω�′,0,k′〉

we have
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(W̃s
ωn
f)(x) ≤




∑

�∈Z

∑

k∈Z

2u+1−1∑

n=2u

|A1(�, n, k)|
222�s2�χ

I�,k
(x)





1/2

+




∑

�∈Z

∑

k∈Z

2u+1−1∑

n=2u

|A2(�, n, k)|
222�s2�χ

I�,k
(x)





1/2

(3.9)

where � = j − u, u = 0 if j ≤ 0 and u = 0, 1, 2, ..., j if j > 0 and j, k ∈ Z.
To estimate A1(�, n, k) we use Theorem 3.4(a) to obtain

|A1(�, n, k)| ≤ C
∑

�′≤�

∑

k′∈Z

∣∣〈f, ω�′,0,k′〉
∣∣ 2(�

′−�)( 1
2
+s+1)

(1 + 2�′ |2−�k − 2−�′k′|)1+ε

= C
∑

�′≤�

2(�
′−�)( 1

2
+s+1)

{
∑

k′∈Z

∣∣〈f, ω�′,0,k′〉
∣∣

(1 + 2�′ |2−�k − 2−�′k′|)1+ε

}

for some C <∞ and ε > 0. By applying Lemma 2.5(a) with r = 1, we obtain

|A1(�, n, k)| ≤ C
∑

�′≤�

2(�
′−�)( 1

2
+s+1)

[
M

(
∑

k′∈Z

|〈f, ω�′,0,k′〉|χ
I
�′,k′

)
(x)

]

for all x ∈ I�,k. But {I�,k : k ∈ Z} is a collection of disjoint dyadic intervals. Therefore, we have

∥∥∥∥∥∥∥




∑

�∈Z

∑

k∈Z

2u+1−1∑

n=2u

|A1(�, n, k)|
222�s2�χ

I�,k





1/2
∥∥∥∥∥∥∥
L
p

≤ C

∥∥∥∥∥∥∥




∑

�∈Z

22�s2�


 ∑

�′≤�

2(�
′−�)( 1

2
+s+1)M

(
∑

k′∈Z

|〈f, ω�′,0,k′〉|χ
I
�′,k′

)

2


1/2
∥∥∥∥∥∥∥
L
p

= C

∥∥∥∥∥∥∥




∑

�∈Z


 ∑

�′≤�

2�
′−�M

(
∑

k′∈Z

|〈f, ω�′,0,k′〉|2
�′s2�

′/2χ
I
�′,k′

)

2


1/2
∥∥∥∥∥∥∥
L
p

≤ C

∥∥∥∥∥∥∥




∑

�′∈Z

[
M

(
∑

k′∈Z

|〈f, ω�′,0,k′〉|2
�′s2�

′/2χ
I
�′,k′

)]2


1/2
∥∥∥∥∥∥∥
L
p

,

where we have used Young’s Inequality for convolutions

‖{a�} ∗ {b�′}‖�2 ≡

∥∥∥∥∥

{
∑

�′

a�−�′b�′

}∥∥∥∥∥
�2

≤ ‖{a�}‖�1 ‖{b�′}‖�2 (3.10)

with

a� =

{
2−�, if � ≥ 0
0, if � < 0

and
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b�′ =M

(
∑

k′∈Z

|〈f, ω�′,0,k′〉|2
�′/2χ

I
�′,k′

)
(x)

Now, using the vector valued-inequality for the Hardy-Littlewood maximal function with q = 2, we obtain

∥∥∥∥∥∥∥




∑

�∈Z

∑

k∈Z

2u+1−1∑

n=2u

|A1(�, n, k)|
222�s2�χ

I�,k





1/2
∥∥∥∥∥∥∥
L
p

≤ Cp

∥∥∥∥∥∥

{
∑

�′∈Z

∑

k′∈Z

|〈f, ω�′,0,k′〉|
222�

′s2�
′

χ
I
�′,k′

}1/2∥∥∥∥∥∥
L
p

= Cp

∥∥∥W̃s
ω0
f
∥∥∥
L
p

(3.11)

To estimate A2(�, n, k) we use Theorem 3.4(b) (Ds and Ms are contained in D−1), together with
Lemma 2.5(b) with r = 1 to obtain

|A2(�, n, k)| ≤ C
∑

�′>�

∑

k′∈Z

∣∣〈f, ω�′,0,k′〉
∣∣ 2

1
2
(�−�′)

(1 + 2�|2−�k − 2−�′k′|)1+ε

≤ C
∑

�′>�

2
1
2
(�−�′)2�

′−�

[
M

(
∑

k′∈Z

∣∣〈f, ω�′,0,k′〉
∣∣χ

I
�′,k′

)
(x)

]

for some C <∞ and ε > 0 and for all x ∈ I�,k. Further, since {I�,k : k ∈ Z} is a collection of disjoint dyadic
intervals, we have

∥∥∥∥∥∥∥




∑

�∈Z

∑

k∈Z

2u+1−1∑

n=2u

|A2(�, n, k)|
222�s2�χ

I�,k





1/2
∥∥∥∥∥∥∥
L
p

≤ C

∥∥∥∥∥∥∥




∑

�∈Z

22�s2�

[
∑

�′>�

2−
1
2
(�−�′)M

(
∑

k′∈Z

|〈f, ω�′,0,k′〉|χ
I
�′,k′

)]2


1/2
∥∥∥∥∥∥∥
L
p

= C

∥∥∥∥∥∥∥




∑

�∈Z

[
∑

�′>�

2(�−�
′)sM

(
∑

k′∈Z

|〈f, ω�′,0,k′〉|2
�′s2�

′/2χ
I
�′,k′

)]2


1/2
∥∥∥∥∥∥∥
L
p

.

As the series
∑

�′>�

2(�−�
′)s converges for s ≥ 1, by using Young’s inequality for convolutions and the vector-
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valued inequality for the Hardy-Littlewood maximal function (Lemma 2.3) with q = 2, we obtain
∥∥∥∥∥∥∥




∑

�∈Z

∑

k∈Z

2u+1−1∑

n=2u

|A2(�, n, k)|
222�s2�χ

I�,k





1/2
∥∥∥∥∥∥∥
L
p

≤ C

∥∥∥∥∥∥∥




∑

�′∈Z

[
M

(
∑

k′∈Z

|〈f, ω�′,0,k′〉|2
�′s2�

′/2χ
I
�′,k′

)]2


1/2
∥∥∥∥∥∥∥
L
p

≤ C

∥∥∥∥∥∥

{
∑

�′∈Z

∑

k′∈Z

|〈f, ω�′,0,k′〉|
222�

′s2�
′

χ
I
�′,k′

}1/2∥∥∥∥∥∥
L
p

= C
∥∥∥W̃s

ω0
f
∥∥∥
L
p

(3.12)

Finally, inequality (3.8) follows from (3.9), (3.11) and (3.12).

Theorem 3.6. Let s = 1, 2, 3, ..., and suppose that ωn be orthonormal wavelet packets such that
ωn ∈ R

s, n = 0, 1, 2, · · · . Then, for 1 < p < ∞, there exist two constants Ap,s and
Bp,s, 0 < Ap,s ≤ Bp,s <∞, such that

Ap,s ‖f‖Lp,s (R) ≤
∥∥∥Ws

ωn
(f )
∥∥∥
L
p
≤ Bp,s ‖f‖Lp,s

for all f ∈ L
p,s
(R), where Ws

ωn
(f) is defined by (3.4).

Proof. Applying Theorem 3.3 and Theorem 3.5, we observe that all band-limited wavelet packets which
belong to Schwartz class ‘S’ are contained in Rs.
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Abstract. Rheoparameters give intrinsic characterization of curve. In this paper, with the help of
rheotetrad the expressions for the rheoparameters viz., the currature - K, torsion-? and the bi-torsion-B
of the world line of a particle are obtained interms of Newman-Penrose spin coefficients. These expressions
relative to the Kerr-Newman space-time are obtained and it is found that the angular mourentum per
unit mass of the gravitating body influences the rheoparameters. If it is zero then the torsion and the
distortion of the world line of the particle vanish and consequently, the rheotetrad becomes singular.

The trajectory of the particle in the Kerr-Newmall space-time has also been discussed.

Keywords and phrases : Rheotetrad, Rheoparameters viz., curvature, torsion and Distortion, Newman-penrose tetrad
fornalisrn.

AMS Subject Classiffcation :

1. Introduction

Let Vo be the 4-dimensional space-time manifold with co-ordinates r' , i=1,2,3, 4. The set of all
possible events whose space-time co-ordinates are expressible as a function of a single parameter is
referred to as a world line. The equations .r' = x' (s) determines a world line in V4. Ateach point of
a world line one can construct a tetrad. A tetrad consists of a set of fbur basis vector frelds. We use the
Newman and Penrose [5] tetrad formalism.

It is well known that the curvature, torsion and distortion of the curve influence the geometry of
th_e trajectory of a particle. Hence investigation of the curvature, torsion and distortion of the world line
of the particle in the neighborhood of a gravitating matter is imperative. In this paper, we study the
geometry of the world line of the particle in the Kerr-Newman spa-e-time. Anotherietrad introduc.O Uy
Radhakrishna [6] comes to our rescue to study the geomet.y of th" world line of the particle in thlgravitational field characterized by a space-time metric. Thus with the help of rheotetrad the expressions
fbr the curvature field K, torsion field T and bi-torsion field B of the worid line of the particle in terms
of NP spin coefficients are delineated in Section 2. In the Section 3, the basic equations of differential
form are expressed in NP spin coefficients. Kerr-Newman space-time manifbto in the Np tetrad
formalism is described in the Section 4. The expressions for rheoparametres referred to Kerr-Newman
space-time are also obtained in the same section and are given by

K = i*.lnr(r-m)-rl,J,, - a2 rsi\?cos2, 
B-acosl a,

R* 
"l-zno

The particle in the Kerr-Newman space-time will follow a cylindrical helix if L =1, *h.r. A is someKA
constant given by

^=(#-*)(t
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In Section 5, the expressions for the Riemannian curvature at a point of the Kerr-Newman space-time

determined by the orientations of two real and two complex null vector fields are respectively obtained in
the form: 

Kt = nu lze, n, -(r, -3a, co", e)(z*, - rr)),

Kt = -R* (r' -3az cos'e)(zmr-e').

2. Rheotetrad

It was Gursey [3] who obtained the expression for the bi-normal vector treld in terms of the intrinsic
derivatives of the flow vector up to second order. Radhakrishna [6] obtain the explicit expression for tri-
normal vector field and introduced rheotetrad specially suited for the exploration of non-geodesic flow in
relativistic continuum mechanics. Rheotetrad is constructed with the help of a single time-like flow vector

fleld a" and its intrinsic derivatives Lt"',Lt'n,u-n togelher with rheoparameters K-the curvature field,

I - the torsion field and B - the bi-torsion field of the world line of the particle. Unde [7] exploited the
mathematical technique of rheotetrad to study the implications of regular relativistic thermodynamics of
Carter [ ].The tetrad has the fbrm

(u,, pn, qn, r.) = 1""-,_K-'u"" 
K-tT-t(u"'-K-tK'u'u-K"")')

[l(-' T-' B-'(u'" -Lu'" +(r'+ut)u"'-N t<'u')) Q'l)

where the quantities involved in equation (2.1) and the conditions to be satisfied by the vector fields are

defined in [6]. For the following vector fields in null tetrad vectors

,," =i(r, +n,) , o" =fit, -r,)
,1" =i(*" *i"), ,, =i(*" -*')

We express the intrinsic scalars K ,T and B in terms of Newman-Penrose spin-coefficients. Thus we have

,tt u bu =u.bu

u"' = )U:; 
lh + li, no + n'lo lb + niu no)

Using the intrinsic derivatives of null tetrad vector frelds, we easily obtain

(2.2)

(2.3),'" =)lG *i + y+ y) (t' -,")+@ +v -i-;) *' +(i +i - *-r)i")

Similarly, we have

ry"n =

where, D=.ln and A,=

1[(" K+a rc + Jz K') t' -(o * + a^ K -Ji x') r" -']

'l-* (o+v +i+i) mn - K (i+n +r+ rc)i' ]
nt' and

(2.4)
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Da , [{""* 
x'z(r+n)+r] -Kri}r" -{x"

' =rl*{u, ,.ffQ-i+r-r)}m. +c c

- x' (t+N)-r( ri\ 
"' +f

l
(2.s)

(2.6)

(2.7)

(2.8)

(2.e)

Rheoparameters. From the vectors of the tetrad, the expressions for the rheoparlmeters viz., curvature
field K, forsion field Z , and the bi-torsion field B of the world line of the pariicle are derived as

where c.c. denotes the complex conjugate of the preceding term and

x'=fi{oK+aK)

K'=+(D' K + L2 r +(oa+a a) n)

L = ilr-' (o r + d,r) + zKr (o x +^ K)]

N = ilK-' (o x+ A rK) -r' (Dr + a r)]

u =!(r: - r w)- rc, - K-, K,

I

x = 
j:-(e+i+y+y)
Jz

, =-#lQr +v +i+i)+,.,.],

o_ i (r_i+r_ y)Ji
We thus have the fbllowing theorems:

Theorem l- K = 0 iff a,/' = 0 or a, n' =0, where, the acceleration c, of the particle is given by
lr,

o, = )l(, *i + y + y) (t, - ",) - (i +i - o - v) *,- ( "* t -; -4;,)

Theorem 2. z =0 iff (*, *i)U,:k-ni;k)(l* * nr)=0.

Theorem 3. B =O itY7' ffi,,* uo = 0, where

i' *,* = -(r -i)rr + (a - p) *r -@ - B) r,- - (e -i) rr .

3. Basic Equations

At each point of the world line x' = ,'(r) we choose a tetrad of four complex null basis vector
fields

"(o)u = (r,,, fla, ffin, * ). (3.1)
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Here the Greek letter a indicates the tetrad index while the Latin indices denote the tensor indices.

l,,,nn,mn,i,, ar" the Newman-Penrose [5] complex null vector fields. Corresponding to 4-basis vectors of

the tetrad 
"!i\ 

, *" have 4 basis I -fbrms defined by

e" = "[") 
,l*'. (3.2)

Now from the Cartan's first equations of structure [4]
de" = - otio /t 0p (3.3)

where afo are anti-symmetric connection l-forms, we obtain the expressions in Newman-Penrose spin

coefficients as

@r, = -[(r.;) e'+(T+7)e'*("* p)e'+(a* B)0'f,
@,t = -(*e' +T02 +o 0' + peo),
@,q = -(Vt' + c e' *V e' +7 oo),

@zt = 7e'+ie'+Tet+ie', (3.4)

@r^ = tt 0t +v 0' + P e' + ), 0a,

@to = ('- t) e'* (r -i)ez - (a - B)e'* (o -V)t^.
Consequently, from equations (3.3) and (3.4) the exterior derivatives of basis l-forms take the form

a s' = (y +i) e' t e' + (a + p -i) e' t e' + (a + p - r) e' treo -ie' Le' - vez Le4 - (a - a) e' tte'

d02 =(e+i)e't,e'+ro'Le'+ro'Leo+(t-a-p)e'tre'+(i-a-p)e'tteo-(o-o)e'ne'
lst =-(n+i)e'tre'-(o-i*t)e'tte'-Ge'Leo *(a*7-r)e'ne'+).02/t0a +(a-B)e'ne' 

(3.5)
dla =-(i+c)e'tt02 -oltLe'-(o-t*;)e'tteo +)CI,Le'+(i+r-i)e,tre, -@- B)e,Leo

Equations (3.4) and (3.5) are extremely useful in calculating the spin coefficients for the given space-time
metric.

4. Kerr-Newman space-time in NP formalism

Consider a particle describing its world line in the gravitational field of a rotating charge source which is
characterized by the Kerr-Newman space-time, and is given by the metric [2]

ds2 = [,-*' (zn, r-r')fdi +2an'(zmr-r')sinz0dtdQ-

-* oU - R'de' -le + o'\' - L,a' sm'alR-2 sinz e dO,, 
(4'l)

ArL,tJ

where

Rz =RR-= r'+a' cos'4, A, = r'-zmr+a2 +e2,

R = r-li.acos0, R- = r-iacosl
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and m = rlosS, a = angular momentum per unit mass e = the charge of the gravitating body. The
covariant components of the metric tensor are respectively given by

Brr = l-R-2(z,nr-"'), grc = an-(zmr-r')sinz0,

grr=-. , ltt = - R', sqq = -[{r' * o')' - L, o'srr'a] R-z sin2 0. (4.2)

To evaluate the tetrad vectors with respect to the Kerr-Newman space-time, we express the
metric (4.1) in terms of basis 1-forms. Thus we have

ds' = zer ez -2e3 04,

where the basis l-forms 0o are

2t A, Io = ,u dt + zd'
e2 = dr- R'd, asinar

iasin0 i(r'+ a' )sin e @.4)

:++sin 2 e d o ,2R'

'o dO,

d0,

(4.3)

(4.6)

e3 dt +
R' 

,, do
J, R"J, R. JT R.

eo = _iusino o, + _Rz ,(.f::l_):::t
Jz n -.Fz n*o r TJzn-" JTT

i cosec?),

1, -i cosec?).

d0.
From equations (3.2) and (4.4), the components of the tetrad vectors are obtained as

l" = +(A,, - R', o , - o L, sin' d ),
t,

n ,, = ,;-(A ,, R ' , o, - a A , s in' e ),
Ir\\@'5)tn, = 77T(ia sin 0,0, - R', - i(r' * r' )rin e),
Ir

tn a = Gf,tro 
sin 9,0, - R', i(r' + az )sin A ),

While the contravariant components of the tetrad vector fields are

ln =+ (r, +ar, A,, o, a),ar\
. I t\n" =2RrV+a',-L,, o, r),

nlmn = ffi(, a sino, 0, 1,

;' = *t-, asino, o,
JrR.

Taking the exterior derivative of @.4) one can obtain

det = R* [R' (, -*)-A,r] et L ez +iacoszRaLt03L04,

doz = Or##*ez ^e3.e#ez Ae4--?t#e3 
^04 

.
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(4.8)
one can compare

(4.e)

(t03 = -J':.:"t e'L0z*1a' L03 -*= ez Le3- 
-+---(x--cot 

0-iasine)e'ne'.
R,R' R zR, R A(*.)' ,

. ^lz irr sin odro = *#e'^e2 *+t'^e4 -# 02 ^eo.7foe cotl+iasine)e'teo.

Using (3.3) and (4.7) we readily obtain the tetrad components of connection 1-forms as

d, =- d r=R* [R, (, - *) - n, rfe, -* e' *J!!! d,
Jr(*)" .D(o.)'

aJ,=af "-- 
iasino- 

et - L): d ,

J-z(n)" 2R'R

oJo=ci,- 'ot'n?, e, - L=, d,4 L _/_J:\O(o')' zRz R

) a iasin?
OI^=A)'. = .-ir I 

1z n' 
o'+!ot '

c,l, =ol, = -iTin-o e, +! or,+ I Jzn' R

r\()
d,=- ,..==;yo - .1ff.ffi), 

[x 
-ffi)-

Now to find the NP spin coefficients with respect to the Kerr-Newman space-time
equations (3.5) and (4.7) or (3.4) with (4.8) and readily obtain

(4.7)

1

R zR'R.'
ia s in eY=P+ r-m

2Rz' --.D- n 2

cot0

L_

ia s in e
/L

Jr- (n .)' zJz n'
a = 7r p , and

K = y = ), = O = € -0. (4.r0)

We notice from the equation (4.10) that, the null vector fields /' and no are geodesic and shear-free
(te o= v = ), = o). Consequently, we conclude on the basis of Goldberg Sachs theorem, that the Kerr-
Newman space-time is Petrov-type D with respect to the chosen basis vectors.

B=
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Now using the expressions (4.9) in (2.7), (2.8) and (2.9) we obtain the expressions for the
rheoparameters viz., the curvature field K, the torsion field T and the bi-torsion field B as

K = io'ln' (r-m)-, A,J,

a2 r sin0cos0't'-
I - 

----------------

R"

o _ acosdA,
D _ _.---:-.

J2 no

Theorem 4. The trajectory of a particle in the Kerr-Newman space-time will be cylindrical helix if

+ =!. where A=( ,, \( I -_a'cgs' e)__11__,un0 
.K ( rcosdJ( a' sinz 0 ) ,' tt"N - 

tcrr I

It can be observed that the free falling objects in the Kerr- Newman space-time should satisfy
the equation mr'-r(az sin'0+e')-ma'cos'0=0, and the motion of the particle will never be in the

0 =L olane.2'

5. Riemannian Curvature at a point of Kerr-Newman space-time

Following Weatherburn [8], we obtain the expression for the Riemannian curvature at a point of a given
space-time for the orientations determined by two real null vector fields /' and nn in the form

Kt= Ropya lo nf l, no

('1,, q ou - 4 aa q pr) l" nf l' no

where Roo, are the tetrad components of the Riemannian curvature tensor.

To flnd the tetrad components of curvature tensor, we start with the Cartan's second equations of
structure given by

Q', = f,o;rrevLe6 = drit@.orLrh 6.2)

where {2"0 'are the tetrad components of curvature 2-forms and are

ol, = -Q', = lo^' -(3" -o'cos'e) (zmr-r,)lr, n r, *, 
L*o R6

.4#lzr (zmr _ e,) _ mRz)e, reo ,

Ir
o,, = eo, = lX W=()lr,n ^o,dt, = ,,1 = I L,-('*'-\lr,nr,,

L^,o ^,(o), 1---'--4 
'-z 

Lo,U.o,(o.),.1"'^",Ir
o,. = sz4, = I +-Q*:-:r)lrrnr,

Lo'o ^'(^.)- -J

(4.1l)

(s.l)
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,,r. = g)3, = l:=-('*',=:=))erne,, ,__4 __, 
L*,o o,(*), ]

o1=_oi=a#|*n,_zr(zm,_,,))0,^0,-ffi0,^eo,(5'3)
Hence the tetrad components of Riemannian curvature tensor are

pr 
-R,r,, =+ (z*r-er)r\ ,r - -R,,,, = o*r' 

-@' - 
a' cos' e\ '"tztz Ro ---F-tlzmr -

pl
^ r:q =-R3s ,z=- R,no = A#lrr(z*r-e')-mn'),

R'r,o= R'orr=&rro = #- ry#, 6.4)

Dt - Rrrro=&r,, = Lr-Q*'-"^) .r\ +r3 _ rL+ z+tr 
Rr_C 

_ 
R1RJ, 

,

R'r.o = &oro = nu (zm, - r')(r' -3a'cos'd).
and all other components are zero.

It can easily be obtained the tetrad components of the Ricci tensor as

-o2R,r=&o= *.' (5.5)

and consequently, the Ricci scalar curvature R = Roo is zero.

The value of the non-vanishing weyl scalar Vz --crro, can be found from the equation

c opyb = n,* * 
f,(n,rR 

pu * 4 pu R o, - 0 prR ou - q 
oo R pr) * | (n,on o, - T.4 eo),

by calculating the value of C,ror. Thus we find

-m e'
V, =-- +- (5.6)r z 

(o.)' 
^'(o.)'

The result (5.6) is the same as that of the result derived by Chandrasekhar 121 by solving the Bianchi
identities.

Using the equations (5.4) in (5.1) we obtain the Riemannian curvature at a point of the
Kerr-Newman space-time determined by the orientations of two real null vector fields /" and n" as

Kt = n4 lze'n' -(r' -3a' cosz e)(zmr -"')), 6.7)

while K, spanned by two complex null vector flelds m' and i" is given by

Kt = - R* (r' -3az cos? e)(zmr - e') (5.g)
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6. Conclusion

We observed that the angular momentum of the gravitating body influences the rheoparmeters. It is
noted that when angular momentum per unit mass of the gravitating body is zero the torsion and
bitorsion of the world line of the particle vanish and consequently the rheotetrad becomes singular. We
also see that there is no influence of the charge of the gravitating body on the torsion of the *oild line of
the particle. However, it influences on the curvature and bitorsion of the world line of the particle.
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Abstract. Exploiting a technique of exterior calculus, the geomtry of the Gödel universe is studied. The

expression for the electric part of the Weyl tensor is obtained in terms of basis vector fields of the complex

null tetrad. It is observed that the parameter related to the vorticity of the fluid with reference to the

Gödel universe causes the elecric field.

1. Introduction

Let V4 be a four dimensional space-time of general theory of relativity. Any point of V4 is identified by xi,
i = 1, 2, 3, 4. Let ξ be a curve in V4 given by equations xi = xi(s), where s is the parameter of the curve.
At each point of the curve, one can construct a tetrad consisting of four basis vectors. There exists different
types of tetrad formalisms in the genral theory of relativity. The most prominent among the formalisms is
the one proposed by Newman and Penrose [4]. The basis of the Newman-Penrose tetrad is complex null
vector fields given by

e(α)i = (li, ni, mi, m̄i) (1.1)

Here the Greek letter α indicates the tetrad index while the Latin indices denote the tensor indices. Here
li, ni,mi, m̄i are the Newman-Penrose [4] complex null vector fields satisfying the conditions

lin
i = 1 = −mim̄

i (1.2)

and all other inner products being zero.
To study the Gödel universe, we use another powerful tool of modern mathematics called the differential

forms. The use of differential forms can reduce the complexity of the computation. In differential forms the
role of forty Chirstoffel symbols, which have no invariant significance under the change of coordinates in
4-dimensional space-time of general theory of relativity, is taken care by only six components of connection
1-forms. Accordingly, we start with Cartan’s first equation of structure given by

dθα = − ωαβ Λ θβ (1.3)

where the anti-symmetric connection 1-forms ωαβ are defined as

ωαβ = γαβδ θ
β (1.4)

and γαβδ are the Ricci rotation coefficients. θα are the 4-basis 1-forms corresponding to four basis vectors of

the dual tetrad e(α) defined as

θα = e
(α)
i dxi (1.5)

Keywords and phrases : Newman-Penrose formalism, Cartan’s equations of structure, electric and magnetic parts

of Weyl tensor.

AMS Subject Classification : 83Cxx.
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The anti-symmetric connection 1-forms ωαβ , in terms of Newman-Penrose spin coefficients can be
expressed as (cf. McIntosh et al [3])

ω12 = −
[
(ε+ ε̄) θ1 + (γ + γ̄) θ2 + (ᾱ+ β) θ3 + (α+ β̄) θ4

]

ω13 = − (κ θ1 + τ θ2 + σ θ3 + ρ θ4) (1.6)

ω23 = π̄ θ1 + ν̄ θ2 + λ̄ θ3 + µ̄ θ4

ω34 = (ε− ε̄) θ1 + (γ − γ̄) θ2 + (ᾱ− β) θ3 + (α− β̄) θ4

Other 1-forms ω14 and ω24 are complex conjugates of ω13 and ω23, respectively. Using these expressions in
Cartan’s first equations of structure (1.4), we readily obtain

dθ1 = (γ + γ̄) θ1Λθ2 + (ᾱ+ β − π̄) θ1Λθ3 + (α+ β̄ − π) θ1Λθ4 − ν̄ θ2Λθ3

− ν θ2Λθ4 − (µ− µ̄) θ3Λθ4

dθ2 = (ε+ ε̄) θ1Λθ2 + κ θ1Λθ3 + κ̄ θ1Λθ4 + (τ − ᾱ− β) θ2Λθ3 + (τ̄ − α− β̄) θ2Λθ4

− (ρ− ρ̄) θ3Λθ4 (1.7)

dθ3 = −(π + τ̄) θ1Λθ2 − (ρ̄− ε̄+ ε) θ1Λθ3 − σ̄ θ1Λθ4 + (µ+ γ̄ − γ) θ2Λθ3

+ λ θ2Λθ4 + (α− β̄) θ3Λθ4

dθ4 is the complex conjugate of dθ3 and is obtained by interchanging indices 3 and 4 and taking complex
conjugates of the complex Newman-Penrose quantities. Later, we will see that equations (1.6) and (1.7) are
extremely useful in calculating the spin coefficients for the given space-time metric.

2. The Gödel universe in NP-formalism

The geometry of the Gödel universe is described by the metric

ds2 = dt2 − dx2 − dy2 +
1

2
e2qydz2 + 2eqydz dt (2.1)

where the parameter q is related to the vorticity of the fluid. The covariant components of the metric tensor
gij are given by

g11 = g22 = − g44 = − 1, g33 =
1

2
e2qy, and g34 = eqy, g = |gij | = − 1

2
e2qy (2.2)

and hence the contravariant components of the metric tensor gij are obtained as

g11 = g22 = g44 = − 1, g33 = − 2e−2qy, g34 = e2qy (2.3)

and all other components are zero.
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We choose the set of four basis 1-forms θα as

θ1 =
1√
2
(dx + eqydz + dt)

θ2 =
1√
2
(−dx + eqydz + dt) (2.4)

θ3 =
1√
2
(dy +

i√
2
eqydz)

θ4 =
1√
2
(dy − i√

2
eqydz)

Hence the metric (2.1) reduces to

ds2 = 2θ1θ2 − θ3θ4 (2.5)

The definition of basis 1-forms θα = eαi dx
i and the equations (2.4) lead to

li =
1√
2
(−1, 0, eqy, 1)

ni =
1√
2
(1, 0, eqy, 1) (2.6)

mi =
1√
2
(0,−1, i√

2
eqy, 0)

The value of m̄i can be obtained by taking the complex conjugate of mi. The contravariant components
of the basis vector fields of the tetrad are obtained from the relation

ei(α) = gike(α)k

This gives

li =
1√
2
(1, 0, 0, 1)

ni =
1√
2
(−1, 0, 0, 1) (2.7)

mi =
1√
2
(0, 1,−i

√
2e−qy, i

√
2)

The exterior derivatives of the basis 1-forms θα now take the form

dθ1 = dθ2 = iq θ3Λθ4

dθ3 = − dθ4 = − 1√
2
q θ3Λθ4 (2.8)

Comparing the corresponding coefficients of equations (1.7) and (2.8) and solving, we obtain the results
by Cohen et al [2] as

α = − β = − q

2
√
2
, ρ = µ = − i

2
q, ε = γ = − i

4
q (2.9)

and all other spin coefficients being idntically zero.
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Substituting these values in equations (1.6), we readily obtain the tetrad components of connection
1-forms as follows:

ω12 = 0

ω13 = ω23 =
i

2
q θ4, ω14 = ω24 = − i

2
q θ3 (2.10)

ω34 = − i

2
q θ1 − i

2
q θ2 +

q√
2
θ3 − q√

2
θ4

The tetrad components of curvature 2-forms Ωαβ are obtained from Cartan’s second equations of
structure

Ωαβ = dωαβ + ωαε Λ ωεβ (2.11)

which can also be expressed as

Ωαβ = dωαβ + ωα1 Λ ω2β + ωα2 Λ ω1β − ωα3 Λ ω4β − ωα4 Λ ω3β (2.12)

By giving different values to α, β = 1, 2, 3, 4 and using equations (2.10), we obtain

Ω12 = 0, Ω34 =
q2

2
θ3 Λ θ4

Ω13 = Ω23 = − q2

4
(θ1 Λ θ4 + θ2 Λ θ4) (2.13)

Ω14 = Ω24 = − q2

4
(θ1 Λ θ3 + θ2 Λ θ3)

The curvature 2-forms are defined by

Ωαβ =
1

2
Rαβγδ θ

γ Λ θδ (2.14)

By assigning different values to α, β = 1, 2, 3, 4 and on comparing the coefficients of the corresponding
basis 2-forms of equations (2.13), we obtain the tetrad components of curvature 2-forms as

R1314 = R1324 = R1423 = R2324 = − q2

4
, and R3434 =

q2

2
(2.15)

and all other components are zero. The tetrad components of Ricci tensor Rαβ and the Ricci scalar R are
defined as

Rαβ = ηγδRγαβδ, R = ηαβRαβ (2.16)

Solving these equations, the non-vanishing tetrad components of the Ricci tensor and the Ricci scalar are

R11 = R12 = R22 = − q2

2
, and R = − q2 (2.17)

Further, the the tetrad components of the Weyl tensor are given by

Cαβγδ = Rαβγδ +
1

2
(ηαγRβδ + ηβδRαγ − ηβγRαδ − ηαδRβγ) +

R

6
(ηαδηβγ − ηαγηβδ) (2.18)

where the trace free part of the Weyl tensor is characterized by

ηαδCαβγδ = 0 (2.19)

together with the cyclic property

Cαβγδ + Cαγδβ + Cαδβγ = 0 (2.20)
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On using equations (2.15) and (2.17), the tetrad components of the Weyl tensor become

C1212 = C3434 =
q2

3
, and C1324 = C1423 = − q2

6
(2.21)

Consequently, the only non-vanishing Weyl scalar Ψ2 becomes

Ψ2 = C1324 = − q2

6

proving the Gödel universe is of Petrov type D.

3. Electric and Magnetic parts of Weyl tensor

The electric and magnetic parts Eik and Hik, respectively, of Weyl tensor Chijk are defined by

Eik = Cijklu
jul (3.1)

Hik = C∗ijklu
jul (3.2)

where C∗ijkl is the dual of Cijkl defined as

C∗ijkl =
1

2
ε mn
kl Cijmn (3.3)

where εklmn is the Levi-Civita permutation symbol. We see that both electric and magnetic parts of Weyl
tensor are space-like, symmetric and traceless. Define the time-like vector ui = 1√

2

(
li + ni

)
, then equation

(3.1) becomes

Ehj =
1

2
Chijk

(
lilk + link + nilk + nink

)
(3.4)

We define the tetrad components of electric part of Weyl tensor Ehj in to the following four real and three
complex scalars

Real scalars Complex scalars

E11 = Ehjl
hlj, E13 = Ehjl

hmj,

E12 = Ehj l
hnj, E23 = Ehjn

hmj , (3.5)

E22 = Ehjn
hnj , E33 = Ehjm

hmj,

E34 = Ehjm
hm̄j .

Equations (3.4) and (3.5) give the following relations

E11 = − E12 = E22 =
1

2
C1212, E34 =

1

2
(C1324 + C2314)

E13 = − E23 =
1

2
(C1213 + C1223) , E33 =

1

2
(C1313 + C2323) (3.6)

E14 = − E24 =
1

2
(C1214 + C1224) , E44 =

1

2
(C1414 + C2424) .
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Hence the expression for the electric part of the Weyl tensor in terms of the basis of the tetrad is given by

Eij =
1

2
[C1212 (lilj − linj − nilj + ninj)

− (C1213 + C1223) (limj + milj − minj − nimj)

− (C1214 + C1224) (lim̄j + m̄ilj − m̄inj − nim̄j)

+ (C1313 + C2323)mimj + (C1414 + C2424) m̄im̄j

+ (C1324 + C2314) (mim̄j + m̄imj)] (3.7)

The expression for Eij with respect tothe Gödel’s universe becomes

Eij =
1

2
C1212 (lilj − linj − nilj − mim̄j − m̄imj + ninj) (3.8)

which from equation (2.21) takes the form

Eij =
q2

6
(lilj − linj − nilj − mim̄j − m̄imj + ninj) (3.9)

It has been shown by Ahsan [1] that the Weyl tensor for Gödel’s universe is purely electric, hence the
magnetic part Hij = 0. We see that the tetrad components of the electric part of the Weyl tensor relative
to the Gödel’s universe are

E12 = E34 = − E11 = − E22 = − q2

6
(3.10)

and all complex tetrad components of electric part are zero.

4. Conclusion

Geometry of the Gödel’s universe is studied by exploiting a technique of differential forms. Electric part of
the Weyl tensor is expressed as a linear combination of the basis vecors of the null tetrad. It is shown that
the parameter q related to the vorticity of fluid in the Gödel’s universe causes the real electric field, where
as all complex electric parts are zero.
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Abstract. In this paper we introduce some new sequence space with elements in n-normed spaces using

an Orlicz function and give some preliminary result for matrix transformations.

1. Introduction

In this paper we introduce and study new sequence spaces, whose elements are from n-normed spaces, using
an Orlicz function, which may be considered as an extension of various sequence spaces to n-normed spaces.
We recall that the concept of a 2-normed space was first given in the works of Ghler [3, 4, 5]. Then various
generalizations to an n-normed space were proposed and studied by some authors [13, 14, 10, 9]. While
the notion of I-convergence in 2-normed spaces investigated by Sahiner et al. [16]. By taking this as a
starting point, we oer here a construction of more generalized sequences space using an n-norm and an
Orlicz function.

We begin with recalling some notations and backgrounds.
A function M : [0,∞) : [0,∞) is said to be an Orlicz function if it is continuous, non-decrasing and

convex with M (0) = 0, M(x) > 0 for x > 0 and M(x) :∞(x →∞).
An Orlicz function is said to satisfy �2-condition if there exists a positive constant K such that

M(2x) ≤ KM(x) for all x ≥ 0.
Note that if M is an Orlicz function then M (λx) ≤ λM(x) for all λ with 0 < λ < 1.
Let n ∈ N and X be a real vector space of dimension d, where n ≤ d. An n-norm on X is a function

‖ ·, · · · , · ‖: X ×X × · · · ×X︸ ︷︷ ︸
n−times

→ RR which satisfies the following four conditions:

(i) ‖ x1, x2, · · · , xn ‖= 0 and only if x1, x2, · · · , xn are linearly dependent;

(ii) ‖ x1, x2, · · · , xn ‖ are invariant under permutation;

(iii) ‖ αx1, x2, · · · , xn ‖=| α |‖ x1, x2, · · · , xn ‖, α ∈ RR;

(iv) ‖ x+ x′, x2, · · · , xn ‖≤‖ x, x2, · · · , xn ‖ + ‖ x′, x2, · · · , xn ‖.
The pair (X, ‖ ·, · · · , · ‖) is then called an n-normed space [7].

Let X = RRd(d ≤ n) be equipped with the n-norm then ‖ x1, x2, · · · , xn−1, xn ‖S := the volume of the
n-dimensional parallelepiped spanned by the vectors, x1, x2, · · · , xn−1, xn which may be given explicitly by
the formula

‖ x1, x2, · · · , xn−1, xn ‖S=






〈x1, x2〉 · · · 〈x1, xn〉

...
. . . · · ·

〈xn, x1〉 · · · 〈xn, xn〉






1
2

,

Keywords and phrases : sequence spaces, n-normed spaces, Orlicz function, para- normed spaces.

AMS Subject Classification : 40A05, 46A45; 46B70.
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where 〈·, ·〉 denotes inner product. Let (X, ‖ ·, · · · , · ‖) is an n-normed space of dimension d ≥ n and
{a1; a2, · · · , an} is a linearly independent set in X. Then the function ‖ ·, · ‖∞ on Xn−1 defined by

‖ x1, x2, · · · , xn−1 ‖∞:= max{‖ x1, x2, · · · , xn−1, ai ‖: i = 1, · · · , n}
defines an (n− 1) norm on X with respect to {a1, a2, · · · , an} ([6]).

Definition 1.1. ([9]) A sequence (xk) in n-normed space (X, ‖ ·, · · · , · ‖) is said to be convergent to an x

in X (in the n-norm) if

lim
k→∞

‖ x1, x2, · · · , xn−1, xk − x ‖= 0

for every x1, x2, · · · , xn−1 ∈ X.

Definition 1.2. ([6]) A sequence (xk) in n-normed space (X, ‖ ·, · · · , · ‖) is said to be Cauchy in X (with
respect to the n-norm) if

lim
k,l→∞

‖ x1, x2, · · · , xn−1, xk − xl ‖= 0

for every x1, x2, · · · , xn−1 ∈ X.
If every Cauchy sequence converges to an x in X then X is said to be complete (with respect to n-norm).

Any complete n-normed space is said to be n-Banach space.

Definition 1.3. ([12]) Let X be a linear space. Then a map g : X → R is called a paranorm (on X) if is
satis.es the following conditions for all x, y ∈ X and λ scalar:

(i) g(θ) = 0 (Here θ = (0, 0, · · · , 0, · · · ) is zero of the space);

(ii) g(x) = g(−x) ;

(iii) g(x+ y) ≤ g(x) + g(y) ;

(iv) | λn − λ |→ 0(n →∞) and g(xn − x)→ 0(n →∞) imply g(λnxn − λx)→ 0(n →∞).

Recall that (X, ‖ ·, · · · , · ‖) is an n-Banach space if every Cauchy sequence in X is convergent to some
x in X in the n-norm.

Lemma 1.1. [9] (X, ‖ ·, · · · , · ‖) is an n-Banach space if and only if (X, ‖ ·, · · · , · ‖∞) is a Banach space.

2. Main results

From now onward we assume (X, ‖ ·, · · · , · ‖) is n-normed space and X to have dimension d, where
2 ≤ n ≤ d < ∞, unless otherwise stated.

Lemma 2.1. A sequence (xn) in X is convergent to x ∈ X in the n-norm if and only if

lim
k→∞

‖ x1, x2, · · · , xn−2, xk − x ‖∞= 0.
On the other hand, Let {e1, · · · , en} be an orthonormal set in X then

‖ x1, · · · , xn ‖∞:= max{‖ x1, · · · , xn−1, ei ‖: i = 1, · · · , n}
defines an (n1) norm on X.

Let (X, ‖ ·, · · · , · ‖) be any n-normed spaces and S(n−X) denotes X-valued sequences spaces. Clearly
S(n−X) is a linear space under addition and scalar multiplication.

Definition 2.1. We define the new sequences space as follows:
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l(M, p, ‖ ·, · · · , · ‖) :=
{

x ∈ S(n−X) :
∞∑

k=1

[
M

(
‖ xk

ρ
, z1, z2, · · · , zn−1 ‖

)]pk
< ∞, ρ > 0

}

for each z1, z2, · · · , zn−1 in X.

Lemma 2.2. l(M, p, ‖ ·, · · · , · ‖) sequences space is a linear space.
Proof. We will use the well known inequality:

Let pk > 0, (∀k), H = sup pk and ak, bk ∈ C (complex numbers). Then ([12])

| ak + bk |pk≤ D {| ak |pk + | bk |pk} , D = max{1, 2H−1},
Now assume that x, y ∈ l(M, p, ‖·, · · · , ·‖) and α, β ∈ C. Then

∞∑

k=1

[
M

∥∥∥∥
xk

ρ1
, z1, z2 · · · , zn−1

∥∥∥∥

]pk
< ∞ for some ρ1 > 0

and

∞∑

k=1

[
M

∥∥∥∥
xk

ρ2
, z1, z2 · · · , zn−1

∥∥∥∥

]pk
< ∞ for some ρ2 > 0.

Since ‖·, · · · , ·‖ is a n-norm on X and M is an Orlicz function, we get

∞∑

k=1

[
M

(∥∥∥∥
αxk + βyk

max(2 | α |ρ1, 2 | β |ρ2)

)
, z1, z2 · · · , zn−1

∥∥∥∥

]pk

≤ D

∞∑

k=1

[
M

(∥∥∥∥
xk

ρ2
, z1, z2 · · · , zn−1

∥∥∥∥

)]pk
+D

∞∑

k=1

[
M

(∥∥∥∥
yk

ρ2
, z1, z2 · · · , zn−1

∥∥∥∥

)]pk

and this completes the proof.

Theorem 2.3. l(M, p, ‖ ·, · · · , · ‖) space is a paranormed space with the paranorm defined by
g : l(M, p, ‖ ·, · · · , · ‖)→ RR,

g(x) = inf





ρ
pk
H :

(
∞∑

k=1

[
M

(∥∥∥∥
xk

ρ
, z1, z2 · · · , zn−1

∥∥∥∥

)]pk
) 1

M

< ∞





,

where 0 < pk ≤ sup pk = H,M = max(1, H).

Proof. (i) Clearly g(θ) = 0 and (ii) g(−x) = g(x). (iii) Let xk, yk ∈ l(M, p, ‖ ·, · · · , · ‖) then there exists
ρ1, ρ2 > 0 such that

∞∑

k=1

[
M

(∥∥∥∥
xk

ρ1
, z1, z2 · · · , zn−1

∥∥∥∥

)]pk
< ∞

and

∞∑

k=1

[
M

(∥∥∥∥
xk

ρ2
, z1, z2 · · · , zn−1

∥∥∥∥

)]pk
< ∞.

So, we have

M

(∥∥∥∥
xk + yk

ρ1 + ρ2
, z1, z2 · · · , zn−1

∥∥∥∥

)
≤ M

(∥∥∥∥
xk

ρ1 + ρ2
, z1, z2 · · · , zn−1

∥∥∥∥+
∥∥∥∥

yk

ρ1 + ρ2
, z1, z2 · · · , zn−1

∥∥∥∥

)
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≤ ρ1

ρ1 + ρ2
M

(∥∥∥∥
xk

ρ1
, z1, z2 · · · , zn−1

∥∥∥∥

)
+

ρ2

ρ1 + ρ2
M

(∥∥∥∥
yk

ρ2
, z1, z2 · · · , zn−1

∥∥∥∥

)

and thus

g(x+ y) = inf





(ρ1 + ρ2)

pk
H :

(
∞∑

k=1

[
M

(∥∥∥∥
xk + yk

ρ1 + ρ2
, z1, z2 · · · , zn−1

∥∥∥∥

)]pk
) 1

M






≤ inf





ρ
pk
H

1
:

(
∞∑

k=1

[
M

(∥∥∥∥
xk

ρ1
, z1, z2 · · · , zn−1

∥∥∥∥

)]pk
) 1

M






+ inf





ρ
pk
H

2
:

(
∞∑

k=1

[
M

(∥∥∥∥
yk

ρ2
, z1, z2 · · · , zn−1

∥∥∥∥

)]pk
) 1

M






= g(x) + g(y).

(iv) Now let λ → 0 and g(xn − x)→ 0(n →∞). Since

g(λx) = inf





ρ

| λ |)
pk
H :

(
∞∑

k=1

[
M

(∥∥∥∥
λxk

ρ
, z1, z2 · · · , zn−1

∥∥∥∥

)]pk
) 1

M

< ∞





.

This gives us g(λxn)→ 0 (n−∞).

Theorem 2.4. If (X, ‖ ·, · · · , · ‖) is finite dimensional n - Banach space then (l(M, p, ‖ ·, · · · , · ‖), g) is
complete.

Proof. Let (xn) be a Cauchy sequence in (l(M, p, ‖ ·, · · · , · ‖), g). Then for each ε > 0 there exists N0 ∈ N

such that for each m, n > N0 we have

g(xn − xm) =

(
∞∑

k=1

[
M

(∥∥∥∥
xnk − xmk

ρ
, z1, z2 · · · , zn−1

∥∥∥∥

)]pk
) 1

M

< ε

which implies
(∥∥∥z

n−xm

ρ
, z1, z2 · · · , zn−1

∥∥∥
pk
) 1
M

< ε, for each k. So, (xn) is a Cauchy sequence in

(X, ‖ ·, · · · , · ‖) and since (X, ‖ ·, · · · , · ‖) is n-Banach space there exists an x in X such that
‖xnk − xmk , z1, z2, · · · , zn−1‖ → 0 (n →∞) and this completes the proof.

Theorem 2.5. If (X, ‖ ·, · · · , · ‖) be any standard n-normed space and M be an Orlicz function that
satisfies ∆2-condition then

l(M, p, ‖ ·, · · · , · ‖)‖·,··· ,·‖∞ ≡ l(M, p, ‖ ·, · · · , · ‖)‖·,··· ,·‖(n−1)S

that is, x ∈ l(M, p, ‖ ·, · · · , · ‖)‖·,··· ,·‖∞ ⇔ x ∈ l(M, p, ‖ ·, · · · , · ‖)‖·,··· ,·‖(n−1)S .

Proof. From fact 2.3 in [9], we have

‖ xk, z1, z2, · · · , zn−2 ‖)∞ ≤‖ xk, z1, z2, · · · , zn−2 ‖)S ≤
√

n ‖ xk, z1, z2, · · · , zn−2 ‖)∞

for all z1, z2, · · · , zn−1 in X . So we get
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∞∑

k=1

[
M

(∥∥∥∥
xk

ρ
, z1, z2, · · · , zn−2

∥∥∥∥
∞

)]pk
≤

∞∑

k=1

[
M

(∥∥∥∥
xk

ρ
, z1, z2, · · · , zn−2

∥∥∥∥
S

)]pk

≤
∞∑

k=1

[
M

(√
n

∥∥∥∥
xk

ρ
, z1, z2, · · · , zn−2

∥∥∥∥
∞

)]pk

≤
∞∑

k=1

[
K
√

nM

(∥∥∥∥
xk

ρ
, z1, z2, · · · , zn−2

∥∥∥∥
∞

)]pk

≤ KHn
H
2 ≤

∞∑

k=1

[
M

(∥∥∥∥
xk

ρ
, z1, z2, · · · , zn−2

∥∥∥∥
∞

)]pk

as required.

Theorem 2.6. u ∈ l∞ ⇒ ux ∈ l(M, p, ‖ ·, · · · , · ‖) where l∞ is the space of bounded sequences and
ux = (ukxk).

Proof. Let u = (uk) ∈ l∞. Then there exists an A > 1 such that | uk |≤ A for each k. We want to show
(ukxk) ∈ l(M, p, ‖ ·, · · · , · ‖). But

∞∑

k=1

[
M

(∥∥∥∥
ukxk

ρ
, z1, z2, · · · , zn−2, zn−1

∥∥∥∥

)]pk

=
∞∑

k=1

[
M

(
| uk |

∥∥∥∥
xk

ρ
, z1, z2, · · · , zn−2, zn−1

∥∥∥∥

)]pk

≤ (KA)H
∞∑

k=1

[
M

(∥∥∥∥
xk

ρ
, z1, z2, · · · , zn−2, zn−1

∥∥∥∥

)]pk

and this completes the proof.

Now we give some generalizations of subjects given in [11].

Definition 2.2. Let A = (am,k) be a non-negative matrix. Define the new sequences space as follows:

ω0(M, p, ‖ ·, · · · , · ‖) =
{

x ∈ S(n−X) : lim
m→∞

∞∑

k=1

[
M

(∥∥∥∥
am,kxk

ρ
, z1, z2, · · · , zn−2, zn−1

∥∥∥∥

)]pk
= 0

}

for each z1, z2, · · · , zn−1 in X. If x − &e ∈ ω0(M, p, ‖ ·, · · · , · ‖) then we say x is ω0(M, p, ‖ ·, · · · , · ‖)
summable to &, where e = (1, 1, . . . ).

Theorem 2.7. ω0(M, p, ‖ ·, · · · , · ‖) is linear.

Proof. It can be done very similar to the proof of linearity of l(M, p, ‖ ·, · · · , · ‖).

Theorem 2.8. If A = (am,k) is the matrix of Cesaro means of order 1 then
l(M, p, ‖ ·, · · · , · ‖) ⊆ ω0(M, p, ‖ ·, · · · , · ‖).

Proof. If A = (am,k) is the matrix of Cesaro means of order 1 then
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Am(x) =
∞∑

k=1

[
M

(∥∥∥∥
am,kxk

ρ
, z1, z2, · · · , zn−2, zn−1

∥∥∥∥

)]pk

≤ 1

m

m∑

k=1

[
M

(∥∥∥∥
xk

ρ
, z1, z2, · · · , zn−2, zn−1

∥∥∥∥

)]pk

So, if x ∈ l(M, p, ‖ ·, · · · , · ‖) then there exists S > 0 such that

∞∑

k=1

[
M

(∥∥∥∥
xk

ρ
, z1, z2, · · · , zn−2, zn−1

∥∥∥∥

)]pk
= S > 0.

Hence 0 ≤ lim
m→∞

Am(x) ≤ lim
m→∞

S

m
= 0. This means x ∈ ω0(M, p, ‖ ·, · · · , · ‖).

More generally, we have the following result.

Theorem 2.9. If A = (am,k) is any regular matrix then l(M, p, ‖ ·, · · · , · ‖) ⊆ ω0(M, p, ‖ ·, · · · , · ‖).
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Abstract. The concept of Haar-Vilenkin wavelet, Haar-Vilenkin scaling function is introduced. Basic

properties of Haar-Vilenkin wavelet series and coefficients are studied.

1. Introduction

The following system which is a generalization of Haar system is connected with the name of Vilenkin [17].
Very often it is termed as a generalized Haar system or a Haar type Vilenkin system.

Let m = (mk, k ∈ N) be a sequence of natural numbers such that mk ≥ 2, N denotes the set of
non-negative integers. Let M0 = 1 and Mk = mk−1Mk−1, k ∈ P. Let P denotes the set of possitive integers
and let k ∈ P can be written as

k = Mn + r(mn − 1) + s− 1. (1.1)

where n ∈ N, r = 0, 1, . . . ,Mn − 1 and s = 1, 2, . . . , mn − 1. This expression is unique for each k ∈ P. Let
us write an arbitrary element t ∈ [0, 1) in the form

t =

∞∑

k=0

tk
Mk+1

, (0 ≤ tk < mk). (1.2)

It may be noted that there may exist two such expressions(1.2), for so called m-adic rational numbers. In
such cases we use the expression which contains only a finite number of terms different from zero.

Define the function system (hn, n ∈ N) by h0 = 1 and

hk(t) =

{ √
Mnexp

2πistn
mn

r
Mn

≤ t < r+1
Mn

0 otherwise
(1.3)

This system can be extended to R (the set of real numbers) by periodicity of period 1: hk(t + 1) = hk(t),
t ∈ [0, 1). It can be checked that {hk(t)} is a complete orthonormal system in L2(R). It is clear that

hk(t) = χ[ r
Mn

, r+1
Mn

](t)
√
Mnexp

2πistn
mn

.

Certain properties of this system have been recently studied [9,16].
Our attention was drawn towards the study of Vilenkin type wavelet through the research project [19].

In this paper we study Haar-Vilenkin type wavelet.

The Haar system H = (Hn, n ∈ N) is defined as follows:

Keywords and phrases : Vilenkin system, Haar type system, Haar-Vilenkin wavelet.

AMS Subject Classification : 42A38, 42A55, 42C15, 42C40, 43A70.
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H0 = 1. For n, r ∈ N and 0 ≤ r < 2n the function Hn is defined on [0, 1) by

H2n+r(x) =






2
n
2 x ∈ I(2r, n+ 1)

−2
n
2 x ∈ I(2r + 1, n+ 1)

0 otherwise

where

I(2r, n+ 1) = [2r2−(n+1), (2r + 1)2−(n+1))

=

[
2r

2n+1
,
2r + 1

2n+1

)

It can be extended to R by the periodicity of period 1. Each Haar function is continous from the right and
the Haar system H is orthonormal on L2(R)([17]).

Very often (see for example [25]), the function defined below is called the Haar wavelet (mother Haar
wavelet)

H(t) =






1 t ∈ [0, 12)
−1 t ∈ [12 , 1)
0 otherwise

It can be expressed in the form
H(t) = χ[0, 1

2
)(t)− χ[ 1

2
,1)(t)

By taking translations and dilation of H(t) the system {Hm,n(t)}, where Hm,n = 2m/2H(2mt − n), has
been extensively studied. For example it has been proved that it is orthonormal basis in L2(R) ([24]).
Decomposition of a function f ∈ Lp(R), 1 < p < ∞ with respect to the system has been studied and its
convergence investigated. The family {Hm.n} is associated with multiresolution analysis, for example let
Sn = span{Hj,k} and Ln = {all functions in L2(R) constant on all intervals [k2−n, (k + 1)2−n], k ∈ N}. It
can be proved that Ln = Sn for all n ∈ N. {Ln}∞n=−∞ form a multiresolution analysis. In this case, the
function

χ[0,1)(t) =

{
1 t ∈ [0, 1)
0 otherwise

can be taken as a scaling function. Comparison of Fourier series of a function f ∈ L2(R) and its expansion
with respect to the Haar system has been investigated. Behaviour of Haar coefficients are also studied
(for details, see [23]). It may be observed that Haar function was introduced as back as in 1911 ([10]),
Walsh function in 1923 ([24]) and Haar type Vilenkin system in 1947 (see, for example [17,21,22]). Certain
properties of multi-dimensional generalized Haar type Fourier series has been investigated in 2000 ([20]).

In the recent years various extensions and concepts related to Haar wavelet have been studied ([1-7],
[9]-[14,16]). In the present paper we study basic properties of Haar-Vilenkin wavelets and Haar-Vilenkin
scaling function. For relevant literature of wavelet we refer to [4,18,23,25]. In section 3, we prove that the
system {ψa,b}, a, b ∈ Z is an orthonormal basis in L2(R), while the convergence properties of expansion of
f namely the series

∑
a∈Z

∑
b∈Z

〈
f,Dma

n
Tbhk(t)

〉
Dma

n
Tbhk(t) for arbitrary coefficients (k fixed) are studied.

Section 4 is devoted to the properties of
〈
f,Dma

n
Tbhk(t)

〉
for f in different classes. Approximation properties

of the Haar-Vilenkin type system similar to Fridli, Manchanda and Siddiqi [8] will be investigated in another
paper.

2. Haar-Vilenkin wavelet

2.1. Haar-Vilenkin mother wavelet

The function hk(t) as defined in (1.3) can also be written as

hk(t) =






√
Mn

r
Mn

≤ t < r
Mn

+ 1
Mn+1√

Mnexp
2πis
mn

r
Mn

+ 1
Mn+1

≤ t < r
Mn

+ 2
Mn+1√

Mnexp
4πis
mn

r
Mn

+ 2
Mn+1

≤ t < r
Mn

+ 3
Mn+1

· · ·√
Mnexp

2πis(mn−1)
mn

r
Mn

+ mn−1
Mn+1

≤ t < r+1
Mn

(2.1)
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It can be seen easily that hk(t) ∈ L2[0, 1) thk(t) ∈ L1[0, 1) for k ∈ P and

∫ ∞

−∞
hk(t) dt =

∫ r
Mn

+ 1
Mn+1

r
Mn

√
Mn dt+

∫ r
Mn

+ 2
Mn+1

r
Mn

+ 1
Mn+1

√
Mnexp

2πis

mn
dt+ . . .

+ . . .+

∫ r+1
Mn

r
Mn

+mn−1
Mn+1

√
Mnexp

2πis(mn − 1)

mn
dt

=

√
Mn

Mn+1

[
1 + exp

2πis

mn
+ exp

4πis

mn
+ · · ·+ exp

2πis(mn − 1)

mn

]

=

√
Mn

Mn+1

[
1− exp2πis

1− exp2πismn

]

= 0

Thus the function hk(t) is a mother wavelet for k ∈ P and for t ∈ [0, 1).The function hk(t)is called a Haar
Vilenkin Wavelet.

Define

ψa,b(t) = ma/2
n hk(m

a
nt − b) (2.2)

The collection {ψa,b(t)}a,b∈Z is referred to as the Haar-Vilenkin system. ψa,b(t) is supported on the interval
Ia,b where

Ia,b =
[

r
ma
nMn

+ b
ma
n
, r+1
ma
nMn

+ b
ma
n

)
, a, b ∈ Z.

The system ψa,b(t) can also be written as {m
a
2
nhk(m

a
nt− b)} = Dma

n
Tbhk(t).

2.2. Haar-Vilenkin scaling function

For k ∈ P and t ∈ [0, 1) as defined in (1.1) and (1.2) the Haar-Vilenkin scaling function is defined as:

pk(t) =
√
Mnχ[ r

Mn
, r+1
Mn

)

=

{ √
Mn,

r
Mn

≤ t < r+1
Mn

0 otherwise

(2.3)

Define

φa,b(t) = ma/2
n pk(m

a
nt− b) (2.4)

The collection {φa,b(t)}a,b∈Z is referred to as the system of Haar Vilenkin scaling functions. For a given
a ∈ Z, the collection {φa,b(t)}b∈Z is referred to as the system of scale a Haar-Vilenkin scaling functions.

φa,b(t) is supported on the interval Ia,b and a, b ∈ Z, where Ia,b =
[

r
ma
nMn

+ b
ma
n
, r+1
ma
nMn

+ b
ma
n

)
.

For each a, b ∈ Z
∫

R

φa,b(t) dt =

∫

Ia,b

φa,b(t) dt = ma/2
n

√
Mn

1

ma
nMn

= m−a/2
n M−1/2

n

and ∫

R

|φa,b(t)|2 dt =

∫

Ia,b

|φa,b(t)|2 dt = ma
nMn

1

ma
nMn

= 1

Remark 2.1.

1. Haar system is a special case of Haar-Vilenkin system for mn = 2 for all n ∈ N.

2. Given any a ∈ Z, the collection of scale a Haar-Vilenkin scaling functions is an orthonormal system
on R.
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Remark 2.2. We have

φa,b(t) = m
−1/2
n φ

a+1, r(mn−1)
Mn

+mnb
(t) +m

−1/2
n φ

a+1, r(mn−1)+1
Mn

+mnb
(t) + . . .

. . .+m
−1/2
n φ

a+1,
(r+1)(mn−1)

Mn
+mnb

(t)
(2.5)

and

ψa,b(t) = m
−1/2
n φ

a+1, r(mn−1)
Mn

+mnb
(t) + exp2πismn

m
−1/2
n φ

a+1, r(mn−1)+1
Mn

+mnb
(t) + . . .

. . .+ exp2πis(mn−1)
mn

m
−1/2
n φ

a+1,
(r+1)(mn−1)

Mn
+mnb

(t).
(2.6)

The equations (2.5) and (2.6) show the relationship between Haar-Vilenkin scaling function and Haar-
Vilenkin wavelet.

Remark 2.3. For k = 1, hk(t) is the well known mother Haar wavelet.

Lemma 2.1. For a ∈ Z, let ga(x) be a scale a function which is constant on Ia,b, b ∈ Z. Then ga(x) can be
written as

ga(x) = ra−1(x) + ga−1(x)

where ra−1(x) has the form

ra−1(x) =
∑

b

αa−1ψa−1,b(x) (2.7)

for some coefficients {αa−1(b)}b∈Z and ga−1(x) is a scale a− 1 dyadic step function.

Proof. Since ga(x) is a function which is constant on Ia,b. Suppose ga(x) has the value Ca(b) on the interval
Ia,b. For each interval Ia−1,b, define the function ga−1(x) which is constant on Ia−1,b by

ga−1(x) = ma−1
n Mn

∫

Ia−1,b

ga(t) dt

=
ma−1
n Mn

ma
nMn

[
Ca

(
r(mn − 1)

Mn
+mnb

)
+ Ca

(
r(mn − 1) + 1

Mn
+mnb

)
+ . . .

. . .+ Ca

(
(r + 1)(mn − 1)

Mn
+mnb

)]

=
1

mn

[
Ca

(
r(mn − 1)

Mn
+mnb

)
+ Ca

(
r(mn − 1) + 1

Mn
+mnb

)
+ . . .

. . .+ Ca

(
(r + 1)(mn − 1)

Mn
+mnb

)]

as

Ia−1,b = I
a, r(mn−1)

Mn
+mnb

∪ I
a, r(mn−1)+1

Mn
+mnb

∪ . . . ∪ I
a, (r+1)(mn−1)

Mn
+mnb

In other words, on Ia−1,b, ga−1(x) takes the average value of ga(x). Let ra−1(x) = ga(x)− ga−1(x), ga−1(x)
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is a function which is constant on the interval Ia−1,b, b ∈ Z and |Ia−1,b| = 1
ma−1
n Mn

. Thus

∫

Ia−1,b

ra−1(x) dx =

∫

Ia−1,b

ga(x) dx−
∫

Ia−1,b

ga−1(x) dx

=

∫

I
a,
r(mn−1)

Mn
+mnb

ga(x) dx+

∫

I
a,
r(mn−1)+1

Mn
+mnb

ga(x) dx+ . . .

. . .+

∫

I
a,
(r+1)(mn−1)

Mn
+mnb

ga(x) dx−
∫

a−1,b
ga−1(x) dx

=
1

ma
nMn

[
Ca

(
r(mn − 1)

Mn
+mnb

)
+ Ca

(
r(mn − 1) + 1

Mn
+mnb

)
+ . . .

+ Ca

(
(r + 1)(mn − 1)

Mn
+mnb

)]
− 1

ma
nMn

[
Ca

(
r(mn − 1)

Mn
+mnb

)
+

Ca

(
r(mn − 1) + 1

Mn
+mnb

)
+ . . .+ Ca

(
(r + 1)(mn − 1)

Mn
+mnb

)]

= 0

Thus on Ia−1,b, ra−1(x) must be a multiple of the Haar Vilenkin function ψa−1,b(x) and must have the form
(2.7).

Theorem 2.1. Given any a ∈ Z, the collection {φa, b
Mn

}b∈Z is an orthonormal system on R.

Proof. Since a ∈ Z is fixed and suppose b.b′ ∈ Z are given. Then

Ia, b
Mn

∩ I
a, b

′

Mn

=

{
φ b 
= b′

Ia, b
Mn

b = b′

If b 
= b′, then the product φa, b
Mn

(t)φ
a, b

′

Mn

(t) = 0 for all t, since the functions are supported on disjoint

intervals.
Hence if b 
= b′ 〈

φa, b
Mn

, φ
a, b

′

Mn

〉
=

∫

R

φa, b
Mn

(t)φ
a, b

′

Mn

(t) dt = 0.

If b = b′, then 〈
φa, b

Mn

, φ
a, b

′

Mn

〉
=

∫

R

|φa,b(t)|2 dt = 1.

2.3 The Approximation Operator in context of Haar-Vilenkin system:

Definition 2.1. For each a ∈ Z define the approximation operator Pa on the functions f(x) ∈ L2(R) by

Paf(x) =
∑

b

〈
f, φa, b

Mn

〉
φa, b

Mn

(x)

Remark 2.4.

1. For each a ∈ Z, define the approximation space Va by

Va = span
{
φa, b

Mn

}

b∈Z

Since
{
φa, b

Mn

: b ∈ Z
}

is an orthonormal system on R. This implies that Paf(x) is a function in Va

best approximating f(x) in L2-sense.
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2.

φa, b
Mn

(x) = ma/2
n

√
MnχI

a, b
Mn

(x)

Thus
〈
f, φa, b

Mn

〉
φa, b

Mn

(x) = ma
nMn




∫

I
a, b
Mn

f(t) dt



χI
a, b
Mn

(x)

In other words, on the interval Ia, b
Mn

, Paf(x) is the average value of f(x) on Ia, b
Mn

.

We can prove the following facts about the operator Pa:

Theorem 2.2.

1. For each a ∈ Z, Pa is linear, that is, given f(x), g(x) ∈ L2(R) and α, β ∈ C

Pa(αf + βg)(x) = αPa(f )(x) + βPa(g)(x)

2. For each a ∈ Z, Pa is idempotent, that is, given f(x) ∈ L2(R)

Pa(Paf)(x) = Paf (x)

3. Given integers a, a′ with a ≤ a′ and g(x) ∈ Va

Pa′g(x) = g(x)

4. Given a ∈ Z and f (x) ∈ L2(R)

‖Paf‖2 ≤ ‖f‖2

Proof.

1. Pa(αf + βg)(x) = ma
nMn

[∫
I
a, b
Mn

(αf(t) + βg(t)) dt

]
χI

a, b
Mn

(x)

= αma
nMn

∫

I
a, b
Mn

f(t) dt.χI
a, b
Mn

(x) + βma
nMn

∫

I
a, b
Mn

g(t) dt.χI
a, b
Mn

(x)

= αPaf (x) + βPag(x).

2. If a ∈ Z and for f(x) ∈ L2(R)

Pa(Paf)(x) =
∑

b

〈
Paf, φa, b

Mn

〉
φa, b

Mn

=
∑

b

〈
∑

b′

< f, φ
a, b

′

Mn

>, φa, b
Mn

〉

φa, b
Mn

(x)

=
∑

b

[
∑

b′

< f, φ
a, b

′

Mn

>< φ
a, b

′

Mn

, φa, b
Mn

>

]

φa, b
Mn

(x)

=
∑

b

< f, φa, b
Mn

> φa, b
Mn

(x)

= Paf(x).

3. Follows from the fact that if g(x) ∈ Va, then Pag(x) = g(x).
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4. Since {pa, b
Mn

}b∈Z is an orthonormal system on R. Hence

‖Paf‖22 =

∫

R

|
∑

b

〈
f, φa, b

Mn

〉
φa, b

Mn

|2 dx

=
∑

b

|
〈
f, φa, b

Mn

〉
|2

=
∑

b

∣∣∣∣∣∣
ma/2
n

√
Mn

∫

I
a, b
Mn

f(t) dt

∣∣∣∣∣∣

2

By Cauchy-Schwarz’s Inequality

∣∣∣∣∣∣
ma/2
n

√
Mn

∫

I
a, b
Mn

f(t) dt

∣∣∣∣∣∣

2

≤




∫

I
a, b
Mn

ma
nMn dt








∫

I
a, b
Mn

|f (t)|2 dt





=

∫

I
a, b
Mn

|f(t)|2 dt

Thus

‖Paf‖22 ≤
∑

b

∫

I
a, b
Mn

|f(t)|2 dt =

∫

R

|f(t)|2 dt = ‖f‖22.

Theorem 2.3. Given f(x), C0 on R

lim
a→∞

‖Paf − f‖2 = 0 (2.8)

Proof. Suppose that f(x) is supported in an interval of the form [−mN
n , m

N
n ] for some integer N . Then

there exists an integer A and a function g(x) ∈ VA such that

‖f − g‖∞ = maxx∈R|f(x)− g(x)| < ε
√
mN+3
n

.

If a ≥ A, then by Theorem 2.2(3), Pag(x) = g(x) and by Minkowski inequality and Theorem 2.2(4)

‖Paf − f‖2 ≤ ‖Paf −a g‖2 + ‖Pag − g‖2 + ‖f − g‖2
= ‖Pa(f − g)‖2 + ‖g − f‖2
≤ 2‖f − g‖2.

(2.9)

where

‖g − f‖22 =

∫ mN
n

−mN
n

|g(x)− f(x)‖2 dx ≤
∫ mN

n

−mN
n

ε2

mN=3
n

=
2ε2

m3
n

<
ε2

m2
n

⇒ ‖g − f‖2 <
ε

mn
.

Combining this result with (2.9) proves (2.8).

Remark 2.5 (a) It has been observed by an anonymous refree that Theorem 2.2 can be obtained from the
fact that an projection opertor is idempotent.

(b) Theorem 2.2 can be obtained as a special case of results in [15] and references therein of papers by Kelly,
Ken, Raphel and Walter.
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3. Orthonormality of Haar-Vilenkin wavelet

We prove in the following theorem that the Haar-Vilenkin wavelet system is an orthonormal basis.

Theorem 3.1. The system {m
a
2
nhk(m

a
nt− b)} = {ψa,b}, a, b ∈ Z is an orthonormal system in L2(R).

Proof. Since

hk(t) =

{ √
Mnexp

2πistn
mn

r
Mn

≤ t < r+1
Mn

0 otherwise

for k ∈ P and t ∈ [0, 1).

Thus hk(t) is supported on the interval [ r
Mn

, r+1Mn
) and thus hk(m

a
nt − b) is supported on the interval

Ia,b, where

Ia,b =

[
r

ma
nMn

+
b

ma
n

,
r + 1

ma
nMn

+
b

ma
n

)

hk(m
a
nt− b) =

{ √
Mnexp

2πistn
mn

r
ma
nMn

+ b
ma
n
≤ t < r

ma
nMn

+ b
ma
n

0 otherwise

This function can also be written as

hk(t) =






√
Mn A ≤ t < A+ 1

ma
nMn+1√

Mnexp
2πis
mn

A+ 1
ma
nMn+1

≤ t < A+ 2
ma
nMn+1√

Mnexp
4πis
mn

A+ 2
ma
nMn+1

≤ t < A+ 3
ma
nMn+1

· · ·√
Mnexp

2πis(mn−1)
mn

A+ mn−1
ma
nMn+1

≤ t < A+ 1
ma
nMn

where A = r
ma
nMn

+ b
ma
n
.

First we will show the orthonormality with a given scale. Let a ∈ Z be fixed and suppose b, b′ ∈ Z are
given Then

Ia,b ∩ Ia,b′ =

{
φ ifb 
= b′

Ia,b ifb = b′

If b 
= b′, then the product ψa,b(t)ψa,b′(t) = 0, ∀t since the functions are supported on the disjoint intervals.
Hence if b 
= b′, then

< ψa,b, ψa,b′ >=

∫

R

ψa,b(t)ψa,b′(t) dt = 0.

If b = b′, then

< ψa,b, ψa,b′ > =

∫

Ia,b

ψa,b(t)ψa,b(t) dt =

∫

Ia,b

|ψa,b(t)|2 dt

=

∫

Ia,b

ma
nMn dt = 1

Next we will show the orthonormality between the scales. Suppose a, a′ ∈ Z with a 
= a′, say a > a′

and let b, b′ ∈ Z. Then we have the possibilities:

1. Ia′,b′ ∩ Ia,b = φ. In this case ψa,b(t)ψa′,b′(t) = 0, ∀ t and

〈ψa,b, ψa′,b′〉 =

∫

Ia,b

ψa,b(t)ψa′,b′(t) dt = 0
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2. If a > a′ then either the intervals Ia,b and Ia′,b′ are disjoint or Ia,b is contained in the one of the mn

subintervals [
A′, A′ +

1

ma′
nMn+1

)
,

[
A′ +

1

ma′
nMn+1

, A′ +
2

ma′
nMn+1

)
, . . .

. . .

[
A′ +

mn− 1

ma′
nMn+1

, A′ +
1

ma′
nMn

)

where A′ = r
ma′
n Mn

+ b
ma′
n

.

In each case, we will get

< ψa,b, ψa′,b′ >=

∫

Ia,b

ψa,b(t)ψa′,b′(t) dt = 0

Thus ψa,b, a, b ∈ Z is an orthonormal system in L2(R). The result follows.
In order to show that {ψa,b}a,b∈Z is an orthonormal basis in L2(R), let us consider the two families of

subspaces of L2(R).
Sp = span{ψa,b}a<p,b∈Z (3.1)

Lp = {Set of all functions which are constant on intervals Ip,b for b ∈ Z} (3.2)

Both of these families have the following properties:

. . . ⊂ S−2 ⊂ S−1 ⊂ S0 ⊂ S1 ⊂ S2 ⊂ . . . (3.3)

f (t) ∈ Sp ⇔ f (2t) ∈ Sp+1 (3.4)

f(t) ∈ S0 ⇔ f (t+ k) ∈ S0fork ∈ Z (3.5)

In order to prove that {ψa,b} is an orthonormal basis in L2(R) it remains to prove that

Lp = Sp, ∀ p ∈ Z

Lemma 3.1. For all p ∈ Z, we have Lp = Sp.

Proof. From (3.4) above it suffices to show that L0 = S0.
Since each ψa,b for a < 0 is constant on any interval [u+ r

Mn
, u+ r+1

Mn
) we see that S0 ⊂ L0. Also each function

in L0 can be written as
∑
u∈Z auχ[u+ r

Mn
,u+ r+1

Mn
), Hence by (3.5) it suffices to show that χ[ r

Mn
, r+1
Mn

) ∈ S0.

To show this let us consider the series

∑

a<0

ma/2
n ψa,0 =

∑

a<0

ma
nhk(m

a
nt).

Since ‖ma
nhk(m

a
nt)‖2 = m

a/2
n and a < 0, this series is absolutely convergent in L2(R). One can easily see

from the definition of hk(t), that

∑

a<0

ma/2
n ψa,0(t) = 0 for t ≤ r

Mn

and
∑

a<0

ma/2
n ψa,0(t) =

∑

a<0

ma
n

√
Mn =

√
Mn

mn − 1
for

r

Mn
< t <

r + 1

Mn

For mv
nr
Mn

≤ t < mv
nr+1
Mn

where v = 1, 2, 3, . . . one has

∑

a<0

ma/2
n ψa,0(t) =

∑

a<0

ma
nhk(m

a
nt)
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If r=0, then

∑

a<0

ma/2
n ψa,0(t) =

1

mv
n

√
Mnexp

2πistn
mn

+

∞∑

a=v+1

m−a
n

√
Mn

=
1

mv
n

√
Mnexp

2πistn
mn

+
√
Mn

1

mv
n(mn − 1)

If r 
= 0, then
∑

a<0

ma/2
n ψa,0(t) =

1

mv
n

√
Mnexp

2πistn
mn

.

This shows that S0 = L0, so Sp = Lp for all p ∈ Z. It can be easily verified that ∪∞p=−∞Lp is dense in L2(R).

Thus the system {ψa,b}a,b∈Z is an orthonormal basis in L2(R). Hence the function f ∈ L2(R) has a
decomposition

f =
∑

a∈Z

∑

b∈Z

〈f, ψa,b〉ψa,b.

4. Convergence

The number

Ca,b = 〈f, ψa,b〉 (4.1)

is called the a, bth wavelet coefficient and

∑

a∈Z

∑

b∈Z

〈f, ψa,b〉ψa,b (4.2)

is called the wavelet series of f ∈ L2(R).
We investigate the convergence of this series for any f ∈ Lp(R), 1 < p <∞, and prove the following theorem:

Theorem 4.1. If f ∈ Lp(R) with 1 < p <∞ or f is continous function, then

lim
p→∞

Pp(f) = f (4.3)

where

Pp(f ) =
∑

a<p

∑

b∈Z

〈f, ψa,b〉ψa,b

i.e.,

lim
p→∞

‖Pp(f)− f‖p → 0

Futhermore for each p ∈ Z
lim
µ→∞

Pa(f) +Qµa(f) = Pa+1(f) (4.4)

where

Qµa(t) =
∑

b≤µ

< f,ψa,b > ψa,b

It may be observed that the convergence part may be obtained from the fact that Pp are conditional expec-
tations but we present here a direct proof.

Proof. For 1 < p <∞, let us consider the families of subspaces of Lp(R)

Spl = span{ψa,b}a<l,b∈Z

Lpl = {Set of all functions which are constant on intervals Il,b for b ∈ Z}
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where Ia,b =
[

r
ma
nMn

+ b
ma
n
, r+1
ma
nMn

+ b
ma
n

)
.

The proof of Lemma 3.1 can be easily modified to prove that Spl = Lpl ∀l ∈ Z. Since Pa(f ) is an
orthonormal projection onto Sa and Sa = La, we can write a different presentation of the operator Pa,
namely we have

Pa(f) =
∑

b∈Z

ma
nMn

∫

Ia,b

f (t) dt.χIa,b

This equation is valid as the right hand side of this equation defines an orthogonal projection onto La.

By Holder’s Inequality, we have

‖Pa(f)‖p =

(
∑

b∈Z

map
n M

p
n

∥∥∥∥∥

∫

Ia,b

f(t) dt

∥∥∥∥∥

p
1

ma
nMn

)1/p

=

(
∑

b∈Z

map
n M

p
n

∫

Ia,b

|f (t)|p dtm
−ap/q
n M

−p/q
n

ma
nMn

)1/p

=

(
∑

b∈Z

(ma
nMn)

p−1−p/q
∫

Ia,b

|f(t)|p dt
)1/p

=

(∫ ∞

−∞
|f(t)|p dt

)1/p

If f ∈ C0(R), then it is uniformly continuous. Then for given ε > 0 we can find N such that a > N and for
each b ∈ Z

sup{|f(x)− f(y)|x, y ∈ Ia,b} < ε

For a given a > N and each t ∈ R, we fix an integer b such that t ∈ Ia,b.then

|Paf (t)− f (t)| =

∣∣∣∣∣
ma
nMn

∫

Ia,b

f(s) ds− f(t)

∣∣∣∣∣

=

∣∣∣∣∣
ma
nMn

∫

Ia,b

(f(s)− f(t)) ds

∣∣∣∣∣
< ε

This implies that

supt∈R|Paf(t)− f (t)| → 0asa→∞

This proves the first part of the theorem.

Since for a fixed a, {ψa,b}b∈Z have disjoint supports, we have

‖
∑

b≤µ

< f,ψa,b > ψa,b‖p =




∑

b≤µ

| < f, ψa,b > |p‖ψa,b‖p




1/p

=




∑

b≤µ

(ma
nMn)

(1/2−1/p) ‖ψa,b‖p




1/p

This shows that limµ→∞Qµa(f) exists in the norm of the space. Clearly it is equal to Pa+1(f )− Pa(f ).
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5. Behaviour of Haar-Vilenkin coefficients near jump discontinuities

Suppose that f(x) is defined on interval
[
r
Mn

, r+1Mn

]
with a jump discontinuity at x0 ∈

(
r
Mn

, r+1Mn

)
and

continous at all other points in
[
r
Mn

, r+1Mn

]
. We have to check whether Haar Vilenkin coefficients < f,ψa,b >

such that x0 ∈ Ia,b behave differently than do the Haar Vilenkin coefficients.
Let us assume that given function f(x) is C2 on the intervals [0, x0] and [x0, 1]. This means that both

f ′(x) and f ′′(x) exist, are continous functions and hence are bounded on these intervals. Fix integers a ≥ 0

and 0 ≤ b ≤ ma
n − 1 and let xa,b be the mid point of the interval Ia,b. i.e., xa,b = r+1/2

ma
nMn

+ b
ma
n
.

Case I If x0 /∈ Ia,b, then expanding f (x) about xa,b by Taylor’s formulae, it follows that for all x ∈ Ia,b

f(x) = f(xa,b) + f ′(xa,b)(x− xa,b) +
1

2
f ′′(ξa,b)(x− xa,b)

2

where ξa,b is some point in Ia,b.
Since

∫
Ia,b

ψa,b(x) dx = 0, we have

〈f, ψa,b〉 =

∫

Ia,b

f(x)ψa,b(x) dx

= f (xa,b)

∫

Ia,b

ψa,b(x) dx+ f ′(xa,b)

∫

Ia,b

ψa,b(x)(x− xa,b) dx

+
1

2

∫

Ia,b

ψa,b(x)(x− xa,b)
2f ′′(ξa,b) dx

= αa,b(x) + βa,b(x)

where

αa,b(x) = f ′(xa,b)

∫

Ia,b

ψa,b(x)(x− xa,b) dx

and

βa,b(x) =
1

2

∫

Ia,b

ψa,b(x)(x− xa,b)
2f ′′(ξa,b) dx

Now

|αa,b(x)| ≤ |f ′(xa,b)|
∫

Ia,b

|ψa,b(x)||(x− xa,b)| dx

= |f ′(xa,b)|ma/2
n

√
Mn

∫

Ia,b

|(x− xa,b)| dx

= |f ′(xa,b)|ma/2
n

√
Mn

(
1

2m2a
n M

2
n

)

= |f ′(xa,b)|
m
−3a/2
n M

−3/2
n

4

and

|βa,b(x)| =
1

2

∣∣∣∣∣

∫

Ia,b

ψa,b(x)(x− xa,b)
2f ′′(ξa,b) dx

∣∣∣∣∣

≤ 1

2
maxx∈Ia,b |f ′′(x)|

∫

Ia,b

|ψa,b(x)|(x− xa,b)
2 dx

=
1

2

√
Mnm

a/2
n maxx∈Ia,b |f ′′(x)|

∫

Ia,b

(x− xa,b)
2 dx

=
1

6

√
Mnm

a/2
n maxx∈Ia,b |f ′′(x)|

(
1

4m3a
n M

3
n

)

=
1

24
M−5/2
n m−5a/2

n maxx∈Ia,b |f ′′(x)|
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If j is large, then m
−5a/2
n will be very small compared with m

−3a/2
n , so we conclude that for the large values

of j

| 〈f, ψa,b〉 | ≈
1

4
m−3a/2
n M−3/2

n |f ′(xa,b)|.

Case II. If x0 ∈ Ia,b, then it is contained in one of the mn subintervals of Ia,b.

Assume that x0 ∈
[

r
ma
nMn

+ b
ma
n
, r+1/mn

ma
nMn

+ b
ma
n

]
. Expanding f(x) in a Taylor series about x0, we have

f(x) = f(x−0 ) + f ′(ξ−)(x− x0), x ∈
[

r

ma
nMn

+
b

ma
n

, x0

)
, ξ− ∈ [x, x0]

and

f(x) = f(x+0 ) + f ′(ξ+)(x− x0), x ∈
[
x0,

r + 1/mn

ma
nMn

+
b

ma
n

)
, ξ+ ∈ [x0, x]

Thus

〈f, ψa,b〉 =

∫

Ia,b

f(x)ψa,b(x) dx

=

∫ x0

A
f(x−0 )ψa,b(x) dx+

∫ A+ 1
manMn+1

x0

f(x+0 )ψa,b(x) dx

+

∫ A+ mn
manMn+1

A+ 1
manMn+1

f (x+0 )ψa,b(x) dx+ εa,b

= ma/2
n

√
Mn

[
f (x−0 )(−A+ x0) + f(x+0 )(A+

1

ma
nMn+1

− x0)

]

+f(x+0 )

∫ A+ mn
manMn+1

A+ 1
manMn+1

ψa,b(x) dx+ εa,b

= ma/2
n

√
Mn

[
f (x−0 )(−A+ x0) + f(x+0 )(A+

1

ma
nMn+1

− x0)

]

−
√
Mnm

a/2
n f(x+0 )

1

ma
nMn+1

+ εa,b

=
√
Mnm

a/2
n (x0 −A)[f(x−0 )− f(x+0 )] + εa,b

where A = r
ma
nMn

+ b
ma
n

and

εa,b =

∫ x0

A
f (ξ−)(x− x0)ψa,b(x) dx+

∫ A+ 1
manMn+1

x0

f (ξ+)(x− x0)ψa,b(x) dx.

|εa,b| ≤ maxt∈Ia,b\{x0}|f ′(t)|
∫

Ia,b

|x− x0||ψa,b(x)| dx

= maxt∈Ia,b\{x0}|f ′(t)|
√
Mnm

a/2
n

∫

Ia,b

|x− x0| dx

≤ maxt∈Ia,b\{x0}|f ′(t)|
M
−3/2
n m

−3a/2
n

4

If j is large, then M
−3/2
n m

−3a/2
n will be very small compared with M

−1/2
n m

−a/2
n , so for large values of j

| < f,ψa,b > | ≈ ma/2
n

√
Mn

∣∣∣∣x0 −
r

ma
nMn

− b

ma
n

∣∣∣∣ |f(x
−
0 )− f(x+0 )|.

The quantity
∣∣∣x0 − r

ma
nMn

− b
ma
n

∣∣∣ can be small if x0 is close to r
ma
nMn

+ b
ma
n

and can even be zero. We can

expect that in middle of
[

r
ma
nMn

+ b
ma
n
, r+1/mn

ma
nMn

+ b
ma
n

]
so that

∣∣∣x0 − r
ma
nMn

− b
ma
n

∣∣∣ ≈ 1
2ma

nMn+1
.
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Thus for the large values of j

| < f,ψa,b > | ≈ ma/2
n

√
Mn

1

2ma
nMn+1

|f(x−0 )− f (x+0 )|

=
m
−a/2
n M

1/2
n

2Mn+1
|f (x−0 )− f(x+0 )|

Comparing the two cases, we see that the decay of | < f,ψa,b > | for the large j is considerably slower if
x0 ∈ Ia,b than if x0 /∈ Ia,b.

The large coefficient in the Haar-Vilenkin expansion of the coefficient f(x) that persist for all scales
suggests the presence of jump discontinuity in the intervals Ia,b corresponding to the large coefficient.
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