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DEDUCTION IN MONADIC ALGEBRA

\

Kahtan H. Alz\ubaidv

Department of Mathematics, Faculty of Science, Garyounis University, Benghazi, Libya

(Received January 15\ 2006)

Abstract. The extensions of some of the results of Halmos algng with the applications have been given
here.

1. Introduction \

This paper deals with extensions and applications of the original ideas in [3]. Boolean algebra is formed to
express propositional logic in an algebraic form. The extension of Boolean algebra to functional Boolean
algebra with operators is capable of expressing monadic logic in an lgebraic form also. The operators
correspond to the usual existential and universal quantifiers. The m‘«lﬂ issue of the paper has been the
formation of certain ultrafilters of functional monadic algebra to express monadic deduction algebraically.
The procedure has been generalized to include terms as well.

2. Monadic Algebra

A monadic alebra is a Boolean algebra B with an operator 3: B — B such that
(i) 3(0) =0,
(i) a < 3(a) for any a € B,

(iii) I(a A (b)) = I(a) A 3(b) for any a,b € B.

This operator is called existential quantifier operator. The universal quantifier operator v:B — Bis
defined by V(a) = (3(a’))’ for any a € B. It can be shown that 3(1) = 1 and 3% = 3. For full properties of
3 and V see [1].

The following proposition is obvious:

Proposition 1. 3(B) and V(B) are Boolean subalgebras of B.
A subset A of a monadic algebra B is a monadic subalgebra of B if A is a Boolean subalgebra and
3(A) C A. In particular {0} and 3 are monadic subalgebras of B. Thus we have

Proposition 2. 3(B) and V(B) are monadic subalgebras of B.
A subset I of a monadic algebra B is called a monadic ideal of B if

i) avbel forany a,bel.
ii) aAbe I forany a € [ and any b € B.

iii) 3(1) C I.

Keywords and phrases : Monadic Logic, Monadic algebra, Functional Monadic Algebra, Monadic Filters
AMS Subject Classification : 03G05, 06E25.



2 Kahtan H. Alzubaidy
In particular {0} and B are monadic ideals.
A subset F' of a monadic algebra B is called a/monadic filter of B if
i) aAbE F for any a,b € F.

ii) avbe F for any a € F and any b € B.

/

iii) V(F) C F.

/
In particular {1} and B are monadic filters. The following proposition is straightforward:

Proposition 3. Let B be a monadic algebra, I an ideal and F a filter of B. Then

M@ o0erl (i)avbelforany a,b& I (iii)ifae  and b< athenbe I.

(I) (i) 1eF (i)aAbeF forany a/b€ F (iii) ifa € F and b > a then b € F.
The following two propositions dre also obvious [2].

Proposition 4. Let B be a monadic algebra and I and F be subsets of B. Then
(i) If I is a monadic ideal, then I’ = {a’ : a € I} is a monadic filter.
(ii) If F is a monadic filter, then F’ = {a' : a € F} is a monadic ideal.

Proposition 5. The set of all monadic ideals and the set of all monadic filters are closed under arbitrary
intersection.

Let B be a monadic algehra and K C B. Let J(K) denote the least monadic ideal containing K and
F(K) denote the least monadic filter containing K. We say that I(K) and F(K) are generated by K.

Proposition 6. Let B be a monadic algebra and K C B. Then
() I(K)={beB:b<zyVzoV  Va, for some z|,z3, -z, € K} ud{0}.
(i) F(K)={beB:b>zy Azag A+ Az, for some z1,zs, -, x,, € K} u{1}.
Proof. For (i), let J={be€ B:b<z VayV--Vuz, for some z1,z2, -,z € K}U{0}. 0 € J. Let
bi,bg € J. Then by < z1VaoV-- Vz, and by <y Vya V- - “Vym for some z1,y; € K. by Vhy < z1VayV- -V
o VY1 VY2V - VY. Therefore byVby € J. Ifa < b < xyVaoV- -V, then a € J. Then J is a Boolean ideal
containing K. Therefore [(K) C J. Ifb e J,thenb < z;VzyV-- -V, where z; € K ie. 2, z; € I(K). Then
b e I(K). Thus I(K) = J as Boolean ideals. Since 3(b) < I(xy Va2 V-~ V.z,) = I(x1) V I(a) V- - - V3(z,),
then I(K) = J as monadic ideals.

A similar argument leads to (ii).

A filter F of a monadic algebra B is called ultrafilter if F is maximal with respect to the property that
0 ¢ F. Ultrafilters satisfy the following important properties [2]:

Proposition 7. Let F' be a filter of a monadic algebra B. Then
(i) F is an ultrafilter of B iff for any a € F exactly one of a,a’ belongs to F.
(ii) F is an ultrafilter of B iff for 0 ¢ F andaVb e Fiffa € Forbe F for any a,b € F.
(iii) If a € B — F', then there is an ultrafilter U such that F C U and a ¢ U.
Maximal ideals and their properties can be introduced dually [2].
A mapping u : By — By between two monadic algebras is called a monadic homomorphism if x is a
Boolean homomorphism and p3 = 3u. It can easily be shown that ©V = Vu. Thus we have

Proposition 8. Monadic homomorphisms preserve monadic (ultra) filter and monadic (maximal) ideal.
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3. Deduction

Some wfs in monadic logic are provable (deducible) and s\pme are refutable. Accordingly in monadic algebra
we may say some elements are provable and some are ref‘ﬁ\table. So a i. provable iff @’ is refutable.

Proposition 9. Let B be a monadic algebra. Then
(i) The set F of all provable elements of B is a monadic filter.
(ii) The set I of all refutable elements of B is a monadic ideal.
Proof. For (i) it is obvious that a Ab € F for any a.b € F and aVb € F for any a € F and any b€ B. If
a € F, then Y(a) € F. Thus V(F) C F and F is a monadic filter.

A similar argument proves (ii). l\

Let K = {aj,as, - ,a,} and F(K) be the filter generated by K in B. Let UF(K) denote the ultrafilter
containing F(K). Then we have By

\
Theorem 10. Let K = {aj,as, - ,a,}. Then K +b in B iiff b € UF(K).

Proof. Suppose that K . Then a; Aaz A+ Aa, < b ([1]). Theiefore, b € UF(K). Conversely, sup-
pose that b € UF(K). Then by (Proposition 6) b > 1 AzaA- Az, for some z1,z9,, T, € K. Thus K + b.

\
\
4. Functional Monadic Algebra |
\
Let X be a nonempty set and B a Boolean algebra. Suppose that B® = {p|p : X — B is a function}. For
p,q € B® define pA g, pVgq,p' and 0,1, pointwise as follows:-

(p A g)(z) = p(x) Aglx), (pVa)(z) = plz) Valz), P{z) = (p(x)),\0(z) = 0 and 1(z) = 1
for any z € X. Thus we have ([1])

Proposition 11. B is a Boolean algebra.

Assume B is complete in the sense that any subset of B has both infimum and supermum in B.
Existential 3 and universal  quantifiers on the functional Boolean algebra B® are defined as follows :

For each p € B?, let 3(p) be given by 3(p)(z) = sup{p(z) : z € X} for any z € X. Similarly ¥(p) is
defined by V¥(p)(z) = inf{p(z) : ¢ € X} for any = € X.
3(p) and V(p) exist by completeness of B. One should notice the notational difference between logical and
algebraic quantifiers.

Proposition 12. B* with 3 form a monadic algel ra.

Proof. 3(0)(x) = sup{0(z) : = € X} = sup{0} = 0 = 0(z" for ar~ x € X. Thus 3(0) = 0. Let p,q € B".
3(p)(z) = sup{p(z) : « € X} > p(x) for any 2 € X. Then 3(p) > p. By using infinite left distributive law
[4] we have

3(p A 3g)(z) = sup{(p A 3(g))(z) : = € X}

= sup{p(z) A 3(g)(z) : z € X}

= sup{p{z) Asup{g(z) :z € X} : 2 € X}

=sup{p(z) : ¢ € X} Asup{q(z) : z € X}

= 3(p)(z) A 3(g)(x) for any z € X.

Therefore 3(p A 3(g)) = 3(p) A 3(q).
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The two functional quantifiers 3 and V on B* are in’{errelated by ¥(p) = (3(p'))" and 3(p) = (¥(p'))’ for any
p € B,

5. Deduction in F\chtional Monadic Algebra

Natural inference rules of monadic logic are nty‘w transferred into certain algebaic rules in the B® governing
the algebraic deduction in UF(K). We have /

Theorem 13. /
(i) p(z) A g(z) € UF(K) iff p(z) € %) and q(z) € UF(K).
(ii) p(z) v q(z) € UF(K) iff p(z) € UF(K) or ¢(z) € UF(K).
(iii) Either p(z) € UF(K) or —p(z) € UF(K).
(iv) p(z) € UF(K) iff ~p(x) ¢ UF(K).
(v) p(z) € UF(K) iff Vp(z) € UF(K)).
(vi) p(zo) € UF(K) iff 3p(z) € UF(K).
Proof. (i) and (ii) follow from definition of filter and (Proposition 3).
(iii) and (iv) follow from (Proposition 7).
(v) represents both V - elimination and V - introduction. It is obtained from Vp(z) < p(z) and V(F) C F.
(vi) represents the two inference rules 3 - elimination and 3 - introduction. The later rule is satisfied by
p(z) < 3p(z). The first one is obtained as follows:
Ip(z) = sup{p(x)} = Vi p(z).” Now either p(z) € UF(K) or —p(z) ¢ UF(K). If each p(z) ¢ UF(K) for

some x ez X. Then -p(z) ¢ UF(K) for any z € X and thus V,—p(z) € UF(K). Hence
(Ve p(z)) V (Vz—p(z)) = 0 € UF(K) which is impossible. Then p(z) € UF(K) for some z € X.

Finally we study the terms in monadic algebra.

A term t in monadic language is a transformation t : X — X. It is a constant t(z) = zp, a variable
t(z) = z or a function t(z) [5]. The term ¢ unduces the mapping 7 : B® — B given by 7(p)(z) = p(t(z))
for any z € X where p € B®.

Proposition 14. 7: B* — B is a monadic endomorphism.
Proof. It can easily be shown that 7 preserves 0,1, complement, joint and meet. 73(p)(z) = 7(sup,(p(z)) =
T(Vzp(z)) = Vap(t(z)) = Vo1 (p)(z) = 37(p)(z). Then 73 = 37.
Thus 7 is a monadic endomorphism.

Note that 7(UF(K)) = UF(7(K)). Therefore Theorem 13 can now be generalized with respect to
terms as follows:

Theorem 15.

(1) p(t(z)) A q(t(z)) € UF(r(K)) iff p(t(z)) € UF(r(K)) and q(t(z)) € UF(7(K)).
(ii) p(t(z)) v q(t(z)) € UF(7(K)) iff p(t(z ))GUF( (K)) or q(t(z)) € UF(7(K)).
(iii) Either p(t(z)) € UF(7(K)) or —p(t(z)) € UF(7(K)).

(iv) p(t(z)) € UF(7(K)) iff -p(t(z)) ¢ UF(r ( ))-
(v) P(t(f)) € UF(r(K)) iff Vp(t(z)) € UF(7(K)).
(vi) p(t(z0)) € UF(T( )) iff 3p(t(z)) € UF(7(K)).
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Abstract. In this paper, the author has defined by the applicat.ibn of neutrix limit, the product of three
distributions and proved the associative law. He has also given sqme examples to verify the results and
some examples in which the product of three distribution exists, li\t not associative,

1. Introduction \

A neutrix N is defined by J.G. vander Corput [3] as a commutative additive group of functions v(£) defined
at each element £ of a domain N’ with values in additive group N”, where further if for some v in N, v(€) =+
for all £ in N, then y = 0. The functions in N are called negligible functions.

Now let N’ be set contained in a topological space with a limit point b which does not belong to N, If f(€)
is a function defined on N’ with values in N” and it is possible to find a constant 3 such that f(£) — 3 is
negligible in IV, then 3 is called the neutrix limit or N-limit of f as £ tends to b and we write

N — lim

ey 1O=8 (L1)

The limit 3 must be unique, if it exists.
By making wuse of neutrix-limit, Fisher [6] has defined the neutrix product of two
distributions.

Definition (1.1.) Let f and g be arbitrary distributions and let

1/n
fﬂ“_‘f * 5r1: f f(m_t)én(t)d‘t- n =g * Oy =120, (12)
'-1/'1

where §,(x) = np(nz), p is an infinitely differentiable function satisfying :
(i) p(z) =0for |z |=1
(i) p(z) 20

(iii) p(z) = p(—z)
(iv) _j; p(z)dz =1,

we say that the neutrix products f o g of f and g exists and is equal to the distribution h on (a,b) if

N —lim

1 S < fagn, ¢ >=< h,¢p > (1.3)

on (a,b), for all test functions ¢ in the space K of infinitely differentiable function with compact support.

Keywords and phrases : Neutrix, Product, Differentiable-function, Distributions, Limit.
AMS Subject Classitication : 46F.
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Fisher [9] gave another definition of neutrix products of two distributions.

Definition (1.2.) Let f and g be arbitrary distributions then the neutrix product f o g of f and g exists
and is equal to a distribution h on (a,b) if /

N —lim /_N _
o <fon, @>= ., < fign @ >=<h,¢ >, (1.4)

for all test function ¢ € K having support in (/ré, b), where N is the neutrix having domain N’ = {1,2,---,n
and range N" of real numbers and the negligible functions infinite linear sums of the functions

An"n, In'n,

/ n

for A >0,and r =1,2,3,- -, for all functions f(n) for which hm f(n)=

In the present paper, by using the deﬁni/tmn (1.1) and (1.2), we w111 deﬁne the product of three distributions,
prove an associative law and obtain an/expression of the type [5, p. 291]. Further, we will give some examples
to verify the results and some examples, in which the product of three distributions exists but not associative.

2. Product of Three Distributions and the Associative Law

Theorem 2.1. If f,g and h are three distributions on the open interval (a,b) such that f = F, Fe
LP'(a,b), ¢ € LP2(a,b) and h’(") € LP3(a,b) where ]171 + P% + ,}: = 1, then the neutrix product (feg)oh
of f,g and h exists, and

(f & g) oh = Z zrcl_ 'Lc](_l)l[F o g(l—]) o h(])](T*") (21)

i=0j=0
Proof. For ¢ € K we have

N — lim
<(foglohp> = = " <foghd>, [by (1.4)]
N — lim
= e sos S uulind [by (1.4)]
N — lim
= - —5 00 < f(gnhn)v¢>
. = - O 1)¢ 1)) (r—1
ie., . = e ;) Ci(—1)* < [F(gnhn) )07, ¢ > [cf.(5,p.291)]
e : 5 - T 1 r—1
= . e Z(j)c,( 1)" < F(gnhn), ¢ >
ie. = N-lm Z Z "C; iCi(-1) < [F (95 PhP)|"=9,¢ > (by Leibniz rule)
' n—oo i i n n

Hence, we have

fog)oh= erc iCi(~1)'[F o (g9 o )=

1=0 j=0

Theorem 2.2. Suppose f, g and h are arbitrary distributions such that

gn:g*(sns hn = hx6,

and their a neutrix product exists. Then we have

(fog)oh=fo(goh).
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Proof. We have by Definition (1.2)
N — lim

<(foglohd> = = = <(fog)hné>

= 11:;2;11 <fog, hno>

= :/__) Li;n < f9ns it >

ie., = f:'_:lo‘;“ < f, gnhno >

Since the nentrix product of g, and h,, is the N-limit of regular sequence (g,hy) on (a,b), we have,

<(fog)ons> = N MM (t(gha) 0>

n — oo

=< fo(goh),¢>

This implies that

(fog)oh=fo(goh).

Thus this proves that the neutrix product of three distributions is associative.
Ahuja [1, 2] also proved these results, but for ordinary limit.

3. Verifications through Examples \

(e ¢}
Example 1. From [11, p. 78], we know that the neutrix product of the distrib\vtion cosz) Z

A >0 and §)(z) exists for an integer k such that 2kA > 7 >0, r =0,1,2, . V\Ag have,

k-1
1
A o6 (z) =6 e zm,\ (r)
coszy 00" (z) =4 (:c)ocosa:+-z P 0d"(z)\
e (2m)!™ \
If2mA #1,2,---,r; m=1,2,--- k-1, equation (3.1) reduces to, \
cos z’J\r 060 (z) = 6")(z) o cos 1:, = J:(J)r 08" (z) = %6‘”(1’)4 \
Thus,
(cosz} 06 (x)) 0 27P = 260N ()02 ;P =0, p=1,2,--; r=0,1,2, -, [cf.(11,p.69)]
and also

(cosz} 060 (x)) o 2, = §60)(x) 0 2

—1)Ppl(r—p)
(=3)% B i B2l S

= 4(r—p)t [cf.(12,p.90)]
0, forp=r+1,»+2--- andr =0,1,2,--
By takmg A =1/2, we have
N »
cosa;i 08" (z) = 6" (z) o cosz? = Z (2m r! ()

r n[6(1m(
:Z() )

(2m)!

m=0 ( )

L Tere=10,1;2;. [cf.{11,p.78)]

"

L. [
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i
The neutrix product of [coa zio 6('")(1:)] with z;? and z%, becomes
3
[cos:r:i o&"“’(x)] oz P=0forp=12,-,and? -m=0,12,, [ef(11,p.69)]

and

r L1yma
[cosxi oé”'(;r)] oxP= z -——L(J"""’)(I) ozh)

o 2r /= m)!(2m)!
. _ —1)mr!
b Z P

(“l)p(‘r - m)' (r=m=p)
r-m=0,1,2,+-,; and p=0,1,2,— - (r—m)
0, forp>r—m

x [cf.(12, 15.90)]

Example 2. If the neutrix product of :ci, zk and o exists, then

m

z} o (2% 0zY) = (2} o zk) 0 2% = 2} TH .

v, d+pp+vand A+ p+r#E-1,-2,-3,.

Solution. By [14,p.97] the neutrix product of :r’}_ and z! exists and

zﬁox:=zﬂozﬁ—r++“ for A p A+ p#-1,—

Similar expression can be defined for the neutrix product of x/, and z*.

A+u-)

We will now show that the neutrix product of (x,") and 2! exists.

To show this, we first consider the case A + p > —1 and (2% ) = (24) * 0n.

1/n
f (z — 60 (1), for z > %
-1/n
.
[T +i)ah)n =25« 60(@) = 2 werglh) 1 1
I f (2 - )50 (t)dt, for — = <z < =
mn T
=1/n
0, forz < -1

where r is a non-negative integer so that v + r > 0. Thus,



\
\\
\
\
Neutriz product of three distribuiio: \
\
. 1 o .
H(V +1) / ("..f\:,,- .-"f"»’ Yol = / (),\n.ké;:;4~7,z / (z — t)"*'ﬁf;"‘(f;:h‘ dit
1=l i 0 - :L/u

l /”.\

1 / 4/\+;1 b / e — u+1ﬁl1v )(I‘f i
./n -1/n

= I + I5.

\

Substituting nx = u, nt = v and for (A + p) + v # —1, -2, —3.\\ -+, m=0,1.2,3. - we can easily see that
1. is negligible and \
n 1 \\

I = n~(z\+),l)—u—nwl / ’ll('\+’lH'” / (“ _ \1\\)111-1'/,(1')(,”)(1,” du
1 -1

which on changing the order of integration, due to absolute convergence of integrals, taking N-limit and
after simplification gives

\
1

Iy = (-1)" Iu-}-z O+ ) + v +m+ 1} /':"'p"‘")(z,')dv
=]

N — lim
n— o

=[[v+ /[N +w) +v+m+1)
i=1

We thus have
1
/ z(A+”)+"‘(zi),,(1x = [(A+p)+v+m+1]7L form=0,1,2,
0

For ¢ € K, we have

oo
(29", (@4)nd) = [2349(24)ub(a) d
0
¢(m) ) m
/ T (gt 05(1) Z e
=0 m:
r-1 (‘);171)(0\) 1 o x’ .
+ Z e /.r"\"” P ) e+ /.r‘)"“')(z'_;),lqﬁ(.r) dx
m=0 L 0 'l
1

1 ( \ \
[BY r.r ’ el
=— /.T by =L.r' (.‘r'})“} o' ({l) dr+

- 1 20
— 0 "0)
g Z — /.LA\XJ‘[H“HI(;"‘I” )” dr + / (A p) ( ) nd’ ) dr.
= m y
e 0 1
[Using Taylor’s theorem for 0 < £ < 1]
Since the sequence of continuous functions {(z),} mnvmgps uniformly to the continuous function " on

the closed interval [a,b] N {1, 20), thus, the sequenc(-’ {x" (2" )n} converges to "1 (v -7 > 0) on the closed
interval [0, 1]. It follows that
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1
N —lim X v N —lim 1 /
n — 0o (”EEr +ﬂ)’(z+)"¢) T nooo o /x(’\“‘i [z (24 )n] 97 (82) da+
0
N—tim & 6™O) [ impimg vy 2 N=Im T s .,
G n — oo m! /z . (x+/>)" T+ n— 00 /Z (2 )ng(z) dz.
m=0 0 4
1 1 J 00
. p (m)
=/1-(/\+u)+u l:qb(r) _ Z wzmT dz+/x(’\+“)+"¢(1-) da
0 m=0 m: y 1
+Ti ¢(m)(0)
A +p)+v+m+m!

Aty
=< zﬁr“"*”,a >,

This proves that the neutrix products of (zi*") and (z%) exists and for A + pu > —1.

Atp

(z} o) oz = (&)™) 02y = QM+

forv, N+ pu+v#-1,-2,--.

For other values of A + pt # —1,—2,-/-- we will follow the method of induction. We suppose that the result
is true for —k —1 < A+ u < —k, k is a positive integer and v, A + p+ v # —1,—2,---. Then we have by
Theorem [6, p. 266] the neutrix product (zj\f“) oz exists for —k —2 < A+ p < —k — 1. Thus the result
follows.

Similarly,

A putv

2} o (e} ozf) =z} o (™) = &}

follows immediately for A\, p,v,u+v and A +pu+v # —1,-2,---.

Hence the neutrix products of distributions zi, a:‘i and z! exists and we have

v

(J:Q\Loalr:ﬂ:)oz+ =z} o (zh

3 vy _ Atutr
Yozh) ==z

i.e. the associative law follows.
Now we are considering an example in which even though the product of three distributions exists but

associativity follows for particular cases:

Example 3. Consider the neutrix product of distributions

1) p!
(7" 0 6®)(z)) ox!, = [%5“’“)] oz, r=12,---,p=0,1,2, -

[cf.(13,p.1445)]

= EUP 50tm) ) 007

(p+r)!
= 260(a), rp=0,1,2
—1)plyp—7)
I~'ro{( 21) 17-5_' }
2770 (8P (z) 0 27) = (p—r)! , forp>nr [cf.(13,p.90)]

0, for p<r

—;—5(”)(1), forp>randr=20,1,2,- -

= [cf.(12,p.69)]
0, forp<r
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This shows that the associativity holds for p > r but not for p < r even though the product of three
distributions exists in both cases. \
Finally we will give an example in which the produ‘st of three distributions exists but the associatjvity

does not hold.

\

Example 4. We have from [cf.(7,p.275)]

and

So

[F(z4,-1)02%] 0z = i[nZ(S(z) \ [ef(7,p.277)]

F(zy,-1)o (2% 02%) =0 \ lef-(10,p.323)]
[F(zy,~1)029] 0z # F(zy,—1)0 (2 0 %2).
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Abstract. The notions of injectivity and essential extensions in the categories of fuzzy
topological and fuzzy bitopological spaces are examined in this paper.

1. Introduction

A study of injectivity and essential extensions in the categories of fuzzy topological and fuzzy bitcpological
spaces is carried out here, with motivations provided by anologous works by Salbany (3] and Wyler [6] in
the context of (crisp) topology.

In topology (or rather for Tp-topological and bitopological spaces), a special role is played by the two-point
Sierpinski space (cf. [4]) and the ‘quad’ (cf. [3]) vis-a-vis injectivity. Also, the injectivity of a topological
space has been shown to be closely linked with the injectivity of its Tp-reflection (cf. [6]). With good
counterparts of Tgp-ness, Tp-reflection, Sierpinski space and the quad, already available in fuzzy topology (cf.
[2] and [1]), it seemed natural to investigate their role in the study of injectivity in fuzzy topology. This
note attempts to do that.

2. Preliminaries

We first recall that a fuzzy topological space (X, A) is called Ty if V distinct pairs of elements z,y € X, 3u €
A with u(z) # u(y) (cf. [2]). Similarly, a fuzzy bitopological space (X, Ay, Ay) (referred to as fuzzy bispace)
is called Tp, if V z,y € X,z # y,3 v € Ay U Ay such that u(z) # u(y).

Let FTS (resp. FTSp) denote the category of fuzzy (resp. Tp-fuzzy) topological spaces, with fuzzy continu-
ous maps as morphisms. Similarly, let BFTS (resp. BFTSg) denote the category of fuzzy (resp. Tp-fuzzy)
bitopological spaces with fuzzy bicontinuous maps as morphisms.

14 : X — I = [0,1] shall denote the characteristic function of A C X. For t € I, the t-valued constant fuzzy
set will be denoted as t.

Let C be any of the categories FTS, FTSy, BFTS, or BFTSj. An object X € obC is called injective if ¥V
C-morphism f:Y — X and ¥V C-embedding e : Y — Z,3 a C-morphism g : Z — X such that f =goe. A
C-embedding e : X — Y is called an essential extension of X if f : Y — Z is an C-embedding whenever
foe: X — Z is a C-embedding.

Keywords and phrases : Fuzzy topological space, Ti)-space, fuzzy bitopological space. essential extension.
AMS Subject Classification : 54A40, O3E72.
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3. Injectives in BFTS,

D. Scott [4] characterized the injective Tp-topological spaces as the retracts of the product of the two-point
Sierpinski space. Analogously in [5], injective Tp-fuzzy spaces were characterized as being the retracts of
the product of the copies of the ‘fuzzy Sierpinski space’. Recently, S. Salbany [3] has identified injective
To-bitopological spaces as the retracts of the copies of a ‘Sierpinski space like’ bitopological space, called the
‘quad’ (cf. [3]). In BFTS, an analogue of the ‘quad’, has been found in {1] as the fuzzy bispace (12,113, 11,),
where 2 =1 x [ and IT; = {0,7;,1},4 = 1,2, with m, 7 : I = I being the two projection maps. It is thus
natural to investigate the role of (I% II;,1I5) vis-a-vis the injective BFTSp-objects.

Proposition 3.1. X = (X, A;,Ay) € obBFTS is injective iff it is a retract of the product of copies of
I? = (I2,11;,10,).

Proof. Let X be injective. Consider the evaluation map ex : X — (12)2"', where ©x = BFTS(X,I?),
which is easily seen to be a BFTS-morphism. The Zp-ness of X makes ex a BFTSg-embedding. So 3 a
BFTS-morphism 7y : (]2)5:‘Y — X such that rx oex = idx.

Conversely, if X is a retract of a product of copies of I? then it can be easily seen that 3 BFTS-
morphism k& : (12)2"' — X such that koey = idx. Now, let g : YV = (V,92;,Q2) — X be a BFTSp-
morphism. Define ¢* : (1) — (12)2"' by g*(a)(f) = a(f o g), where a = (I2)™ ,f € Tx, and Ty
= BFTS(Y,I?). It can be easily shown that g* is fuzzy bicontinuous and ex o g = g* o ey. Now let
h:Y =Y = (Y, Q,0) be any BFTSp-embedding. As (I)*" is injective, 3 a BFTSo-morphism
j:Y' > (12)2" such that j o h = ey. Putting [ = ko g* 0 j, we get a BF'TSp-morphism [ : Y’ — X such
that loh=kog*ojoh=kog*oey =koeyog=1dyog=g. Hence, X is injective.

4. Injectives and essential extensions in BFTS and FTS

Wyler [6] has shown that the injectivity of a topological space can be determined by the injectivity of its
To-reflection. In this section, we show that this fact remains valid in the category BFTS (resp. FTS) also.

Definition 4.1. A BFT'S-morphism f : (X,A1,A2) = (Y,Q;,Q5) is said to be initial if A; = {f~1(v) |
7 € Qi},i =1,2.
The following two propositions are easy to prove.

Proposition 4.1. An injective initial BFTS-morphism f : (X,A;,A2) — (Y,2,9) is a BFTS-
embedding.

Proposition 4.2. For a Tp-fuzzy bispace (X,A;,As), each initial BFTS-morphism f : (X,A;,As) —
(Y,9Q1,95) is a BFTS-embedding.
Given X = (X,A;,As) € obBFTS (resp. X = (X, A) € obFTS, define a relation = on X as:

Forz.ye X,x =y iff u(z) =u(y), Vu e Ay UA; (resp. YV u e A).

Then = is an equivalence relation on X. Let RX be the set formed by taking exactly one, fixed, representative
from each of the distinct equivalence classes under =. Regard RX C X as a fuzzy subspace of X. RX
is obviously Tyg. The map gy : X — RX, sending each z € X to its representative in RX, is clearly
fuzzy bicontinuous (resp. fuzzy continuous) and, in fact, turns out to be the Ty-reflection of X in BFTSg
(resp. FTSp). It cau be easily shown that gy is initial and gy is fuzzy biopen. For a BFTS-morphism
fo (X AL Ay =+ (Y, 01,Q), let Rf : RX — RY be the map sending z to the representative of the
equivalence class of f(r). Evidently, gy o f = (Rf) o gx. Moreover, Rf turns out to be fuzzy bicontinuous.
One can easily prove the following.

Proposition 4.3. A BFTS-morphism f : (X,A;,A2) — (Y,Q;,Q) is initial iff Rf : (RX,A1gx,
AQR‘\') e (RY “‘,[n', Qg}?y) isa BFTSo-embeddiug.
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Proposition 4.4. X € obBFTS is injective iff RX is injective in BFTSy,.
Proof. First, let X be injective in BFTS. Let f: ¥ — RX be a BFTSp-morphism and e : ¥ — Z be a
BFTSg-embedding. If i : RX — X is the inclusion map, then 3 a BFTS-morphism h : Z — X such that
iof=hoe. Defineg:Z — RX by g =gx oh. Then, clearly goe = f, whereby RX is injective.
Conversely, suppose RX is injective in BFTSq. Let f:Y — X be a BFTS-morphism and e ¥V = Z
be BETS-embedding. By Proposition 4.3, Re is a BFTSg-embedding. Hence, 3 a BFTSg-morphism
h : RZ — RX such that ho (Re) = Rf. Let us define g : Z — X by gle(y)) = f(y) for y € Y and
g(z) = (hogqgz)(z) for z € Z\ e(Y). It can be easily seen that goe = f and hoqz = gx © g, whereby, gx is
initial, g is a BFTS-morphism. Hence, X is injective in BFTS.

Proposition 4.5. A BFTS-embedding e : X — Y is an essential extension in BFTS iff

(a) the BFTSg-embedding Re : RX —» RY is an essential extension, and

(b) gy : ¥ — RY induces a bijection from Y \ e(X) to (RY) \ (Re)(RX).

Proof. Suppose (a) and (b) are true. Let f oe be a BFTS-embedding for a BFTS-morphism f:Y — Z.
Then R(f ce) = (Rf) o (Re) is a BFTSg-embedding. From (a), Rf is a BFTSp-embedding, whence by
Proposition 4.3, f is initial in BFTS. It can be easily shown that f is injective.

For the converse, let e be an essential extension in BFTS and, if possible, let (b) be not true. Then
Jy,y2 € Y\ e(X),y1 # y2, such that qy(y) = gy(y2). By identifying those points of ¥ which are in
Y\ e(X) and have the same images under gy, we clearly get an equivalence relation, say r, on Y. Then,
the quotient map f : ¥ = Y/r must be a BFTS-embedding, an impossibility. Thus, e is not an essential
extension.

Lastly, let e be an essential extension in BFTS. Let g1 = f o (Re) be an BFTSg-embedding for a
BFTSg-morphism f; : RY — Z,. We show f, is a BFTSg-embedding. Let Z be the set obtained by
adding a new point g(z) to Z,,V ¢ € X \ RX, where g: X — Z is given by g{z) = gi(z),Vx € RX. Define
q: 22— Zy by q(g(z)) = g1(gx(z)) and q(z) = z for z € Z;. Clearly, g is injective and q is surjective. Also,
gog =gy oqgx. Let us put on Z the initial fuzzy bitopology induced by ¢ : Z —+ Z;. One can prove that Z,
is the Tp-reflection of Z. Again, defining f: Y — Z by f(e(z)) = g(x) for x € X and f(y) = fi(qy(y)) for
~y €Y\ e(X) we can show f; is a BFTS-embedding. Hence, Re is an essential extension in BFTS;.

As each (X,A) € obFTS can be identified with the fuzzy bitopological space (X, A, A), we see that
each of the Propositions 4.1, 4.2, 4.3, 4.4 and 4.5 remains true within the context of FTS also. We specif-
ically record this below omitting the proofs (gy : X — RX now, denotes the Tp-reflection in FTSq of
X = (X,A) € obFTS, obtained by taking the quotient of X after identifying those points of X which have
identical images under each u € A).

Proposition 4.6. 1. An injective initial FTS-morphism f: (X, A) — (¥, Q) is an FTS-embedding.

2. For a Tp-fuzzy space (X, A), each initial FTS-morphism f : (X, A) — (¥,§) is an FTS-embedding.

3. An FTS-morphism f : (X,A) — (V,Q) is initial iff Rf : (RX,Agx) — (RY,Qpy) is an FTS,-
embedding.

4. X € obFTS is injective in FTS iff RX is injective in FTS,.

5. An FTS-embedding e : X — Y is an essential extension in FTS iff

(a) The FTSg-embedding Re : RX — RY is an essential extension, and

(b) gy : ¥ — RY induces a bijection from ¥ \ e(X) to (RY) \ (Re)(RX).

5. An internal characterization of injective BFTSy-cbjects

In this section, we follow [3] to obtain an internal characterization of injective bitopological spaces. We start
with the following observation.

Proposition 5.1. If a fuzzy bispace (X, Ay, Az) is injective in BFTS then both (X, A)) and (X, Ap) are
injective in FTS.
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Proof: We omit the easy proof.
Definition 5.1. A fuzzy bispace (X, A1, As) is called intertwined if V z,2’ € X,
[@]a, N (2], # &

where [z, (resp. [z']5,) denotes the ‘equivalence class’ of z (resp. z') with respect to the fuzzy topology
Ay (resp. Ag) (e, [2]a, = {y € X | u(z) = u(y),¥ u € Ar}).

Examples. The fuzzy bispace (I2,11;,1I3) is an intertwined space, whereas the fuzzy bispace (21, P;, Py),
where 2] = ({0} x I) U (I x {0}) and P; = {0,p;,1},t = 1,2, with p1,p2 : 2] — I defined as :

_J o ifz=(a,0)eIx{0}
pz) = { 0 otherwise

_J a ifz=(0,0)c {0} xTI
pa(z) = { 0 otherwise

is not intertwined.

Proposition 5.2. X = (X, A, Ay) is an injective fuzzy bispace iff it is intertwined and both (R; X, A; g x)
and (R2X, Asp,x) are injective in FTSy.

(Here R; X is the Tp-reflection of (X, A;),i = 1,2, in FTSy).

Proof: Suppose X is injective, then by Proposition 4.4, (X,A;) and (X, Ay) are injective in FTS and
so both (R1X,A1p x) and (R2X,Asp,x) are injective. Define § : X — (X x X,A; x I, T x Ay) by
§(z) = (z,z) for z € X. Clearly, ¢ is an embedding in BFTS. By injectivity of X,3 a BFTS-morphism
F:(X xX,Ay xI,I xAy)— X such that Fod =idx. Let z,y € X and z # y, Let p € Ay, # 0. Then
3 z € X such that u(z) = u(F(z,2)) # 0 ie, F~1(u)(z,z) # 0, whereby F~!(x) # 0. Since F is fuzzy
bicontinuous, F~1(u) € Ay x I. Let F~}(u) = v x 1 for some v € Ay. Now, pu(F(z,y)) = F~Y(u)(z,y) =
(v x 1)(z,y) = v(z) = (v x 1)(z,z) = p(F(z,z)) = p(z). Thus, u(F(z,y)) = p(z) and so F(z,y) € [z],,-
Similarly, F(z,y) € [y],- Thus, [z]s, N[y]s, # ¢ Whereby X is intertwined.

Conversely, suppose that (R1X,A1g,x) and (R2X,Asp,x) are injective in FTSp and X is inter-
twined. Then, (X,A;) and (X, Ajy) are injective in FTS. Let F : (X x X,A; x I, x As) — X be defined
by F(z,y) = z for z = y and F(z,y) = z for z # y, where z € [z]5 N [y]5,- It is easy to show that F
is fuzzy bicontinuous. It remains to be shown that (X,A;,As) is injective. Let f:Y = (Y,Q;,0Q2) - X
be a BFTS-morphism and e : Y -» Y/ = (Y, Q},Q5) be a BFTS-embedding. By injectivity of (X,A;)
and (X,A;) in FTS, 3 FTS-morphisms g; : (Y',Q}) = (X,A;) aud g2 : (Y, Q5) — (X,As) such that
gioe= fand gpoe = f. It can be easily shown that the map ¢g; x g2 : V' — (X x X,A; x I,] x Ay)
is fuzzy bicontinuous. Put g = F o (g; X g2). Then clearly g : Y’ — X is a BFTS-morphism such that
VzeX, (goe)(z)=(Fo(gq x g))(z) = F(g(e(r)), 92(e(z))) = F(f(2), f(z)) = f(=).

Hence, X is injective in BFTS.
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Abstract. In this paper we define a weighted mean and its dual form in n variables, and prove their
monotonocities.
1. Introduction
For positive numbers ag, a1, let

azlnaz—ajlna;
exp[ v 1|, a1 <ay,

I=1(a1,02) = (1.1)
a, a) = az;
XP fal—pl—, ag # a1;
L = L(ag,a1) = (1.2)
ag, ag = ay;
B = Hiao,61) = % + vaoa1 + a1 V"’;ml"""l’ (1.3)

These are respectively called the identric, logarithmic and Heron means (see [1]).
In 2] and 3], Zhang et al. gave the generalization of Heron mean, similar product type mean and their
dual forms. For two variables, these are respectively as follows:

. i i * . —1)ag +1a =
I(ag,a1; k) = H (M) ,I*(ag, a1; k) = H ((k)%)k_ (1.4)

i=1 k+1 =0
and
k . k
1 koi & 1 k_+i_:_‘ =
H(ag,a1;k) = Prl ;aok af,h(ag,a1;k) = E;“ok Vagt, (1.5)

where k is a natural number. Authors proved that H(ag,a1;k) and I*(ap,a1; k) are monotone decreasing
functions and h(ag,a1; k) and I(ag,a1; k) are monotone increasing functions with k, and

Y Keywords and phrases : Mean, wieghted, inequality, monotonocity.

0  AMS Subject Classification : 26D15.



22 K.M. Nagaraja, Zhi-Hua Zhang, V. Lokesha and Zheng-Gang Xiao

lim I{ag,a1; k) = k_ljl;!_l@ I*(ap,a1;k) = I(ag,a1)

k—+o0
and
lim H(ag,a1;k) = lm h(ag,a1;k) = L(aog,a1).
k—++00 k—+oc0
For n variables, let a = (ag,a1, - ,a,) and 7 be a nonnegative integer, where a; for 0 < i < n are

nonnegative real numbers, these are respectively defined by

n+r—1 )

LB (
: ~4
IM(a) = H IZ o, r
W+t tipn=n+T Le=0
10,70,y im 2 1

—
—
(=]

=

n-+
1) = H {Z %akji Lo ) ) (1.7)

iotFi +o b =T

00,521, 4 in > 0
and
ir] 1 n -
Hy = H\(e) = N i/ 1.8
n n \@) [ n+r 2 Bak ( )
10,11, ' , i, = () are integers
1 n
W= bl = Ty 2 [T e/, (1.9)

n+r—1 ) ) - =i
o] ittty =ntr =
11,12, - .1, > 1 are integers

In 2003, Zhang and Xhio [3] obtained for any nonnegative integers r, s with s > r, then

1(a) 2 1f)(a) > I(a) > I} (a) > I;1(a), (1.10)
H'(a) > H¥(a) > L(a) > hl¥l(a) > r(a), (1.11)
with both equalities holding if and only if ag = a; =+ = a,, and
n
s T ey B P e ) = Vigin1) <=1 .
rllif,‘oln (a) = Tli’ngo I''"(a) = I(a) = eXp{V(a;n, 0) ; 5 (1.12)

lim H'(a) = Jlim R (a) = L(a) = . (1.13)

r—00

where Ina = (Inay,- - ,lnay), a; # a; for i # j,

1 a a% - a(')"l ahin*ag
1 a a2 - at! allnfa

Vigrk)=| - T 70 T TR (1.14)
1 a, a2 a ! allnFa,
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| 1 lnag Inag -+ In"‘ag apinfag
2 n—1, r"Inka
Villnsn, k)= 1 lnap In°ay n" ta, all.n a, (1.15)
1 Ina, In2a, --- In"la, a:;lnkan
Let a = (ag,ay, -+ ,an), A = (Ao, A1, -+ ,An) and r be a nonnegative integer, where a; > 0 and \; >0

for 0 < i < n, then

Th=lr— DAk

n+r-—1

ik 1( r—2 )Z:’:“A‘

@, = 1 [z | \ ’ (1.16)
ig+i+ o tin=ntr 0

i0,%1, -+ ,in > 1 are integers

Th=0(+iR) Mg
s

n+r+1)
= ()‘

* - s (23 ( r
LM\ = I1 [Z,— } ; (1.17)
g+t + - tin =T k=0
20,41, ,in = 0 are integers

and

1 n‘ 1 r
HY(a,)) = e > (S (1 + k)X )Hau’ (1.18)
n T y
G T

10,81, "+ ,in > 0 are integers

r—

1 n n
h[’"] ,A = e — 1)\ au/(n+r). 1.19
n(a,N) —w— - > (Z(k }k)];[k (1.19)
2 Zi:o/\i g+t Fip=n+r k=0 k=0
ig, i1, ,in > 1 are integers

In [4]-[6], authors researched that I,[f](a,)\) and H,[lrl(a,)\) are monotone decreasing function Iy" (a,)) and
hn'(a,\) is a monotone increasing function with £ and

lim I1(a,A) = lim I:0)(a, A) = exp Jp Glig i) In (3 aimi) do ) (1.20)
r—00 r—00 fE 1_0/\ z;)dz
fo (S (fl o) ao
im Rl -1 r] - =0
i, e, 3) = i B 3) = s R 2y
where dr = dzdzs - - - dz, denotes the differential of the volume in E:
n
E= {(zl,xg,--- Bl 1Y @ €1, w20, i =12 n} (1.22)
i=1

andzg =1- 31", ;.
In this paper, two means involving above four means in n variables are defined, their monotonicities
are proved.
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2. Definitions and Properties

Definition 2.1. Let a = (ag,a1, " ,an), A = (Ao, A1, - ,An) and 7 be a nonnegative integer, where a; > 0
and \; > 0 for 0 < i < n, then we introduce the following two cases of means H(a, A; o, 3) and h(a, A; o, 3):

(. X o §) = 1 Py Siogikag |7
Hn (alA)alﬂ) ( n+r+1 Z (Z(1+ ‘c)Ak) ( . )

" )Z?:of\i ig+it+ o tin=r k=0
19,41, ,in > 0 are integers
2.1)
1/8
1 n “
H{)(a,%;0,6) = el Z (Z(1+ik))\k> Haf"‘/r ,
( r )Z?:o’\i +i+ - +in=r k=0 k=0
10,11, ,in > 0 are integers
(2.2)

TP (1+ig)Ay
n o2

n+r+1)
i=0 i

HY)(a,X;0,0) = 11 [Z ’“—&} ( g , (23)

A, ; k=1 "
g+t Fipn =1 -

10,21, ** ,in > 0 are integers
n
H,[f] (a,2;0,0) = H ak2;=u(>\i+f\k)/[("+2) 2o Ai]; : (2.4)
k=0

and

v : ) > oot
hrf (a,)\;a,ﬂ) = ('ilc _ 1))\k ( =| >
ntr-—1 NN . : B . k=0 n+r
r—-2 i=0M 9+t t+ip=n+r7T
ip, i1, ,in > 1 are integers
(2.5)
1/8

1 n n )
hi)(a,X;0,8) = 1 > (Z("k - 1),\k> |1 il
( )Z?:OA": ’L[)+L1++‘Ln=n+r k=0 k=0
ig,i1, - ,in > 1 are integers
(2.6)

Th=0lik—Ak
noa

n+r—l)
i=0

B oo n(ik—-l)(
hil(a, X;0,0) = II [Z %] T2 . (@1
n T
iog+i1+ - Fip=n+r =
20,11, " ,in > 1 are integers

1/

1/8
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All(a, 2;0,0) = H akZT:n(*x+f\A-)/[("+2)ZZ‘:o /\,]’ (2.8)
k=0

According to Definition 2.1, we easily find the following remark and characteristic properties for
M (a,\; , 3) and h[ ](a,)\;a,ﬂ).

Remark 2.1. We call that H,[f‘ (a, A, 8) and hLT](a, \; @, B) are the generalized weighted Heron mean and
r its dual form of a for A, respectively.

Proposition 2.1. If 7 is a natural number, then
(a) HIY(a,X;0,0) = hlll(a, X;0,0);
(b) HY(a,2;1,0) = I (a, \), and Hi(a,X;0,1) = Y (a, A);
(c) hif‘(a,/\; 1,0) = I:L[T](a, A), and hgl(a,)\;O, ) = h,[,f](a, A);
() p < H (@, A0, B) < g, and p < k) (a, X0, 8) < q;
(e) l'](a Ao, fB) = M(a Aia,3) =ap if and only if apg = a1 = -+ = an;
) H(ta,\; 0, 6) = tHY (0, s 0, 8) and Al (ta, A; 0, B) = thE(a, ;0. B), if ¢ > 0,

where p = Ox<r}cign{ak}, q= ogll?é(n{ak}’ and ta = (tag,ta1, - ,tan).

3. Monotonicities and Limitations

Theorem 3.1. Let » € N. Then H,[lrl(a, \;a,3) is a monotone decreasing function and hw(a,)\;a,ﬁ) is a
monotone increasing function with 7, i.e. the following two inequalities

HM(a, X 0,8) > HI(a, ) 0,8), (3.1)

(e, A a,8) < AU (a, X e, B), (3.2)

hold if @ < 3, and inequalities (3.1) and (3.2) inverse if & > 3. The equalities in (3.1) and (3.2) are valid if
and only if ag = a1 = -+ = an.

Proof. For a = 0 or A = 0, the proofs of inequalities (3.1) and (3.2) are obtained in [4]-[6].
If a # 0 and 3 # 0, we will only prove the inequality (3.1), the proof of the inequality (3.2) is similar.
From Definition 2.1, we get

ntr 2\ S\ A el B
( 1 )gAk[Hn (a, X0, )]

n+r+2 n T al B/
= — 1 £ak=0 k
> (S sone) (it
o+t + - Fin=r k=0
10,11, "+ , 1, > 0 are integers

_n+r+1 n+r+2 - > k0 tkaR Bl
e E (S (B

o+t tin =T
10,1, ** ,in > 0 are integers
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) <zzzouaf>"/“
.

<Z(1 + 1) Ak

- r+1 . , n4r+1 =
io+ii+ - +ip = k=0
10,41, ,in > 0 are integers
3/
7'1*' Vj T~L_ vi+1 s n,iﬂ"—aﬂ b/
= 2k > Lj=ot 1 S+ v)A— A Lo traf — af
r+1 nEr+l & r
v+t v, =1r+1 =0
vo,V1, "+ ,Vn 2> 0 are integers
(3.3)
When Z;‘Lo v; =7+ 1, we have
n n n n n
Z(l + ;) [Z (1 +v) e — } - _4(1 +uj)2(1 + vk) N\, — Z(l + ;)
j=0 k=0 j=0 k=0 =0
. n n
("7+7‘+2) (1 + V) A\ — (14 ve) Ak
k=0 k=0
:(n+7‘+l)Z(l/k—1))\k. (3.4)

k=0

For (a/3) (a/3—1) > 0, by using the weighted arithmetic-geometric mean inequality and a simple fact that

r+1
for v; = 0, from (3.3) and (3.4), we find

( n+r+2 ) Z)\k[HLr](a’)\;avﬂ)]ﬁ
k=0

r+1

E;sol’j i
Tor+l Z Z
vttt tp=r+1 ;
Vo, V1, ,Vn > 0 are integers
n
- > (Z(1+Vk)/\k>
w4+ trp=r+1 k=0
Vo, V1, ,vn > 0 are integers
n
> )3 (S0
v+t tp=r+1 k=0
vp,V1, -+ ,Vn = 0 are integers
n
- )3 (S s
vttt rp=r+1 k=0
vo,v1, -+ ,Vn 2> 0 are integers

n+r+2
r+1

g

B/a
vy ( Zn =0 7”Cak ) =0
T

) <Z?:o Vj Dop—ikaf —

Dk—0 kR
r+1

)Z H[T'H] (a,\; « 6)]3
k=

B/
Z j=0 Vj (Zk —o Tk — )
™

r+1
B/
aé")

r+1 r

)B/a
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that follows
[HD (0, X; 0, 8)1° > [HI Y (a, A 0, B))°, (3.6)

and inequalities (3.6) inverses if (o/B)(e/B — 1) < 0. The inequalities above are valid if and only if

(Z ikaf aé‘) e (Z ixaf - ) Jr== (Z ixa - ) /r
k=0 k=0 k=0

which is equivalent to ag =a; = -+ = an.

If (a/B)(a/B —1) > 0, that is /B < 0 or a/f > 1, then § > a and 3 > 0, we immediately find
inequality (3.1) from (3.6). If (o/B)(a/B—1) < 0, then a < 8 < 0, and we also obtain inequality (3.1) from
inverses (3.6). That is to say that inequality (3.1) holds if « > 8. Similarly, we have that inequality (3.1)
inverses if a < 3.

The proof of Theorem 3.1 is completed.

Theorem 3.2. We have lim, ;o H,(f] (a,\;a,B) = H(a, A\ o, ) = limyr 0 hy{](a, A\ a, 3), where

1/8
o 8) = | JEiz0 iz (3 Lo afz:)P/?dz ‘
H(a,\;e,B) = { [ Mai)dz : (3.7)
r YR N n /31:1 d
H(G.A;O,,B)z fE( =0 ,I,)({L =0 1 ) T , (38)
fE 1=0 z‘l
S0 o Nixi)l '-l, ®z;)d ’
H(a,A;a,O):exp{fE( =0 z)n(/%: =0 % 73) I}, (3.9)
afE 1=0 I‘l d(t
n
- H(a, X;0,0) = H ak21=|)(>‘-‘+'\lt-)/[("+2)Ei:(»/\i]_ (3.10)
k=0

Proof. This follows straightforward computation from Definition 2.1
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Abstract. In this paper heat transfer in unsteady laminar boundary layer flow over an infinite vertical
plate through porous medium with time dependent suction in the presence of uniform magnetic field is
studied. The expressions for velocity distribution and temperature distribution inside the boundary layer
are obtained. The effects of different parametcrs like Magnetic field parameter (M), Porosity parameter
(K), Prandtl number (Pr) and suction parameter (w) are discussed and shown graphically.

1. Introduction

The study of magneto-hydrodynamic flow for an electrically conducting fluid past a heated
surface has attracted the interest of many researchers in view of its important applications in many
engineering problems such as plasma studies, petroleum industries, MHD power generators, cooling of nu-
clear reactors, the boundary layer control in aerodynamics, and crystal growth. Until recently, this study has
been largely concerned with the flow of heat and mass transfer characteristics in various physical situations.

Due to development of practical boundary layer control system, It is important to study the problem
concerning the suction.

Messiha [8] analysed the unsteady flow past an infinite porous plate with variable suction. Lal [6]
studied the same problem by assuming the wall temperature to be an arbitrary function of time. Nanda and
Sharma [10] investigated the unsteady free convection flow with suction along infinite permeable plate. Lai
et al., [5] and Goswami [2] made an attempt to see the effect of variable viscosity on convection heat transfer
along a vertical surface. The impact of variable viscosity of an electrically conducting fluid in presence of
electric and magnetic field on heat transfer to a continuous moving plate is studied by Hazarika and Phukan
[3]. Siddappa and Kotraiah [13] studied heat transfer in the flow of couple stress fluid past a porous vertical
wall with variable suction. Siddappa and Bujurke [14] applied fluctuating suction to free convection laminar
MHD flow along a verical plate. Pop [12] extended the problem of Messiha for hydromagnetic case. Ojha
et al. [11] discussed free convection flow of heat transfer over a vertical porous wall with time dependent
suction. An investigation into heat transfer along a vertical plate in the presence of magnetic field was made
by Elbashbeshey [1]. Soundalgekar [15] analysed the effects of variable suction and the horizontal magnetic
field on the free convection flow past infinite vertical porous plate and made a comparative discussion of
different parameters and the free convection flow of mercury and ionized air. Mishra [9] have studied heat
transfer in MHD free convection flow over an infinite vertical plate with time dependent suction.

The aim of this present paper is study of heat transfer in MHD free convection flow of
incompressible viscous fluid past an infinite vertical flat plate through porous medium with time depen-
dent suction in presence of uniform horizontal magnetic field.

Keywords and phrases : MHD, heat transfer, porous medium, suction parameter and perturbation tech.
AMS Subject Classification : 76R10, 76 WO05.
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2. Formulation of the Problem

Let us consider the unsteady free convection flow of viscous incompressible fluid of small electrical conductiv-
ity along a flat porous vertical plate of infinite length through porous medium. Take
z-axis along the plate in the upward direction, y-axis normal to it and the origin at the lowest point of
the vertical flat plate. Apply uniform magnetic field of strength By parallel to y-axis. Neglect the heat due
to Ohmic dissipation and assume the suction velocity to be time dependent.

The equations which governed the flow in dimensionless form in the notations of the present paper are:
Equation of Motion :

0%u oty Ou 1 0u [ 1
—+(1 W = — 4+ M+ =u 1
6y2+(+eae )ay 100 +L +Ku (1)
Equation of Energy :
1_ 06 00 0%
ZPT&-PT(I-*—EQEMJ )6—y=5? (2)
Under the boundary conditions
y=0 u=0 6 = To(t)
®3)
Yy — 00 u—0 6—0
where the non-dimensional quantities are defined as:
u= S = lwly’ tzf)i', P
|vo|Gr v 4v V2
41/(4.1, iw't! T/ - T’
w= o To(t) =1+ee™", OZ—T()—TZ
2 Bu(T — T
_oB pr tCo. Gr = AT ~TL)
v k vl
u/,v' - denote the components of velocity in the boundary layer in 2z’ and 3y’ directions

respectively; T the temperature in the boundary layer; T the temperature of the free stream; ¢’ the time; 3
the coefficient of volume expansion; p, the density of the fluid; u, the coefficient of
viscosity; g, the acceleration due the gravity; v, the kinematics viscosity; o, the electrical
conductivity; k, the thermal conductivity; Cp, the heat capacity of the fluid; v, the non zero constant
suction velocity; w, the frequency of the suction velocity; Tp, the temperature at the wall; K, the porosity
parameter; M, the hydro-magnetic parameter; Gr, the Grashof number and Pr, the Prandtl number.

3. Solution of the Problem

For the solution of equations (1) and (2), following Lighthill [7] and Kelly [4], we assume

u(y, t) = u1(y) + ee“ uy(y) (4)

and

0(y,t) = 1+ ce™* — b1 (y) — ee™"02(y) (%)

Substituting in (1) and (2), and comparing in the Harmonic terms and neglecting coefficient of €2, we
get
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8{(y) + Pré;(y) = 0 - (6)

03 (u) + Préy(y) - =2 Proyy) = 2 Pr — aPrt(y) ™)
ui(y) +ui(y) - (M + }‘1—) w(y) =61(y) - 1 (8)

) + ) =~ (5 + M + ) usly) = 0oy) — anw) ~ 1 )

where primes denote differentiation with respect to y.
The boundary conditions (3) transform to

y=0, 01 =0, 6 =0, u; =0, up = 0,
(10)
Yy — 00, 6, — 1, 0y — 1, u; — 0, uy — 0

Again rectifying equation (14) of reference [15], the equation (7) of the present paper is
obtained.
Solving equations (6) to (9) under the boundary conditions (10), we get

0(y,t) =e P ¥ —ee™*[(a; — 1)e P ¥ — qye P 2] (11)

w(y,t) = Ly(e™P¥ — e7P ¥) 1 ee™![(Ag +iBo)e™ B+ _ (44 4 iBy)e~Pr vy

(A4 +iBs)e ™Y + (A3 + iBs)e P {cos Byy — isin Bay}] (12)
where
ap=1- 4iaPr
w

1 iw \ 172 iw \ /2
a2_1_5{1+(1+~’;) ~<ﬁ> for large w

Taking wt = g, real parts of equations (11) and (12) are

V. o \ /4
By) = e Pr v [1 _dae Pr] +ee—(E5%)"y [4aPr cos /%wsin /%y} (13)
w w

u(y,t) = Ll(e‘ﬁly —g Br Y)+e {—e"ﬁ“’ {Bg cos B3y — Ag sin B3y} + Bse Frv

—Bye Py _ =Py {Bs cos 4y — As sin ﬂ4y}] (14)
where
1 1
=M — = —
" I+K’ & Pr2_—pPr—n

4, - [t + VOFTP +w1 M3 B = [\/(1 Fan) T+t - (1+ 4n)} u
; , s

2



32 Vinay Kumar Jadon, Rajeev Jha and S.S. Yadav

1+ +V4n 1+ 4 _ B o (W 1/2
51—-—*——2—, [32——-2’—7 [33—77 Az—Bz—(ﬁ>
wPr w
ﬁ4= ) ’ ﬁ5=wpr—z'_ﬁ4v L2=B%—61—n7
1 1 1
Li=——, Li=———c, Ls=—m—0m,
D) YD) T
1716 2716
4P
A3 = aLs(Ly - Pr), By=aly (2 +220),
4 w
aff; Lyw
Ay = afyLoLy, B4:_—ﬁ144 ,
4aPr 40.Pr
A5=L5(ﬂ4+-——ﬁ5>, Bs=Ls(ﬁ5——'ﬂi>,
w w
Ag = A3 — Ay — 45, Bg = B3 — By — Bs

4. Discussions and conclusions

In Figure 1, the velocity distribution of boundary layer flow is plotted against y for € = 0.01, o = 0.2 and
w = 10 and different values of porosity parameter K, magnetic field parameter M and Prandtl number
Pr. It is observed that the velocity increases sharply till y = 0.8, and then decreases continuously with
increasing y. It is concluded that the fluid velocity decreases with increasing magnetic field parameter M
and Prandt! number Pr but the fluid velocity increases with increasing porosity parameter K.

In Table 1, the velocity distribution of boundary layer flow is tabulated for porosity
parameter K = 2, magnetic field parameter M = 1, € = 0.01, « = 0.2 and Prandtl number Pr = 1.2
and different values of the frequency of the suction velocity w. It is observed that the velocity decreases
continuously with increasing y. It is concluded that the fluid velocity decreases with increasing frequency
of the suction velocity w.

In Figure 2, the temperature distribution of boundary layer flow is plotted against y for porosity
parameter K = 2, magnetic field parameter M =1, ¢ = 0.01, o = 0.2 and w = 10 and different values
of Prandtl number Pr. It is observed that the temperature decreases continuously with increasing y. It is
concluded that the fluid temperature decreases with increasing Prandtl number Pr.

In Table 2, the temperature distribution of boundary layer flow is tabulated for porosity
parameter K = 2, magnetic field parameter M =1, ¢ = 0.01, @ = 0.2 and Prandtl number Pr = 1.2 and dif-
ferent values of the frequency of the suction velocity w. It is observed that the
temperature distribution decreases continuously with increasing y. It is concluded that the
temperature distribution decreases with increasing frequency of the suction velocity w.
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Table-1: The velocity distribution for the different value of @ at M=1, K=2. Pr=1.2,
£€=00land x=0.2.

u(y)

y w=10 w=15 w= 20

0 0.00000000 0.00000000 0.00000000
0.4 0.09334367 0.09325366 0.09319139
0.8 0.10438232 0.10430228 0.10425673
1.2 0.08788445 0.08787397 0.08787008
1.6 0.06606821 0.06609699 0.06610663

2 0.04676425 0.04679189 0.04679779
2.4 0.03189852 0.03191257 0.03191406
2.8 0.02122669 0.02123120 0.02123096
32 0.01388136 0.01388199 0.01388138
3.6 0.00896378 0.00896341 0.00896279

4 0.00573424 0.00573375 0.00573324
4.4 0.00364234 0.00364191 0.00364153
4.8 0.00230101 0.00230068 0.00230042
52 0.00144749 0.00144726 0.00144709
5.6 0.00090755 0.00090739 0.00090728

6 0.00056753 0.00056743 0.00056736

Table-2: The temperature distribution for the different value of watM =1, K=2. Pr=1.2,
€=00l and ¢ =0.2.
B(y)

y =10 w=15 0= 20

0 1.00000000 1.00000000 1.00000000
0.4 0.61895248 0.61886295 0.61879680
0.8 0.38329283 0.38296063 0.38280837
1.2 0.23679250 0.23652723 0.23654016
1.6 0.14580144 0.14601996 0.14633648
2 0.08979785 0.09055138 0.09087460
2.4 0.05581735 0.05651336 0.05638164
2.8 0.03524127 0.03512196 0.03461922
32 0.02233753 0.02136168 0.02117287
36 0.01371122 0.01279680 0.01327858
4 0.00782990 0.00798422 0.00853072
4.4 0.00422666 0.00540963 0.00521718
4.8 0.00258068 0.00362159 0.00289151
5.2 0.00217656 0.00197058 0.00172670
5.6 0.00202751 0.00074919 0.00138222
6 0.00143346 0.00039325 0.00103335
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Abstract. The study of semi symmetric matric s-connection in a Sasakian manifold was initiated by Ojha

and Prasad [3]. The purpose of this paper is to introduce a another semi symmetric metric k-connection
in Kenmotsu manifold and to study its properties.

1. Introduction

Let M be an n dimensional almost contact metric manifold ([1]) with an almost contact metric structure
(¢,€,7m,9), that is, ¢ is a (1.1) tensor field, £ is a vector field, n is a 1-form and g is a Riemannian metric on

M such that

#*(X) =X +n(X)¢ n(€) =1, ¢ =0, nop=0
9(¢X,8Y) = g(X,Y) — n(X)n(Y)

F(X>Y) :g(¢XaY) = —F(YlX)3 g(f,X) =T’(X)

for all X,Y € TM. An almost contact metric manifold is called a Kenmotsu manifold ([2]) if

(Dx9)Y =n(Y)$X — g(¢X,Y)¢ :

where D is Levi-Civita connection of g.
From (1.4) it follow that

Dxt = ¢*X
Also in Kenmotsu manifold, we have
(Dxn)(Y) = g(X,Y) = n(X)n(Y)
2. Semi symmetric metric k-connection in Kenmotsu manifold
Let D be an affine connection. Then D is said to be metric k-connection if it satisfies

Dxg=0

Agreement (2.1). The metric k-connection D satisfies the following condition

(Dx¢)(Y) =n(Y)¢X — g(¢X,Y)¢

Keywords and phrases : Semi symmetric metric connection, Kenmotsu manifold.
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The connection D with the property (2.2) is called k-connection because we have studied this k-connection
in Kenmotsu manifold so to differentiate it from other connection we have named it as a k-connection.

Definition 2.1. A metric k-connection is called semi symmetric connection if

T(X,Y) =n(X)oY — n(Y)pX

where T is the torsion of connection D.
Let us put

DxY =D,Y + H(X,Y)

where H is the tensor of type (1.2) defined by

H(X,Y) = an(Y)oX + bF(X,Y)¢ + en(X) oY

where a,b and c are constants. Then in Kenmotsu manifold, we have
(Dxo)(Y) = H(X,¢Y) - oH(X,Y) +n(Y)dX — g(¢X,Y)¢
Thus in view of (2.2) and (2.5), (2.6) gives
an(Y)X + (a + b)n(X)n(Y)E - bg(X,Y)€ =0

Hence a = 0 and b = 0. Putting these value in (2.5), we get

H(X,Y) = en(X)gY

Now, we assume that the k-connection is metric. Then we find ¢ = 1. Thus we have
Theorem 2.1. In Kenmotsu manifold M™ the connection D define by

DxY = DxY + n(X)¢Y

is a semi-symmetric metric k-connection, whose metric given by

(Dx 9(Y,2) =0

(2.4)

3. Curvature tensor of semi symmetric metric k-connection in Kenmotsu manifold

Let R and R be the curvature tensor of the connection D and D respectively, then

R(X,Y,Z)=DxDyZ - DyDxZ — Dixy)Z
From (2.7) and (3.1), we get

R(X,Y,Z) = R(X,Y, 2) + (Dxn)(Y)$Z +1(Y)(Dx$)Z — (Dyn)(X)$Z — n(X)(Dy¢)Z
=R(X,Y,Z) + n(Y)n(Z)pX — n(Y)g(¢X, Z)E — n(X)n(Z)pY + n(X)g(8Y, Z)E
where
R(X,Y,Z) = DxDyZ — DyDxZ — Dixy|Z

is the curvature of D with respect to the Riemannian connection. Contructing (3.2), we find

Ric(Y, Z) = Ric(Y, Z) + g(¢Y, Z)

(3.1)

(3.2)

(34)
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and

F=r (3.5)

where Ric and 7 are the Ricci tensor and scalar curvature with respect to D.
Let us assume that R(X,Y,Z) = 0. Then from (3.2), we get

Ric(Y, Z) = —g(Y, Z)
which implies that » = 0, and we have
Theorem 3.1. If the Kenmotsu manifold M™ admits a semi-symmetric metric k-connection whose curvature

tensor vanishes, then the scalar curvature r vanishes.
From (3.2), we get

P

R(X.,Y,Z,W)+ R(Y,Z,X,W) + R(Z,X,Y,W) = 2F(Y, Z)n(X)n(W)

+2F (2, X)n(Y)n(W) + 2F (X, Y )n(Z)n(W) (3.6)

po—

R(X,Y,Z2,W)+ R(Y,X,Z,W) =0 (3.7)
where R(X,Y,Z,W) =g(R(Y,X,Z),W).

4. Conformal Curvature tensor

Theorem 4.1. If a Kenmotsu manifold admits a semi-symmetric k-connection D then a necessary and
sufficient condition for conformal curvature tensor C of the manifold with respect to Riemannian connection
and the conformal curvature tensor C of the manifold with respect to semi-symmetric metric k-connection
to be equal is that

(n = 2)n(X)n(W) = g(X, W)

Proof. Let C and C denote the conformal curvature tensor with respect to D and D respectively. Then
we have

= ! 1 — —
C(X,Y,2,W) = R(X.Y, Z,W) - ——[Ric(Y, 2)g(X. W) — Ric(X, Z)g(Y. W)

+Ric(X,W)g(Y, Z) — Ric(Y,W)g(X, Z)] + RS e

[9(Y, 2)g(X, W)] + 9(X. Z)g(Y,\W)  (4.1)

Using (3.2), (3.4), (3.5) and (4.1), we get

TAXY,2,W) = "C(X,Y,2,W) + F(¥, 2)n(X)n(W) ~ —— (X, W)]

-2
~ FOX2)(Y (W) = 25 g(Y, W)
+ FOXW)n(Y)0(Z) - — (Y, 2)
~ P, W)n(X)n(2) - ——9(X, 2)) (42)

where 'C(X, Y, 2, W) =g(C(X,Y,Z), W) and TX,Y,Z,W) =g(C(X,Y. zZ),W).
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If (n—2)n(X)n(W)=g(X,W) then from (4.2), we get
CT(X,Y,Z2,W) ="C(X,Y,Z,W)
The converse is also true. Hence the theorem.
Theorem 4.2. If the Ricci tensor Ric of the semi-symmetric connection D in a Kenmotsu manifold vanishes

then the curvature tensor with respect to D is equal to the conformal curvature tensor of the manifold if
and only if

(n—=2)n(X)n(W) = g(X, W)
Proof. Since Ric = 0 then (4.1) gives
"TX,Y,Z2,W) ="R(X,Y,2,W) (4.3)

From (4.2) and (4.3), we get

BX,Y,2,W) = TX,Y, 2,W) + FY, Z)n(X)n(W) - —g(X, W)} = F(X, 2)[n(¥)n(W)

LS, W)] + (X W) (Y n(Z) ~ ——(Y, 2)] - F(Y, W)la(XIn(Z) - ——g(X,2)]  (44)

If (n-—2)n(X)nW = g(X,W), then from (4.4), we get

y -

R(X,Y,Z,W) ="C(X,Y,Z2,W)
This converse is also true. This proves the theorem.
Corollary 4.1. If the curvature tensor R of the semi-symmetric metric k-connection D in a Kenmotsu

manifold vanishes, then the manifold is conformally flat if and only if (n — 2)n(X)n(W) = g(X, W).
Proof. Putting R = 0 in (4.4) we have

O(X,Y,2,W) = F(X, 2)[n(Y)n(W) ~ —o(Y, W)}
~ F(¥, 2)n(X)n(W) ~ —g(X, W)}

+ F,W)n(X)n(Z) - —g(X, 2)

~ F(X, W)Y )n(2) - —0(¥, 2)) (45)
Thus we see that if (n — 2)n(X)n(W) = g(X, W), then

'C(X,Y,Z,W) =0. (4.6)

Converse is obvious. Hence the proof. o
From (4.2) we have the conformal curvature tensor 'C(X,Y,Z, W) with respect to semi-symmetric
metric k-connection satisfying the following algebraic properties:

T(X,Y,Z,W)+C(X,Y,Z,W) =0 (4.7)
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C(X,Y,Z,W) + T, 2,X,W) + TZ,X,Y,W) = 2F(X,Y)[n(Z)n(W) — -———(](Z W)

L g(X, W)+ 2F(2, X)ln(Y Jn(W) - n%g(an (48)

+ 2F(Y, Z)[n(X)n(W) — 5

In particular 'C(X,Y,Z, W)+ C(Y,Z,X,W) + C(Z,X,Y,W) = 0 if and only if
(n = 2)n(X)n(W) = g(X, W).
5. Concircular Curvature Tensor

Theorem 5.1. If a Kenmotsu manifold admits a semi-symmetric k-connection D then a necessary and
sufficient condition for the concircular curvature tensor V of the manifold with respect to Riemannian
connection and the concircular curvature tensor V of the manifold with respect to semi-symmetric metric
k-connection D to be equal is that

F(Y, Zn(X) = F(X, Z)n(Y)

Proof. Let V and V denote the concircular curvature tensor with respect to D and D respectively. Then
we have

= T

V(X,Y,2) = R(X.Y, 2) - o3 la(V. )X — g(X, z)Y) (5.1)
Using (3.2), (3.5) and (5.1), we get
V(X,Y,2,W) = V(X,Y,Z,W) + [F(Y, Z)n(X) - F(X,Z)n(Y)ln(W)
HF(X,W)n(Y) = F(Y,W)n(X)In(Z) (5.2)

)
where 'V(X,Y, Z,W) = g(V(X,Y,2),W) and ‘V(X,Y, 2,W) = g(V(X,Y,Z),W).
If F(Y,Z)n(X)=F(X,Z)n(Y), then from (5.2), we get

V(X,Y,2,W)="V(X,Y,Z,W)

The converse is also true. Hence the theorem.

From (5.2) we have the concircular curvature tensor with respect to semi-symmetric metric k-connection
satisfying the following algebraic properties:

V(X,Y,Z, W)+ V(Y,X,Z,W) =0 (5.3)

and
V(X,Y,Z,W) + V(Y,Z,X,W) + V(Z,X,Y,W) = 2F (Y, Z)n(X)n(W)
+2F(Z, X)n(Y)n(W) + 2F (X, Y)n(Z)n(W) (5.4)
6. Special Curvature Tensor
Recently, Singh and Khan ([4]) defined a special curvature tensor of the type (1,3) by the relation

J(X,Y,Z) = R(X,Y,Z) + R(X, 2,Y) (6.1)

Or, equivalently
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IJ(X. Y, Z)W) = g(R(X,Y, Z),W) + g(R(X, Z,Y), W) (6.2)

J(X,Y,Z,W) ="R(X,Y,Z,W) + R(X, 2,Y,W) (6.3)
It is obvious that
J(X,Y,Z)=J(X,Z)Y)
and

J(X,Y,Z)+ J(Y,Z,X)+ J(Z,X,Y) =0 (6.4)

Theorem 6.1. The special curvature tensor with respect to semi-symmetric metric k-connection in a
Kenmotsu manifold satisfies the following algebraic properties:

(1) I(X,Y,Z) +J(Y,Z,X)+ J(Z,X,Y) =0
(i) J(X,Y,Z2) - J(X,Z,Y) =0
Proof. Using (3.2)and (6.1) we get

T(X,Y,Z,W) ="J(X,Y, Z,W) + 20(Y)n(Z)F (X, W)
= n(X)(Z)F(Y,W) = n(X)n(Y)F(Z,W) (6.5)

Using (6.4) and (6.5) we get

J(X,Y,2)+J(Y,Z,X)+J(Z,X,Y)=0

where
J(X,Y,Z)=R(X,Y,Z)+ R(X,Z,Y)
Similarly, we have

J(X,Y,Z)-J(Y,X,Z)=0

which proves the statement.
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Abstract. In this paper we have constructed sequence spaces co(4A, X, u), c(A, X 7). loo (D, X, u),
Aco(X,p) and Aleo (X, p) and have characterized their Kéthe-Toeplitz Dua's. We hav - - 'y investigated
conditions on u,v,p and q so that a class is contained in or equal to anoth¢: similar class.

1. Introduction

Let u = (uz) and v = (v) be sequences of non-zero complex numbers and p = (px) and g = (qx)
be any sequences of strictly positive real numbers. Let X and Y be Banach spaces over the field C of
complex numberfs and B(X,Y’) be the Banach space of all bounded linear opcritors from X into Y with
usual operator norm. Thus, if T € B(X,Y) the operator norm of 7.| 7" = sup{|| Tz ||: = € S},
where S = {z € X :| z || < 1}. X* will denote the continuous dual of X. The zero element of X,Y" and
B(X,Y) will be denoted by 8. Malkowsky [4], [5] and Ganasaleen and Srivastava (2] introduced Aco(p) and
co(D,u); ¢(A,u) and oo (A, 1) which is a generalization of the well known sequence spaces co(A), ¢(A) and
Lo (D) (see, Kizmaz [3]).
We define the following set of X-valued sequences

co(D, X,u) = {Z = (zx) : zx € X, || uxlzk || 0} as k — oo}
oA, X,u) = {Z = (zx) : zx € X, then there exists £ € X such that || uzAzr— L[> 0ask—0

loo(D, X, u).= {a‘c = (zx) : zx € X,sup || upglzy {|< oc}
k

Aco(X,p) = {Z = (zk) s 2k € X, || Dzg [P — 0 us k — o0}

DNloo(X,p) = {i = (zk) : 2k € X,sup || Dzy ||P< oo}
k

where Azy = 2 — zx41. Above set of X valued sequences are the generalization of several known sequence
spaces, for instance the following cases arise as the special cases:

i) when ug = 1, for all k and X = C then co(A, X,u) becomes co(A) (Kizmaz [3]).
ii) when uy, = k7, for all k and r < 1 and X = C then co(A, X,u) becomes co(Ar) (Sarigél [8]).
iii) when uj = k", for all k and 7 < 1 and X = C then co(4A, X,u) becomes co(u,A) (Malkowsky [4]).

iv) when wug = wg, for all k and X = C then co(A, X, u) becomes co(Aw) (Ganasaleen and Srivastava
[2])-
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v) when X = C then Aco(4, p) becomes Aco(p) (Ahmad and Mursaleen [1] and Malkowsky [5]).

The generalized Kéthe-Toeplitz duals for the set or sequence space E(X) of X valued sequences is
defined as below.

Definition. Let X and Y be Banach spaces and (A4y) a sequence of linear. but not necessarilv hounded.
operators A on X into Y. Suppose E(X) is a non empty set of X valued sequences. Then the a-dual of
E(X) is defined by

o0
E%(X) = {A = (Ag) : Z II Az || converges for all (zg), (x1) € E(X)}
k=1
A decisive break with the classical approach was made by Robinson (7] in 1950, when he considered
the action of infinite matrices of linear operators from a Banach space of sequences of elements of that
space. The Kéthe-Toeplitz duals for various vector valued sequence spaces have been obtained in terms of
sequences of operators by Maddox [6].

2. The classes of difference sequence spaces co(A, X, u) and Aco(X, p)

In this section we investigate conditions on u,v,p and ¢ so that a class is contained in or equal to another
similar class.

We put rp = [%} We first prove the following lemmas.
Vg )
Lemma 2.1. If (ux) and (vk) are non zero complex numbers then co(A, X, u) C ¢o(A, X, v) if and only if

lim inf, 7. > 0 (2.1)

Proof. Let us assume that the equation (2.1) holds good and let Z € co(A, X, u), then there exists a > 0
such that ux > a vy, for all sufficiently large k, o || viAzy ||<|| upDzy ||.

Since || wrAzgp ||[» 0 as k — oo implies that | vplzy = 0 as & — oco. Therefore
co(A, X,u) Ceo(D, X, v).

Conversely, suppose that the inclusion hold but the condition (2.1) is false, then there exists a
subsequence (k(;)) of k such that for each i <1, i |upy | < | Vk(iy |-

k-1
Define zx = 3 u;%, for k = k(i), i > 1 and z; = 6, otherwise, where z € X and ||z|| = 1 is in
=1

fm
co(L, X, u) but || vg) Az [|> 1 for each ¢ > 1 implies that Z & co(A, X, v). This completes the proof.
Lemma 2.2. For any (ug) and (vi). co(A, X,v) C co(4A, X, u) if and only if

lim supy 7, < 0o (2.2)

Proo:. Suppose the condition (2.2) holds then there exists 0 < 8 < oo such that | uy |[< B | v |, for all
sufficiently large which implies that co(A, X, v) C co(A, X, u).

Conversely, let us suppose that co(A, X,v) C co(A, X,u) and if lim sup, 7 = oco, then there exists
a subsequence (k(;)) of k such that for each i > 1, | ur() | > @ | vp) |- Thus the sequence = (zy),

k=1
where for z € X with [z]| =1, z = ) vj_lf., k =k(i), i > 1 and z; = 6, otherwise, is in co(A, X, v) but

j=1
Z & (A, X,u). The proof is complete.

On combining the lemmas (2.1) and (2.2) we get the following theorem

Theorem 2.3. If (ux) and (vx) be sequences of non zero complex numbers then co(A, X, u) = cp(A, X, v)
if and only if
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0 < lin: infy 7 < lim supy 7, < 00 (2.3)
Corollary 2.4. For any uy
i) co(O, X, u) C co(A, X,v) if and only if lim infg [ ux | > 0.
i) ¢o(A,X) C eo(A, X, u) if and only if lim supy | ug | < oo.

iii) co(A,X,u) = co(A, X) if and only if 0 < lim infy |ux | < supg |ux| < oo.

Lemma 2.5. For any strictly positive sequences (px) and (qx), Dco(X,p) C Aco(X,q) if and only if

lim inf, % >0 (2.5)
Pk
Proof. Suppose the condition (2.5) holds and zj € Ac( X p) then there exists o > 0 such that gx > ap,
for all sufficiently large k which implies that Aco(X.p) C Lco(X,q).
Conversely let us suppose that the inclusion holds but lim infy qx/pr = 0, then there exists a
subsequence (k;) of k such that i gy < pi(i), @ > 1. Putting 2 € X with || z [[=1.
Define a sequence Z = (zy) by

.

-1
T = NAl/p‘
1

Y k=k{i) Vi>land N >1

<.
il

= @, otherwise

is in Aco(X,p) but zx € Aco(X,q). This completes the proof.
Lemma 2.6. For any (px) and (gx), Aco(X,q) C Aco(X,p) if and only if

lim supy gx/pr < . (26)

Proof. Let us suppose lim sup; qx/pr < o0 and zx € Acg(X, g) then there exists 3 > 0 such that gx < Opx,
for all sufficiently large value of k, implies that Acg(X,q) C Aco(X,p).

Conversely, let the inclusion holds but lim supy gx/px = oo, then there exists a subsequence (k(;)) of k
such that for each ¢ > 1, gx(;y > @ pg(sy- Thus for z € X with || z ||= 1. Define

E

-1
T = N—Y4i
1

z
1/’

k=k(i) Vi>1land N >1

<.
Il

= 0, otherwise

is in Aco(X, q) but z & Aco(X,p) - a contradiction, which completes the proof.
On combining lemmas 2.5 and 2.6 we get the following theorem.
Theorem 2.7. For any (px) and (qx), Dco(X,p) = Aco(X,¢) if and only if

0 < lim infg gx/pr < lim supy qx/pr < 0o (2.7)
Corollary 2.8. For any (p)
i) Aco(X) C Aco(X,p) if and only if lim infy (pg) > 0

i) Aco(X,p) C Acg(X) if and only if lim sup, (pr) < oo
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ili) Aco(X,p) = Aco(X) if and only if 0 < lim infy (pi) < lim sup, (px) < oo

3. Kothe-Toeplitz Duals

Theorem 3.1. For any (ug), we have

(A, X u) = (A, X u) = €5(D, X,u) = M(B(X,Y),u),

where

] k—1
M(B(X,Y),u) = {A =(Ap): Ak € B(X,Y), Y Al D 1w |7i< oo} (3.1)
k=1 Ji=1

Proof. Since co(A, X, u) C ¢(D, X,u) C loo(H, X, u) implies that

22 (A, X u) C (A, X, u) C (D, X, u)

Thus it is enough to show that
(i) M(B(X,Y),u C £ (D, X, u)

and
(ii) c§ (A, X,u) C M(B(X,Y),u)

i) Let us suppose that =z C foo(A,X,u), then there exists a constant Mp such that
sup lupAz|| = Mp < oo ie., [|Azkl| < Mo | ug |71, for each k. Since obviously M(B(X,Y),u) C
k

£1(X), we have

Sl Akl < 3 14N Y 1Az + llenll Y 1Ak < 00
k=1 k=1 k=1 k=1

implies that Ay € % (A, X, u). Thus M(B(X,Y),u) C €5 (A, X,u).

00 k=1
i) If Ay € c§(A, X,u) but (Ax) € M(B(X,Y),u) ie, Y Al 3 | uj |7'= oo then there exists an
i=1

k=1
increasing sequence (n(i)), V ¢ > 0. Choose 1 = n(0) < n(l) < --- such that
n(i+1) k-1
M(i) = Z 1Akl 3 |uj|"12i+1, Vi>0.
k=n(i)+1 Jj=1

Let z € X with ||z|| = 1. Define

k-1
z — g .
o= (i+1)j=1 ™ Hil ksl )

6, otherwise

n(i+1)
Then zj € co(H, X,u) but sup > ||Agzl| > 1 implies that ) ||Axzk|| does not converges which
llzl=1 n(i)+1

contradicts that Ay € c¢§(A, X, u). This completes the proof.

Theorem 3.2. For every strictly positive sequence (px). We have
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AL (X, p) = Moo (B(X,Y), p)

where

My (B(X,Y),p) =

T8

2

k=1 j=1

00 k-1
{A =(A): Ak € B(X,Y), Y Akl > NP < oo} (3.2)

Proof. If Ay € M (B(X,Y),p) and (z) € Aly(X,p). Choose N > max. {l.sup ”Awku”*} such that
k

k-1
|Azlf < NYP | Wk > 1. Since S N'/Pi > 1 for arbitrary N > 1 (k=2,3,4, --) then
i=1

oo e k-1 oo
Do lAkzill < Y NARNY Ayl + llzall D 1A«
k=1 k=1 j=1 k=1

o0 [oe] o0
<Y AN Y NPl | Y Akl < o0 (3.2.1)
k=1 k=1 k=1

Conversely, let us suppose that (Ay) € ALS (X, p) but (Ax) € Moo(B(X,Y),p) ie.,

00 1
> Ak | Ax|| N/Pi = oo, for some N > 1. Thus we get a subsequence (n(i)) of n such that
=1 1

i=

n(i+1) k—1
S |4kl ¥ NYPi > 1, for i > 1. Let z € X with ||z = 1. Define
k=n(i)+1 i=1

k-1
zk=") NYPiz, n(i) <k <n(i+1)
j=1

Then sup ||[Azg||P* < N implies that zx € Aly(X,p) but 2z € X is so chosen as
k

n(i+1) n(i+1)
sup Z Akzi| = Z NP >
[ " k=n(i)+1

which contradicts that (A;) € Al (X, p). The proof is complete.
Theorem 3.3. The a-dual of Acy(X,p) is

Acg(X,p) = Mo(B(X,Y), p)

where

(@

[e) k-1
Mo(B(X,Y),p) = {A = (4e) s Ak € BIX,Y), Y [ Ak || Y- N7V < oo} (33)

N=2 k=1 j=1

k=1
Proof. Let us suppose that (Ax) € Mo(B(X,Y),p). Since ||Axl| < |Ax|[NYP S N-VPi (k =2.3,...),
j=1

00
we have 3 ||Ax|| < oo and also (zx) € Acg(X,p) then there is an integer K such that sup ||Azg[P+ <
k=1 k>K

1<k
L = (M +1)N. Define a sequence by § = (yx) by yx = 2z, L~V/™ (k=1,2,3,-- ) then it is easy to see that
sup [|Ay|[P* < N71, and as in (3.2.1) with N replaced by N1, we have

N~! where N is the number in Mo(B(X,Y),p). Now putting M = max ||Azg|P*, m = min Dk,
<K 1<k<K
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Il

o0
L™ || Aga|

k=1

) k-1 00
IS IANY NP5 4 |z D[l Akl < 00
k=1 =1 k=1

Conversely suppose (Ax) € Ac§(X,p) but (Ax) € Mo(B(X,Y),p) then we can determine a subse-
quence (n(z)) of n with n(1) = 1 such that

LA
k=1

IN

n(i+1) k—
> ||Ak121+1 ) VP> 1 (1=1,2,3,--)
n(1)+1 j=1

Let z € X with ||z]| = 1. We define the sequence Z by

k—
Zz—{—l )Pz n(i) <k <n(i+1)

then it is easy to see that ||Azk||P* — 0 as 1 — oo. Hence z; € Acg(X,p) and z € X is so chosen as

n(i+1) n(i+1) k—
sup Y [lAkerll = sup D [|Akll Z (i+1)7VPi||z]| > 1
li=ll= 1n(1)+1 ll=ll=1 n(i)+1 j=1

implies that 3 || Ax|| does not converges which is a contradiction to the given fact. Therefore Ac§(X,p) C
My(B(X,Y),p). This proves the theorem.
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Abstract. Let R be a semiprime ring with some restriction on torsion-freenes. Equivalent conditions for
orthogonality between either the traces of two symmetric biadditive mappings of R, or a derivation of R
and a trace of a biderivation of R are studied.

1. Introduction

Throught this work R represents an associative ring. If n > 1 is an integer, then R is said to be n-torsion
free if nz = 0 in R implies = = 0. Recall that R is semiprime iff zRz = 0 implies z = 0. An additive map
d: R — R is called a derivation of R if d(zy) = d(z)y + zd (y) for all z,y € R. Bresar and Vukman [1]
called two derivations d and ¢ of a semiprime ring R are orthogonal if d (z) Rg (y) = (0) = g (y) Rd (x) for
all z,y € R. Clearly, a nonzero derivation can not be ocrthogonal on itself.

In [4] Yenigiil and Argac have generalized some results of [1] concerning orthogonality of a nonzero
ideal of a 2-torsion free semiprime ring.

For a ring R, a map B : R x R — R is called symmetric if B (z,y) = B(y,z) for all z,y € R. A map
f: R — R defined by f (z) = B (z,z) for all z € R is called the trace of B. If B: R x R — R is a symmetric
map which is biadditive, i.e., additive in both arguments, then the trace f of B satisfies the relation

flz+y)=f(z)+ f(y) +2B(z,y)

forall z,y € R

A symmetric biadditive map B : Rx R — R is called a symmetric biderivation if B (zy, 2) = B (z,z) y+
zB (y,2) for all z,y, z € R. The relation B (z,yz) = B(z,y) 2+ yB (z, 2) is also satisfied for all z,y,z € R.

In [2], Daif and Tammam have obtained some results concerning the orthogonality between a bideriva-
tion B and a derivation d of a semiprime ring R. In fact B and d are said to be R- orthogonal if
B(z,y)Rd(z) = (0) =d(z) RB(z,y) for all z,y,z € R.

Following [1] and [2], we can introduce the orthogonality between traces of biadditive maps. Let R be a
semiprime ring and let f, f2 be the traces of two biadditive maps By, B2 : Rx R — R, respectively. fiand fs
are said to be R-orthogonal if f (z) Rf2 (y) = (0) = fa (y) Rf1 (z) for all z,y € R. The biadditive maps By
and B, are called R-orthogonal of if By (z,y) RB2 (w,z) = (0) = B2 (w,z) RBi (z,y) for all w,z,y,z € R.
Similarly, if d is a derivation of R and f is the trace of a biadditive map B of R, then d and f are R-orthogonal
ifd(z) Rf (y) = (0) = f (y) Rd (z) for all z,y € R.

In the sequel, we will use the following results:

(I) ([1, Lemma 1]). Let R be a 2-torsion free semiprime ring, and a,b be elements of R. Then the
following conditions are equivalent:

(i) axb =0 for all z € R.

(ii) bzxa =0 for all z € R.

(131) azb + bza =0 for all z € R.

If one of above conditions is fulfilled then ab = ba = 0.

Keywords and phrases : Derivation, semiprime ring, orthogonality, biderivation, trace.
AMS Subject Classification : 16W25.
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(IT) ([2, Theorems 1-5, 1-7]). Let R be a 2-torsion free semiprime ring, d a derivation, and B a
biderivation on R. Then d and B are R-orthogonal if and only if one of the following conditions hold:

(i) dB =0

(it) dB 1is a biderivation of R.

(III) ([2, Theorem 1-8]). Let R be a 2-torsion free semiprime ring. A derivation d on R and a
biderivation B on R are R-orthogonal if there exists a € R such that dB (z,y) = zay +yaxz for all z,y € R.

(IV) ([2, Lemma 1-2]). Let R be a semiprime ring and I a nonzero ideal of R. Let d and B be a
derivation and a biderivation of R, respectively. Then

(a) If d(I)IB (1,1) = (0), then d(R) RB(R,R) = (0).

(b) If €(I) = (0) and d(R)IB(R,R) = (0) then d(R)RB (R, R) = (0).

(V) ([2, Theorem 2-9]). Let R be a 2-torsion free semiprime ring and I a nonzero ideal of R such that
£(I) = (0), where £(I) is the left annihilator of I. A derivation d on R and a biderivation B on R are
orthogonal on I if there exists a € R such that dB (z,y) = zay + yax for all z,y € I.

Now we are ready to discuss orthogonality of traces.

2. Orthogonality of Traces of symmetric Biadditive Mappings

Theorem 2.1. Let R be a 2 and 3-torsion free semiprime ring, and let fiand fo be the traces of symmetric
biadditive maps B, and Bs of R, respectively. The following conditions are equivalent:

(2) f and fa are R-orthogonal.

(i) By and By are R-orthogonal.

(13i) fi (z) Rf2 (z) = (0) = f2 (z) Rf1 (2).

Proof. It is clear that (iz) = () and (ii¢) = (¢). To prove (i) = (ii) suppose that (i) holds, so f, and f»
satisfy

fi(z)zfa(y) =(0)= f2(y)zfi(z), forallz,y,z€R. (2.1)

Putting x + y instead of z in the left hand side of (2.1), we get

fi(z+y)zfa(y) =0,

hi(@zfa(y)+ fi(y) 2f2(y) +2Bi(z,9) 2f2(y) =0  forallz,y,z€ R (2.2)

From (2.1) and (2.2), and since R is 2-torsion free, we get

By (z,y) zf2(y) =0 for all z,y,z € R (2.3)

Similarly, from the right hand side of relation (2.1)

f2(y) zBy (z,y) =0 for all z,y,2 € R (2.4)

Putting z + y instead of y in (2.1), and using similar steps as above, we get

fi(z) 2Bz (z,y) = 0 = By (z,y) 21 (2) for all z,y,z € R (255)
Let y =z 4y in (2.3)

fi(z) 2f2 (2)+ f1 (z) 2f2 (y)+2f1 (2) 2Ba (2,y)+B1 (z,y) 2 f2 (z)+B1 (z,y) 2f2 (y)+2Bi (z,y) 2Bs (z,y) = 0.
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By (2.1), (2.3), (2.4) and (2.5), the above relation becomes

2B (z,y) zB2 (z,y) =0 for all z,y,z € R.

Since R is 2-torsion free, we get

B (z,y) 2B (z,y) =0 for all z,y,z € R. (2.6)

By (I) and (2.6), we have

B; (z,y) 2By (z,y) =0 for all z,y,z € R. (2.7)
Putting z + w instead of z in (2.6)
By (z,y) 2B (z,y) + B1 (z,y) 2B2 (w,y) + Bi (w,y) 2By (z,y) + By (w,y) 2B2 (w,y) =0

By (2.6), the above relation becomes

B (z,y) zB2 (w,y) + B (w,y) 2Bz (z,y) =0 for all w,z,y,z € R.
Then

By (z,y) zBa (w,y) = — By (w,y) 2B (z,y) for all w, z,y,z € R.
By (2.7) and the above relation, we have

= - (Bl (wa y) ZBZ (Iv y)) R (Bl (Z,y) ZBQ (w! y))

(B1(z,y) 2Ba (w,y)) R(Bi (z,y) 2Bz (w,y))
,Y) RBy (z,y)) 2B2 (w,y) = 0.

= '—Bl ('LU, y) z (32 (x

By semiprimeness of R, we get

B (z,y) 2B3 (w,y) =0 for all w,z,y,2z € R. (2.8)

By (I) and (2.8)

By (w,y) 2B; (z,y) =0 for all w,z,y,z € R. (2.9)
Putting y + v instead of y in (2.8), we get
B, (xv y) zBs (way) + By (Ia y) 2By (w,v) + By (E‘ U) 2B, (wv y) + By (I,’U) £32)) (’LU,‘U) =0

for all z,y,w,v,z € R.
By (2.8), the last relation becomes

Bj (z,y) 2B2 (w,v) + By (z,v) 2By (w,y) =0 for all w,v,z,y € R.

So, by (2.9) and the above relation, we get
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(BI (Ivy) 2By (wvv)) R (Bl (z,y) 2B, (w, U)) = (Bl ((E,’l}) 2By (wvy)) R (Bl (Iv y) 2By (wv ‘U))

= —Bi(z,v) z(B2 (w,y) RB) (z,y)) 2B2 (w,v) = (0).

Since R is semiprime, we get

By (z,y) 2Bz (w,v) =0 for all w,v,z,y,z € R.
By (I), we get By (w,v) 2By (z,y) = 0 for all w,v,z,y,2z € R.

So By and Bj are R-orthogonal, and hence we have proved (i) = (ii).
Now, we prove that (iii)=>(i). Suppose that (iii) holds, so

fi(z) Rfa(z) = (0) = fo(z) Rfi (x)  forallz € R.
Putting z + y instead of « in the left hand side of (2.11), we get
fi(z) Rfz (y) +2f1 (z) RB2 (z,y) + f1 (y) Rf2 (2) + 2f1 (y) RB2 (2,y) +
2Bi (2,y) Rf2(z) + 2By (,y) Rf2 (y) + 4B1(z,y) RBa(z, y) = (0)

for all z,y € R.

(2.10)

(2.11)

(2.12)

Put —z instead of r and then add relation (2.12) with the new relation. Since R is 2-torsion free, we

fH(z) Rfa(y) + f1 (y) Rf2(z) + 4By (z,y) RB2 (z,y) = (0)  forallz,y € R.
Putting z + y instead of y in (2.13), then using (2.11) and (2.13), we get
6f1 () RBs (z,y) + 6B1 (z,y) Rf2(z) =0 Vz,y€R.

Since R is 2 and 3-torsion free,

fi(z) RBa(z,y) + Bi (z,y) Rf2(z) = (0)  forallz,y € R.

Then

fi(z) RBy (z,y) = —By (z,y) Rfa(z)  forallz,y € R.
By (2.11) and (2.15), we get

(f1 (z) 2B2(z,y)) R (f1 (2) 2B2 (z,y)) = — (Bi1 (z,y) 2f2 (z)) R (f1 (2) 2B2 (2,y))
= —Bi(z,y) z (f2(z) Rfi (z)) 2B2 (z,y) = (0).

Since R is semiprime,

fi(z) zBs (z,y) =0 for all z,y,z € R.

(2.13)

(2.14)

(2.15)

(2.16)
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By (2.14) and (2.16), we get

Bi(z,y)zfa(z) =0 for all z,y,2 € R.

By (2.16), (2.17), and (I), we have

By (z,y)zfi(x)=0 forallz,y,z€ R

fa(z) 2B (z,y) =0 for all z,y,z € R.

Putting = + y instead of x in (2.17), we get

33

(2.17)

(2.18)

(2.19)

By (z,y) zf2 (x)+ By (z,y) 2f2 (y)+2B1 (z,y) 2B (z,y) + f1 (v) 2f2 () + f1 (v) 2f2 () +2f1 (y) B2 (z,y) =0

By (2.11), (2.16) and (2.17), the above relation becomes

fi (y) zfa (z) + 2By (z,y) 2Bz (z,y) =0 for all z,y,z € R.

Then

f1(y) 2f2 (z) = —2B) (z,y) 2B2 (2, ) for all z,y,z € R.

So

(2.20)

(2.21)

(f2(z) 21 () R(f2(2) 21 (v)) = fo (2) 2 (f1 (y) Rf2 (z)) 2f1 (y) = fa(x) 2 (~2B (z,y) RB2 (2,y)) 2f1 (y)

= =2 (f2(z) 2By (z,y)) R(Bz (z,y) 2f1 (y))

By (2.18) or (2.19), the last relation becomes

(f2(2)zfi @) R(fa(z)zfi(y)) =0  forallz,y,z € R.

Since R is semiprime ring, so

fa(z)zfi(y)=0 for all z,y,z € R.

By (I) and (2.13), we have

fi(y)zfa(z) =0 forall z,y,z € R.

(2.22)

(2.23)

(2.24)
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By (2.23) and (2.24), f; and f» are R-orthogonal. B

Theorem 2.2. Let R be a 2 and 3-torsion free semiprime ring, and let By, Bs : R x R — R be symmetric
biderivations with traces fi and fa respectively. Then f) and fy are R-orthogonal if and only if fi (z) fa (y)+
fo(z) fi(y) =0 for all z,y € R.

Proof. Suppose that f; and fo are R-orthogonal, then f) (z) Rf2 (y) = (0) = f-

and so fi (z) f2(y) = 0 = fa(y) f1(x) by (I), hence fi (z) f2(y) + f2 (2) flﬁ(y)-
suppose that:

Rfi(z) for all z,y € R,

(v)
=0 for all z,y € R. Now,

fi(@) fa(y) +f2(2) fi(y) =0  forallz,y€R. (2.25)
Putting = + y instead of z in (2.25), we get
fi(x) f2(y) + f1 () f2 (y) + 2B1(z,9) f2 (y) + fa (=) fr () + f2(y) f (y) + 2B2(2,y) i (y) =0
By (2.25), the last relation becomes:
2B, (z,y) f2 (y) + 2Ba (z,y) fi(y) =0  for all 2,y € R.

Since R is 2-torsion free, we get

By (2,y) f2(y) + B2 (z,y) fi(y) =0  forallz,y € R. (2.26)

Replace z by zr for any r € R in (2.26) we get

By (z,y)rf2(y) + B2 (z,y)rfi(y) =0  forallz,y,7 € R. (2.27)
Finally, substitute y = z in (2.27), we get
fi(@)rfa(z)+ fa(z)rfi(z) =0  forallz,r € R.
By (I),
filz)rfa(z) =0= fo(z)rfi(z)  forallz,r € R.

By Theorem 2.1 f; and f; are R-orthogonal. B

3. Orthogonality between a Derivation and a Trace

Theorem 3.1. Let R be 2-torsion semiprime ring and d a derivation of R. Let f be the trace of symmetric
biadditive mapping B : R x R — R. Then the following conditions are equivalen:

(i) f and d are R-orthogonal.

(ii) B and d are R-orthogonal.

(1i) f(z)d(y)+d(z)f(y) =0 for all z,y € R.

() d(z)f(y)=0= f(y)d(z) for all z,y € R.

Proof. First we prove that (i) < (ii). Suppose that (i) holds. Then
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f(z)Rd(y) =(0) =d(y)Rf (z)  forallz,y€R. (3.1)

Putting = + z instead of z in (3.1), we get

f(z) Rd(y) + f (2) Rd(y) + 2B (z,2) Rd(y) = (0) = d (y) Rf (z) + d(y) Rf (z) + 2d(y) RB (z,2),

for all 2,7,z € R. Using (1) and since R is 2-torsion free, the last relation becomes

B(z,z)Rd(y) = (0) =d(y) RB(z,z) forallz,y,z€ R.

So B and d are orthogonal. It is direct to prove (ii) = (i). Hence (i) < (ii).

Now, we prove that (i) < (iii). Suppose that (i) holds, so d(z)Rf (y) = (0) = f(y) Rd(z) for
all 2,y € R. By (I) d(z) f(y) = 0 for all z,y € R and also f(y)d(z) = 0 for all z,y € R, hence
d{z) f (y) + f(z)d(y) =0 for all z,y € R. Now, suppose that (iii) holds. Then

f(x)d(y)+d(z)f(y)=0  forallz,y € R. (3.2)
Putting v + z instead of y in (3.2), we get
f@)d(y) + f(x)d(z) +d(z) f(2) + 2d(z) B(y,2) =0

for all z,y,z € R. By (3.2), the relation becomes

2d(z) B (y,z) =0 for all z,y,z € R. (3.3)

Since R is 2-torsion free, we get

d(z)B(y,z) =0 for all 7,y,z € R. (3.4)

Putting zw instead of z in (3.4), w € R, we get

d(z)wB (y,z) + zd (w) B (y,z) =0 for all w,z,y.z € R. (3.5)

By (3.4), relation (3.5) becomes

d(z)wB (y,z) =0 for all w,z.y.z € R. (3.6)

By (D),

B(y,z)wd(z) =0 for all w,z,y,z € R. (3.7)

By (3.6) and (3.7), we get
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d(z)wB (y,z) =0 = B (y, z) wd (z) for all w,z,y,z € R.

Putting z =y in (3.8)

d(z)wf(y) =0= f(y) wd(z) for all w,z,y € R.

Hence, d and f are R-orthogonal.
To prove that (i) < (iv), we suppose that (i) holds, so

d(z)Rf (y) = (0) = f (y) Rd (z) for all z,y € R.

By (I)

d(z) f(y)=0=f(y)d(z) for all z,y € R.

Now, suppose that (iv) holds, and assume that

d(z) f(y)=0 for all z,y € R.
Putting y + z instead of y in (3.12), we get
d(z) f(z)+d(z) f(y)+2d(z) B(y,z) =0 for all z,y,z € R.

By (3.12), and since R is 2-torsion free, we get

d(z)B(y,z) =0 for all z,y,z € R.
Putting «t instead of z , and using (3.13) we get
d(z)tB(y,z) =0 for all z,y,2,t € R
By (I), B(y,z)td(z) =0 for all z,y, z,t € R, so we have
d(z)tB(y,z) =0 = B(y,z2)td(z) for all z,y,2,t € R.
Finally, replacing y by z,

d(z)tf(y)=0= f(y)td(z) for all z,y,t € R.

N.M. Muthanna

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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Hence f and d are R-orthogonal. Analogously, if f (y) d (z) = 0 holds, then we get the same conclusion.l

Theorem 3.2. Let R be a 2-torsion free semiprime ring. Let d be a derivation on R and f.be a trace of
symmatric biderivation B : R x R — R. Then the following conditions are equivalent:

(i) d and f are R-orthogonal.

(i)  d and B are R-orthogonal.

(i) df =0.

(i) dB is a biderivation. with trace df .

(v)  There exists a € R such that df (z) = 2zax for all x € R.

Proof. (i) & (ii) from Theorem 3.1. To prove that (i) < (iii), we suppose that (i) holds, d and f are
R-orthogonal, so from (ii) d and B are R-orthogonal, by (II) dB = 0 and hence df = 0.

Now, we prove that (i) < (iv), suppose that (i) holds, d and f are orthogonal, so d and B are orthogonal,
which is equivalent to the fact that dB is biderivation on R by (II), and dB is symmetric because B is
symmetric.

To prove that (i) < (v), we suppose that d and f are R-orthogonal which equivalent to df (z) = 0 for
all z € R, i.e. df (z) =0 =2z.0.x for all z € R. So, Ja = 0 such that df (z) = 2zax for all z € R. Now, let
(v) holds, Ja € R such that df (z) = 2zaz for all z € R, putting x 4 y instead of z, and since is 2-torsion
free, we get dB (z,y) = zay + yaz for all 2, € R. By (III) d and B are R-orthogonal, and hence d and f
are R-orthogonal.

4. Orthogonality Via Ideals

In this section we replace R by a nonzero ideal I of R to study the orthogonality between a derivation on
R and a trace of a symmetric biderivation.

Definition 4.1. Let R be a semiprime ring, d : R — R a derivation, and f : R — R a trace of a
biderivation. We say that f and d are I-orthogonal if and only if d(z)1f(y) = 0 = f(y)Id(z) for all
xz,y €I

Lemma 4.2. Let R be a 2-torsion free semiprime ring and I a nonzero ideal of R. Suppose that d : R — R
a derivation and f a trace of a symmetric biderivation B: R x R — R.

(a) If d(I)1f(I)=(0) then d(R)If(R) = (0).

(b) If €(I)=(0) and d(R)If(R)=(0), then d(R)Rf (R) =0, (wherc £(I) is the left annihlator of I).

Proof. (a) We have d(z) zf (y) = 0 for all z,y,z € I. Put v+ y instead of y,v € I, we get
d(z) zf (y) + d(z) zf (v) + 2d () 2B (v,y) = 0,

and so 2d (z) zB (v,y) = 0 for all z,y,v,z € I. Since R is 2-torsion free, we get d (z) zB (v,y) = 0 for all
z,y,v,z € I, then by IV (a) we get d(R)IB(R,R) =0, hence d(R)If (R) = 0.

(b) We have d(z)zf (y) = 0 for all z,y € R and z € I. Put v+ y instead of y, and since R is 2-torsion
free we get d(z)zB (v,y) = (0), for all z,y,v € Rand z € I., ie, d(z)IB(R,R) = (0) and by IV (b)
d(R)RB(R,R) = (0), hence d(R)Rf(R) = 0.1

Theorem 4.3. Let R be a 2-torsion free semiprime ring, and I a nonzero ideal of R such that ¢(I)=(0).
Suppose that d : R — R is a derivation and f is a trace of a symmetric biderivation B : R x R — R. Then
the following conditions are equivalent:

(i) d and f are I-orthogonal.

(i) d and f are I-orthogonal.

(iii)  f(z)d(y)+d(z)f(y)=0forall z,yel.

(w) dB is a symmetric biderivation on R.

(v) df =0.

(vi) d(z)f(y)=0foralzyel.

(vii) These exist a € R such that df (z) = 2zaz for all z € I.
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Proof. Suppose that d and f are I-orthogonal, so d(I)If(I) = (0) = f(I)Id(I). By Lemma 4.2
(a), d(R)If(R) = (0) = f(R)Id(R), and since £(I) = (0), by Lemma 4.2 (b), d(R)Rf (R) = (0) =
f(R)Rd(R). Hence d and f are orthogonal on R. If d and f are R-orthogonal then obviously, d and f are
I-orthogonal. Hence (i) < (ii) holds.

Next, suppose that d and f are R-orthogonal, so by Theorem 3.1 (iii), we get f (z)d (y)+d (z) f(y) =0
for all z,y € R, in particular, f(z)d(y) +d(z) f (y) = 0 holds for all z,y € I. Now, suppose that

f(x)d(y)+d(z)f(y)=0 for all z,y € I. (4.1)
Putting z + y instead of y,z € I, in (4.1), we get

f(@)d(2) + f(x)d(y) +d(z) f (2) + d(2) f (y) + 2d(z) B (z,y) = 0.

By (4.1), and since R is 2-torsion free, we get

d(z) B(z,y) =0 for all z,y,z € I. (4.2)

Putting «t instead of z in (4.2), t € I, we get

d(z)tB(z,y) +zd(t) B(z,y) =0 for all ¢t,z,y,z € I. (4.3)
By (4.2)
d(z)tB(z,y) =0 forall t,z,y,z € I. (4.4)
Put z =y in (4.4)
d(z)tf(y)=0 for all t,z,y € I. (4.5)

Putting z + z instead of z in (4.1), and using similar steps as above, we get

f(z)td(y) =0 for all t,z,y € I. (4.6)

By (4.5) and (4.6), f and d are orthogonal on I, hence f and d are I-orthogonal. Hence (ii) < (iii)
holds.

To prove that (i) & (iv), suppose that d and f are I-orthogonal, so d and f are R-orthogonal by (ii),
and hence dB is a symmetric biderivation on R by Theorem 3.2 (iv).

To prove that (i) < (v), suppose that d and f are J-orthogonal, hence d and f are R-orthogonal and
by Theorem 3.2 (iii) df = 0.

Now, we prove that (i) < (vi), suppose that d and f are J-orthogonal, so d and f are R-orthogonal by
(ii), and hence by Theorem 3.1 (iv), d () f (y) =0 for all z,y € R, then d(z) f (y) =0 for all z,y € I.

Suppose that
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d(z)f(y)=0  forallz,yel

Putting zt instead of z in (4.7), t € I, we get

d(z)tf(y)+zd(t)f(y) =0 for all t,z,y € I.

By (4.7)

d(z)tf(y)=0 for all t,z,y € I.

Then, by (4.9), we get

(f(y) 2d (2)) t(f (y) 2d(z)) = f (v) 2 (d () tf (y)) 2d (z) = 0.

So, .

(f(y)zd(z))t(f (y)2d(x)) =0  forall t,z,y,2 €1

Since R is semiprime ring, and I is an ideal of R, so

f(y)zd(z) =0 for all z,y,z € I.

By (4.9) and (4.11) f and d are orthogonal on /.
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(4.8)

(4.9)

(4.10)

(4.11)

To prove (i) < (vii), suppose that d and f are I-orthogonal, so d and f are R-orthogonal, from Theorem
3.2 (v) there exists a € R snch that df (z) = 2zaz for all z € R. Inparticular df (z) = 2zaz for all z € I.

Now, suppose that there exists a € R such that

df (z) = 2zazx forall z € I.
Putting z + y instead of z in (4.12), y € I, we get
df (z +y) =2(z+y)a(z+y) for all z,y € 1.

By (4.12), and since R is 2-torsion free, we get

dB (z,y) = zay + yaz for all z,y € I.

By (4.13) and (v), d and B are [-orthogonal, so

d(z)IB(y,2) = (0) = B (y,z) Id(x) for all z,y,z € 1.

Then

d(z)If(y)=(0)=f(y)ld(x) forall z,y € I.

(4.12)

(4.13)

(4.14)
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Hence, d and f are [-orthogonal..®
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Abstract. Particular solutions of some partial differential equations are obtained by an appeal to the
fractional calculus and corresponding homogeneous cases are considered.
1. Introduction

Let f(z) be an analytic function which has no branch points inside and on C [C = {C_, C}; }], where C_ and
C are integral curves along the cut joining points z and — co+i Im(z), z and + oo +1i Im(z), respectively.

Tla+1
(‘;; )/(< f(f))a“dg, a€R (agz) (11)

defines the differintegral of the function f(z) of order .

fo=cfalz) =

(f)en= vgn_ln far (n€z"). (1.2)

Whereever appear, z~ and 2zt are the set of negative and positive integers, respectively, ¢( # z,
—m< arg(¢ —z) < mfor C_ and 0 < arg({ — z) < 2 for Cj.

For a > 0, fq is the fractional derivative of order a and for @ < 0, f, is called the fractional integral
of order a. If f, exists, the principle value of f is considered for many valued function. In the notions
of Nishimoto [1], the partial fractional derivative and as the integral are defined as the extensions of one
variable function.

Let D = {D_,D,}; C = {C_,Cy} possess the same notions as explained above. Here, D_ is a
domain surrounded by C_ and D, is that surrounded by C; (here D contains the points over the curves
C). Moreover, let f = f(z) be a regular function in D(z € D)

I'v+1 St -
fo= o=t = 2 [, e o) (13)
C
and
(f)-m=v£1£1m(f)va (mez*), (1.4)

where f # 2, z€ C, ve€ R, —m < arg(t —2) < for C.,0 < arg(t — 2) < 27 for C;. Then (f),, for
v 2 0, are, respectively, the fractional partial derivatives and the fractional partial integral of order v and
—v, with respect to z, of the function f if | (f), |< co.

The function f = f(2) such that | f, |< oo in D, is called the fractional differintegrable function of arbitrary
order v and the set of them will be denoted by F, we have

| fol<ooe feF (inD={D_,D,}). (1.5)
Keywords and phrases : N-fractional calculus, homogeneous and non-homogeneous Gauss type partial differential
equations.

AMS Subject Classification : 26A33, 65L99.
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2. Partial Differential Equation

In what follows we extend the application of N-fractional Calculus to the solution of certain partial differ-
ential equation.

Theorem 2.1. Partial differential equation of Gauss type

02 d 0? 0
0;2‘ (k122 — koz) + ;—Z(Zklaz) fu= A?’—t; + Bgu(z #0,1) (2.1)
has the solutions
(i) u(z,t) = [kz"‘{z — (ka/k)} e(-BiVB"—‘*AU)(t/?A)]( - (2.2)
where k, k1, ko, A and B are continuous, for AB # 0,
(ii) u(z,t) = [kz“{z — (ka/k1)}e - e(ix/—"/ANO]( by AF0 BAO (2.3)
and
(iii) u(z,t) = [k2*{z — (ka/k1)} ™ e(”/B)(t)](a_l)(z) ,A=0,B#0 (2.4)
Such that o = kja(a—1)—1, a being arbitrary. (2.5)
Proof. Let u(z,t) = ¢(z)e (A # 0). Hence (2.6)
Ou _ a Pu _ 2 At
5 = ¢(z)\e™, ET = ¢(z)\% ‘ (2.7)
and
Ou x Ou At
5= 1(2)Ae™, ke Pa(z)e (2.8)
Substituting (2.6) - (2.8) into (2.1), we have
G2 - (k122 — koz) + 1 - 2k1az + ¢ - (1 — AN2 — BX) =0 (2.9)
Choose A such that
1-AX - Br=kja(a—-1) (2.10)
ie.,
AN + BA+ (kio(a—1) —1) =0 (2.11)
Thus
A= {—B +/BZ—4A(kra(a —1) - 1)} /24, AB #0 (2.12)
1—kia(a—1)/A, A#0, B=0 (2.13)
and
A={1-(ka(a—1)}/B, A=0, B#0 (2.14)

eventually yield



On Nishimoto’s calculus to the solutions of... 63

Go - (k122 — koz) + 61 - 2kjaz + ¢ kia(a—1) =0 (2.15)
Solution of (2.15) is given by (cf. [2])

¢ = k[2*{z = (k2/k1)} a1 (2.16)

Indeed, we obtain the solution (2.2) when (2.15) and (2.16) are substituted into (2.6).
In order to verify our solution, if we write

- {—Bj: VB —4A(ka(a—1) - 1)}/2A:5 (2.17)

we, as a consequence, will have from (2.2) the following

—g—g = {kz“{z - (ktg/l.tl)}“"“]ne‘s' (2.18)
8211 @ —a ot

Fyie {kz {z = (k2/k1)} ]“He (2.19)
Ou a —a ot
5{:5[]“ {z = (ka/F1)} ]aqe (2.20)

and

2

% =82 [kz{z — (ka/k1)} ], _, ” (2.21)

Thus, apparently, left-hand side of (2.1) becomes

{war2 - (k12® = k22) + a1 - 2k10z + wa } %

ie.,
Wo (1 = kia(a—1)) e
i.e.,
0%u ou
AW + BE

where ¢ = § [kz*{z — (ka/k1)}~%],_; €® = wa.
Since wq+2 - (k:122 - kgz) + Wat1 - 2k1az + wq - kia(a — 1) = 0, we have (2.3) for A # 0, B =0 and
(2.4) for A =0, B # 0, respectively.

Theorem 2.2. The homogeneous partial differential equation

0%u . ou
@ (I\‘.ll'2 = k)gz) + a—z' (21\71(12) +u=0
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has the solution of the form

u(zyt) = [kzu{z - (kZ/kl)}-a] (a—1)(z) g (’\ # 0)

where k, k1, ko are arbitrary constants.

Theorem 2.3. Partial differential equation of Gauss type

o, , ou 0%u Ou
5?5( +z)+—a-z—(2u+v—-k)+u—AW+BEt-, (2#0,1) (2.22)
has the solutions
() u(z,t) = [C Hz4+1)7k. e(~BivB’—4Av>(‘/2A>]( - (2.23)
v—1)(z
where k, A and B are constants, for AB # 0,
(ii) u(z,t) = [C Kz 4+1)7k. e<ix/—6/A><t>]( by AE0 B#O (2.24)
and
(iii) u(z,t) = [C Kz + 1) /BXO) |, A=0,B#0 (2.25)
o =v(v—1)— 1,v being arbitrary.
Proof. Let u(z,t) = $(z)e* (A # 0). Hence (2.26)
Ou _ a Ou _ 2 Xt
F i o(z)Ne™, 72 = o(2)\%e (2.27)
and
ou ) 8%u
= S1(z)AeM, 53 = po(2)eM (2.28)
Substituting (2.26) - (2.28) into (2.22), we have
G- (24 z)+ 1 (z+v—k)+¢-(1—AN>=BA) =0 (2.29)
Choose A such that
1-AN - Br=u(v—-1) (2.30)
ie.,
AN+ B A+ (v(v—1)—-1)=0 (2.31)
Thus
A={-B+ /B - 4A@(v-1)- 1)}/2A, AB#0 (2.32)
eventually yield
Gy (2P +2)+ b Quztv—k)+d-vv—-1)=0 (2.33)

A solution of (2.33) is given by (cf. [3])
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o=Cl2"z+1)"",_, (2.34)

i

which when, along with (2.32), is substituted into (2.26), vield the required solution. The justification

follows, in case

,\:{43@ BQ—4A(1z(v—1)—l)}/2A:5 (2.35)
then
Qg = [C Kz + l)gk]’ ot (2.36)
. = [C 2z + 1)7/"] g (2.37)
622 v+1 7 -
Au . v k(. —k ot 9 -
= ~5[C 1) ]1 (2.38)
and
P*u 2 k ~k at
= [04 (z+1) ] K (2.39)

which are due to (2.23).
Finally, the left-hand side of (2.22) is

{wa+2 . (z2 +2) + Wapr - (2uz+v—k) + we } ot

ie.,
Wo - (1 —v(v—1)) e
We (A62 + B(S) &
ie.,
0%u ou

using (2.38) and (2.39), where ¢ = C [zk(z + 1)"°] o et = wy,.

Since weq49 - (22 +2) + Wayr - (202 + v — k) +wq - v(v — 1) = 0. we have (2.24) for A # 0, B = 0 and
(2.25) for A =0, B # 0, respectively.

Similarly, we can establish the following theorem in the context of the homogeneous equation. Solution
(being similar to above) is avoided.

Theorem 2.4. The homogeneous partial differential equation

%, , ou
) (" +2) + 02(211z+v—11:) +u=0
has the solution of the form
u(z,t) = [C 2+ 1)_1“} ceM (N £0)
(v—1)(z)

where C' is arbitrary constant.
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Abstract. In this paper we will show how to generate the wreath product A, wrCy using a copy of the
symmetric group A,, and an element of order 2k in A, for all positive integers n = am > 2 and all
positive integers k > 2. We will also show how to generate A,,wrC} symmetrically using n elements each
of order 2k.

1. Introduction

Al-Amri [2] showed that Agny1 and Skn41 can be generated using a copy of the wreath product SmwrCq
and an element of order k + 1 in Agnyy and Sgnyy for all n = am 2> 2 and all positive integers k > 2.
Moreover Agn41 and Skn41 can be symmetrically generated by n permutations each of order k+1. Further,
Shafee [4] showed that Agn41 and Skn41 can be generated using a copy of the wreath product SmwrCy, and
an element of order k + 1 in Agny1 and Skpq for all n = am > 2 and all positive integers k > 2. Moreover
Agny1 and Sgnyq can be symmetrically generated using n elements each of order k + 1. In this paper, we
give permutations to show that the group G = (X,Y,TKX,Y) = AmwrCq, TFY = [T, Ap] = 1) is the
alternating group Agn4+1 when k is an even integer and Skny1 When k is odd for all n = am > 2, k > 2.
Further, we prove that G can be symmetrically generated by n permutations each of order k+1 of the form
To,T1, s Tn-1, where T; = T+, satisfying the condition that Tp commutes with the generators of Ap,.

2. Preliminary Results

Theorem 2.1. Let 1 < a # 2a < n be any integers. Let n be any integer. Let G be the group generated by
the n - cycle (1,2, - ,n) and the 3- cycle (n, a, 2a). If n = am and if m is an odd integer, then G = ApwrC,.

Theorem 2.2. Let G be the group generated by the n - cycle (1,2,---,n) and k- cycle (1,2,--- k). If
1 < k < n is an even integer, then G = Sp.

Theorem 2.3. Let 7 be an odd integer and let G be the group generated by the n-cycle (1,2, ,n) and
k-cycle (1,2, -+ ,k). If 1 <k < n is an odd integer, then G=A,.

Definition 2.1. Let A be a group of permutations of a finite set ; and B a group of permutations of a
finite set €. Assume that neither of Q; nor s is empty and they are disjoint. The wreath product (some-
times called the complete or the unrestricted wreath product) of A and B defined by A wr B = A2 XyB
where is the direct product of | 2 | copies of A and B the mapping 0, where 6 : B — Aut(A%2), is defined
by : Oy(z) =2¥, forall z € AS. Tt follows that | A wr B |= (| A et B .

Definition 2.2. Let G be a group and I' = {Tg, T, - ,Tn_1} be a subset of G where each T; = T+ for all
i=0,1,--- ,n— 1. Let S, be the normalizer in G of the set I'. We define T' to be a symmetric generating

Keywords and phrases : Groups, symmetric generating set, the wreath product.
AMS Subject Classification : 20B99.
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set of G if and only if G = (T') and S, permutes T" doubly transitive by conjugation, i.e., I' is realizable as
an inner automorphism.

3. Permutational generating set of Ay,,; and Sy,

Theorem 3.1. Ap,wrC} can be generated using a copy of the symmetric group A4,, and an element of order
2k in Ay, for all positive integers n = am > 2 and all positive integers & > 2.

Proof. Let X = (1,2,--- ,n)(n+1,n+2,- - ,2n) - (k= Un+1,{k - 1)n+2,- - Jkn), Y = (a.2a,n)(n+
a,n+2a,2n) - ((k=1)n+a,(k—1)n+2a,kn) and T = (n,2n, -, kn, kn+ 1) be there permutations; the
first of order n, the second of order 3 and the third of order k+1. Let H be the group generated by X and Y.
By Theorem 2.1, the group H is the wreath product A, wrCy. Let G be the group generated by X,Y and T
We claim that G is either A, or Skn+1. To show this, let 8 = TX. It is clear that 3 = (1,2, ,kn+ 1),
which is a cycle of length kn + 1. Let @ = T%. Since @ = (n +1,2n + Lk =1)n+1,kn+1,1)
then conjugating a by 3 we get the cycle n = (n+2,2n+2,-- , (k- 1)n+2,1, 2). Hence the commutator
[a,n] = (1,2,n+1). Let G = (B, [, 7)), it is clear that G = Skn+1 0F Agpny1 depending on k either odd or even
integer respectively, but if k is an odd integer, then X is an odd permutation and therefore G = G = Skna1s
While if k is an even permutation, then G is generated by even elements. Hence G = G = Apny1. A

4. Symmetric permutational generating set of Ay, ) and Si,

Theorem 4.1. The groups A,y and Skn+1 can be generated symmetrically using n elements each of
order k + 1.

Proof. Let X,Y and T be the elements considered in theorem 3.1 above. Let [ — (T, Ty, -, Tn}
for all n = am > 2, where T; = T%. Since T} = (I,n+1,2n + 1, J(k=1n+1kn+1), Th =
2n+2, (k=1n+2,kn+1), - T, =T =T = (n,2n,3n---  kn,kn+1). Let H = (I'). We claim

n
that H = Agpi1 or Skny1. To show this, consider the element a = 11 T . It is not difficult to show that
i=1

a=T1=(1n+1,2n+1,-- ,(k—=1)n+1,2n+2,2n+2,.-- J(k=1)n+4+2,-- n,2n, - kn,kn+1),

which is an element of order kn + 1. Let H; = (a1Ty). We claim that H; = Ag,yq or Skn+1- To prove
this, let 6 be the mapping which takes the element in the position i of the cycle a into the element i of
the cycle (1,2,--- ,kn + 1). Under this mapping the group H; will be mapped into the group 6(H;) =
(1,2, ,kn +1),(1,2,3, -+ ,k,kn + 1)). Therefore by theorems (2.2) and (2.3) 6(Hy) = Hy is Appyq or
Skn+1 depending on whether & is even or odd integer respectively. Since H; < H , then if £ is an odd integer
Hy 2 H = Sppyy. While if k is an even integer, then I' contains even permutations. Hence H = (T) is
generated by even permutations. Hence H; & H & Ay, A.

In order to generate Agpi1 O Skni1, the set T' = {T1,T>, - ,T»} has to have at least n elements each
of order k + 1. The following theorem characterizes all groups founded if we remove m - elements of the set
Fforall<m<n-1.

Theorem 4.2. Let T and X be the permutations which has been described above, where T5+! = 1. Let
I'={T\,T5, - , Ty} for all n > 2, where T; = T%". If k is an even integer then if we remove m-elements
of the set I' for all 1 < m < n — 2 then the resulting set generates Ag(n-m)+1- While if k is an odd integer
then if we remove m-elements of the set T' for all 1 < m < n — 2 then the resulting set generates Sk(n_m)41-
If we remove (n — 1) elements of the set ' then the resulting set generates Ck].

Proof. The proof is similar to the proof of Theorem 4.2 in 4]. A.
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