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ON GROUP INTEGER TOPOLOGY-II

Shakeel Ahmed*

Department of Mathematics, Govt. P.G. College Rajouri, Rajouri-185131 (J & K), India
e-mail : Shakeelar2002@yahoo.co.in

(Received January 24, 2005)

Abstract. In this paper, we have studied product, covering dimension and finitisticness of group integer
topological spaces. We have also shown here that group integer topology is a topological property and it
need not be preserved by a continuous map.

1. Introduction

We have introduced the concept of Group Intgeger Topology in our earlier paper (1] and studied its many
basic properties. Let G be a group and T = {UcG:zeU=a"elU Vne Z} is a topology on G.
This topology is called group integer topology and (G.T) is called group integer topological space [1], here
Z is the set of all integers. An open cover {Uy : A € A} of a topological space X is said to be of order n if
intersection of any (n + 2) members of {Uy : A € A} is empty and there exists a subfamily of {Uy : A € A}
consisting of (n+ 1) members which has nonempty intersection. The convering dimension [3] of a topological
space X is denoted hy dim X and is defined as the least integer n such that every finite open conver of X
has an open refinement of order not exceeding n. If there exists no such integer n, then we say that X is
infinite dimensional. We say that dim X = —1 if and only if X is empty [3].

A topological space X is said to be finitistic [2] if each open cover of X has a finite order open
refinement. A topological space X is said to be locally finitistic [2] if each = € X has a closed

finitistic uneighbourhood. A topological space X is said to be completely finitistic (2] if each
subspace of X is finitistic. A topological space X is said to be countabily finitistic [2] if such
countable open cover of X has a finite order open refinement. All the other topological

preliminaries used in this paper cau be seen in Willard [4].

2. Main Results

Theorem 1. Let {G) : A € A} be a family of group integer topological spaces. Then the product topology
on [Jyea G is contained in the group integer topology on [Jyca Ga-

Proof. We know [[,cn Gxr = {f : & = UseaGa - f(\) € Gy, ¥V X € A} Tt can be easily shown that
[I.en G is a group under the binary operation (f9)N) = fNgN), V f,9 € [[heaGrand ¥V X € A.
Here the function I € [[ e G defined as I(A) = ey can be shown as identity of []yca G, where ey is
identity of Gy, ¥V A € A. For all f € [[yen G, define FYA) = (FV)7Y, ¥V A € A, Then it can be
shown that f=1 € [] sen Ga. Now we show that product topology on [Jyca G is contained in the group
integer on [ [, Ga- Let T be the product topology on [Isen G and T be the group integer on [Taen Ga-
Let U € Ty and f € U. Then there exists some basic open subset [Laen Ua of [Thea Ga with respect to
Ty such that f € [[,ca Ux € U. Then f(\) € Uy. Since U, is open®subset of G, ¥ X € A, therefore
(fA)*eUy¥neZandV e A Weknow (f(X)" = f*(A) = YA €Uy, VA€ A and V¥V n € Z. But

Keywords and phrases : Product, covering dimension, finitistic space, homomorphism.

AMS Subject Classification : 51A05, 54A10.
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el frellalhcU=s frel,YoecZ=sUehh=T CTh

Remark 2. In Theorem 1, product topology need not be group integer topology.

Let G = {1,w,w?} where 1,w,w? are cube roots of unity. We know (G,C) is a group. Let
T = {¢,{1},G,}. Then T is group integer topology on G. Let B=T x T = {6, {1} x {1}, {1} x G, G x G}
={¢, {(1, 1)}, {(1,1), (1, w), (1,w?)}, G x G} is base for the product topology on G x G. Therefore product
topology on G x G = {¢, {(1,1)},{(1,1), (1,w), (1,w?)},G x G}. But this topology is not group integer
topology on G x G because the U = {(w, 1), (w?,1),(1,1)} is open subset of G x G with respect to group
integer topology on G x G but U is not open subset of G x G with respect to the product topology on G x G.

Theorem 3. Let G be a group integer topological space where G is cyclic group. Then dim G = 0.

Proof. Let p be any finite open cover of G. First we show if a is a generator of G and U is an open subset
of G, then a € U & U = G. Since G is cyclic group, therefore G has a generator. Let a be a generator of
G and U be an open subset of G. Suppose a € U. Then we have to show that G = U. Let z € G. Since a
is generator of G, there exists r € Z such that = a”. Since U is an open subset of G , therefore

aceU=d €eU=2eU=GCU (1)
Clearly
Ucag (2)
From (1) and (2), we have
U=G ®3)

Now we show that G € p. Since p is a finite open cover of G and a € G, there exists some U € p such that
a € Ug. By (3) Us = G. It means

Gep (4)
Now since G € p, therefore V = {¢, G} is clearly zero order open refinement of u. Here dim G = 0.

Theorem 4. If G is a group integer topological space where G is an infinite set and z-! — T,
YV z € G, then dim G = 0.

Proof. Clearly, V z € G,{e,x} is an open subset of G. We have to show that dim G = oo.
Suppose dim G = n. Then each finite open cover of G has an open refinement of order n. Let
p={G—{x1, 20,23, -, Tpi1}, {e, 21}, {e,za}, -+, {e,Tnt1}} where e # z1, @9, - - -, ZTpt1 € G. Then clearly
p is finite open cover of G. Since dim G = n, therefore y has an open refinement V' of order not exceeding
n. We can easily shown that arbitrary intersection of open subsets of G is always nonempty. Therefore,
if dim G = n, then V cannot has more than (n + 1) members. Since here total number of members in n
is (n +2) and clearly any sub family of p obtained by missing any member of y cannot be a cover of G,
therefore from this we can easily conclude that V cannot be a cover of @ if we consider that it has (n+ 1)
elements. Hence dim G = oo.

Theorem 5. Let G be the group integer ‘topological space where 0(G) = n; n > 1 and
t'=zVz€G. Thendim G =n—2.

Proof. Let G = {z1,29,23,--+,2,}. Since 7! =z, V z € G, therefore 2" = z ore, Vz € G. It
means {e,z} is an open subset of G. Let i be any finite open cover of G. Without loss of generality,
we can assume that z1 = e. Then clearly v = {¢, {e,z2},{e,x3},- -, {e,z,}} is an open refinement of
p and order of ¥ = n — 2. But order of v = n —2 = dim G < n — 2. In order to show that dim
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G = n — 2, we have to show that dim G £ n — 3. Suppose dim G < n — 3. Since v/ is a finite open cover
of G, therefore it has an open refinement, say 1 of order not exceeding n — 3. It means intersection of
any (n — 1) members of vy is empty. Since {e} is subset of each non-empty member of vy, therefore vy
has almost (n — 2) non-empty members. But this is not possible because any refinement of v cannot be a
cover of G unless it has atleast (n— 1) non-empty members. Therefore dim G £ n—3. Hence dim G =n—2.

Remark 6. From Theorems 3,4,5, we can conclude that for all n € {0} U N U {oco}, there exists a group
integer topological space G, such that dim G, = n.

Theorem 7. Let G be a group integer topological space where G is cyclic group. Then G is finitistic.

Proof. Let y be any open cover of G. By (4) ,G € p. But G € p= {#, G} is zero order open refinement
of u. Hence G is finitistic.

Theorem 8. If G is a group integer topological space where G is an infinite set and 27! = z,
VY z € G, then G is not finitistic.

Proof. Since 27! =z, V& € G, we find that 2" =z ore, Vz € Gand Vn € Z. It means {e,z} is an
open subset of G. Then clearly u = {{e,z} : € G} is an open cover of G which has no finite order open
refinement. Hence G is not finitistic.

Theorem 9. If G is a group integer topological space and z=! = z, V = € G, then every proper closed
subspace of G is finitistic.

Remark 10. The space in Theorem 8 is not countabily finitistic because the countable open cover
p={G - {x1,22,73,-- -} U{{e,xn} : n € N}} of G has no finite order open refinement.

Theorem 11. A group integer topological space is locally finitistic if and only if it is finitistic.

Proof. Let G be any group integer topological space. Let U be any open subset of G. We first show that
U = G. By definition of group integer topology e € U and no proper closed subset of G contains e. Hence
G itself is the only closed subset of G containing U. It means

U=G (5)

Suppose G is finitistic. Let ¢ € G. Let N be any nbd of z. Then there exists an open subset U of G such
that £ € U C N. By equation (5), U =G. Now U =G and U C N = N = G. Since G is finitistic,
therefore N is a closed finitistic nbd of z. Hence G is locally finitistic. :

Conversely, suppose G is locally finitistic. Then each z € X has a closed finitistic nbd, say N,. Since
N, is nbd of z, there exists some open subset U of G such that € U C N,. By equation (5), U =G. Now
U=Gand UC N; = N, =G = G = N, (N, is closed subset of G). Since N; is finitistic and G = Ng,
therefore G is finitistic.

Theorem 12. The group integer topology space is a topological property.

Proof. Let G be a group integer topological space and f : Gi — G2 be a homeomorphism. We have to
show that G is also a group integer topological space. Let y1,y2 € Ga. Define y1y2 = FUE Y ) FHw2)-
We can easily show that G is a group under this operation. Here f(e) is identity of G2 where e is identity
of G1. Let y € Gy. There exists = € Gy such that y = f(x). We can show that y~! = f(z!) inverse of y in
G». Now we show that topology on Gs is the group integer topology. Let T be the given topology on G2
and T, be the group integer topology on Go. We have to show that Ty = T. Let U € T, and y € U. Then
there exists z € f~1(U) such that f(z) = y. Now z € f7(U) = z" € f~}(U), V n € Z because FHU) is
subset of G1. Thus " € f~}(U) = f(z") € U, V n € Z. We have to show that y" € U, Vn € Z.
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Case-I. When n is positive integer.
Then y"* = yyy---y

n times
= fU ) 7 y) = fleez- - x)

= f(z") e U by (5) =y € U.

Case-I1. When n is negative integer. Then we can write n = —m where m is positive integer.
Then yn — y—m — ('.UAl)”L — y—ly—l .. .y——l
m times

=y O Yy Ny = fe el
= f((a )™ = f(a™) € U by (5) =y € U.

Case-III. When n = 0. Then y" = y® = ¢’ = fle) = f(2 = f(a" € U by (5) = y" € U.
From the above cases, we conclude that y* € U, Vn € Z. But

yreUVneZ=Uch=TCcT (6)

Let U € Ty and y € U. Then y" € U, ¥ n € Z. But since y € fHU). there exists € f~YU)
such that f(r) = y. But f(z) = y = f(x) € U = (f(a")" € U, Vn e Z = f(a") € U (since
(f(@)" = f(a")) = 2™ € f~Y(U), Vn € Z). We know that {2 : x € Z} is an open subset of Gy. Since
[ is an open map, therefore f({z" : 2 € Z}) = {y" : & € Z} is an open subset of G with respect to the
topology Ti. It means V y € U, there is an open subset {y" : n € Z} of Gy with respect to topology Ty such
that ye {y":n € Z} Cc U. It means U € T,. But

UET]:>T2CT1.

-1

From (6) and (7), we get T} = T-

Remark 13. Continuous image of group integer topological space need not be group integer topological
space.
Let G = {1,w,uw?} where 1,w,w? are cube roots of unity. We know that (G..x) is a group. Let
= {¢.{1}.G}. Then (G,T) is a group topological space. Let I be the indiscrete topology on G. Then
the identity function I : (G,T) — (G,I) is continuous and onto. It means (G, I) is a continuous image of
(G,T). Here (G,T) is a group integer topological space where (G, I) is not group integer topological space
because the topology I on G is not group integer topology.
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Abstract. Some theorems on the existence of fixed points of continuous mappings and of quasi non-
expansive mappings defined on subsets of convex metric spaces have been proved which generalize some

earlier results.

1. Introduction

There exist many fixed point theorems for continuous self mappings defined on compact convex sets in
different spaces: such as classical fixed point theorems of Brouwer. Schauder and Tychoff established in
finite dimensional Euclidean spaces. Banach spaces and locally convex Hausdorff linear topological spaces
respectively. For contraction mappings, there is celeberated Banach contraction principle which asserts that
every contraction mapping on a complete metric space has a unique fixed point Non-expansive mappings
contain all contraction mappings as a proper subclass and they form a proper subclass of the collection of
all continuous mappings. Hence one may hope to obtain fixed point theorems for non-expansive mappings
with hypotheses somewhat weaker than compactness and convexity. There has been considerable success in
relaxing compactness (see e.g. Dotson [4], Habiniak [5]). Dotson [4] relaxed convexity condition and proved
that if C is a compact starshaped subset of a Banach space E and T is a non-expansive self mapping of C
then T has a fixed point in C. This result was extended to convex metric spaces by Itoh [6] whereas relaxing
compactness as well as convexity, a generalization of Dotson’s theorem was given by Habiniak [5]. This
result of Habiniak was extended to p-normed spaces by Khan and Khan [8] and to convex metric spaces by
Beg ct al. [1]. Subrahmanyam [11] gave the following generalization of Dotson’s theorem:

Let T be a continuous mapping defined on a compact subset C of a normed linear space E into
itself. Suppose that there exists p € C and a fixed sequence of positive numbers < kn > (kn < 1)
converging to 1, such that (1 — k,)p + kn Tz € C for each € C ; further for each z € C and kp,
| T((1 = kn)p + knTx) — Tz |<|| 1 — kn)p + knTz — 2 II. Then T has a fixed point.

In this paper, we prove a theorem on fixed points of continuous mappings in convex metric spaces
which extends results of Beg et al. [1], Dotson [4], Habiniak [5], Khan and Khan [8] and Subrahmanyam
[11]. We shall also extend a result of Dotson [3, Theorem 1] on fixed points of quasi non-expansive mappings
to convex metric spaces.

To start with, we recall a few definitions.

Definition 1. Let K be a subset of a metric space (X,d). A mapping T : K — K is said to be

(i) non-expansive with respect to a subset M of K if for each z € K, ue M, d(Tz,Tu) < d(z,u).

If M = K then T is said to be non-expansive on K.

(ii) quasi non-expansive if d(T'z,p) < d(z,p) for all € K provided that the fixed point set F(T)of T is
non-empty and p € F(T).

! This research was partially supported by University Grants Commission, India (F.30-238/2004(SR)).
Keywords and phrases : Convex set, convex metric space, Banach operator, non-expansive
and quasi non-expansive map.
AMS Subject Classification : 47H10, 54H25, 55M20.
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(iii) a Banach operator if there exists a constant 3, 0 < 8 < 1 such that
d(T*z,Tz) < Bd(Tz,z) for each z € K.

Definition 2. (i) Let (X, d) be a metric space and I = [0, 1] be the closed interval. A continuous mapping
W :X x X xI— X is said to be convex structure on X if for all z,y € X, Ael

d(u, W(z,y, X)) < Ad(u,z) + (1 — N)d(u, y)

for all u € X. The metric space (X, d) together with a convex structure is called a convex metric space [12].
(ii) A convex metric space (X, d) is said to be strongly conmvex [2] if for each x,y € X and every \ € I,
there exists exactly one point € X such that z = W(z,y, ).

(iii) A convex metric space (X,d) is said to satisfy property (1) [6], if for any
2,y € X, dW(z,p,)), W(y,p,)) < Md(z,y), pe X, 0< A< I

(iv) A strongly convex metric space (X, d) is said to be strictly convex [9] if for every z,y € X and every
r >0, d(z,p) <r, d(y,p) < r imply d(W(z,y,)),p) < r unless z = y, where p is arbitrary but fixed point
ofz,0 < A< 1.

Definition 3. A non-empty subset K of a convex metric space (X, d) is said to be
(i) p-starshaped [6] if there exists p € K such that W(z,p,\) € K forall z € K and \ € I.

(i) convex [12] if K is p-starshaped for every p € K i.e., W(z,p, AN €K forallz,pe K, e I.

Definition 4. Let E be a vector space over a field K(K = R or C€). For 0 < p < 1, a real-valued function
| - |l on E is called a p-norm if .

() Iz l,>0and | |,=0if 2 =0

(i) |z+y ”pf” z “p +1ly ”P
(iii) || ez [l,=| & || z ||,

forall z,y € E and o € K. (E, | - ||) is called a p-normed space.
We shall be using the following result of Beg et al. (1] (Remark 2 to Theorem 1) to extend Theorem 1
of [11]:

Lemma 1. If K is a closed subset of a metric space (X,d) and T : K — K is a continuous Banach operator

with T'(K') compact then T has a fixed point.
2. Main results
On the existence of fixed points of continuous mappings we have
Theorem 1. Let K be a closed subset of a convex metric space (X,d) and T : K — K is a continuous map

with T(K) compact. Suppose there exists p € K and a fixed sequence < k,, > (kn < 1) of positive numbers
converging to 1 such that W(Tz,p, kn) € K for each x € K; further, for each z,ye K

d(W(Tz,p, kn), W(Ty,p,kn)) < knd(z,y) (*)
then T has a fixed point.

Proof. Define T, : K — K as T, (z) = W(Tz,p, k,),n=1,2,---.
We claim that each T, is a Banach operator with 7,,(K) compact. Since

dTee, Toz) = d(Ta(Tpz), Tpz)

Il

dW(T(Tnz), p, kn), W(Tz,p, kn))

IA

knd(Tnzv .’I:),
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T, is a Banach operator. Now we show that compactness of T(K) implies the compactness of T,,(K) for
each n. \
Let < ) > be any sequence in T,(K). Then there exists a sequence < ysn) > in T,(K) such that

< y,(,'l\) >— x, for each A Since yg,i‘) c T.(K), y(m)‘) = T,.(us,){)), ug,){) € K ie,
yﬁfl\) = Tn(us,){)) = W(Tuﬁ,’:),p. k,) for all n. Now lim YN =2y = lim = W (Tuld), p, kn) = x for all
m—o0 m—0oC

n. Letting n — oo, we get lim W'(Tuﬁs),p,l) =z) = lim T'u%‘) = x). Since (Tug,){)) is a sequence in
m—0o0 m—0o0

T(K), lim Tu)) € T(K) ie., (z)) is a sequence in T(K). So, compactness of T(K) implies (zy) has

m—00

a convergent subsequence (z,) — g € T(K). Since (z,) is in To(K),zo € To(K) and hence Tn(K) is
compact.

Since each T,, : K — K is a continuous Banach operator with T,(K) compact, by Lemma 1, T, has a
fixed point, say pn, in K i.e., Tn(pn) = pn for each n. Since T, (K) is compact, there exists a subsequence
(pn;) of (pn) such that (Pn;) = q € K. Now pp; = T, (pn;) = W(Tpn;,p, kn;). Letting nj — oo, we get
q=W(Tq,p,1) = Tq ie., T has a fixed point in K.

If K is starshped w.r.t. p, we have

Corollary 1. Let K be a closed p-starshaped subset of a convex metric space (X,d) and T : K — K be a
continuous map with compact T(K). If

d(W(Tz,p, kn), W(Ty,p,kn)) < knd(z,y) for all z,y € K

and for some fixed sequence < K,, > (k,, < 1) of positive numbers converging to 1 then T has a fixed point.
Since every convex metric space satisfying property (I) satisfies (x), we have

Corollary 2. ([1, Theorem 3|) Let K be a closed p-starshaped subset of a convex metric space (X,d) which
satisfies property (I). If T : K — K is non-expansive with T'(K) compact then T has a fixed point.

Since every normed linear space as well as every p-normed space is a convex metric space satisfying
property (I), we have

Corollary 3. ([5, Theorem 4]) Let K be a closed starshaped subset of a normed linear space (X). If
T . K — K is non-expansive with T(K) compact, then T has a fixed point.

Corollary 4. ([8, Theorem 2]) Let K be a closed starshaped subset of a p-normed space (X, | - ||lp). If
T : K — K is non-expansive with T(K) compact then T has a fixed point.
Since compactness of K always implies the compactness of T(K), we have

Corollary 5. ([11, Theorem 1]) Let K be a compact subset of a normed linear space (X)andT: K - K
a continuous operator. Suppose there exists p € K and a fixed sequence < k, > (kn < 1) of positive
numbers converging to 1 such that (1 — kn) p + k, Tz € K for each x € K; further for each z € K and
ko, | T(1 —kn) p+kn Tz) =Tz |[< | (1 —kn) p+ kn Tz —2 || then T has a fixed point.

We shall now obtain an extension and generalization of a result proved by Dotson ([3, Theorem 1]) on
fixed points of quasi non-expansive mappings in normed linear spaces to convex metric spaces. For this, we
require the following two lemmas:

Lemma 2. [12] In a convex metric space (X, d), we have
(i) d(z,y) = d(z,(W(z,y, 7)) + d(y, W(z,y, 1)),
(i) d(z, (W(z,y,A)) = (1= Nd(z,y),
(iii) d(y, (W(z,y, X)) = Md(z,y),
forz,ye X, 0< A< L
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Lemma 3. Let K be a non-empty closed subset of a metric space (X.d) and T a mapping of K into » such

that Al ={y e K : d(y.Ty) = wmind(.r. Ty)} is non-cmpty and T is non-expansive w.r.t. M. Then M is a
reEN

closed set on which T' is continnous. Furthermore. it X is strongly convex. K is convex and T is isometric

on M. then p = w(u, v, \) foru.v € M, 0 < \ < 1 inuplies that T'(p) = W(Tu. Tv. ) i.e., T is an affine map

on M. -

Proof. Let u € Al be arbitrary. As T is non-expansive w.r.t M, d(Tu.Tv) < d{u,v) for every v € K. This
implies that T is continuous at arbitrary u and hence on M. Now we show that Al is closed.
Let <y, > be a sequence in A which converges to y € K. Therefore given ¢ > 0 there exists a positive

integer m such that d(y,.y) < = for all n > m. Then

d(Ty.y) < diTy.Ty.)+ d(Typ. ym) + d(ym.y)

IA

Ay yon) + ATy, ym) + d(Ym, y)

IA

2z +d(T Yy ym)-

Now for cach .+ € K.

d(Typ,x) < d(Tyn, Ty) + d(Ty.x)

< dYm.y) +d(Ty.x)

IN

e+ d(Ty.x).

Thercfore d(Ty,n, ym) = Iréi}x‘; A(Tym,z) < e+ mi[r; d(Ty.x) and hence d(Ty, y) < 3e + miir(l d(Ty,z). Since €
! rek e
is arbitrary, we have d(Ty,y) < mi}n d(Ty,x) Le..y € M and so M is closed.
rekl

Now suppose that X is strongly convex, K is convex and T is isometric on M.
Letu.ve M, u#v, 0 < A<1landp= W(u,v. ). Then d(u,v) = d(Tu,Tv) as T is isometric on M
and d(Tp,Tv) < d(p,v) as T is non-expansive w.r.t. M.

Therefore
d(u,p) = d(u,v) —d(v.p)
< d(u,v) —d{Tv, Tp)
= d(Tu,Tv) — d(Tv,Tp)
< d(Tu,Tp) \
< d(u,p), as T is non-expansive w.r.t. M
This implies that equality holds throughout and so d(Tw,Tp) = d(u,p). Similarly,

d(Tv,Tp) = d(v,p). So, we obtain

d(Tu,Tp) + d(Tv, Tp)

Il

d(u,p) + d(p,v)
= d(u,v)

d(Tu, Tv)

Since (X, d) is strongly convex, there exists unique ¢, 0 < t < 1 such that Tp = W(Tu, T, t). We clain that
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t = A\. Consider i
(1= Ndu.vy = dip.u)

= d(Tp.Tu)
= (1-t)d{Tu.Tr)

= 1 —=t)d(u.v)

This implies A =t and so Tp = W{Tu, Tv. A} ie. T is an athine map.

Remarks

1. Since every strictly convex metric space is strongly convex, Lemma 3 holds for strictly convex metric

spaces.

2 For strictly convex  Banach  spaces.  Lemma 3 was  proved by Itoh and Takahashi
(17. Proposition 1}).
Theorem 2. Let K be a closed convex subset of a strongly convex metric space ( X.d) and T a quasi

non-expansive mapping of K into . Then F(T') is a non-empty closed convex set on which T' is continuous.

Proof. Since T(K) € K and M = F(T) # ¢ as T is quasi non-expansive. by Lemma 3 F(T) is a
closed set on which T is contimous and for all w,v € F(T), 0 < A < 1 with p = W(u,v.A), we have
Tip) = W(Tu.Tv,\) = W{u.v,\) = p ie, p € F(T) and so F(T) is convex. Hence F(T) is a non-empty
closed convex set on which T is continuous.

Since every strictly convex norined linear space is a strougly convex metric space, we have

Corollary 5. ([3. Theorem 1], [7. Corollary 1}). If A is a closed convex subset of a convex normed linear
4L . 1)
space X and T : K — K is a quasi non-expansive, then F(T') is a non-empty closed convex set on which T'

s continuous.
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Abstract. In this paper, by making use of neutrix limit expressions for the product, 7, 08(@ and z” 08
has been obtained, where & = p + g, p is a positive integer & 0 < g < lie. alisa fractional number.
This obviously generalize the results obtained by B. Fisher [4]. Finally, the results obtained are verified
by few examples.

1. Introduction

Neutrix N is defined by J.G. vander Corput [1] as a commutative additive group of functions v(€) defined
on a domain N’ with values in additive group N, where, further, if for some v in N, v(§) = v for all
¢ in N’, then v = 0. The function in N are called negligible functions. Now let N " be a set contained in a
topological space with a limit point b which does not belong to N ' If f(€) is a function defined on N’ with
values in N” and it is possible to find a constant 3 such that f(¢) — 3 is negligible in N, then § is called
the neutrix limit or N-limit of f as £ tends to b and, we write

N —lim
E—b

fl§) =20
where 3 must be unique, if it exists.

Definition 1.1. (cf.[3]). Let f and g be arbitrary distributions and let

1/n
fn="F%0n, gn=9g%0n = / g(z —t)on(t)dt, n=1,2,3,---
—1/n

where {0,} converges to dirac-delta distribution 8, and 8,(z) = np(nz), p is an infinitely differentiable
function having the properties :

(i) p(z) =0for |z |>1,
(i) p(z) 20,
(i) p(e) = pl(~a),

(iv) _fllp(m)dx =1

We say that the neutrix products f o g of f and g exists and equal to a distribution h if

N — lim

N300 < fugn, ¢ >=<h,¢ >

Keywords and phrases : Product, distributions, differentiable-function, reutrix, limit.
AMS Subject Classification : 46F.
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for all test functions o € K. with support contained in the interval (a.b), where N is the neutrix having
domain N = {1.2,--+ . n,---} and range N of the veal numbers with negligible functions

AMe T e A 0, r=1,2.3..-

and for all functions f{n) for which N = lu{u finy =0,
Riemanu - Liouville and Wéyl-fractional integral operators are defined for Re a > 0 as
(cf.[6. p.AT))
(1" f)e) = L .'( =)L dt
T ey )
0
and
x
(K f)(a) = =—— /(1‘ — )Vt
[(a) |
b

In [5, p.633] the fractional differential operator is defined as

I7%f = DYf (1.1)
and
K™f = (-1)"D"f (1.2)
These operators are adjoint i.e.,
(I™°f.0) = (f. K~°¢) (1.3)
and
(K™, 0) = (f, 7). (1.4)

This paper deals with the generalization of the following results obtained in ( cf.[7]) if F is an infinitely
differentiable function in every neighbourhood of the origin than the product F(x) o §%)(z) exists and

(I) F(z) 08 () = 3" (=1)" °C, F(0)5 ") ()
r=0
I)
D (1) G FT0)6 T (&), for = 0,1,2,---p,
={ ro0 (1.5)
0, for r > p,
I(a+1)

where ¢C, =

0<g< 1.

m and p is greatest integer less than «, ie., a is of the form a = P + g, and

(IT) The product z’, 0 6(®)(z) and 2" 0 §(®)(z) exists and

—1)
(——)- “C,r16' ") (z), forr=0.1,2,- -,
a”y 06(%)(z) = (1.6)

0, for r > p,
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1 . :
~ et (@), forr=0,1,2,---p,
o o(5<“)(u') _ 2 (1.7)

0, for r > p.
Now, let f be a distribution which is an infinitely differentiable function in every neighbourhood of the
origin. We define the distribution f(x) by

) fle). fora >0,
File) = { 0, forax <O.
and the distribution f_(z) by
(x), forxr <0,
-t ={ f~0) .

for x > 0.

Indeed we have fi(—z) = f-(x) and f_(z) = fy(x
In the present paper, we will generalize the results ( l ()) and (1.7), by considering « to be a positive fractional
number i.e., & = p + q where p is a positive integer and 0 < ¢ < 1.

2. Main Result

Theorem 2.1. Let f be a distribution which is an infinitely differentiable function in the neighbourhood
of the origin. Then the product f(x)o 8@ (z) and f_(x) 0§ (x) exist and

12
EZ( 1) °Cy f")(()) a)(g), forr=0,1,2,-+-p,
fi(@) 08 (z) = f_(z) 08 (x) = r=0
0, forr >p
Proof. Putting F(z) = f(z) + Z F0)2"
,oc()( Ly
This gives file)=F(z) =) - r, F0)2"
r=0
Since the product F(z) o 6(®)(x) exists and satisfies equation (1.5) and FM@©) = f(0),
r=0,1,2,---, it follows that
1 v
5 §Z<~1)T ”C’,vf(r)(o)é("_r>(ﬂ7)w forr=0,1,2,---p,
F(z)06@)(z) = r=0
0, forr>p

By (1.7) we have
1

U f0)0)ar 0 5)(a) (172G D08 (@), forr=0,1,2,-p,
m— xT_ o T) =

r!
0, forr >p
e~ (=1)r
ie., fi(x) 08 (2) = F(z)o 5 (z) — Z‘_,“f(r)(())l‘i 0 8@ ().
' r!
r=0
1&
52(_1)r *Cf0)8 " z), for r=10,1,2,~p,
= r=0
0, for‘r >p

Similarly,
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i

e

f-(z)0d@(x) = “r=0

)r aCTf(r)(O)J((x—r) (z).

0, forr >p

This completes the proof of the theorem.

forr=0,1,2,---p,

Chinta Mani Tiwari

Corollary. Let f be a distribution which is an infinitely differentiable function in the
neighbourhood of the origin then the product [sgn z.f(z)] 8% (z) exists and
[sgn z.f(z)] 0 §'*)(z) = 0, where sgn(o) is the signum function (cf.[2]).
Proof. We have [sgn z.f(z)] 0 8™ () = [f{(2) — f_(2)] 0 6(¥)(x)
=0
for every a.
The theorem (main result) is verified through the following examples :
% 27
(I) Since cosz?} = Tgo(?:)!,
for A =1/2, we get
1/2 _ - z’
cosz =
T ;(%)?
o0 :lfr
Similarly, cos .”L'l_/ 2= ;) (2;)!
Thus
COS.’L‘iL/QO 8@ (z) = cosz" 5(")( )
I~ (1) °Cor! .
—Zu—rd("_”(x), forr=0,1,2,---p,

2= (2r)!

0, forr>p
(II) Iny (1 — 2) 0 6(z) = 1n_(1 — z) 0 6(®)(z)

)r+1 aC 1)!5(a—r)(w)’

0, forr >p
(III) siny z 0 6(*)(x) = sin_ z 0 6 (z) =

22( 1) *Cy_16@~ ”“( ), forr=0,1,2,---m
0, for r > m
1
§p, p is even
where m =
1 .
5(1) +1), pisodd

forr=0,1,2,---p

’
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IV) exp, z 046 (z) = exp_x 06/ (x)
b

The

L o
§Z eCro' N (x), forr=0,1.2,---p.
r=0

0, forr > p
Acknowledgement
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Abstract. In this paper, some sufficient conditions on a homotypical identity to be preserved under epis

of semigroups in conjunction with any nontrivial permutation identity have been found.

1. Introduction and summary

The general question of which identities are preserved under epis has been studied by Bulazewska,
Bulazewska and Krempa, Gardner, Higgins, Howie and Isbell and Khan etc. for category of rings and
semigroups. For example, in (4] Gardner has shown that certain identities weaker than commutativity are
not preserved under epis of rings although commutativity is preserved under epis of rings[1](see also [2]
for related results) and in [6]. Higgins has shown that, in general, identities for which both sides contain
repeated variables are not preserved under epis of semigroups. In [8], Howie and Isbell have shown that
commutativity is preserved under epis of semigroups. The author [10,12] has extended this classic result
and shown that all identities in conjunction either with commutativity or any semicommutative permutation
identity are preserved under epis of semigroups.

In [5, Proof of Theorem 8.3], Higgins has shown that all homotypical identities for which both sides
contain repeated variables are not preserved under epis in conjunction with any non trivial permutation
identity. In [12, Theorem 4.7], the author has found some sufficient conditions that a homotypical identity
containing repeated variables on both sides be preserved under epis of semigroups in conjunction with any
nontrivial permutation identity. In this paper, we further extend [12, Theorem 4.7 (ii)] by finding some
sufficient conditions that a homotypical identity containing repeated variables on both sides be preserved
under epis of semigroups in conjunction with any nontrivial permutation identity. However, finding a com-
plete determination of all identities that contain repeated variables on both sides and preserved under epis
of semigroups still remains an open problem.

2. Preliminaries

Let U, S be semigroups with U a subsemigroup of S. We say that U dominates an element d of S
if for every semigroup T and for all homomorphisms 3,7 :S5 — T,

uB = wy, Vu € U, implies d3 = dy. The set of all elements of S dominated by U is called
the dominion of U in S and is denoted by Dom(U,S). It can be easily verified that Dom(U, S) is a
subsemigroup of S containing U. Following Howie and Isbell 8], a semigroup U is called saturated if
Dom(U,S) # S for every properly containing semigroup S.

A morphism o : A — B, in the category C of semigroups is called an epimorphism(epi for short) if
forall C € C and for all morphisms 8,7: B — C, af = avy implies § = 7. It can be easily verified
that a morphism « : S — T is epi if and only if the inclusion map ¢ : Sa — T is epi, and the inclusion

Keywords and phrases : Semigroup, saturated semigroups, epimorphically embedded.
AMS Subject Classification : 20M07.
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map i:U — S from any subsemigroup U of S is epi if and only if Dom(U,S) = S.
A most useful characterization of semigroup dominions is provided by the following Isbell’s z.gzag theorem.

Result 2.1([9,Theorem 2.3] or [7,Theorem VII.2.13]). Let U be a subsemigroup of any semigroup
S and let d be any element of S. Then d € Dom(U, S) if and only if either d € U or there are
elements ag,ay,as, ...,as,, € Uti,to, ..., tm, Y1, 92, -y Ym € S such that
d = agty, ag=yia; (i=1,2,3,..,m—1)
agi—1t; = agitiy1, Yil2i = Yiy1a2i41, (i=1,2,...,m—1) (1)
Aom—1tm = A2m,y YmGom = d.
These equations are called a zigzag of length m over U with value d and spine ap,ay,

A2, ...y A2 .

An identity of the form

E1T9T3...Tn = Tj Tiy..T;, (m > 3),

is called a permutation identity, where i is any permutation of the set {1,2,....n}. Again a permutation

identity of the form

T1ToT3.. Ty = &4, Tiy... Ty, (2)

is called nontrivial if i is any nontrivial permutation of the set {1,2,...,n}. Further a permutation identity is
said to be semicommutative if i; # 1andi, # n. A semigroup S is said to be permutative if it satisfies
a nontrivial permutation identity (2) and a permutative semigroup S is said to be semicommutative if
i1 # land 4, # n.

An identity u = v is said to be preserved under epis if for all semigroups U and S with U a
subsemigroup of S and such that Dom(U,S) = S, U satisfying u = v implies S satisfies u = v.

Result 2.2 ([12],Theorem 3.1) All permutation identities are preserved under epis.

Result 2.3 ([11], Result 3). Let U be any subsemigroup of a semigroup S. Then for any d € Dom(U, S)\U,
if (1) be a zigzag of shortest possible length m over U with value d, then y;,t; € S\U forall j=1,2,..m.

In the following results, let U and S be any semigroups with U a subsemigroup of $ and such that
Dom(U,S) = S.

Result 2.4 ([11], Result 4). For any d € S\U, if (1) be a zigzag of shortest possible length m over U with
value d and k be any positive integer, then there exist a1,0az,...,ar € U and dy € S\U such that
d = alag...akdk.

Result 2.5 ([11],Corollary 4.2). If U be permutative, then

ST1X2... Tkt = STj Tj,...T5t
for all zy,zs,...2; € S; s,t € S\U, and any permutation J of the set {1,2,...,k}.

Result 2.6 ([12], Proposition 4.6). Let U be a permutative semigroup. If d € S\U and (1) be a zigzag of
length m over U with value d and with y1 € S\U(for example if the zigzag (1) is of the shortest possible
length), then d* = agkt;* for any positive integer k.
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The notations and conventions of Cllifford and Preston [3] or Howie [7] will be used throughout without
explicit mention.

3. Main Result

Anidentity uw = v is said to be homotypical if C(u) = C(v), where C(u), for any word u, is the set of
all variables appearing in u; otherwise heterotypical.

Theorem 3.1. Let (2) be any nontrivial permutation identity. Then any nontrivial homotypical identity
I (one which is not satisfied by the class of all semigroups) of the following form is preserved under epis in
conjuntion with (2):

z1Pzol..x,P = y19y2d..yrd, for any p,q > 0.

Proof. Take any semigroups U and S with U epimorphically embedded in S, and such that U(and,
hence S, by Result 2.2) satisfes the identity (2). We show that the above identity satisfied by U is also
satisfied by S.

To prove, we first note that for all wy,ug, ..., U, v1,v2, ..., v € U,

wPusl . u P = nvl.vd = viPuf P = uful. ut (3)

Now first we prove that for all ry,z9,...,2, € S and uj,ug,...,u, € U,

Pzl ..z, P = uiPugf..u,r. (4)

Assumne that U satisfies (4). For k = 1,2,...,r; consider the word z1zoP..zx? of length kp. We shall
prove that S satisfies (4) by induction on k , assumming that the remaining elements Zji1, k42, ..., Zr € U.
First for k = 0, the equation (4) is satisfied by S vacuously. So assume next that (4) is true for all
21.T9, .y Tk_1 € S and all g, Tg1, ...,z € U. Without loss we can assume that z; € S\U. As zx € S\U
and Dom(U,S) = S, by Result 2.1, we may let (1) be a zigzag of shortest possible length m over U with
value x. We assume first that 1 <k < r. ‘ .
Now

l‘lpl‘gp...l'k_1pa0pt1p:1?k+1p.”.'l}7»p = :L'lp.’EQP....’I?k_lpaopbk+1<1)pbk+2(l)r’..‘br(1)pti(l)pl
(by Results 2.2,2.4 and 2.5 for some ;1) € S\U
and by 1V, beyo, ..., 0,(Y € U and
z = zppP..xP)

P P
= T1ProP i 1P (y1012)Pbg 1 VP (VP b, (VP (VP
(by inductive hypothesis, as y1a1? = yra1a1
= apa; € U)
P P
= T1PTP.. 2 1P (y101)Par Pl VP b o VP b, V7
t1WP2  (by Result 2.5, as y1,t:() € S\U)

= z1PxoP...xk_1P(y101)Pa1Pt1Pz  (by Result 2.5,
as by Vb WP, WP (0P = ¢,7)

= PPz 1P(y101)PaPtaPz
(by Result 2.5, as y1,t2 € S\U)

= z1PzoP... 1P (y101)PasPtalz
(by inductive hypothesis, as yha1 = ap and
ag, ag € U)
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.rlpﬂfzp...$k_1p(L()pflp.l’k+lp....‘[:,vp = .I?lp.’[,‘gp...;lfk_lp(yl(ll)p(L4pt3P2
(by equations (1) and Result 2.5)

= @1Pxof...x,_1P(y1a1)PasPtzPz
(by inductive hypothesis, as y1a; = ag
and ag, aq € U)

= xPzoP.. 'wk—lp(ylal )pa‘Zm—lptmpz

= z1Px9P... 2 1PagPagm Py P...x,P  (by equations (1)
and Result 2.5 as z = x4 P...2,P and y1a; = ag)

= a:lpxgp...mk_lp(aoa,gm)”xk_4 1p...£ETp (")y Result 2.5
since ag = ¥Y1a1,02m = G2m—1lm and Y1,tm € S\U)

= ul”'qu“.uk_lpukpukﬂp...ur”
(by inductive hypothesis as agagm, u1, ug, ..., u, € U).

Therefore, by induction

217z .z P = u PugP. P

for all xy,29,...,xz, € S and uy,us, ..., u, € U.

Finally, a proof in the remaining case, namely when k = r, can be obtained
from the proof above by making the following conventions:

(i) word z = 1,

(ii) the word

bk+1(1),bk+2(l),...,br(l) = 2z = land tl(l) = 1.

This completes the proof of (4).
Similarily

ququ...yrq = ulqztgq...ur“
for all y1,92,....,4r € S and uy, us, ..., u, € U.
Now
1 Prof P = wPuol P = utug?.u,d = y1%29..y,7  (by equations (3)).
as required.
Remark. The Theorem 3.1 extends (12, Theorem (ii)].
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Abstract. In this paper we have established a common fixed point theorem for six self maps through
weak compatibility in Menger space. Our result generalizes and extends the results of Singh and Sharma
(14]. '

1. Introduction

There have been a number of generalizations of metric space. One such generalization is Menger space
initiated by Menger [6]. It is a probabilistic generalization in which we assign to any two points .« and y, a
distributioin function Fj ,. Schweizer and Sklar [11] studied this concept and gave some fundamental results
on this space. It is observed by many authors that contraction condition in metric space may be exactly
translated into PM-space endowed with min norms. Sehgal and Bharucha-Reid [12] obtained a generalization
of Banach Contraction Principle on a complete Menger space which is a milestone in developing fixed-point
theorems in Menger space.

Sessa [13] initiated the tradition of improving comunutativity in fixed-point theorems by
introducing the notion of weak commuting maps in metric spaces. Jungck (3] soon enlarged this
concept to compatible maps. The notion of compatible mapping in a Menger space has been introduced by
Mishra [7].

Recently, Chamola, Dimri and Pant (1] introduced the notion of weak commutativity in Menger spaces.
Later on, Jungck and Rhoades [5] (also Dhage [2]) termed a pair of self maps to be coincidentally or
equivalently weakly compitable if they commute at their coincidence points. The notion of R-weakly
commuting maps has been introduced by Pant [8]. Afterwards, Pant [9] proved common fixed point
theorems for contractive maps. In the sequel, Pant [10] has used the concept of pointwise R-weakly
commuting maps to prove a common fixed point theorem. From [10], it is clear that the notion of pointwise
R-weakly commuting maps is not only equivalent to but also older than the notion of weak compatibility.
Moreover, compatible maps are weakly compatible but the reverse is not true always.

Singh and Sharma [14] have proved a common fixed point theorem for four compatible maps in Menger
space, by taking a new inequality.

In this paper a fixed point theorem for six self maps has been proved using the concept of weak
compatiblity and compability of pair of sclf maps, which turns out to be a material generalization of the
results of Singh and Sharma [14].

2. Preliminaries

Definition 2.1. A mapping F : R — R is called a distribution if it is non-decreasing left continuous with
inf{F(t):t€ R} =0and sup F(t) : t € R} = 1.
We shall denote by L the set of all distribution functions while H will always denote the specific
distribution function defined by
0, t<0;
H(E) = { s B

1, t>0
Definition 2.2. A mapping t : [0,1] x [0,1] — [0,1] is called a t-norm if it satisfies the following conditions

Keywords and phrases : t-norm, common fixed points, compatible maps, weak compatible maps.
AMS Subject Classification : 47H10, 54H25.
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(t-1) t(a,1) = a. t(0,0) = 0;
(t-2) t(a,b) = t(b,a);

(t-3) t(c.d) > t(a.b) for ¢ > a, d > b;
(t-4) t(t(a,b),c) = t(a, t(b,c)).

Definition 2.3 [7]. A probabilistic metric space (PM-space) is an ordered pair (X, F) consisting of a non
empty set X and a function F : X x X — L, where L is the collection of all distributions functions and
the value of F at (u,v) € X x X is represented by F,,. The function F,, assumed to satisfy the following
conditions :

(PM-1) F,,(z) =1, for all z > 0, if and only if u = v;
(PM-2) F,,(0) = 0;
(PM-3) Fup = Fou;
(PM-4) If F,, ,(x) =1 and F, ,,(y) = 1 then F, .(z +y) =1, for all w,v,w € X and z,y > 0.
A Menger space is a triplet (X, F,t) where (X,F) is a PM-space and t is a t-norm such that the
inequality
1. (PM-5) F,(x +y) > t(Fuuo(x), Fuwl(y)), for all u,v,w € X and z,y > 0.

Proposition 2.1 [12]. If (X,d) is a metric then the metric d induces a mapping X x X — L defined by
Fpy(x) = H(z —d(p,q)), p.q € X and = € R. Further, if the t-norm ¢ : [0,1] x [0,1] — [0,1] is defined by
t(a,b) = min{a, b}, then (X, F,t) is a Menger space. It is complete if (X, d) is complete.

The space (X, F,t) so obtained is called the induced Menger space.

Definition 2.4 [7]. A sequence {X,} in a Menger space X is said to be convergent and converges to a
point x in X if and only if for each € > 0 and A > 0, there is an integer M (e, \) such that

Fr, 2(€) >1— A, forall n > M(e, ))
Further, the sequence {X,,} is said to be Cauchy sequence if for € > 0, there is an integer M (e, \) such
that
Fi, e, (€) > 1= X, forall myn > M(e, \)
A Menger PM-space (X, F,t) is said to be complete if every Cauchy sequence in X converges to a point
in X.

Definition 2.5 [7]. Self maps S and T of a Menger space (X,F,t) are said to be compatible if
Fs1s,,182, () — 1 for all x > 0, whenever {z,} is a sequence in X such that Sz,,, Tz, — u, for some u in
X.asn — oc.

Definition 2.6 [7]. Self maps S and T of a Menger space (X, F,t) are said to be weakly compatible (or
coincidentally commuting) if they commute at their coincidence points, i.e. if Sp = T, for some p € X then
ST, =TS§,.

Proposition 2.2. Self mappings A and S of a Menger space (X, F, t) are compatible then they are weakly
compatible.

Proof. Supl)ose Ap = Sp, for some p in X. Consider the constant sequence {pn} = p. Now, {4Ap,} — Ap
and {Spn} — Sp (= Ap). As A and S are compatible we have Fasp,sap(z) =1 for all > 0.
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Thus, ASp = SAp and we get (4, S) is weakly compatible.
The following is an example of pair of sclf maps in a Menger space which are weakly compatible but
not compatible.

Example 2.1. Let (X.d) be a metric space where X = [0,2] and (X, F,t) be the induced Menger space
with Fy, () = H(e = d(p,q)), Y p.q € X and V € > 0. Define self maps A and'S as follows :

2—x, if0<e<l, , ifo<z<l,
Az = z; Hlsw " and Sr= S “
2; ifl1<z<2, ;

Take z, = 1 — 1/n. Now,
Faz,1(€) = H(e— (1/n)).
Therefore, nlgl;c Fae,1(e) = H(e) = 1.
Hence, Az, — 1 as n — oo. Similarly, Sz, — 1 as n — oo. Also
Fasz, saz,(€) = H (6 — {1 —glk -

lim FAS:c,.,SAz,,(f) = H(e = 1) 7é 1, Ve>0.

n—oo
Hence, the pair (A4, ) is not compatible. Also set of coincidence points of A and S is [1,2]. Now for any
z €[1,2], Az = Sz =2 and AS(z) = A(2) =2 = 5(2) = SA(r). Thus A and S are weakly compatible but
not compatible. .

From the above example it is obvious that the concept of weak compatibility is more general than that
of compatibility.

Proposition 2.3. In a Menger space (X, F.t), if t(z,2) > ¥ z € [0,1], then t(a,b) = min{a,b}
Va,be(0,1].

Proposition 2.4 [7]. If S and T are compatible self maps of a Menger space (X, F,t) where t is continuous
and t(z,z) > z for all @ € [0,1] and Sz, Txn — u for some u in X. Then TSz, — Su provided S is
continuous.

Proposition 2.5. Let S and T be compatible self maps of a Menger space (X, F,t) and Su=Tu for some
uin X then STu=TSu=SSu=TTu.

Proof. Let {z,} be a sequence in X defined as =, = u, n = 1,2,3,--- and Su = Tu. Then we have
Sz, Tzn, — Su. Since S and T are compatible and so for € > 0, we have

Fsrurrul(€) = FsTe, T2, (€) — 1. Hence STw = TTw. Similarly TSu = SSu.
But Su = Tu implies that TTu = T'Su. Hence STu = TSu=SSu=TTu.

Lemma 2.1 [15]. Let {p,} be a sequence in a Menger space (X,F,t) with continuous t-norm and
t(x,z) > =. Suppose, for all z € [0,1], 3 k € (0,1) such that forallz >0and n€ N,

Fpn,pn“(kx) > Fp_1pn (z)

Or, Fpn,pnﬂ(z) > FPu—l,Pn(k_lz)

Then {p,} is a Cauchy sequence in X.
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Singh and Sharma [14] established the followine result.
£ [ g

Theorem 2.1 [14]. Let A, B, S and T be self mappings of a complete Menger space (X, F, ) satisfying :
(a) A(X) C T(X), B(X) C S(X),
(b) One of A,B,S and T is continuous,
(¢) (A.S) and (B.T) are pairs of compatible maps,

(d) forallpge X, z>0and 0 < a <1,
(Fap,sq() + Fisp, ap(2)][Fap,g(x) + Pro,y(x)] > 4[Fsp ap(/0)][Figre(2)]

Then A, B, S and T have a unique common fixed point in X.
3. Main Result

In the following. we extend above result to six self maps and generalize it in other respects too.

Theorem 3.1. Let A.B.S,T,L and M be self mappings of a complete Menger space (X,F,t) with
t(a,a) > a, for some a € [0, 1] satisfying : ’

(3.1.1) L(X) C ST(X), M(X) C AB(X),

(31.2) AB=BA, ST=TS, LB=BL, MT =TM,

(3.1.3) either AB or, L is continuous,

(3.1.4) (L, AB) is compatible and (M, ST) is weakly compatible,

(3.1.5) for all p,q € X, r>0and 0 < a <1, )
(Frp,aq(%) + Fapp,1p(2)][Frpmq(x) + Fsrqmq(x)] = 4[Fapp ip(@/a)|[Frrg,smq(z))]

Then A, B,S,T,L and M have a unique common fixed point in X.
Proof. Let Xy € X. From condition (3.1.1) 3 1,25 € X such that

Lag = STx) = yo and Mz) = ABxy = Y1

Inductively, we can contruct sequence {zn} and {y,} in X such that

Lxs, = ST(I’anl = Y2, and A’IZQn—H = AB$2n+2 = Yont1 for n = 0,1,2,---.

Step 1. Putting p = zy,,, ¢ = Zani1 for x> 0in (3.1.5), we get
(FLaznMass1 (%) + FaBrs Lar, ()] [Frag Mg, (2) + FstTry, s\ Megn o ()]
2 A[FABzy Lz, (T/ )| [Fray, 1 STy, (%))
or,  [Fnganss (€) + Fip_y g (@) [Fyanyansn (%) + Fypiprni1 (2)]
2 4[Fyzn4,yzn(z/a)”Fyznu,yzn (z)]
or,  2Fy,. ysiy () Fyan o1 () + Fypn 1 n (T)] > 4[Fy,, v (B/0)][Fyyp 1 g ()]

or, Fyp v (x)[Fyz,.,yzuH (z) + Fyp s g ()] > Q[FSIZ”—IJJZ" (l/a)}{Fyz,,,yz,,+,l ()]
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or, (Fyanyons 1 (2) + Fyp 1o (2)] 2 2[Fyy,, g, (2/)]
or, Fyn 1 (@) 2 Fyy,y (/@)
Similarly,

P o (£/0) > Fip i (/0)

From (3.1) and (3.2), it follows that

2
Fyopon i1 (@) 2 Fyyy s (x/c) > Fyyp 20, (& /a®)

By repeated application of above inequality, we get

. o fir) 2 (o ) 2
Fyzu,yzw l(‘T) 2 Fyzn—l,yzn (l/()t) 2 Fyz.,wz,mn 1('77/“ ) 2 S F'/n,y) 'c"/“ n).

Therefore, by Lemma (2.1), {y,} is a Cauchy sequence in X, which is complete.
Hence {y,,} — 2 € X. Also its subsequences converges as follows :

{Mzy,,1} = zand {STxo, 1} — 2,
{L.’B'Zn} - Z and {‘4BLI.2”} -

7
Case I. AB is continuous.

As AB is continuous, (AB)%ry, — ABz and (AB)Lxr), — AB:z.
As (L, AB) is compatible, so by proposition (2.4), L(AB)xy, — AB=.
Step 2. Putting p = ABxy,, and ¢ = xy,41 for z > 0 in (3.1.5), we get
(FLABz2n Ma2041 (%) + FABABz3,,,LAB22, (D)) [FLAB22w M0 11 (%) + T4\ Mzgn 11 (2))]
> 4[FABA812",LABJ'2,, (w/a) [FMzz,, +1,8TZ2n 11 (-’L’)]
Letting n — oo, we get
(FABz,2(%) + Faps ap=(«)][Fap-,.(x) + F. - (x)] > 4[F;\B:,‘AB:, (z/Q)][F; ()]
ie., Fap..(z)>1,yields ABz = z.
Step 3. Putting p = z and ¢ = 2,41 for > 0 in (3.1.5), we get
(FL2 Mayniy () + FaBe L2 (2)][F L2 May 1 (%) + FSTapn, Magn s, (T)]
> 4 F a1 (/)| [FMay STz, (2))]
Letting n — oo, we get
(FLea(7) + Foyrs ()] [Frs,s(2) + Fopo(2)] 2 4[F 12(z/a)][F. . (2))]
ie, Fp..(x)>1,yields Lz = z. Therefore, ABz = Lz = z.

Step 4. Putting p = Bz and ¢ = 29,4 for z > 0 in (3.1.5), we get

(FLB2M2n11 (Z) + FABB:, LB (D)|[FLB: Megn i1 (T) + FSTzn iy My, (T))]

27

(3.1)

(3.2)
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> AFapp- 1p:()/ ) [Fhzg, 1 ,STra 1 ()]
As BL = LB, AB = BA, so we have
L(Bz) = B(Lz) = Bz and AB(Bz) = B(ABz) = Bz
Letting n — oo, we get
[Fhe(x) + Fpep=(0)][Fpsc (0) + Fs 5(2)] 2 4[Fps, po(2/a)][F 5 ()]
ie, Fp..(x)>1,yields Bz =z and ABz = = implies Az = z.

Therefore, Az = Bz = Lz = =. (3.6)

Step 5. As L(X) C ST(X), there exists v € X such that z = Lz = STv. Putting p = x4, and ¢ = v for
x>0 in (3.1.5), we get

(Fraam mv(®) + FaBey, Loy, (~lf)][F1i1~z,!,;\1u(-K) + Fsro Mo ()]
> A[FaBry, Lrs, (/)| [Far,s10(2))
Letting n — oo and using (3.4), we get
[Fo (@) + Fe () [{F. 2o (2) + Fa ()] > 4[F. - (2/@)][Fafy.- (2)],
ie., Fiap(z) > 1, yields Mv = 2. Hence, STv = 2 = Mv.
As (M. ST) weakly compatible, we have
STMuv = MSThv.
Thus, STz = M=z.
Step 6. Putting p = @y, ¢ = 2z for # > 0 in (3.1.5), we get
(Fray, m:(2) + FaBrgn, Lea, (O [FLay, s () + Fsrzars(2)]
> 4[FABzy,, Lzy, (2] )| [Farz s7: ()]
Letting n — oo and using (3.3) and Step 5, we get
(Foars(e) + Fo o (@)][Foars () + Farear=(x)] > 4[F. o (/)] [Fars ar= ()]
ie.,, F,ar.(x) > 1, yields z = Mz,
Step 7. Putting p = xa, and ¢ = Tz for z > 0 in (3.1.5), we get
(Frag, 217:(%) + FaBry,, Las, (€)][FLag, p72(2) + Fsrrs pr-(2)]
> 4FABzy, Lry, (/)] [Frrrs 5774 (7))

As MT =TM and ST = TS we have MTz = TMz = T= and ST(T=) = T(ST=) = T=.
Letting n — oo, we get
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[F:,T:(T) + F:,;(J»‘)HF:,T: (317) + FT:,T: (-17)] > 4[}":,:("3/(1)”1:7‘:,'1": (1‘)}
ie., F,r.(r)>1,ylelds Tz = z.
Now STz = Tz = z implies Sz = z. Hence, Sz =Tz= Mz =z. (3.7)
Combining (3.6) and (3.7), we get
Az=Bz=Lz=Mz2=Tz=Sz==z.
Hence, the six self maps have a common fixed point in this case.

STMv = MSTwv. Thus, STz = Mz.

Case II. L is continuous.

As L is continuous, Lo, — Lz and L(AB)ry, — Lz.

As (L. AB) is compatible, so by proposition (2.4), (AB)Lxy, — Lz.
Step 8. Putting p = Ly, and ¢ = 3,41 forz >0 in (3.1.5), we get

(FLLagn Mrgns 1 (€) + FABLzgn, LLazn () [FLLzsn Masns1 (€) + FSTagn i1, Mazn o (T)]

> A[F ALy LLas (T/ O FMas, 10,5211 (T)]

Letting n — oo, we get

[FL:,:(:‘U) = FL:,L:(:’?)HFL:,:(I) + F:,:<:I7)1 2 4[FL;,Lz(x/a)HF;,:(17)]

ie, Fp,.(x)>1,yields Lz = z.
Now, using steps 5-7 gives us Mz = STz = Sz =Tz = z.

Step 9. As M(X) C AB(X), there exists w € X such that 2z = Mz = ABw. Putting p = w and
q = Tonyy for z > 0 in (3.1.5), we get

(Frw Mz 1 (T) + FaBuw,Lw(®)][FLwMey, 1 (®) + FsTayp, 1, Maz,41 (%))
> 4[FABw,Lw(T/ Q)| [Fhzy,, 1, STr2011 (T)]

Letting n — oo, we get

[FL,w.z(-'E) + F:,Lw(m)HFLu'.:(I) + F:,:(l')] > 4[F:‘Lu~(.’l_!/(1)][F;J(IL')],
ie, Fry.(z)>1,yields Luw =z = ABw.

Since (L, AB) is compatible and so by proposition (2.2), (L, AB) is weakly compatible and hence, we
have

Lz = ABz.

Also, Bz = z follows from step 4. Thus, Az = Bz = Lz = z and we obtain that z is the common fixed point
of the six maps in this case also.

Step 10. (Uniqueness) Let u be another common fixed point of A,B,S,T,L and M; then
Au=Bu=Su=Tu=Lu= Mu=u.
Putting p = z and ¢ = u for z > 0 in (3.1.5), we get

(Freamu(z) + FaBz,1:(2))[FrLzpu(2) + Fsrumu(®)]-> 4[FAB:, 1:(2/0)][FMu,sTu(T)]
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Letting n — oo, we get
!F:.u(ir‘) = F:.:('I)”FLAU(I) <t Fu.‘u(l')] 2 4[F:.:('/1:/“‘)”1:11,11(-")]

Le., F.,(r) > 1, yields z = u. Therefore, z is a unique common fixed point of A, B, S.T. L and M. This
completes the proof.
As a corollary of theorem 3.1, we obtain the following result.

Remark 3.1. If we take B = T = I, the identity map on X in Theorem 3.1, then the condition (3.1.5) is
satisfied trivially and we get

Corollary 3.1. Let A,S,L and M be self mappings of a complete Menger space (X, F,t)
satisfying : )

(3.1.1) L(X) C S(X), M(X)C A(X).
(3.1.2) Either A or L is continm;us.
(3.1.3) (L., A) is compatible and (M, S) is weakly compatible,
o.1.4) forallp.ge X, r>0and 0 < a < 1,
(FLoniq(®) + Fap 1p(2)][Frpa1g(%) + Fsqa10(x)] > 4[F p,1,5(2/)][Farg.s4(2)]

Then A, S.L and M have a unique common fixed point in X.

Remark 3.2. In view of Remark 3.1. Corollary 3.1 is a generalization of the result of Singh and Sharma
[14] in the sense that condition of compatibility of the pairs of self maps has been restricted to compatible
and weakly compatible self maps.

Next we utilize our Theorem 3.1 to prove another common fixed point theorem in a complete metric
space.

Theorem 3.2. Let A, B,S,T,L and M he self mappings of a complete metric space (X.d)
satistying (3.1.1), (3.1.2). (3.1.3), (3.1.4) and

[d(Ly, M)} ?[d(ABy, L,)|"/? + [d(ST,, M,)|'/? < a{d((AB,, L,)] + [d(M,, ST,), (3.1.5)

for all p.q € X where 0 < a < 1. Then A, B,S,T. L and M have a unique common fixed point in X.

Proof. The proof follows from Theorem 3.1 and bt considering the induced Menger space (X, F,t) where
t(a,b) = min{a, b} and F, 4(x) = H(z—d(p.q)), H being the distribution function as given in the definition
2.1.

Acknowledgement

Authors are thankful to the referee for valuable suggestions to improve the paper.

References

[1] Chamola, K.P.., Dimri, R.G. and Pant, B.D. : On non linear contractions on Menger spaces, Ganita, 39 (1988)
49-54.

[2] Dhage, B.C. : On a common fired point of coincidentally mappings in D-metric spaces, Indian J. Pure Appl.
Math. 30 (1999) 395-406.



Common fized point theorem in ... 31

3

(10]
11

(12]

(13]

(14]

(15]

(16]

Jungck, G. : Compatible mappings and common fized points, Internet. J. Math. and Math. Sci., 9 (4) (1986)
TT1-779.

Jungek, G. : Compatible mappings and common fized points (2), Internet. J. Math. and Math. Sci., (1988)
285-288.

Jungek, G. and Rhoades, B.E. : Fized points for set valued functions without continuity, Indian J. Pure and
Appl. Math., 29 (1998) 227-238.

Menger, K. : Statistical matrices, Proc. Nat. Acad. Sci. USA, 28 (1942) 535-537.

Mishra, S.N. : Common fized points of compatible mappings in PM-spaces, Math. Japon., 369 (2) (1991)
283-2R9.

Pant, R.P. : Common fized points of noncommuting mappings, J. Math. Anal. Appl. 188-2 (1994) 436-440.
Pant, R.P. : Common fized point theorems for contractive maps, J. Math. Anal. Appl. 226 (1998) 251-258.
Pant, R.P. : R-weak commutativity and common fized points, Soochow J. Math. 25-1 (1999) 37-42.
Schweizer, B. and Sklar, A. : Statistical metric spaces, Pacific J. Math., 10 (1960) 313-334.

Sehgal, V.M. and Bharucha-Reid, A.T. : Fized points of contraction maps on probabilistic metric spaces, Math.
System Theory, 6 (1972) 97-102.

Sessa, S. : On a weak commutativity condition of mappings in fized point consideration, Publ. Inst. Math.
Beograd 32 (46) (1982) 146-153.

Singh, B. and Sharma, R.K. : Common fized points of compatible maps in Menger spaces, Vikram Mathematical
Journal, 16 (1986) 51-56.

Singh, S.L. and Pant, B.D. : Fized point theorems for commuting maps in probabilistic metric spaces, Honam
Math. J., 5 (1) (1983) 139-149.

Singh, S.L. and Pant, B.D. : Coincidence and fized point theorems for a family of mappings on Menger spaces
and extension to uniform spaces, Math. Japon., 33 (6) (1988) 957-973.



> Aligarh Bull. of Maths.
Volume 25, No. 1, 2006

EFFECT OF A CHEMICAL REACTION ON A MOVING ISOTHERMAT
VERTICAL SURFACE IN PRESENCE OF MAGNETIC FIELD
WITH SUCTION

Rajeev Jha* and R.K. Shrivastava**
*Department of Mathematics, J.L.N. (P. G.) College, Etah (U.P.), India

**Department of Mathematics, Agra College, Agra (U.P.), India

(Received August 13, 2005; Revised May 08, 2006)

Abstract. In this paper we study the effect of a chemical reaction on a moving isothermal vertical
surface in presence of magnetic field with suction, taking into account the homogeneous chemical reaction
of first order. The solutions for the velocity and skin friction profiles are studied for different magnetic
field parameter, Schmidt number, Prandtl number and chemical reaction parameter. It is observed that
the velocity increases with decrease in magnetic field parameter during the generative and destructive
reaction.
Nomenclature
ap  constant
by constant

B, external magnetic field

C’ concentration

C  dimensionless concentration

C, specific heat at constant pressure
D  mass diffusion coefficient

g acceleration due to gravity

G, mass Grashof number

G, thermal Grashef number

k  thermal conductivity of the fluid
K dimensionless chemical reaction parameter
K, chemical reaction parameter

Pr Prandtl number

M  Magnetic field parameter

Sc  Schmidt number

T’ temperature

T  dimensionless temperature

u, velocity of the vertical surface

<

dimensionless velocity component in X-direction

u,v velocity components in x, y-direction , respectively

Vo  suction velocity

x  spatial coordinate along the surface

Y  dimensionless spatial coordinate normal to the surface
y  spatial coordinate normal to the surface

Greek symbols
a thermal diffusivity
B volumetric coefficient of thermal expansion

Keywords and phrases : Magnetic field, chemical reaction, vertical plate, heat and mass transfer.
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B volumetric coefficient of expansion with concentration
U coefficient of viscosity
v kinematic viscosity
P density of fluid
o electric conductivity
- skin friction
T dimensionless skin friction
Subscripts
w conditions on the well
oo free stream conditions

1. Introduction

Magneto convection plays an important role in various industrial applications. Examples include
magnetic control of molten iron flow in the steel industry, liquid metal cooling in nuclear reactors and
magnetic suppression of molten semi conducting materials. It is of importance in connection with many
engineering problems, such as sustained plasma confinement for controlled thermonuclear fusion,
liquid-metal cooling of nuclear reactors, and electromagnetic casting of metals. In the field of power
generation, MHD is receiving considerable attention due to the possibilities it offers for much higher
thermal efficiencies in power of plants. MHD finds applications in electromagnetic pumps, controlled
fusion research, crystal growing, plasma jets, chemical synthesis, etc.

Chemical reactions can be codified as either heterogeneous or homogeneous processes. This
depends on whether they occur at an interface or as a single-phase volume reaction. A reaction is said to
be of first order, if the rate of reaction is directly proportional to the concentration itself. In many
chemical engineering processes, there does occur the chemical reaction between a foreign mass and the
fluid in which the plate is moving. These processes take place in numerous industrial applications, e.g.,
polymer production, manufacturing of ceramics or glassware and food processing, see Cussler [2].

Chamber and Young [1] have analysed the diffusion of a chemically reactive species in a laminar
boundary-layer flow. Vajravelu [6] studied the exact solution for a hydrodynamic uniform suction and
internal heat generation /absorption. In all these studies, the authors have taken the continuous moving
surface to be oriented in the horizontal direction. Again, Vajravelu [7] extended the problem of [6] to the
vertical surface. The heating as well as cooling effect of a moving isothermal vertical surface were to be
analyzed. Das et al. [3] have studied the effect of a homogeneous first order chemical reaction on the
flow past an impulsively started infinite vertical plate with constant heat flux and mass transfer. The
dimensionless governing equations were solved by the usual Laplace transform technique.

However, the theoretical solution for the hydro-dynamics boundary-layer flow on a
continuously moving isothermal vertical surface with uniform suction and diffusion of chemically
reactive species is not studied in the literature. Such a study found useful applications in aero-dynamics.
For more details, see Schlichting [5]. Muthucumaraswamy, R. [4] have discussed heat and mass transfer
effects on a continuously moving isothermal vertical surface with uniform suction, taking into account
the homogeneous chemical reaction of first order.

The aim of the present paper is to investigate the effects of a magnetic field parameter on
a moving isothermal vertical surface with uniform suction in the presence of homogeneous chemical
reaction of first order. The velocity and skin friction profiles for different parameter like Schmidt
number (Sc) Prandtl number (Pr), Chemical Reaction parameter (K) and Magnetic field parameter (M)
are analyzed graphically.
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2. Formulation of the problem

A polymer or metal sheet extruded continuously from a die, or a long fiber or filament traveling
between a feed roller and a take up roller are typical examples of moving continuous surfaces. It will be
assumed that the quantity of fluid removed from the stream is so small that only fluid particles in the
intermediate neighborhood of the wall are sucked away. It is well known that on a moving surface of
finite length the boundary layer grows in the direction opposite to the direction of the motion whereas
on a moving continuous surface, such as a long continuous polymer sheet of fiber extruded from a slot
and taken up by a wind-up roller at a finite distance away, the boundary layer on the sheet or fiber
originates at the slot and grows in the direction of motion of the surface.

A chemical reactive species is emitted from the moving surface in a hydrodynamic flow field. It
diffuses into the fluid where it undergoes a simple isothermal, homogeneous chemical reaction. The
reaction is assumed to take place entirely in the stream. Consider the steady, two-dimensional,
incompressible flow of a viscose fluid on a continuously moving vertical surface in presence of magnetic
field, issuing from a slot and moving with a uniform velocity u« in a fluid at rest. Let the x-axis be taken
along the direction of motion of the surface in the upward direction and the y-axis normal to it. The
temperature and concentration levels near the surface are raised uniformly,

Equation of continuity

Ju ou
—+—=0 2.1
N 2.1
Equation of momentum
ou ou , . do’u OB
u—+v—=gB("-T )+ C-C.)+v——-——- 2.2
= oy eBT’'-T.)+ep (C’-C.) % u (2.2)
Equation of enrgy
aT" dT’ 2°T’
U——+V— | = k 23
. pC,,( ox dy J dy’ Vo)
Equation of concentration
aCc’”  aC’ el ,
u +u’—=Da—€—k,C 2.4)
ox  dy dy
The initial and boundary conditions are
u=u,, v=v,=const.<0, T'=T,, C'=C, at y=0,
(2.5)

u—=>0, T ->T.,, C->C., a y-oow

On introducing the following non-dimensional quantities :
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w, u vgB (T, -T)
Y =2, U=—, Gr= >
v u, u,v,
C * -
pr=tCr g2l G=vgﬂ(C2Cm)
k D u,v,
gk M=OB‘fU T=T,_T°: _c-c
ve Py T, -7 Ce—C.

equations (2.1) to (2.4) are reduced to the following non-dimensional form :

2
d ’f +Y _wu ={GrT+GcC)
day* dy
2
LK 7; +Pr =i 0
dY dy
2
4C 5.9 xsec=0
dy dy
The corresponding initial and boundary conditions in non-dimensional form are
U =1, T =1, Cc=1 at Y =0,

U0, T—>0. C-0 as Y 5o
Solving equations (2.7) to (2.9) with the boundary conditions (2.10), we get

Gr 4Gc 1
= BEEN
v {]+(Prz—Pr-M)+(aj—2a0—4M)}exp( 2%

Gr 4Gc 1
- - exp(—PrY)+— exp(——a,Y)
hPr‘~Pr—M§ p( ) a; —2a, —4M P=5 % }

where

a, = Sc++Sc* +4K Sc and b, =1+1+4M

T =exp(—PrY)

C :explr—%(Sc+\ch2 +4K Sc )Y"

The mass diffusion equation (2.13) can be adjusted to meet these circumstances, if one takes

(i) K> 0 for the destructive reaction,
(ii) K =0 for no reaction and

(iii ) K <O for the generative reaction .

Shrivastava

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

The computed solutions for the velocity and skin friction are valid at some distance from the
slot, even though suction is applied from the slot onward. This is due to the assumption that velocity,
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temperature and skin friction fields are independent of the distance parallel to the surface. The fluids
considered in this study are air (Pr = 0.71) and water (Pr = 7.0). The effects of velocity and skin friction
are studied in the presence of magnetic field parameter.

3. Results and Discussion

The velocity profiles for different values of the Prandtl number Pr = 0.71, 7.0 and magnetic field
parameter M = 0.1, 0.3, 0.5 in presence of chemical reaction parameter K = 2, Schmidt number Sc = 0.6,
are shown in the figure-1. It is observed that the velocity increases with decrease in magnetic field
parameter during the generative and destructive reaction.

The effect of different values of the chemical reaction parameter K = -0.2, 0, 2 in the presence of
the magnetic field parameter M =1, Gr =1, Gc =1, Sc =1 and Pr =0.71 are shown in figure-2. In this case
the velocity profile decreases with increasing chemical reaction parameter.

The velocity profiles for different values of the Schmidt number Sc = 0.2, 1, 2 in the presence of
the magnetic field parameter M =1, Gr =1, Gc =1, K=1 and Pr=0.71 are shown in figure-3. It is observed
that the velocity profile increases with decreasing values of the Schmidt number.

The dimensionless skin friction at the surface is given by

[dU) ( 1 ) Gr 4Gc
T=|— =|==b, | 1+ 17— +—
dy ), 2 (Pr-pr—M) (0] —2a,-4M)

n ‘Pr Gr s 2a,Ge G.1)
(Pr' =Pr= M) ay; —2a, —4M )

The skin friction for different values of chemical reaction parameter K = -- 0.2, 0, 2 and Prandtl
number Pr =0.71, 7.0 and Gr =1, Gc =1, Sc =1 are shown in figure-4. In this case the skin friction decreases
with increasing value of magnetic field parameter. This shows that the wall shear stress decreases with
increase in magnetic field parameter.

Figure-5 represents the skin friction for different value of Schmidt number Sc=02121tis
observed that the skin friction increases with decrease in the value of the Schmidt number.

4. Conclusions

The theoretical solution for heat and mass transfer on a continuously moving isothermal vertical surface
in the presence of chemical reaction and magnetic field with uniform suction is obtained. The solutions
are in terms of exponential functions. The study concludes the following results :

(i) The velocity increases with decrease in magnetic field parameter during the generative and
destructive reaction.

(i) The velocity profile decreases with increasing chemical reaction parameter.

(iii) The velocity profile increases with decreasing values of the Schmidt number.

(iv) The skin friction decreases with increasing values of magnetic field parameter.

(v) The skin friction increases with decrease in the values of the Schmidt number.
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Abstract. A result on common finxed points theory for noncommutative six mappings without linearity
condition of mappings has been proved. As application, some invariant approximation results are also
obtained. Our work generalizes the recent results of Imdad [5]. Some known results ([1], [2], [4], [10] and

[11]) are also generalized and improved.

1. Introduction

Interesting and valuable results as application of fixed point theorems were studied extensively in the field
of best approximation theory. As excellent reference can be seen in [14].

In 1963, Meinardus [8] was the first who observed the general principle and employed a fixed point
theorem to establish the existence of an invariant approximation. Later on in 1969, Brosowski [2] obtained
the following generalization of Meinardus’s result.

Theorem 1.1. Let X be a normed space and T : X —> X be a linear and nonexpansive operator. Let M
be a T-invariant subset of X and zg € F(T). If D, the set of best approximation of g in M, is nonempty
compact and convex, then there exists a y in D which is also a fixed point of T'.

Using & fixed point theorem, Subrahmanyam [15] obtained the following generalization of the above
mentioned theorem of Meinardus (8].

Theorem 1.2. Let X be a normed space. If T : X — X'is a nonexpansive operator with a fixed point
zo, leaving a finite dimensional subspace M of X invariant, then there exists a best approximation of xg in
M which is also a fixed point of T.

In 1979, Singh [11] observed that the linearity of mapping T and the convexity of the set D of best"
approximation of g in Theorem 1.1, can be relaxed and the further proved the following extension of it.

Theorem 1.3. Let X be a normed space, T : X — X be a nonexpansive mapping, M be a
T-invariant subset of X and zy € F(T). If D is nonempty compact and starshaped, then there exists
a best approximation of @y in M which is also a fixed point of T.

In a subsequent paper, Singh [12] also observed that only the nonexpansiveness of T on D' = DU {zo}
is necessary for the validity of Theorem 1.3. Further in 1982, Hicks and Humpheries [4] have shown that
Theorem 1.3 remain true, if T : M ~— M is replaced by T : 9M +— M where M, denotes the boundary
of M. Furthermore, Sahab, Khan and Sessa [10] generalized the result of Hicks and Humheries [4] and
Theorem 1.3 for commuting mappings and obtained the following result of common fixed point for best
approximation in the setting of normed linear space.

Theorem 1.4. Let I and T be self maps of X with zg € F(I)N F(T), M C X with T : 0M ~ M, and
p € F(I). If D, the set of best approximation is compact and p-starshaped, I(D) = D, I is continuous

Keywords and phrases : Best approximation, semi-convex structure, fixed point.
AMS Subject Classification : 41A50, 47TH10, 54H25.
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and linear on D, I and T are commuting on D and T is I-nonexpansive on D U {zo}, then I and T have a
common fixed point in D.

Recently, Imdad [5] has obtained a result on common fixed point in compact metric space which is
also used to get another fixed point result for best approximation. These results generalize and improve
all the above mentioned results by increasing the number of mappings and by weakening the condition of
commutativity to the condition of compatibility map.

It is not out of place to mention that in 1992, Beg, Shahzad and Igbal [1] proved also the result of
Sahab, Khan and Sessa {10] in convex metric space.

The purpose of this paper is to use the common fixed point for the best approximation with semi convex
structure and to give new direction to the line of investigation given by Brosowski. First, we prove a result
on common fixed point involving six mappings which need not be linear in the setting of normed space. As
an application of the common fixed point result, we prove result on invariant approximation. For this, we use
the result of Junguk [7] and the property of semi-convex structure given by Gudder [3] and Petrusel (9] and
the result of Imdad [5] (Theorem 2.2). By doing so, we in fact, generalize the result of Imdad [5] (Theorem
3.1) by relaxing the linearity condition of mappings. Our results will also generalize and improve the results
of Beg and Shahzad [1], Brosowski [2], Hicks and Humpheries [4], Singh [11], Sahab, Khan and Sessa [10] by
increasing the number of mappings and by employing compatible mappings instead of commuting mappings.

2. Preliminaries
To prove our results, we recall the following definitions:

Definition 2.1. ([14]) Let X be a normed linear space and let C a non-empty subset of X. Let 2y € X.
An element y € C is called a best approximation to zg € X, if

| 2o — y ||= d(20,C) = inf {|| zo —z ||: z € C}

Let D be the set of best C-approximations to xg and so

D={:€C: |lmo—2| = d(zo,C)}

Definition 2.2. ([14]) Let X be a normed linear space. A set C in X is said to be convex, if Az+(1—\)y € C,
whenever z,y € C and 0 < A < 1.

A set C in X is said to be starshaped, if there exist at least one point p € C such that Az +(1-\)p € C,
for all z € C and 0 < A < 1. In this case p is called the starcenter of C.

Each convex set is starshaped with respect to each of its points, but not conversely.

Definition 2.3. ([6]) A pair (S,T) of self-mappings of a normed space X is said to be compatible, if
limp, oo || TSz, — STy, ||= 0, whenever {z,} is a sequence in X such that

iim Tz, = lim Sz,=te X
n—o0

n—oo

Every commuting pair of mappings is compatible but the converse is not true in general.
We now introduce definition of convex structure introduced by Gudder{3] and Petrusel [9].

Definition 2.4. Let X be a set and F : [0,1] X X x X +> X a mapping. Then the pair (X,F) forms a
convex prestructure.

Definition 2.5. Let (X, F) be a convex prestructure. If F satisfies the following conditions:

(i) FOz, Flpy,2) = FA+ 1 = N, FOA + (1 — Np)~Lz,y),2) for every A\,p € (0,1) with
A+ (1-Np#0and z,y,2€ X
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(ii) F(\,z,z) = for any z € X and A € (0,1)

then (X, F) forms a semi-convex structure.
If (X, F) is a semi-convex structure, then F(1,xz,y) = x for any z.y € X.
Definition 2.6. A semi-convex structure (X, F) is said to form a convex structure if F also satisfies the
following conditions:
(i) F(\ z,y) = F(1 =\ y,z) for some A € (0,1),z,y € X
(iv) F(\z,y) = F(1 - A z,z) forsome A #1, v € X
then y = z.
Definition 2.7. Let (X, F) be a semi-convex structure. A subset Y of X is called F semi-starshaped, if
there exists p € Y so that for any z € Y and X € (0,1), F(A,z,p) € Y.
Definition 2.8. Let (X, F) be a convex structure. A subset Y of X is called:
(a) F-starshaped if there exists p € Y so that for any z € Y and X € (0,1), F(A,z,p) € Y.
(b) F-convex, if for any u,v € Y and X € (0,1), F(\,u,v) € Y.

(¢) A self-mapping S of a convex structure (X, F) is said to be F-affine if for any A\ z,y) € 10,1 x X x X,
we have SF(\, z,y) = F(A, Sz, Sy).

For F(A,u,v) = M+ (1 — A)v, we obtain the known notions of starshaped and convexity for linear
spaces.

Petrusel [9] noted, with an example, that a set can be a F-semi-convex structure without being a convex
structure.

Throughout, this paper F(T) denotes the set of fixed point of mapping T. We also use the following
result due to Imdad [5]:

Theorem 2.9. [5] Let A, B,I,J,S and T be continuous self-mappings of a compact metric space (X,d)
with AI, BJ, S, T being continuous, AI(X) C T(X) and BJ(X) C S(X). If the pairs (AI,S) and (BJ,T)
are compatible pairs and the pairs (A, 1), (4, S), (I, S),(B,J),(B,T) and (J,T) are commuting and

d(Alz,BJy) < M(z,y)
for all z,y € X where
M(z,y) = max{d(Sz, Ty),d(Sz, Alz),d(Ty, BJy), %[d(Sx. BJy) + d(Ty, Alz)]},
when M(z,y) > 0, then 4, B,I,J,S and T have a unique common fixed point.
3. Main Result

We first prove fixed point theorem involving six mappings.

Theorem 3.1. Let C be a subset of normed space X and has a semi-convex structure F, where the
mappings F : [0,1] x C x C — C satisfies the following conditions:

(i) F is ¢-contractive relative to the second argument, i.e., there exists a mappings
¢ :[0,1] — [0, 1] so that

” }-()"va) _:F()"yvp) ” < (b(A) " =Y ”

for any z,y,p € C.
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(ii) F is continuous relative to the first argument.
Let AI.BJ,S and T be continuous self-mappings of C such that AI(C) Cc T(C) and BJ(C) C S(C)
and (AI,S) and (B.J,T) are compatible pairs. Suppose C be compact, F-semi-starshaped with respect to
pe F(S)NF(T),S and T are F-affine. If A, B,S,T,I and J satisfy

| Ale — BJy || <max{|| Sx —Ty|,| Sz — F(k,Alz,p) |, || Ty — F(k, BJy,p) |,

1
3l Sz = F(k. BJy.p) || + || Ty — F(k, ALz, p) |[]} (3.1)
for all 2,y € C. then C N F(A) N F(B) N F(S) N F(T) n F(I) n F(J) # ¢ provided the pairs
(A, 1),(A,S),(I1,S),(B.J),(B,T) and (J,T) are commuting,.
Proof. Choose a sequence k,, € [0.1) such that {k,} — 1. Define, for each n, maps {AI,} and {B.J,} by
AL (x) = F(kn, Alz,p)
BJ,(x) = F(kn, BJz,p)

for each x € C. Then each {AI,} and {BJ,} are well-defined maps from C into C. Now, compatibility of
(Al,S) and p € F(S) imply that

0 < li_I)n ” ALn(S'yn) - S(Almym) ”
< lim | Flkn, AI(Sy),p) — SCFb AT, ) |
= nli_)n;o || F(kn, AI(Syn),p) — F(kn, S(AIyn),p) ||

whenever 1112130 Syn = rli_'nc; Aly, =t e C for all n.
This implies that {AI,} and S are compatible on C' and AI,(C) C S(C) for each n since S is F-affine

and AI(C) C §(C). Similarly we can show that {BJ,,} and T are compatible pair on C and BJ,(C) C T(C).
It follows from condition (3.1) and the contractiveness of F, that
| Al ~ By |= F (b, AL, p) — Flkn, BJ,p |

< ¢(ka)— || Alz — BJy |

< @(kn) max{|| Sx — Ty |, || Sz — F(k, Alz,p) ||,|| Ty — F(k, BJy,p) |,

3l Sz — F(k, BJy,p) || + | Ty — F(k, Alz,p) |}

< ¢(kp) max{|| Sz — Ty |

§z — ALz ||| Ty — BJwy |l | Sz — BJuy | + | Ty — AL [}

< max{|| Sz~ Ty |.|| Sz — ALz ||, || Ty — BJuy |, 5[l Sz — BJny || + || Ty — ALz |}
for all z,y € C. We note that the continuities of AI and BJ do not ensure the continuities of A. I, B and
J. But for maps Al, BJ,S and T all the conditions of Theorem 2.9 are satisfied ensuring the existence of

unique common fixed point &, € C of AI, BJ,S and T, that is,

F(AL,) NF(BJ,) NF(S)NF(T) = {x,} for some z, € C.



Results on best approzimation for ... 47

The compactness of C' implies that there exists a subsequence of {x,} in C, denoted by {xn,}, converging
to a point, say, y € C' and hence Alr,, — Aly. Thus

Zn, = Al r,, = F(kzp,, Alx,,, p) = F(1, Aly,p) = Aly, as n; - o0

and therefore the uniqueness of the limit Ay = y giving thereby y € C' N F(AI). Similarly, it can also be
shown that y € C N F(BJ).

Now, since S and T are continuous, we have

Sy=S( lim r,,)= lim Sz, = lim z, =y,
n; —oo n; —oo n;—o0

Ty=T( lim z,,)= lim Tz, = lim z, =y,
n,—oo n; —00 n,—>00

yielding thereby Aly = BJy = Sy = Ty = y. Therefore, y is common fixed point of AI,BJ,S and T.
Hence C N F(AI) N F(BJ) N F(S)N F(T) # ¢. Now, we show that y is also a fixed point of A, I, B and J.
For this, let y be a common fixed point of (AI,S). Then

2= A(AIz) = A(IAz) = AI(Az), Az = ASz = S(Az),

which shows that Ay is another fixed point of (AI, S). Now in view of uniqueness of fixed point of (AI, S)
one gets Ay = y which amount to say that y is the unique common fixed point of (A, S). Similarly, it can
be shown that y is the unique common fixed point of [, B and .J. Hence

C N F(A) N F(I)n F(B)NNF(J)F(S)NF(T) # ¢.

This completes the proof.
An immediate consequence of Theorem 3.1 is as follows:

Corollary 3.2. Let C be a subset of normed space X and has a semi-convex structure F, where the
mappings F : [0,1] x C x C' — C satisfies the following conditions:

(i) F is ¢-contractive relative to the second argument, i.e., there exists a mappings
¢:[0,1] — [0,1] so that
| Fz,p) = FXyp | < 6N lz—yll
for any z,y,p € C.

(i1) F is continuous relative to the first argument.

Let AI,BJ,S and T be continuous self-mappings of C such that AI(C) c T(C) and BJ(C) C S(C)
and (AI,S) and (BJ,T) are compatible pairs. Suppose C be compact, F-semi-starshaped with respect to
pe F(S)NF(T),S and T are F-affine. If A, B,S,T, I and J satisfy

| AIz — BJy || < max{|| Sz — Ty ||, || Sz — F(k, Alz,p) ||, || Ty — F(k, BJy,p) II,

5 1Sz~ F(k, BJy,p) I, 5 | Ty — F(k, ALz, p) [} (32)

for all 2,y € C, then C N F(A) N F(B) N F(S) N F(T)n F(I) n F(J) # ¢ provided the pairs
(A1), (A, S),(I,S),(B,J),(B,T) and (J,T) are commuting.
As an application of Theorem 3.1, we have following results on invariant approximation:

Theorem 3.3. Let A,B,S,T,I and J be a self-mappings of a normed space X with
rg € FIA)NF(B)NF(S)NF(T)Nn F(I)N F(J) and C C X such that AI, BJ : 0C — C. Further,
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suppose that the pairs (A, S) and (BJ,T) are compatible with AI, BJ, S and T being continuous on D.
Suppose D is nonempty compact and has a semi-convex structure F with conditions (i) and (ii) of Theorem
3.1. Further, suppose that D is F-semi-starshaped with respect to p € F(S) N F(T),S and T' are F-affine
and S(D) = D =T(D). If A,B, S,T, I and J satisfy for all z,y € D’ = DU {x}

| Sz — Tz || if y = zo.
| Alz — BJy ||< { max{|| Sz —Ty |,|| Sz — F(k, Alz,p) |, || Ty — F(k, BJy,p) |, (3.3)

3ll Sz — F(k,BJy,p) || + || Ty — F(k, Alz,p) ||} if y € D,
then DN F(A)NF(B)N F(S) N F(T) N F(I) N F(J) # ¢ provided the pairs (4, ), (4,S), (I, S), (B, J),
(B,T) and (J,T) are commuting.
Proof. Let y € D. Then Sy € D and Ty € D, because S(D) = D = T(D). Also, if y € dC, then
Aly,BJy € C, because AI, BJ(OC) C C. Now since BJxg = x¢ = Txo, we have
| Aly—zo || = | Aly—BJzm|| < ||Sy—Tzoll = ||Sy—=zo || = d(z,C),

yielding thereby Ay € D. Thus AI be a self mapping of D. Similarly BJ is also self-mapping of D. Now
Theorem 3.1 guarantees that
DNFAI)nF(BJ)NF(S)NF(T) # ¢.

In the line of the proof of the Theorem 3.1, we have

DNF(A)NF(B)NF(S)NF(T) # ¢.

This completes the proof.
An immediate consequence of Theorem 3.3 is as follows:

Corollary 3.4. Let A,B,S,T,I and J be a selfmappings of a normed space X with
zo € F(A)N F(B)N F(S)N F(T)N F(I)N F(J) and C C X such that AI,BJ : 8C — C. Further,
suppose that the pairs (AI, S) and (BJ,T) are compatible with AI, BJ,S and T being continuous on D.
Suppose D is nonempty compact and has a semi-convex structure F with conditions (i) and (ii) of Theorem
3.1. Further, suppose that D is F-semi-starshaped with respect to p € F(S) N F (T),S and T are F-affine
and S(D) = D =T(D). If A, B, S,T, I and J satisfy for all z,y € D' = DU {xo}.

|| Sz — Tz || if y = z,
| ALs — BJy 1< { max{l| Sz~ Ty || Sz — F(k, Alz,p) || Ty - F(k, BIy,p) |, (3.4

“ S(E'—]‘-(k,BJy,p) ”7% “ Ty—f(k,AIz,p) ”} 1fy€ Dv

1

2
then DNF(A)NF(B)NF(S)NF(T)NF(I)NF(J) # ¢ provided the pairs (4, I), (4, S), (I, S),(B,J),(B,T)
and (J,T) are commuting.

Remark 3.5. In the light of the comment given by Pertursel [9] that a set can be a semi-convex structure
without being a convex structure, we assert that hypothesis of our Theorem 3.1, Corollary 3.2, Theorem 3.3
and Corollary 3.4 are much more weaker than the existing results.

Remark 3.6. Theorem 3.3 and Corollary 3.4 generalized the Theorem 3.1 due to Imdad [5] without
linearity of mappings.

Remark 3.7. Theorem 2.9, Corollary 3.2, Theorem 3.3 and Corollary 3.4 also generalize the results of
Sahab,- Khan and Sessa [10] by increasing the number of mappings and by employing the compatible
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mappings instead of commuting mappings. Further, the conditions (3.1)-(3.4) are much general than the
condition of Sahab, Khan and Sessa [10].

Remark 3.8. Theorem 2.9, Corollary 3.2, Theorem 3.3 and Corollary 3.4 also generalize the results of
Brosowski [2]|, Hicks and Humpheries [4] and Singh [11] by increasing the number of mappings and by
considering the generalized form of conditions (3.1)-(3.4).

Remark 3.9. By Remark 3.5 and commutativity that implies compatibility, we can get the results due to
Beg and Shazad [1].
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Abstract. In [2], the existence of adjoints is studied for the projection of a comma category (FL{G). In
this paper we find a left adjoint of the projection of a comma category (C | A) and also determine a pair
of adjoint functors for two different comma categories.

1. Introduction

Let C be a category and A an object of C. The comma category (C | A) has as objects all pairs (B, b) where
B is an object of C and b : B — A a morphism in C. The morphisms u : (B,b) — (B',¥) of (C | A) are
those morphisms u : B — B’ in C for which b’ ou =1b

B B — B
objects (B, b) : J,b : morphisms (B,b)—(B’,¥): \3‘ ‘/l_-,"
e

The composition of morphisms in (C | A) is given by the composition of morphisms u in C.

Define a functor Q : (C | A" — (, called the projection of the comma category as:
Q assigns to each pair (B,b) the object B of C and to each morphism u : (B,b) — (B',V) the
morphism u : B — B’ in C ({1]).

2. Adjoint Functors

Let C be a category with products. Let us define a functor R : C — (C | A) as follows:

For any B € C
R(B) = Bx A-25A = (Bx A, p)

and for any u: B — By in C
R(U) = ’uXIA:(BXAvp)A«)(BIXAypl)
with py ou x I4 = p i.e. the diagram

BxA —— By xA

N

Keywords and phrases : Comma category, projection functor.
AMS Subject Classification : 18A25.

comiutes.




If we consider the diagram

B —5 B

I T

Bx A x4, By x A

N/

A

then the existence of a unique morphism u x I follows from the definition of the product.

Obviously R(Ig) = Ip(g)-

Further, for any u1 : By — By, (uju x I4) is unique, hence
(urw x A) = (u1 x Ia)o (u x I,).

ie. R(uju) = R(up)o R(u).

Hence R is functor.

We assert that R is a left adjoint of the projection functor @ : (C | A) — C.

Mohd. Irfan

To prove it, take 77 : Id -+ QR and £ : RQ — Id to be the unit and counit respectively defined by
n(B) = (B — B x A) and £(B,b) = B x A — B. For any u: B — By in C; if we consider the diagram

B —u<) B1

ln(B) ln(Bn

QR(u)

BxA=Q(BxA— A) =QR(B) ——) QR(B1)=Q(B1xA— A =B xA

then it gives the following commutative diagram

B LN B
I !
\?’ 18/
B __u_) Bl
/ \
Bx A 2y BxA

Hence 7 is a natural transformation.

Next, if we consider the diagram

(B x A— A) = R(B) =RQ(B,b) “2, RQ(By,b1)= R(B1) = (B, x A A)

lS(B,b) lS(Bl,bl)
(Bv b) _u—) (Bla bl)
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we get the following commutative diagram

and therefore it follows that £ is also a natural transformation.
It remains to prove that the following composites are the identities

Q™ qrQ % Q=1
and

R RQREB R = Iy

(Q€onQ)(B,b) = QE(B,b)onQ(B,b)
= Q(BxA— A)on(B)
= (BxA—B)o(B— BxA)

= Ig
= Iqmp
It follows that Q€ onQ = Ig.
Similarly,
(ERo Rn)(B) = ER(B)o Rn(B)

E(Bx A— A)oR(B— B x A)

(B x A)x A= B x A)o(Bx A— (B x A) x A)
= Ipxa

I(BxA—n)

)

It follows that ERo Rnp = Igr

We can formulate the result which we have proved above in the following theorem:

Theorem 2.1. If C has finite products, then the projection functor @ : (C | A) — C has a left adjoint, say,
R:C—(C| A) with R(B)=Bx A— Aforall BinC.

For proving the next result we require the following lemmas.

Lemma 2.2. Let a : A — A’ be a morphism in C, then for (B,b) € (C | A), the rule (B,b) — (B, ab) or
b — ab defines a functor S: (C | A) — (C | A').

The proof is straight forward, hence it is omitted.

Remark. The functor S defined above is a faithful functor.
Lemma 2.3. Let C be a category with pullback. For every (L,l) in (C | A’), define T(l) by choosing a
pullback

T(L) — L

0| |

A 25 A
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then the rule [ — T'(1) is a functor T: (C | A’) — (C | A).

Proof. Obviously T(L,l) = (T(L),T(1)) is an object in (C | A). Let us define T on morphisms; for
r = (L,l) = (M, m), if we consider the diagram

A > i\l

then by the definition of a pullback, there exists a unique morphism T'(r) : T(l) — T(M) making the
above diagram commutative, i.e. we obtain T(r) : (T(L), (1)) = (T(M),T(m)) with T(m)T(r) = T(l), a
morphism in (C | A). Obviously

Ty = Ippy
and for any s : (M,m) — (N,n), we obtain T(sr) : T(L) — T(N) which is unique and hence T(sr) =
T(s)T(r) (see the above diagram).
Theorem 2.4. The functors S and T defined above form a pair of adjoint functors.

Proof. Consider 6 : Id — TS and € : ST — Id as the ‘unit’ and the ‘counit’ of adjunction defined as:

8(B,b) = (B — TB) for (B.b) in (C | A) and

E(L,1) = (TL - L) for (L,I) in (C| A).

To show that § and £ are natural transformations, consider for any u: (B,b) = (D,d) in (C | A) the
diagram

(B,b)) —— (D,d)
9(13,1;)1 le(n,d)

TS(B,b) 22 T§(D, q)
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It is the diagram

7N
},’ B —1:——) D e
raEED
TR T D '/TIL

T< b\‘ IL/-T'J((‘L
A

in which triangles are all commutative. The square can further be broken into commutative diagrams

"

B LN D

In
N7

B =—= D

and hence 6 is a natural transformation.
To show that & is a natural transformation. consider the diagram

ST(L,1) — ST(M,m)
ST(r)

S(L,l)l XS(M,m)
(L) —— (M,m)

It is same as the following commutative diagram

LTC /Al'\o(l“m

Hence £ is also a natural transformation.
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Now considering the composite natural transformations

S 518 %5 5. T por TE 1

we have

(ES0S6)(B.b) = ES(B.b)o SH(B.b)
&(B,aB)o S(B — TB)
(TB - B)o (B — TB)
Ip
I op
Ispp)

Il

It follows that £S5 0 S0 = I«.
Again,
(TEoOT)(L,I) = TE(L,l)o 6T(L,1)
T(TL - L)o 8(TL-" 4)
(T(TL) - TL) o (TL — T(TL))
Ity
= Iirpm
= Iy

Il

Il

It follows that TEo0 6T = I
This proves that (S.T) is a pair of adjoint functors.

References
[1] Maclane, S. : Categories for the Working Mathematician, Springer-Verlag, New York, 1971.

[2] Pellegrino, N.M. : Aggiunti per i functori proiezione di una categoria comma, Attl. Sem. Mat. Fis. Univ.
Modena 24, 1975.



The Aligarh Bull. of Maths.
Volume 25. No. 1, 2006

PROCESSING OF A SIGNAL BY BERNSTEIN PROCESSORS
Tikam Singh and Bhavna Soni
Ujjian Engg. College, Ujjain, India
(Received January 28, 2006)

Abstract. A theorem on a property of Bernstein processors “If s(t) satisfies the condition of convex
modulus of continuity, then so does B(t) also™ is established generating a result of Brown et al [1].

1. Definitions and Notations

Bernstein processor/polynomial for a signal s(t) € C[0,1] is defined by

Ba(s;t) = Z <Z>s [ﬂ (-t n>1 (1)

k=0
Many properties of these polynomials are discussed in [4] and [3]. One of them is

nli_x)go B,(s;t) = s(t) (2)

In addition to the above properties, they mimic the behaviour of the generating function. For convex
s(t) € C[0,1], the corresponding Bn(s;1) is also convex. Further more, for n = 2,3,--- and t € (0,1], we
have (2]

Bn_1(s;t) > Bn(s;t) > s(t) (3)
Let s(t) € Cla, b] and set

w(8) = w(s,t) = sup|s(ty) — s(t2)] (4)
where the sup is taken over all pairs t;,t3 € [a,b] for which |t; — ta] < 8. The function w(d) which depends
on s(t), is called modulus of continuity of s(t) on [a, b). A signal s(t) € Cla,b] is said to satisfy a Lipschitz
condition of order a,0 < a < 1, if

ls(t1) — s(t2)| < Alty —t2|* (5)
t1,ts € [a,b]. The constant A depends on s(t) and a both, and is called Lipschitz constant, s(t) is called
Lipschitz signal for which we write s(t) € Lipj. If w(d) < Ad%, 0 < a < 1, then s(t) € Liph, Ais
independent of . For a convex s(t) =t*, 0 <a <1, t€ [0,1] it is known [1] that Bp(t°, h) < h®, h € [0,1].

If s(t) € CP[0,1], the class of p-times differentiable functions, then for integer p > 0, we have
(12] p- 112)

B®(s,t) = (n ;p)! i: APs [—_’i—p] (:) t*(1—t)n* (6)

n
k=0

Assume that s(t) € CP[0,1] and w(é,p) is the modulus of continuity of sP)(t),
i.e.,|s(p) (t2) — sP)(t1)] < Aw(ty — t1. If w(t) is convex, then it is known that [3]

() + () < v [“ ;ﬂ . )

Keywords and phrases : Bernstein polynomial, Lipschitz constant, Convex modulus of continuity.
AMS Subject Classification : 41A10, 41A17.
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2. Theorem

Brown et al [1] established the following result.
Theorem A. If 5(t) € Lip%, 0 <a <1, B,(s,t) € Lip%, n> 1.

The most interesting thing with this result is that every By (s,t), n > 1 has the same Lipschitz constant
as the function s(t) € Lip a. This is one more remarkable mimicry of the Bernstein polynomials.

The purpose of this note is to extend the scope of the above theorem to finitely differentiable functions
or signal. We shall prove
Theorem. If sP)(t) satisfies the condition of convex modulus of continuity, then so does B! +p( t) also.

3. Proof of the Theorem

Consider t,t, € [0,1]. To prove the theorem, we must show that

B (sit2) — B (s:t1)] < w(ts — 1) (8)
From (6), we have
) (n+p)!'x~(n .
t. = —t IAP —
B, {p(s5t2) n, 2\ (1 —ty)" 7 APs - (t1 +ta —t1)
12 i J
= (TL +,;D). (T.l>(1_t2)n~]Aps[ J J(tz 'tl) ’:1+ }
n: =0 J n+p to —
. (n+p>!i<n)(l t),,_jAps[ }<tz~t1)'i(j) { t, 1
n! i=o ] =0 k tgﬁtIJ
I i g
= (n:‘p) (?)(l—tg)" JApbl: }Z( )tf(tg*tl)]_k
EFEAY k=0
- ("“’)!izj: ™ (7 ars | (1 — )7 th(ty — )7 (9)
nl < i) \k n+p 2 L
7=0 k=0
(inverting the order of summation and putting j — k = m). Again

Il

Br?—?p(b; tl)

n+.P) Z( )tllc(l_t] n— kAps[ ip]

S (Y o]

!
n: =0 n-+p

o IR} (R

k=0 m=0

_ (n +p)!z":"z‘f< >< )Aps [nf—p] 5ty — t1)™(1 — tg)"—h—m

=0m=0
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From (9) and (10), we have

99

n n—k
n + m n—K—1mi
B (sta) =Bt | = |0 g Rt - -
[N’s [——“m] —Aps[ F Hl (1)
L n+p n+p

By (3,4,5) of Davis [2], we have

for some &; satisfying
n+p

<& <

t
e (p)
APs [n +p] (n+p)pr (&)

tlp
n-+p

n and following the arguments in proving theorem

, t=0,1,--+,

6.3.2 in Davis [2], the right hand side of (11) equals

n n—k

n +p k m n—k—m 1 (p) (p) 1
ZZ——-——t (t2 — 11)™(1 — t2) 5P (&,) — s ()]
T N 171 2 1
e k'm (n )! (n +p)P
where
I.,+fm§£,2 k+m+p k S&lﬁk+p
n+p ’ n+p n -+ n+p
n n—k
> (n +1')’ k¢ n —k— 1
< t t’ t n 1 _t. n m
- k:()rg:() klm!(n — ) (k2 = 01)"™( 2) (n+p)?
; k
pmrkan) kEa)l oo
n+p n+p
< inzf (Tl + I) tk(t‘ - )m(l ¢ )n—chm 1
ktmi(n —k —m)!'! o ? (n+p)P
p{m+k+n e 2+l-7+n]+sp Z+k+n _ k+7]
n+p n+p | n+p n+p
< ini 7L +1)) tk(tg . t1)m(1 _ tQ)n—k—m 1
S e ml(n— k—m)! (o)
m o m
p[w _gP 2_+"_+_7] _}_}9? ﬂﬂ —gP _k_+7’
n+p n+p n+p n+p
n n—k
(n+p)! n! ke m
< t t‘ _t m 1 _t n m
kZOmZOn' n+pPklmi(n—k—m)" (t2 —02)"™( 2) ¥ [n—i—p}
(n+p)! <« n! m ]'=[n—m\ .
b—; t __t t n—kKk—m
n‘(n+p)1’zm'(n~ ( 2=t n+p ;) k it —t)

_ (n+p) = [ om ]
~ nl(n +p)PmZ;0w [n +p]

t
B, lw|—t—|
‘[W[nw] : tl]

_ (n+p)!
" nl(n + p)P
(n+ p)!

—= n!(n + p)pw(tz - tl)

Thus the theorem gets proved, since lim

(D (b2 — £)™(1 — s + £1)"

n!(n + p)P

il 1 (see [3]).

n—oc
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4. Corollary

If we put s'P)(¢) < At®, 0 < a < 1, p is positive integer, then the following corollary follows :

Corollary. For signal s)(t) € Lip%, we have ,(;p)(s(m; t) € Lip%. n> 1.
By putting p = 0 in. the above corollary, we have the result of Brown et al [1].
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Abstract. A study of a new type of Riemanian space called generalized bi-recurrent space, has been
made.

1. Introduction

The notion of generalized recurrent space was introduced by De and Guha [1] almost a decade ago. A
non-flat Riemanian space is said to be a generalized recurrent space if its curvature tensor R:-‘]- « satisfies the
condition

Rl = MRE + m(0kgis — 67 gir) (1)

where ), and jy; are non-zero vectors and comma denotes covariant differentiation with respect to the metric
tensor of the space. If gy = 0 in (1) then the space reduces to a recurrent space introduced by Walker [7].
A generalized recurrent space is denoted by G(k,). Such a space is studied by De, Guha and Kamilya [2],
Maralabhavi and Rathnamma [4], Ozgur [5], Singh and Khan [6] and many others.

In the present paper, a non-flat Riemanian space of dimension n(n > 2) has been studied in which the
curvature tensor R:‘] & satisfies the condition

R%k,lm:almeljk o blm(‘sliclgij - ‘5?9%) (2

where a;,, and by, are two non-zero tensors. If the tensor b;, becomes zero, then the space reduces to a
bi-recurrent space or 2-recurrent space introduced by Lichnerowicz [3]. The tensors ayy, and by, are called
associated tensors of the space and such a space is denoted by G{?ky}. Section 2 of this paper deals with
the condition of uniqueness of the associated tensors and some theorems relating to them. Next, we prove
that a generalized recurrent space is a generalized bi-recurrent space. We deduce the expression of the scalar
curvature. Finally we study the compact generalized bi-recurrent space.

2. The Associated Tensors of a Generalized Bi-Recurrent Space

Let
Rk im = Gm Ry, + bim (5935 — 07 9ix) (3)
and also
Rl tm = @l Rl + U (0915 — 67 9ik) (4)
On subtraction we obtain
0 Ry + bl (R gi5 — 07gik) =0 (5)

where a, = aim — aj,, and by = byn — b,
Let b}, = 0. Then from (5) we obtain a;;, = 0, since the space is non flat .
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Next let aj,, = 0 but b}

Im

# 0. Then from (5) it follows that §7 g;; — 5\?91'1" = 0. Hence from (3) we get
Rf‘jk.l!n = almR;_’jk‘ (6)

That is,the space is a bi-recurrent space .
Finally, let a; 0 and bf, # 0. Let ¢*™ be any tensor such that /"’ 0. From (5), we obtain on
. Im Im 7 g lm
taking inner product with ¢™,
RE, = M(8hgi; — 6hg; (7)
ik = MOk gij — 07 gir)
where
Ni= —(Clmb;(m)/(Clma»;(m)

Equation (7) implies that the space is a space of constant curvature. If cl'”h;‘m =0, then A = 0 and the
space reduce to a flat space, which is a contradiction. Now we state the following

Theorem 1. In a generalized bi-recurrent space which is neither a bi-recurrent space nor a space of constant
curvature, the associated tensors of recurrence are unique.
Taking covariant derivative of (1), we get

h h h h oh
Rijicam = ManBije + N Rk m + 11,m (05 955 — 05 gin)

From (1). the above equation becomes

R?jk.zm = almR%k + bun (i — 5?9:‘1»‘) (8)
where
Ay = /\l.m + /\l)‘m
and

blm = /\lﬂm + Hm

Hence we can state

Theorem 2. Every G(k,)(n > 2) is a generalized bi-recurrent space.
Now contracting h and k in (8), we get

Rijim = aimRij + (n — )by gi; (9)
Transvecting with g% we obtain from the above
R,lm = almR + TI,(II - 1)b[m (10)

It R =0, we get from (4) by, = 0 which is not possible. Hence R # 0 in a G{?k,}. From (10) it follows
that
(”rlm - aml)R + 7’(" - 1)(['1711. = bml) =0

Since R # 0 in a G{zl-',l}, therefore ay, 1s symmetric. From the above discussion we can state

Theorem 3. In a generalized bi-recurrent space, the scalar curvature is non-zero and the tensor of recurrence
@y is symmetric if and only if by, is symmetric.
From Bianchi second identity, we get

Rlk hm = Rijkm — Rik jm (11)
Using (9) in (11) it follows that

R%Ic,hm = akmBRy + (0 — Dbgmgi; — ajmRix — (n — 1)bjmgir
akaij = aijik +(n— 1)[bkmgzj - b]mgik]' (12)
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Transvecting (12) with g, we get
Rl o = agmR — ajmRL + (n — 1)%bgn , (13)
By using the result R’;i =%R,j in (13) it follows that
1 ; 9
sRem = @R —ajmBy +(n —1)"bem
Now using (10), we obtain

1 .
%aka + 5(’” — 1)(Tl — 2)bkm = aij',]c (14)

Now suppose that the rank (a;;) is n. Then there exit uniquely determined a¥ such that
aYaj, = 8
Transvecting (14) with a*™ gives
R = —(n—1)a*b,, (15)
This leads to the following

Theorem 4. In a generalized bi-recurrent space if the rank of (a;;) is less than n, then the scalar curvature
is given by (15)

3. Compact Generalized Bi-Recurrent Space With Positive Definite Metric
Let
¢ = RM*Ryix
Then »
¢4 = 2R™* Ry

so that
bum = 2(RMI*Ryiixs + RM* Ryt im)
2(R,’::-lijhijk,l + a1 R™* Ryijk)
and A¢, the Laplacian of ¢, is given by
Ad = g™ ¢ 1m = 2(RP* Ryii 1 + 6™ apm RP9* Riyiji) (16)

Since the metric is positive definite, Rh"jk’thijkvl >0 and Rhi]”Rhijk > 0.
As ¢"™ay, > 0, we obtain from (16)
Ad>0
Thus by Hopf-Bochner’s theorem (8], ¢ = constant. Hence ¢; = 0 and therefore A¢ = 0.
From this it follows that if

g, >0

then
Rhkahijk =0

whence ‘

Rpijk =0

which is a contradiction. If
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lm
gd"an, =0

then
Rm]k’l Rh-i»,‘k_l =0

whence

Rpijr =0
which implies that the space is svinmetric in the sense of Cartan. Hence we can state the following

Theorem 5. In a compact G {2k, }with positive definite metric which is not a symmetric space in the sense
of Cartan. ¢'™a,, is necessarilv negative.
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Abstract. Some functorial properties of BCI and BCK-Structures by p-radicals have been studied.

1. Introduction

The notion of BCK-algebra was proposed by Imai and Iseki in 1966 [4]. In the same year, Iseki
introduced the notion of a BCl-algebra [5], which is a generalization of a BCK-algebra. In this
paper we study some functorial properties of BCI and BCK structures, “A structure will have a
functorial property if a functor can be obtained through it”. In fact we have constructed some functors
by p-radicals in BCI and BCK-Structures. ‘

2. Preliminaries

To avoid unnecessary bulk, we give here only some basic concepts of BCI and BCK-algebras. For categorical
concepts we refer the readers to [1].

Definition 2.1.[5] Let X be a set with binary operation ‘+” and a constant 0, then X is called BCl-algebra
if the following axioms are satisfied for all z,y,z € X :

(i) (@xy)*(@x2) <2y,
(i) zx (xxy) <,
(#i2) x <,
(iv) <0 = x=0,
(v) z<yandy<r=T=Y,
(vi) e <y<=xxy=0.
If we replace axiom(iv) by 0 < z, X is called BCK-algebra.

Definition 2.2.[7] Let X and Y be BCl-algebras. A mapping f: X — Y is called BCI-homomorphism if
for all z,y € X,

flxxy) = f(x)* f(y)-

Similarly, we can define BCK-homomorphism.

Keywords and phrases : Ber;category of BCl-algebras, BCK-homomorphism and p-radical.
AMS Subject Classification : 18A20, 18D05, 06F35.
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Definition 2.3.[8] Let X be a BCK-algebra, the p-radical of X is the set,

Xy ={zre X/z >0}

The p-radical X is an ideal of X and it is a BCK-algebra. If f: X - Y isa BCI-homomorphism then
f(Xy) €Y,

Definition 2.5.[7] We can define a category of BCI-algebras by taking the class of all BClI-algebras as the
class of objects of the category and the class of all BCI-homomorphisms as the class of morphisms of the
category.

It is denoted by Bey.

3. Main Results

Lemma 3.1. If f: X — Y is a homomorphism in Bg; then f+ 1 X4 =Y, defined by fi(2) = f(z) is a
homomorphism in Beg.

Lemma 3.2. If Ix : X — X is an identity homomorphism in B¢y then Iy .+ Xy = Y, is an identity
homomorphisgem in Bog.

Lemma 3.3. If f : X — Y and 9 :'Y — Z are homomorphisms in B¢y then f+ Xy = Y, and
9+ + Yy — Z, are homomorphisms in Bog and (9o f)y : Xy — Z, is homomorphism such that

(g0 fl+ =g+ o0 fy.

Proof.

(9o fl+(z) (go f(z)
= glf(=)]

= g[f+(2)]
= 0@

= (grofi)(z) Ve Xy

Hence we have,

Gof)y =gyofy

Now, using the Lemmas 3.1, 3.2, and 3.3, we can define a co-variant functor,

R: B(;] — BCK
such that

R(X)=X, VX € B,

and

R(f) = f» Vf € Bey

Theorem 3.1. If f: X 3 Y isa monomorphism then fi : X; - Y, isa monomorphism.

Proof. Let f: X > Yisa monomorphism and g1, g2 : M — X, be a pair of BCK-homomorphisms such
that fi 0 g1 = f} o go.
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Consider the inclusion maps X 3 X and Y, — Y represented by the same symbol ¢, then
(Foi)ogi=(iofi)ogq=(iofi)og=(foi)osm=>foliog)=Foliog)
=109 =10g2 (As f is mono.)
—= g1 = ¢ (As 7 is an inclusion map)
So. froqy = fy 0g1 = g1 = go = f4is a monomorphism.

Corollary 3.1. The functor R : Ber — Bek is a mono functor.

Since for any BCl-algebra X, the p-radical Xy of X is an ideal. So we can always form a quotient
BCl-algebra X/X .

Theorem 32. If f : X — Y is a BCl-homomorphism then f(X;) € Y; and the mapping
f:X/X,; —Y/Y, defined by f(Cz) = Cf(y) is a BCI-homomorphism.

Proof. Let Cy,,Cy, € X/X+ be two elements, then
f(Cr % Cay)) = f(Criry)  (Since Cr, * Cr, = Cryars)
= Cf(rl*z‘-z\
= Ciz)af(z2) (Since f is a homomorphism)
= Cf(z)) * Car)
= f(Cz,)* f(Czy)
Thus f(Cy, %Ca,) = f(Cr,)* f(Cy.,) implies that f is a BCI-homomorphism, which completes the proof.

Corollary 3.2. If Ix : X — X is the identity homomorphism in Bcy then Ix, : X/X, — X/X, is also
identity homomorphism.

Proposition 3.1. If f: X » Y and ¢:Y — Z are BCI-homomorphism then go f = go f.
Proof. Let C, € X/ X4 be any element then,
go f(Cz) = Clgopia)
= Co(f(z))
= §(Ctw)
= 9(f(Cx))
= 7o f(C.) ¥V CreX/X, ‘

Therefore

gof=gof

Now by using Theorem 3.2, Proposition 3.1 and Corollary 3.2 we can define a covariant functor as
follows:

F H B('[ > B('/
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such that )
F(X)=X/X., and F(f)=f.

Proposition 3.2, The functor F 2 By — By is an epi-functor.

Proof: Let f: X — Y be an epimorphism then for any y € Y there exists z € X such that flz) = .
Now let f : X/X, — Y/Y, and choose any C, € Y/Y, then f being an epimorphism. We have
Cy = Cj(z) = for any Cy € Y/Y, there exists C; € X/X, such that f(Cy) = Cpzy = Cy.

Hence f - X/X, = Y/Y, is an onto morphism = F : B~y — Bpy is an epi-functor.
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