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Abstract. Previous researchers made no attempt to consider a Don-linear funciior) and

deterioration of hveDtory with time to explain the StocL Depen.l€nt Demand (S.D.D.) and

sensitivitv aualysis for the model. In this paper. an attempt has berD made bv us to corrsider

a g€neral form of Don-linear function with deterioration of inventory to explain the Stock De-

pendent Demand effect. In addition, a sensitivity anslysis has also been presented to assess

efficiently the efiect of rariation of various paramet€I on optimal cost and be8irning stoclG

with and without shorta8es. IN"entory mod€ls with shortages ard without shortag€s have b€en

developed to determine the optimal number of orders to be placed and the optimal lot siz* for
different periods. A nume cal €xample has also be€n illustrated to demonstrat€ the us€ of the

1. Introduction

It is a common experidnce that for certain items like consumables, the quantity displayed in the
sales counters will have a motivational effect otr the cuatomers, markets and a)so while designiog
special sales counters. In such cases, the demand which is usually assumed to be an exogenous
variable, depends on the stock on display and thus becomes arl endogeneors variable. The demand
pattern can be described as a function of the stock on hand, which is known as the I[ventory Level
Deperdent (ILD) demand. Baker and Urban [l] and Datta and Pal [2] are some relerant references
on this coDcept alrd several such models have also appeared in literature. Cupta aIId Vrat [4] have
developed a simple EOQ model with demaDd depe[dent on the lot size, which may be called the
Lot Size Dependent (L.S.D.) demand. This falls under the category of Stock DepeDdent Demand
(sDD).

In the usual approach to handle SDD, the early researchers have used profit maximization as
the cliterior and determined the EOQ. Due to SDD, there will be additional sales, which results
in an unplanDed gains, arld we call this, the gains due to the SDD, Prasa.d [7] has shown that by
subtracting the gain due to SDD from the total cost, profit maximization and cost mininrization
yield the same rcsult. Su et al (191, I10]) have presented their study on arr iuventory model uDder
inflation for Stock Dependent consumption rate and exponential decay along with an experimeltal
decliDing demand. Ao inventory model with damagable aBd filzzy inventory items for SDD under
limited storage facility has been attempted by lr{andal et. al. ([5], [6]).

Periodic review inventory problems with ILD demand have been discussed in less detail than
the single period models. Gerchak and Wang [3] have examined a peliodic ieview invedtory model
under [LD dernand. The demand in each period is described as deterministic function of the
starting inventory level, mrrltiplied by a random variable. Their apprcach is however limited to the

Keywo;ds and phrae8 : Non-Libd SDD, Deteriorsiion, Shortaae.
AMS Subjat Cleiflcation . 90805.
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case ofstatic stochastic demand in each period in which, time dependent costs are not considered.

Their salient aspect is that of establishing the optimality of the (s, S) policy with SDD in a finite
horizon environment.

Very recently, a periodic review inventory model with variable stock dependent demand has

been attempted by Reddy and Sarma [8]. They have used a linear function to explain the Stock

Dependent Demand (S.D.D.). Models with and without shortage have been developed to determine

the optimal number of orders to be placed and optimal lot'sizes for defferent periods.

Reddy and Sarma [8] made no attempt to consider a non-linear function and deterioration
of inventory with time to explain the Stock Dependent Demand (S.D.D.) and sensitivity anslysis

for the rnodel. They exarnined only a prototype situation by considering a linear function without
deterioration for the rnoclel. No attempt was made to deal with these complexities of the model

whereas it is a comrnon belief that such complexities bring the model to realistic situations of the

organization.
In this paper, an attempt has been made by us to consider a general form ofnon linear function

with detrioration inventory to explain the Stock Dependent Demand (S.D.D.) effect. In addition,
a sensitivity analysis has also been presented to efficiently assess the effect of variation of various
parameter an optimal cost beginning stocks with and without shortages. Inventory models with
shortages and without shortages have been developed to determine the optimal number of orders

to be placed and the optimal lot sizes for different periods. A numerical example has also been

illustratecl to demonstrate the use of the model. The computer has been used for the analysis of
this model.

2. Problem Environment and Notations

In this paper, we discuss the problem of inventory planning over a finite horizon during which there

is a committed demand of known size. This demand gets realloted over tirne, depending on the

stock on display. The problem is to determine the number oforders to be placed during the horizon

and their sizes so as to minimize the sum of holding and ordering costs over that horizon.

One simple way of describing the SDD is to use non linear model

D, :, +Lp;id, - 01Qt; i = 1,2,...m, j : 1,2,...n; for 0 I t < u

:a*A;Qt foru( t<-Ta

where a denotes the normal demand (without the effect of stock disptay), 0;3 denotes additive
effects of stock ciisplay on demand and d.i denotes deteriorating rates and Q; is lot size for ith
interval. A11 p,3's are positive. The SDD effect wili be valid only for a short period immediately
after tire receipt of the lot and rvill be called temporary SDD.

The nerv aspect studied in this paper is that the SDD factors 0,7's change from period to
period, possibly due to changes during habit of customers. As a result of this, there will be a fast

depletion of stock immediately at the beginning of the period. On hand stock will then have two

slopes as seen in Figure 1. At a point when the lot arrives the buyer may not be motivated by the

stock on display, in which c.ase B;i and d; will be zero and that particular period would not carry
the SDD effect.

The following Dotatiolls are usecl throughout the study of the problern :

o : normal demancl ratc during the horizon

p11 : linear SDD factor applicable for the i'h period

Bi; : non-linear SDD factor applicable for the ith period, j > 2

di : deterioration rate for the i'h period
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Qi : lot size for the ith period

51 : beginning stock for the ith period applicable in case of backlog

T1 : length of the ith period and equals to fi/m

u : duration for which the SDD will be in effect in each period, expressed as a fraction of I/
such that u I T;, for all i

: unit cost of backlog

: unit holding cost per unit time

: unit selling price

: unit purchase cost

: number of orders to be placed during 1l

: fixed and known length of the planning irorizon

It is asslmed that the lea<l time is negligible and the replenishrnent is iufrnite so that t:he

quantity ordered woulcl arrive in a single consignment with no significant lead time.

3. The Lot Size Model without Shortage

In this section, we discuss a lot size model without shortages and derive the optirnal ordering policy

and in section-4 the case of shortages is discussed.

The demand function is given bY

Dt: o+Lgtid; -0;Q;; i:1,2,"'m, j :1,2," n; for 0 ( I ( tr

: a - 0;Qt; fot u 1t 1T;

The B;i represents the additive effect ofstock display on demand in the zlth period and Qi represents

negative effects of stock display on demand in the it[ period p;r' > 1 implies on extreme level of

motivational effect loading to a short of instatantaneous withdrawl of stock, which usually does not

happen. It is reasonable to have 0 1 0;i S I for all i. As all period are of eqrtal length, it is enorrgh

to work out total involved in one period and sum it over all the m periods. Here. we examine the

problem for n:2 and then for i'h period, we have

^ {1 -(grt-e),,}r@=p, (sa,.) : r:1. 2,J..,.m (l)Vi:-

The stock on hand at time u will be

Qi: eit - (9" - o,)"1 - p;2 - Qlu - au

Now the average inventory held during (0,u) is given by

or,:9#&:ile,lz- $it-o;)ul - B;2up! - aul

And the average inventory held during (u,Hlm) is

h

p

c

m

H

(2)

o,, : l* - "l+ : rl|-'] tet' - (b" - 
'i)u\ 

- p;2uPl - aul
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Subetituting the value of Q; fiom (1), the holding cost durirg the itt period becomes

hlAv,+ A21):il"*.#{o- Pitnt+o.nu- a.z,rr2 -.',}) (3)

where h is the unit cost of holding invelltory per unit time. The total cost of holding over the m
periods will be D h(At + Azi) and hence the average cost per unit time is D h(Ab + A2,) I H . ltad

r'= I i=1
therc been Eo SDD, the sales during (0, ?r) would be only uo, but it is a{o + 8i (h - Q + AizQ?}
due to the efrect ofSDD. So the difierence ot IlB;zQi + Diz - qilQiul units is extra sales that can be
attributed to the motivational effect, which fetches a proflt at the rate of (p - c) per unit, where p
is the tnit selling pdce and c h unit puch&se price. So the gain due to SDD during the irn period
will

fui = \(p - c)Qiu(B1zQr. + 0t - 0i)\

The average gain over the ho zon, then becomes

\lb - c)Q,utaizQ, + a,t - o,)]/H
i=1

Assumitrg that the ordering cost per order is,4, the net cost over the m periods duing horizons is
given by

r@, a) = maai{h(Ar; + Azi) - Aei} /H

After substjtuting the values of ,41;, A2; and A3; in this cost functiou, we can easily get

Ktm\=nrA-91'.$"re 6 :
2^ ' 1nH + ;Lln - B'tu +e'n o'2uP:l

-rol '' : -,- L"?GaP, + Ar e,) (4)

The optimum value of m is that value which minimizes J((rr1) with rcgard to m.
Consider the following results.

Proposition 1. Define I; = P.i - A;fl.1 03P; - pi2up! arLd. qi : api(Bi2p + Bi _ 0i). Let
U(n) = (mln+r - f, I;) and V2(m) = (mry^n1- D rti). Then the optimum value of m given by
m' satisfies the double inequality

m. \m. _t) < E<m.(m.+t)
where

p = lumhpi * hTVt(m) * 2m(p t c)V2(m)l/zn| (5)

Proof. Define AK(nt\ = {K(m + t) - f(-)}. In view of (4), we obtain

AK(m) = A+lumhPt+hHV(m) - 2m(p - c)V2(m)l/2mq (6)

_ Requiring AK(rn) > 0 and simplifyiDg leads to zn(a * 1) > R for any m and r.he d8ht
hand side of the inequality by a similar arguments it follows that nr.(nr. _ 1) < E which means
that K(m') < K(^' - l) for some m : m'. These two coDditions i, co*biration esrablish the
plopositi{rtt.
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Propositlon 2' 7n' is less s€nsitive to P' and 1, and hence it is enough to test for the coDditio[

m'(tn'- I) < I < -'("'+ t) (7)-' 2H

Proof, Since the values of oir and piz in the range [0, 1] aDd u is a fraction of the Period' it follows

ih.t t, lt r"ry 
"*uU. 

So %(zn) =0 aud y2(m) =0 which leads to R: # and the io€quality (7)

follows.
This rcsult has a bearing on the applicability of the model The number of orders' acmrding

to (7) is essentially a function of P and h which is also true for the cl&csical EOQ model' The

pr"""rrc" of pl comes into scene ooly while adjusting the lot size to accomodatc the SDD effect'
' 

Further,"the direct use of (5) and (6) requires the specification of A for these m orders As

Iong as Pi is Senerated by a function tike 4 = iP' the inequality (5) can be applied to locate m''

Foiaifi"."rrt i.l.re" of -, there will be different veciors of Pi1 and Bi2 values. But in practice the

"toaki""t 
*uy ,rot have a prior klowledge of either the numbe! of orders or Bil and Bi2 llalues' So

ii upp".." ."*oouUt" to determine rn' for the relaxed proble.s in which Bir = 0 and &: = 0; Vi'

flm^ ttre zr.' ldues of g;r and 0rz may be given as further inputs to the problem and the EOQ

values can be determiired. The workitrg of this model is illustrated below

Illustration 1. Consider ihe following parameters' Il = l0 months, a : 300 units per month'

.4 = $75 per order, h:1.5 per uDitpermonth,p: $?0 per unit, c = $40 per unit Let the

stock dependency holds good for a short duratioD of 2% of the horizon iD every cycle lt means

" : (0.0;)fJ = d.z *fri"f, means rearly 6 days in every cycle Once the value of m is optimality

determined. The length of each cycle would be same as ll/m So within the duration of ll/m we

get the SDD effect for only six days. Hele deterioration rate is i2 i e , = !2 and equals for all

cycle.
For the problem, we 8et m' = 5 and we have to input 5 valrres of 8"1 and Bi2's For a selected

vectors 0;r for 0lr artd. pp for Bi2 values the corresponding vector I of lot sizes the gaiD due to the

SDD and uet cost are obtained as follows

(a) B,1 - vector = {0.1,0.2,0.3,0.4,0.5}

0i2 - vectot = {0.01,0.02,0.03,0.04,0.05}

with this we get,

0 = { 1488, 583, 579, 574, 570}, Gain = $273, Net cost = $810

(b) fi1 - vector = {0.i,0.2,0.3,0.2,0.1}

&2 - vector : {0.01, 0.02, 0.03, 0.02' 0.01}

with this we get,

Q = { 1488, 583, 579, 583, 1488}, Canr = $409, Net cost = $796

In the following section, we dlscuss the case of sho ages'

4. The Lot Size Model with Shortages Backlogged

In thjs ca6e, the decision valiable is the order level (beginning stock) for the i't period denoted by

Si. Suppose shortages are admitted and backlogged in all periods except the last period DefuIe ?j
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as the time at which shortages start in the i'h period, for i : 1,2, ...(r, - l). Each of the (nr - l)
periods lras a length of T: H/m. time units. The sitrration is shown in figure - 2

With this environment, it follows that the beginning stock for the ith periods is

& :" (o * \tS; - 0;S; * 0,zSl),, a(T;- u); Yi : 1,2, ..(- - l)

,, - {r - u(o;:'!l - u1;zS;} 
(8)

Aho &: S, {1 - ul{);1 - 0)} * ttli2Sl - att.

Norv the average iuventorv helci cluriug (0.rr) is given bv 3r,: tr#J3 are the ayerage invel-
tory held during (u,?l) is B2i: (T'1t)S;. 

Substitpting the values of 1i,S, and S; from above, we
get

h(gb+ ozr) : hlt*-* -s;u218;'-0;1 
gn'"'s? !11

L 2 2 - 2 -2")
Shortages occur dttring the interval (7", H lml at the rate of a per unit time. So the shortage

cost becomes

"l* - s;{t - tr.(Biy- ,,)} - ,o,rs?)' /zo (e)

and the gain due to the SDD is (p - c)S;u.(p;zSt 4 0t - 0t).
In the last period, shortages are not allowed and hence the sum of holding and shortage costs

minus the gain due to the SDD for this period becomes

trl,, - au2 u2s^(s^t -j")_ _ 0^zsk"2 * S2^f,rldrm_ 2 _ , ___=Z-* n)
Hence, t.he total cost over all the m - periods including the cost of ordering is given try

ff(nr.s;) : nrA+in{r,, -* - s;tLz(l'r -0;) - 3'zs?''2 Sll"\"'"-, - 2 2 "2"1

*n { ^ au2 u2s,,(g*r - o^) 
- 

g^zlh'/ 
* {a }[o"- 2- 2 -^j

. 
E " [# - si{r - ,(g^ - enly -,18,,s1f2 pn

+(p - ") oirrn 
llrn rn + gtr - o;) (10)

We have to determine the optimal values of nr and S;, Vi such that I((rn,.9;) is minimized.
Since .9; is continuos, its optimal value is found, for a given m by equating the first derivative of
K(m.,St) to zero and solving for 51 'a4rich gives

28"?2u Sl - s? 0;z{zu (0m + 0 ;) + 0ru2 + u + 2} + S ;{2atr Bi2

+(0;r - 0,)'u' - au20;.t+r1 * fo, -au2(P;'-0') - .,u{u+ (0,t +an1+ r1'l :o (11)' L 2 ' "' ')

Fronr this equation we obtain the ralues of Si, Vi :1,2,...(- - 1).
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The last order satisfies the relation

D-= (12)

The quantity of shortages that arises in the ir[ period will be Z; : o'(Hlnt - ?.) so that the

lot size actually required for the ith period is Qt: $t + Z). Substituting these valrtes in the cost

function given in (10) gives the optimal cost for a given rn. The optimal nz has to be found by

discrete optimization but the cost function becomes quiet complicated whereas it is easy to carry

out a direct search with a computer programme. We consider the following illustration'

Illustration - 2

Let A :1200 and r :25 and rest parameters be same as these of illustration 1. Flom equations

(10). (11) and (12) the following results are obtained

@) 01- vector : {0,0,0,0,0i,

/rr2 - vector : {0.0,0,0,0}, which means no SDD effect

Therr S : {192,192,192.t92.192}. IUinimum cost : $l5.B

(b) fu - vector : {0.5,0.4,0.3,0.2,0.1},

B;2- vector : {0.003, 0.002, 0.001, 0.001, 0.001}, which means decreasing trend. Then

S: {157, 171, 190, 180, l7l}. Minimum cost : $981.

From the abnve results it follows that when B.1 and 6l: are constant (i.e. zero) which means

no SDD effect then S is constant. lf 0t, gtz decrease then ^9 increases anc.l thereafter it decreases

also. It [as also beel observecl that due to the SDD effect total cost is srlbjected to decrease.

5. Sensitivity Analysis

Versatility of any model depends on the variational effect of one parameter on the others. In this

way, resuiting variational effect is weather compatible to the system or not is altogether a concern

of post optimality of the model. In addition, how for a model is sensible and valid, these kind of

analysis are caf ied out under the "sensitivity of the model". Here, graphical rnodel is being used

to preseltt this analYsis.

Here, fortr types of sensitivity anaivsis have been presented

(i) The effect of B1 on S;

Figure 3(i) shorvs that when Bil increases it decreases,g;. Here, negative atrd imperfect corre-

lation between B;1 and .S;. is being observed

(ii) The effect of Bp on Si

It is e.r,ident from the Figure 3(ii) that when B.;2 increases it results in clecrease in S.. The

correlation bet\l,eeu r3;2 and,Sr, is found to be tiegative and inrl>erfer:t'

(iii) The effect of 6;1 on the optimal cost

It is s56u1 from tlie Figure 3(iii) that increase effect in tril arnounts to clecrease in oPtimal

cost of the riloclcl therelty leacling to agai[ a uegative and irnperfect correlation.

(iv) The effect of .91 on the optimal cost

A positiye and imperfect correlation betrveen .Si and optimal cost observed frorn the Figure

3(iv). This shows that whenever ,g; increases then optirnal cost is also subject to increase.

7
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6, Conelusion

A pedodic review inventorJ. rnodel with deterioration aDd non _ Iinear stock dependent demandhas been presented. Inventory models with shortages and wrtf,."tll..t^g* have been developedto determine the optimal uumber of orders to be placed ard optimai f.i "j^ f.. different periods.Two interestirg proportions, atonswith sensftivity analysis, il"; ;;;;;;;,-"*nrerl to add newlalue to the paper.
Itrirture prograEme, a co[cept ofquality coltrol i8 being used by defitriug the productioD lunctionwith mixed effect of difierent components of proau"tiorri No*-.a.y", quu'tiiy 

"oot.ot 
i" u po*""futproductivity techlique.
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0u TT T.T.TTTT

Figure -1 lnventory position without shortages and different rates of SDD.
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Figure : 2 lnventory position with shortages backlogged
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Abstract. The degree of approximation of a function belonging to Lip α (0 < α ≤ 1) class

by almost Nörlund summability means and almost generalized Nörlund summability means was

determined by Qureshi. In this paper a more general result than those of Qureshi has been

obtained so that his result come out as particular cases.

1. Introduction

Let f(t) be periodic with period 2π and Lebesgue integrable in [−π, π]. The Fourier series of f(t)
is given by

f (t) ∼
1

2
a0 +

∞∑

n=1

(an cosnt+ bn sinnt) (1.1)

A function f ∈ Lipα if

| f (x+ t)− f (x) | ≤ C(| t |α) (1.2)

where 0 ≤ α ≤ 1, C being +ve constant.

The degree of approximation of a function f : R → R by a trigonometric polynomial tn is
defined as ([5])

‖ tn − f ‖∞= sup{| tn(x)− f(x) |: x ∈ R} (1.3)

According to Lorentz [1] a bounded sequence {Sn} is said to be almost convergent to a limit
S, if

lim
n→∞

1

n+ 1

m+n∑

k=m

Sk = S

uniformly with respect to m.

Let T = (an,k) be an infinite triangular matrix satisfying the Silverman-Töeplitz [4] condition
of regularity, i.e.

n∑

k=0

an,k −→ 1, as n −→∞

an,k = 0, for k > n

1 Keywords and phrases : Degree of approximation, Nörlund summability.
2 AMS Subject Classification : 41A25, 42A24.
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n∑

k=0

| an,k |≤M

where M is a finite constant.

Let
∞∑

n=0

un be an infinite series such that sk =
k∑

v=0

uv. A series
∞∑

n=0

un with the sequence of

partial sums {Sn} is said to be almost matrix summable to S provided

tn,m =
n∑

k=0

an,kSk,m −→ S (1.4)

as n −→∞ uniformly with respect to m. Here

Sk,m =
1

k + 1

k+m∑

v=m

Sv (1.5)

and (an,k) is an infinite regular triangular matrix such that the elements an,k is non-negative, and
non-decreasing with k so that for every n

n∑

k=0

an,k = 1

Seven important particular cases of matrix means are

(i) (C, 1) means, when an,k =
1

n+ 1

(ii) Harmonic means, when an,k =
1

(n− k + 1) log n

(iii) (H, p) means, when an,k =
1

logp−1(n+ 1)
Πp−1q=0 logq(k + 1)

(iv) Nörlund means, when an,k =
Pn−k

Pn
, where Pn =

n∑

k=0

Pk

(v) (C, δ) means, when an,k =

(
n− k + δ − 1

δ − 1

)

(
n+ δ
δ

)

(vi) Riesz mean (N̄ , pn), when an,k =
Pk

Pn

(vii) Generalized Nörlund Mean (N, p, q) when an,k =
Pn−kqk

Rn
provided Rn =

n∑

k=0

pkqn−k

Let us verify the regularilty condition of almost matrix summability method

tn,m =
n∑

k=0

an,k

k + 1

k+m∑

v=m

Sv =
∞∑

k=0

Cn,kSk,m

where
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Cn,k =






an,k

k + 1

k+m∑

v=m

1 , k ≤ n

0 , k > n

Now

(i)
∞∑

k=0

| Cn,k | =
n∑

k=0

an,k = 1

(ii) Cn,k = an,k → 0 as n→∞ for every fixed k.

(iii)
∞∑

k=0

| Cn,k | = 1

Thus Sn → S =⇒ Sk,m → S, as n → ∞. Consequently, tn,m → S, as n → ∞. So almost matrix
summability method is regular.

We shall use the following notations

φ(t) = f (x+ t) + f (x− t)− 2f(x)

Kn,m(t) =
1

2π

n∑

k=0

an,k
sin(2m+ k + 1) 1

2
sin(k + 1)1

2

(k + 1) sin2 1
2

(1.6)

2. Known Theorems

Qureshi [3] proved the following
Theorem A. The degree of approximation of a periodic function f with period 2π and belonging
to the Lip α, 0 < α ≤ 1 by almost Nörlund means of its Fourier series is given by

max
0<α<2π

| f(t)− Tn,p(t) |= O

[
1

nα

]

where the sequence {pn} is non-negative and non-increasing such that

n∑

k=0

Pn−k

k + 1
= O

[
Pn

n

]

Qureshi [2] generalized the above result for (N, pn, qn) summability means in the following
form:
Theorem B. If f (x) is a periodic function and belongs to the class Lip α for 0 < α ≤ 1 and if the
sequence {pn}, {qn} are Pn = p0 + p1 + p2 · · · + pn → ∞ as n → ∞, Qn = q0 + q1 + q2 · · · + qn,

Rn = p0qn + p1qn−1 + · · ·+ pnq0 →∞ as n→∞ such that
R(y)

yα
is non decreasing then

| f − T p,qn | = O

[
1

nα

]

3. Main Theorem

In this paper a more general result than Qureshi [2,3] has been established in the following form:
Theorem. Let T = (an,k) be an infinite regular triangular matrix having (an,k) as non-negative,
non-decreasing with k ≥ n such that

n∑

k=0

[
an,k

k + 1

]
= O

[
1

n+ 1

]
, ∀n > 0
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If f(x) is 2π-periodic function belonging to the class Lip α then degree of approximation by almost

matrix means tn,m =
n∑

k=0

an,k

k + 1

k+m∑

v=m

Sv of Forier series (1.1) is given

‖ tn,m(x)− f(x) ‖=






O

[
1

(n+ 1)α

]
, 0 < α < 1

O

[
log(n+ 1)πe

(n+ 1

]
, α = 1

For the proof of our theorem following lemmas are required.

Lemma (3.1). Let Kn,m(t) be given by (1.6), then

Kn,m(t) = O(n+ 1), for 0 ≤ t ≤
1

n+ 1

Proof. We have

| Kn,m(t) | =
1

2π

n∑

k=0

an,k
sin(2m+ k + 1)1

2
sin(k + 1) 1

2

(k + 1) sin2 1
2

≤
1

2π

n∑

k=0

an,k
| sin2(k + 1)1

2
|

(k + 1) | sin2 1
2
|

≤
1

2π

n∑

k=0

an,k
(k + 1)2 | sin2 1

2
|

(k + 1) | sin2 1
2
|

=
1

2π

n∑

k=0

an,k(k + 1)

=

[
n+ 1

2π

] [ n∑

k=0

an,k

]

=
1

2π
(n+ 1)

= O(n+ 1)

Lemma (3.2). Let Kn,m(t) be given by (1.6), then

Kn,m(t) = O

(
1

(n+ 1)t2

)
, for

1

n+ 1
≤ t ≤ π
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Proof. Here

Kn,m(t) =
1

2π

n∑

k=0

an,k sin(2m+ k + 1)1
2

sin(k + 1) 1
2

(k + 1) sin2 1
2

≤
π

2t2

n∑

k=0

an,k

k + 1
sin(2m+ k + 1)

1

2
( as

1

sin 1

2

<
π

t
)

≤
π

2t2

n∑

k=0

an,k

k + 1

=
πM

2(n+ 1)t2
(as

n∑

k=0

an,k

k + 1
=M

[
1

n+ 1

]
, where M is a positive constant)

= O

[
1

(n+ 1)t2

]

4. Proof of the Main Theorem

It is well known that the fifth partial sum of the Fourier series (1.1) at t = x, is given by

Sv(x)− f(x) =
1

2π

π∫

0

φ(t)
sin(v + 1

2
)t

sin 1

2

dt

then

Sk,m(x)− f (x) =
1

k + 1

k+m∑

v=m





1

2π

π∫

0

φ(t)
sin(v + 1

2
)t

sin 1

2





dt

=
1

2π

π∫

0

φ(t)

{
1

k + 1

k+m∑

v=m

1

2π

sin(v + 1

2
)t

sin 1

2

}

dt

=
1

2π

π∫

0

φ(t)
1

k + 1

sin(2m+ k + 1) 1
2
sin(k + 1)1

2

sin2 1
2

dt

Also

n∑

k=0

an,k {Sk,m(x)− f(x)} =
1

2π

π∫

0

φ(t)

{
n∑

k=0

an,k
sin(2m+ k + 1)1

2
sin(k + 1)1

2

(k + 1) sin2 1
2

}

dt

=






1

n+1∫

0

+

π∫

1

n+1




φ(t)Kn,m(t)dt

= I1 + I2

(4.1)
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Now

I1 =

1

n+1∫

0

φ(t)Kn,m(t)dt

≤

1

n+1∫

0

φ(t)
1

2π
(n+ 1)dt, by Lemma (3.1)

Since

f(x+ t)− f(x) = C(| t |α) i.e. f ∈ Lip α

We have

| φ(t) | = | f(x+ t) + f(x− t)− 2f (x) |

= | f(x+ t)− f(x) + f(x− t)− f(x) |

= | {f (x+ t)− f (x)}+ {f (x− t)− f (x)} |

| φ(t) | ≤ | f(x+ t)− f(x) | + | f(x− t)− f(x) |

= C | tα | +C | tα |

= 2C | t |α

= O(| t |α)

Thus φ ∈ Lip α. Hence

I1 =

1

n+1∫

0

2C(| t |α)
1

2π
(n+ 1)dt

=
C(n+ 1)

π






(
1

n+ 1

)α+1

α+ 1






=
C

π(α+ 1)

1

(n+ 1)α

= O

[
1

(n+ 1)α

]

(4.2)
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Also

I2 =

π∫

1

n+1

φ(t)Kn,m(t)dt

=

π∫

1

n+1

Mπ

2

[
1

(n+ 1)t2

]
φ(t)dt [by Lemma (3.2)]

=
Mπ

2

[
1

n+ 1

] π∫

1

n+1

t−22C(| t |α) ( as φ ∈ Lip α)

= MCπ

[
1

n+ 1

] π∫

1

n+1

tα−2dt

= MCπ

[
1

n+ 1

]






[
tα−1

α− 1

]π

1

n+1

, 0 < α < 1

[log t]π 1
n+1

, α = 1

= MCπ

[
1

n+ 1

]






πα−1

α− 1
−

(
1

n+1

)α−1

α− 1

log π − log
(

1

n+1

)

≤






MCπα

(n+ 1)(1− α)
+

MCπ

(1− α)(n+ 1)α

MCπ log π(n+ 1)

(n+ 1)

I2 ≤






MCπα

(1− α)(n+ 1)α
+

MCπ

(1− α)(n+ 1)α

MCπ log π(n+ 1)

(n+ 1)

I2 =






[
MCπα

(1− α)
+
MCπ

(1− α)

]
1

(n+ 1)α

MCπ log(n+ 1)π

(n+ 1)

(4.3)

Equations (4.1) - (4.3) now lead to
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tn,m(x)− f(x) =






[
C

π(α+ 1)
+MCπ

(
πα−1 + 1

1− α

)]
1

(n+ 1)α
, 0 < α < 1

[
C

2π(n+ 1)
+
MCπ log(n+ 1)π

(n+ 1)

]
, α = 1

≤






[
C

π(α+ 1)
+MCπ

(
πα−1 + 1

1− α

)]
1

(n+ 1)α

[(
C

2π
+MCπ

)(
1

n+ 1
+

log(n+ 1)π

(n+ 1)

)]

≤






[
C

π(α+ 1)
+MCπ

[
πα−1 + 1

1− α

]]
1

(n+ 1)α

[(
C

2π
+MCπ

)(
log(n+ 1)πc

n+ 1

)]

=






O

[
1

(n+ 1)α

]

O

[
log(n+ 1)πc

n+ 1

]

This completes the proof of main theorem.

5. Particular Cases

(I) If an,k =
pn−k

Pn
where Pn =

n∑

k=0

pk, 0 < α ≤ 1 then the result of Qureshi [2] (Theorem A)

becomes the particular case of our theorem.

(II) If an,k =
pn−kqk

Rn
, 0 < α ≤ 1, then our result reduces to Theorem B of Qureshi [3].
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Abstract. The finite Taylor series with the reminder term is applied to Laguerre polynomials,

showing thus the relationship between the Talman’s identity and the fractional derivative for

such polynomials.

The finite Taylor series around the origin is given by the expansion [3]

f (x) = f (0) + f (1)(0)x+ f (2)(0)
x2

2!
+ · · ·+ f (n−1)(0)

xn−1

(n− 1)!
+ ηn(x), n = 1, 2, · · · (1)

with the remainder term

ηn(x) =
1

(n− 1)!

x∫

0

(x− ξ)n−1f (n)(ξ)dξ =
d−n

dx−n
f (n)(x) (2)

where we have employed the notation for the derivation of Riemann-Liouville [2,4]. If we take f(x)
as the associated Laguerre polynomials [1], m ≥ n

f (x) = L−nm (x) =
m∑

r=0

(−1)r





m− n

m− r






xr

r!

, m, n = 1, 2, · · · (3)

then

f (n)(x) = (−1)nLm−n(x), f
(p)(0) = 0, p = 0, 1, · · · , n− 1 (4)

Therefore, equations (1) - (4) imply the relation

d−n

dx−n
Lm−n(x) = (−1)nL−nm (x) (5)

However, Talman [5] obtained the identity

L−nm (x) = (−1)n
(m− n)!

m!
xnLnm−n(x) (6)

1 Keywords and phrases : Laguerre polynomials, finite Taylor series.
2 AMS Subject Classification : 33C45, 26A33.
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then (5) leads to the Abramowitz-Stegun [1] expression for the fractional derivation of Laguerre
polynomials

1

(n− 1)!

x∫

0

(x− ξ)n−1Lm−n(ξ)dξ =
(m− n)!

m!
xnLnm−n(x) (7)

or, in the inverse order, if we accept the result of Abramowitz-Stegun then (5) gives us the Talman’s
identity.

We know the property

dN

dxN
Lqr(x) = (−1)NLq+Nq−N (x), N = 0, 1, 2, · · · (8)

then from (5) we learn that (8) is also valid for N = −1,−2, · · ·.
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Abstract, A series 
"olrrion 

for boundary layer fow of viscous incompressible fluid over a

stretching plate has been tried to obtain velocity field. In the process of restricting the coeffi-

cients of the series, ii has been found that the series solution reduces to the sirnilarity solution

obtained by Ahmad et al. in 1990. Further, the influence of stretching factor on velocity field

and velocity components has been seen graphically. Finally, level surface for velocitl'component

u has beeu shown for diflerent stretching factor.

1. fntroduction

The flow past a stretching plate is of great importance in many industrial applications such as

polymer industry to draw plastic fllms and artificial fibres. In the process of drawing artificial
fibres, the polymer solution emerges from an orifice up to a plateau value at which it remains

constant. The moving fibres,produces a boundary layer in the medium surrounding the fibres,
which is of a technical importance in that it governi the rate at which the fibre is cooled and

this in turn affects the final properties of the yarn. Crane [3] investigated boundary layer flow
past a stretching plate whose velocity is proportional to the distance from the slit. Carragher [2]

reconsidered the problem of Crane [3] to study heat transfer and calculated the Nusselt number for
the entire range of Prandtl number.

Several authors like Crane [3], Siddappa and Abel [5], Ahmad, Siddappa and Patel [1], solved

the problem in different context but none of them obtained series solution. In the present paper,

we found series solution of boundary layer flow of viscous incompressible fluid past a stretching
plate. The convergence of the solution has also been analysed thoroughly.

2. Formulation oi rn" problem

Asumming z-axis along the moving plate and y-axis perpendicular to the direction of the motion

of the moving plate, the equation governing the boundary layer flow of viscous incornpressible fluid
are given by

0u 0u 02u

" or+' oa -- 
a 
fui

The relevant boundary conditions are

a :0, u: mt, u :0
Keywords and phrmes : Viscous incompressible fluid, stretching factor.
AMS Subject Clrcification : 76D, 76D10.

0u 0u

-*-:U0r du

(r)

(2)
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gi@, u:0, o:-q c )0, ur=Q (3)

Rescaling the problem into dimensionless form using the following variables

rU,uhtt,uhv:i' ":;, t --lr, o:;

We thus have the following problem together with boundary conditions

0u 0u 02u
u;- T L;- : ;--0r'-Oy 0y2

0u 0u__L_:o
0x'0y

A:0,u:mr,u:0

g-+oo, u:0, u:-q c )0, ur=Q

(4)

(5)

Let the similarity solution be of the form z : mt f'(y). Putting the solution in equation (5),
we have u: -mf (y) where /(0) :0 without loss of generality. Substituting the values of u and o
in the equation (4), we have

f''(v) = f"fu)l@): )f"lu)
The boundary conditions reduce to

a:0, I' : 1, / :0

y-+oo, f':0, l:-" m

We try a formal series solution of the equation (7) in the form ([4])

@

f (Y): * + 1lb;aie-ttv (9)m i-=r

This series is sometimes called a Dirichlet o'r Picard series. This form satisfies .f'(oo) = 0 and

gives the condition /(m) : a. Thu." are two arbitrary constalts 1 and o in the equation (9) to

be determined to satisfy twoltnditions at g : 0. Now rve calculate the following

f 
, (y) : -"t, f fi,o, 

"-,-,ui=1

@

1,, (y) : 13 | i2 biai p-;tu
i=l

@

f "' (a) -- --ta |. i3 h;o.i.-irY
i= I

On substituting the series for /(s), I'@),1"(A) and f"'(y) in (7), we have

(7)

(8)

(6)

ir't, - i)b;ais-it'r+ -i fiolrn - i)bfi;*6aie-'?l : 0
i=t r=2 Li=r l

(10)
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The indicial equation is obtained b1' equating to zero the coefficient of lowest degree term, i.e., for
i = 1 we have b1a - bra - 0, which is an identity, since 'a' is to be determined by the boundary
conditions. So we may choose I Dr l: 1 without loss of generality.

For i : 2,3,4,..., we have

23

u,: #rf upo - i)bkbi*k, ,i. = 2,r,. . (il)

If I a l< I and we show that I bi l< 1, i :2,3,. . . then series converges absolutely for 7 ) 0. Now
for the requirement that | 6; | ( 1 imposes certain condition on rn in (7). We have already taken

I Dl l: I so from (ll) we have

b2 \fxtzx - 21a7,

' k=t

itz-ztal:o4'

63 Zurar:0, and so on." 18"
Thus D;:0, i:2,3,4,' ' and the equation (9) reduces to

Itil: j**p erp(-1s) (12)

Now our problem is to estimate 'y and a only. Applying boundary conditions at g : Q, we have

a +1bro=o
nL

-1bP: I

t-
that a : -- and .y -- \/m.

n1

rot:40' \/m

3. Discussion and Results

The equation l'2fu) - f"@)!(y) : !f"@) is non-linear ordinary differential equation of order
,ITL

three together with bouudary conditions.

g:0, f':1, /:o

UJ€, l':0, l=-"
Thus we have to solve non-linear boundary value problem.?" n"r'" find a series solution of this
problem. This series solution comes out to be same as the solution obtained by Ahmad et al. [l]
if visco-elasticity K* :0. Ahmad et al. [l] chose the velocity function /(y) randomly but we have
considered Picard's series

rc

i@: a +1l1nais ttu
rn-

a=l

(13)

(14)

These two equations imply Hence, the velocity function

- erp(-J-my)) (15)
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as series solution to our problern. In the process of finding the coefficients of the series, we get

Dr:1, b;:0,i )1, o--_-1 and1v:^,G.wherernisstretchiugfactorof theplateandthe

velocity function becomes ttAl:4O - erp(-1/-my)).
\/rtl

Now we see the behaviour of this function for the different ralues of stretching factor m with
the help of the Figure l. In this Figure we see that as the plate stretches more the value of velocity
function decreses, hence perpendicular component of veiocity z is given by

u = -Jrn(t - exp (-fis))
and its behaviour for the different values of stretching vaiues factor nz can be seen from
Figure 2, where we see that the stretching factor increases, the velocity component decreases
absolutely'as we move away the stretching plate. It is supposed by the boundary condition y -+ m,
,- I c l- c
J-l-;l-;'

The velocity cornponent u has been calculated through series solution and it comes out to
be u : nrt: exp(-Jfiy1 wtrictr is same as obtained by Ahmad et al. [l] by randomly choosing
/(g,). The variation of this velocity cornponent for different values of stretching parameter has been
depicted in Figure 3. We see that as stretching factor increases, the velocity increases. This fact
of increasing of tr, with rn agrees with physical nature of the problem.

The level surface for the velocity componeut can be viewed in Figures 4 and 5.
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Figure -1 Velocity function for different
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Figure-3
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Abstract. For any matrix B = (bmn(i)), the FB-convergence was introduced by Steiglitz. In

this paper, we have established some inequalities by using a class of FB-conservative matrices

analogously to the inequalities studied by Çakan et. al. and Das.

1. Introduction

Let A = (ank) (n, k = 1, 2, ...) be an infinite matrix of real numbers and x = (xk) be a real number
sequence. We write Ax = ((Ax)n) if An(x) = (

∑
k ankxk) converges for each n. Let E and F be

any two non-empty sequence spaces. If x ∈ E implies that Ax ∈ Y , then we say that the matrix A
maps E into F . By (E,F ) we denote the class of matrices A which maps E into F . If E and F are
equipped with the limits E−lim and F−lim, respectively, A ∈ (E, F ) and F−limAx = p(E−limx)
for all x ∈ E, then we write A ∈ (E, F )p.

Let �∞ and c be the Banach spaces of bounded and convergent sequences with the usual
supremum norm. Let σ be a one-to-one mapping from NN into itself and T be an operator on �∞
defined by Tx = xσ(k). A continuous linear functional φ on �∞ is said to be an invariant mean or
a σ-mean if and only if

(i) φ(x) ≥ 0 when the sequence x = (xk) has xk ≥ 0 for all k,
(ii) φ(e) = 1, where e = (1, 1, 1, . . .),
(iii) φ(x) = φ(Tx) for all x ∈ �∞.
Throughout this paper we consider the mapping σ having no finite orbits, that is σp(k) �= k for

all positive integers k ≥ 0 and p ≥ 1, where σp(k) is pth iterate of σ at k. In the case σ(k) = k+1, a
σ-mean often called a Banach limit and Vσ is the set of almost convergent sequences f , introduced
by Lorentz, [9]. It can be shown [11] that

Vσ = {x ∈ m : limp tpn(x) = s uniformly in n, s = σ − limx}

where

tpn(x) =
xn + Txn + · · ·+ T

pxn
p+ 1

, t−1,n(x) = 0

We say that a bounded sequence x = (xk) is σ-convergent if and only if x ∈ Vσ. We denote by
Z the subset of Vσ consisting of all sequences with σ-limit zero. It is well-known [11] that x ∈ �∞
if and only if (Tx− x) ∈ Z and Vσ = Z ⊕RRe.

Let B be a sequence of infinite matrices Bi = (bmn(i)). For a given sequence x = (xn) we

write Bim(x) =
∑

n

bmn(i)xn if it exits for each m and i ≥ 0. We also write Bx for (Bim(x))
∞
i,m=0. A

sequence x ∈ �∞ is said to be FB-convergent [12] to a number s if

lim
m
Bx = lim

m

∑

n

bmn(i)xn = s

1 Keywords and phrases : FB-convergence, invariant means, core theorems and statistically convergence.
2 AMS Subject Classification : 40C05, 40J05, 46A45.
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uniformly in i and in this case we write FB − limx = s. By FB and F0B, we denote the space
of all FB-convergent and FB-convergent to zero sequences, respectively. The space FB depends on
choosing the sequence B = (Bi) of infinite matrices. For example; if we define Bi = (I) for all i,
the unit matrix, then FB = c. In the case bmn(i) = 1/(m + 1), (i ≤ n ≤ i +m) and 0 otherwise,
FB = f . If we define bmn(i) by

bmn(i) =






1

m+ 1
, n = σj(i), 0 ≤ j ≤ m

0 , otherwise,

then FB = Vσ.

Throughout the paper we write

‖B‖ = sup
m,i

∑

n

|bmn(i)| <∞

to mean that, there exits a constant N such that

∑

n

|bmn(i)| ≤ N for all m, i

and the series

∑

n

bmn(i)

convergence uniformly in i for each m. In what follows we shall consider only the sequence B such
that ‖B‖ <∞.

In what follows a matrix A ∈ (c, FB) is said to be FB-conservative and it is known [12] that A
is FB-conservative if and only if

‖A‖ = sup
n

∑

k

|ank| <∞,

lim
m

∑

n

bmn(i)ank = αk uniformly in i, for each k,

lim
m

∑

k

∑

n

bmn(i)ank = α uniformly in i.

Note that in the case A is FB-conservative, the number ΓB = ΓB(A) = α−
∑

k

αk is defined and it

is said to be characteristic of A with respect to B. In the case B = (I), the number ΓB is same as
the χ, characteristic of A, (see [1, p. 46]).

Let K be a subset of NN , the set of positive integers. Natural density δ of K is defined by

δ(K) = lim
n

1

n
|{k ≤ n : k ∈ K}|

where the vertical bars indicate the number of elements in the enclosed set. The number sequence
x = (xk) is said to be statistically convergent to the number l if for every ε, δ{k : |xk − l| ≥ ε} = 0
([7]). In this case, we write st-limx = l. We shall also write st and st0 to denote the sets of
all statistically convergent sequences and statistically convergent to zero sequences. Fridy and
Orhan [8] have introduced the notions of the statistically boundedness, statistical-limit superior
(st-limsup) and inferior (st-liminf).
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Throughout this paper, we shall deal with the following sublinear functionals defined on �∞:

L(x) = lim sup x, l(x) = lim inf x, L∗(x) = lim sup
p

sup
n

1

p+ 1

p∑

i=0

xn+i,

V (x) = lim sup
p

sup
n
tpn(x), W (x) = inf

z∈Z
L(x+ z), β(x) = st− lim sup x,

α(x) = st− lim inf x.

The aim of this paper is to establish some inequalities analogously to the inequalities studied
in [2-4,6]. These inequalities generalize the inequalities studied in [5].

Firstly, we may list some lemmas that will be useful to our proofs.
Lemma 1.1. [6, Th.1(c)] Let A = (ank(i)) be conservative. Then, for some constant λ ≥ |χ| and
for all x ∈ �∞,

lim sup
n

sup
i

∑

k

(ank(i)− ak)xk ≤
λ+ χ

2
L(x)−

λ− χ

2
l(x)

if and only if

lim sup
n

sup
i

∑

k

|ank(i)− ak| ≤ λ (1.1)

where χ is the characteristic of A.
Lemma 1.2. [6, Lemma 1] Let A = (ank(i)) be conservative and λ ≥ 0. Then (1.1) holds if and
only if

lim sup
n

sup
i

∑

k

(ank(i)− ak)
+ ≤

λ+ χ

2

and

lim sup
n

sup
i

∑

k

(ank(i)− ak)
− ≤

λ− χ

2

Lemma 1.3. [6, Lemma 2] Let ‖A‖ <∞ and lim
n
sup
i
ank(i) = 0. Then, there exists a y ∈ �∞ with

‖y‖ ≤ 1 such that

lim sup
n

sup
i

∑

k

ank(i)yk = lim sup
n

sup
i

∑

k

|ank(i)| (1.2)

2. The Main Results

Theorem 2.1 Let A be FB-conservative. Then, for some constant λ ≥ |ΓB| and for all x ∈ �∞,

lim sup
m

sup
i

∑

k

(∑

n

bmn(i)ank − αk
)
xk ≤

λ+ ΓB
2

L(x)−
λ− ΓB

2
l(x) (2.1)

if and only if

lim sup
m

∑

k

∣∣∣
∑

n

bmn(i)ank − αk
∣∣∣ ≤ λ (2.2)

Proof. Firstly, let (2.1) holds. Define a matrix C = (cmk(i)) by

cmk(i) =
(∑

n

bmn(i)ank − αk
)

(2.3)
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Then, the matrix C satisfies the conditions of Lemma 1.3. So, we have (1.2) for C. Hence, by (2.1),
we can write

lim sup
m

sup
i

∑

k

|cmk(i)| = lim sup
m

sup
i

∑

k

cmk(i)yk

≤
λ+ ΓB

2
L(y)−

λ− ΓB
2

l(y)

≤
(λ+ ΓB

2
+
λ− ΓB

2

)
‖y‖

= λ

which is the condition (2.2).
Conversely, let (2.2) holds and x ∈ �∞. Then, for any given ε > 0, we can write l(x) − ε ≤

xk ≤ L(x) + ε whenever k ≥ k0. Now, we can write

∑

k

cmk(i)xk =
∑

k<k0

cmk(i)xk +
∑

k≥k0

cmk(i)
+xk −

∑

k≥k0

kcmk(i)
−xk

Hence, from the Lemma l.2 and the fact that A is FB-conservative, we get

lim sup
m

sup
i

∑

k

cmk(i)xk ≤
λ+ ΓB

2
(L(x) + ε)−

λ− ΓB
2

(l(x)− ε)

=
λ+ ΓB

2
L(x)−

λ− ΓB
2

l(x) + λε

(2.4)

Since ε is arbitrary, the proof is completed.
In the case ΓB > 0 and λ = ΓB, we have the following result.

Theorem 2.2. Let A be FB-conservative and x ∈ �∞. Then,

lim sup
m

sup
i

∑

k

cmk(i)xk ≤ ΓBL(x)

if and only if

lim
m

sup
i

∑

k

|cmk(i)| = ΓB (2.5)

where cmk(i) is defined by (2.3).
Also, note that when A ∈ (c, FB)p, Theorem 2.2 is reduced to the Theorem 3.3 in [5].

Theorem 2.3. Let A be FB-conservative. Then, for some constant λ ≥ |ΓB| and for all x ∈ �∞,

lim sup
m

sup
i

∑

k

cmk(i)xk ≤
λ+ ΓB

2
β(x) +

λ+ ΓB
2

α(−x) (2.6)

if and only if (2.2) holds and

lim
m

∑

k∈E

|cmk(i)| = 0 uniformly in i (2.7)

for every E ⊂ NN with δ(E) = 0; where cmk(i) is defined by (2.3).
Proof. Let (2.6) holds. Then, since β(x) ≤ L(x) and α(−x) ≤ −l(x), the necessity of the condition
(2.2) follows from Theorem 2.1.

To show the necessity of the condition (2.7), for any E ⊂ NN with δ(E) = 0, define a matrix
D = (dmk(i)) by

dmk(i) =

{
cmk(i) , k ∈ E

0 , k /∈ E
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Then, since A is FB-conservative, we can write (1.2) for D. Now; for the same E, let us choose the
sequence (yk) as

yk =

{
1 , k ∈ E
0 , k /∈ E

Then, clearly y ∈ st0 and so, β(y) = α(y) = st − lim y = 0. Hence, by the assumption and (1.2),
we get that

lim sup
m

sup
i

∑

k∈E

|dmk(i)| ≤
λ+ ΓB

2
β(y) +

λ− ΓB
2

α(−y)

= 0

which implies (2.7).
Conversely; suppose that (2.2) and (2.7) hold. For any x ∈ �∞, let us define E1 = {k : xk >

β(x) + ε} and E2 = {k : xk < α(x)− ε}. Then δ(E1) = δ(E2) = 0, [8]. Hence the set E = E1 ∩E2
has also zero density and

α(x)− ε ≤ xk ≤ β(x) + ε (2.8)

whenever k /∈ E. Now; it can be written that

∑

k

cmk(i)xk =
∑

k∈E

cmk(i)xk +
∑

k/∈E

cmk(i)
+xk −

∑

k/∈E

cmk(i)
−xk

Thus, since (2.7) implies that the first sum on the right hand-side is zero, by Lemma l.2 and from
(2.8), we get

lim sup
m

sup
i

∑

k

cmk(i)xk ≤
λ+ ΓB

2
(β(x) + ε) +

λ− ΓB
2

(α(−x)− ε)

=
λ+ ΓB

2
β(x) +

λ− ΓB
2

α(−x) + λε

Since ε is arbitrary, this completes the proof.
In the case ΓB > 0 and λ = ΓB, we have

Theorem 2.4. Let A be FB-conservative and x ∈ �∞. Then,

lim sup
m

sup
i

∑

k

cmk(i)xk ≤ ΓBβ(x)

if and only if (2.5) and (2.7) holds.
Also, we should note that when A ∈ (st ∩ �∞, FB)p and B = (I), Theorem 2.4 is same as the

Theorem 3.5 in [5] and Theorem 2.1 in [4], respectively.
Theorem 2.5. Let A be FB-conservative. Then, for some constant λ ≥ |ΓB| and for all x ∈ �∞,

lim sup
m

sup
i

∑

k

cmk(i)xk ≤
λ+ ΓB

2
V (x) +

λ+ ΓB
2

V (−x) (2.9)

if and only if (2.2) holds and

lim
m

∑

k

∣∣∣
∑

n

bmn(i)(ank − an,σ(k) − αk + ασ(k))
∣∣∣ = 0 uniformly in i (2.10)

where cmk(i) is defined by (2.3).
Proof. Firstly, suppose that (2.9) holds. Then, since V (x) ≤ L(x) and V (−x) ≤ −l(x) for
all x ∈ �∞, the necessity of (2.2) follows from Theorem 2.1. Define R = (rmk(i)) by rmk(i) =
(cmk(i)− cm,σ(k)(i)). Then, we have (1.2) for R.
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Let us choose y such that yk = 0, k /∈ σ(NN). Hence, since (yk − yσ(k)) ∈ Z, (2.9) implies that

lim sup
m

∑

k

|rmk(i)| = lim sup
m

∑

k

rmk(i)yσ(k)

= lim sup
m

∑

k

cmk(i)(yk − yσ(k))

≤
λ+ ΓB

2
V (yk − yσ(k)) +

λ− ΓB
2

V (yσ(k) − yk)

= 0

which is (2.10).

Conversely, let the conditions (2.2) and (2.10) hold. By the same argument as in Theorem 23
of [11], one can easily see that for any x ∈ �∞

∑

k

cmk(i)(xk − xσ(k)) =
∑

k

rmk(i)xσ(k)

where the matrices C and R are as above.

Hence, since (xk − xσ(k)) ∈ Z, (2.10) implies that C ∈ (Z, S0 ∩ �∞). We also see from the
assumption that (2.1) holds. Thus, taking infimum over z ∈ Z in (2.1) we get that

inf
z∈Z

(
lim sup

m
sup
i

∑

k

cmk(i)(xk + zk)
)
≤

λ+ ΓB
2

L(x+ z)−
λ− ΓB

2
l(x+ z)

=
λ+ ΓB

2
W (x) +

λ− ΓB
2

W (−x)

On the other hand, since FB − lim Cz = 0 for z ∈ Z,

inf
z∈Z

(
lim sup

m
sup
i

∑

k

cmk(i)(xk + zk)
)
≥ lim sup

m
sup
i

∑

k

cmk(i)xk + inf
z∈Z

(
lim sup

m
sup
i

∑

k

cmk(i)zk
)

= lim sup
m

sup
i

∑

k

cmk(i)xk

Since W (x) = V (x) [10] for all x ∈ �∞, we conclude that (2.9) holds and the proof is completed.

When σ(k) = k + 1, Theorem 2.5 gives the following result.

Theorem 2.6. Let A be FB-conservative. Then, for some constant λ ≥ |ΓB| and for all x ∈ �∞,

lim sup
m

sup
i

∑

k

cmk(i)xk ≤
λ+ ΓB

2
L∗(x) +

λ+ ΓB
2

L∗(−x)

if and only if (2.2) holds and

lim
m

∑

k

∣∣∣
∑

n

bmn(i)(ank − an,k+1 − αk + αk+1)
∣∣∣ = 0 uniformly in i

where cmk(i) is defined by (2.3).

In the case ΓB > 0 and λ = ΓB, we have

Theorem 2.7. Let A be FB-conservative and x ∈ �∞. Then,

lim sup
m

sup
i

∑

k

cmk(i)xk ≤ ΓBV (x)

if and only if (2.5) and (2.10) holds.

Finally, we should note that when A ∈ (Vσ, FB)p, Theorem 2.7 is same as the Theorem 3.4 in
[5].
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[5] Çoşkun, H. and Çakan, C.: On some new inequalities related to FB-convergence, Tamsui Oxford J.
Math. Sci., 19(2) (2003) 131-140.

[6] Das, G. : Sublinear functionals and a class of conservative matrices, Bull. Inst. Math. Acad. Sinica,
15 (1987) 89-106.

[7] Fast, H. : Sur la convergence statisque, Colloq. Math. 2 (1951) 241-244.

[8] Fridy, J. A. and Orhan, C.: Statistical limit superior and inferior, Proc. Amer. Math. Soc., 125
(1997) 3625-3631.

[9] Lorentz, G. G. : A contribution to the theory of divergent sequences, Acta Math., 80 (1948) 167-190.

[10] Mishra, S. L., Satapathy, B. and Rath, N.: Invariant means and σ-core, J. Indian Math. Soc., 60
(1984) 151-158.

[11] Raimi, R. : Invariant means and invariant matrix methods of summability, Duke Math. J., 30 (1963)
81-94.

[12] Stieglitz, M. : Eine verallgenmeinerung des begriffs festkonvergenz, Math. Japon., 18 (1973) 53-70.



The Aligarh Bull. of Maths.
Volume 24, Nos. 1-2, 2005

SYMMETRIC DUAL MULTIOBJECTIVE FRACTIONAL PROGRAMS WITH
GENERALIZED CONVEXITY12

T.R. Gulati1, I. Husain2 and A. Ahmed3

1Department of Mathematics, I.I.T., Roorkee, India
2Department of Mathematics, N.I.T., Srinagar, India

3Department of Statistics, University of Kashmir, Srinagar, India

(Received April 05, 2005)

Abstract. Weak and strong duality results are established under pseudo-invexity for the sym-

metric dual multiobjective fractional programming problems without non-negativity constraints.

Self duality is discussed under additional conditions on the numerators and denominators of the

objective function. A few special cases that readily follows are also mentioned.

1. Introduction

The concept of symmetric duality in mathematical programming introduced by Dorn [5], has been
extensively pursued by several authors, notably Dantzing, Eisenberg and Cottle [4], Mond [10],
Chandra and Husain [2], Mond and Weir [11]. In [1], Chandra, Craven and Mond dealt with
symmetric dual fractional programming problems and proved weak and strong duality theorems.
Later, in multiobjective programming, Weir and Mond [13] studied symmetric and self duality. In
these works, the assumption of convexity/generalized convexity were used to obtain various duality
results. Hanson [8] identified the class of invex functions and established sufficiency of Kuhn-Tucker
type optimality conditions and duality results for nonlinear programs. Since then many duality
results which formerly required convexity have been re-examined for invexity. Recently, Jeyakumar
and Mond [9] incorporated V-invexity/generalized V-invexity applicable to vector functions as an
extension of the concept of invexity for a scalar function, and proved certain duality theorems for
nonlinear multiobjective programming problems.

In this paper, we apply pseudo-invexity to symmetric dual multiobjective fractional program-
ming problems without nonnegativity constraints of Weir’s [12] problems. A self duality theorem
under an additional requirement for the objective function is also proved.

2. Pre-requisites and Problems

Let φ : Rn×Rm −→ R be twice differentiable. Then∇xφ and∇yφ denote gradient (column) vectors
of φ, with respect to x and y respectively. Subsequently, ∇yyφ and ∇yxφ denote respectively the
(m×m) and (n×m) matrices of second order partial derivatives.

Consider the following multiobjective programming problem :

(VP): Minimize (f1(x), · · · , fp(x))

Subject to

x ∈ X = {x ∈ Rn | g(x) � 0}

We require the following definitions in our analysis.

1 Keywords and phrases : Multiobjective programming, generalized convexity, symmetric duality.
2 AMS Subject Classification : 90C25, 90C29, 90C32.
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Definition 1 ([6]). A point x0 ∈ X is said to be an efficient solution of (VP) if

f i(x0) � f i(x),

for i = 1, 2, · · · , k implies f i(x0) = f i(x) for all i ∈ {1, 2, · · · , k}.

A point x0 ∈ X is said to be properly efficient if it is efficient and if there exists a scalar M > 0
such that for each i ∈ {1, 2, · · · , k} and x ∈ X satisfying f i(x) < f i(x0), we have

f i(x0)− f i(x)

f j(x)− f j(x0)
� M

for some j such that f j(x) > f j(x0).

An efficient point that is not properly efficient is said to be improperly efficient. Thus x0 is
properly efficient means that for every scalar M > 0 (no matter how large) there is a point x ∈ X

and an i such that

f i(x) < f i(x0)

and

f i(x0)− f i(x) > M
[
f j(x)− f j(x0)

]

for all j satisfying f j(x) > f j(x0).

Definition 2 ([8]). A function φ : Rn −→ R is said to be invex with respect to η if there exists a
vector function η(x, u) ∈ Rn such that for each x and u in Rn

φ(x)− φ(u) � ηT (x, u)∇φ(u)

The function φ is said to be pseudo-invex with respect to η if there exists a vector function
η(x, u) ∈ Rn such that for each x and u in Rn

ηT (x, u)∇φ(u) � 0 −→ φ(x) � φ(u)

Throughout this exposition, we will adopt the following convention of order relations for vectors
in Rk, if x, y ∈ Rk, then

x � y ⇐⇒ xi � yi, i ∈ {1, 2, · · · , k}

x � y ⇐⇒ x � y, and x �= y

x > y ⇐⇒ xi > yi, i ∈ {1, 2, · · · , k}

We study the following pair of multiobjective symmetric dual fractional programming prob-
lems.

Primal Problem:

(FP): Minimize

[
f1(x, y)

h1(x, y)
, · · · ,

fk(x, y)

hk(x, y)

]

Subject to
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k∑

i=1

µi(hi(x, y)∇yf
i(x, y)− f i(x, y)∇yh

i(x, y)) � 0

yT
k∑

i=1

µi(hi(x, y)∇yf
i(x, y)− f i(x, y)∇yh

i(x, y)) � 0

µ > 0

Dual Problem:

(FD): Maximize

[
f1(u, v)

h1(u, v)
, · · · ,

fk(u, v)

hk(u, v)

]

Subject to

k∑

i=1

µi(hi(u, v)∇xf
i(u, v)− f i(u, v)∇xh

i(u, v)) � 0

uT
k∑

i=1

µi(hi(u, v)∇xf
i(u, v)− f i(u, v)∇xh

i(u, v)) � 0

µ > 0

where for i ∈ {1, 2, · · · , k}, f i : Rn × Rm −→ R+ and hi : Rn × Rm −→ R+ \ {0} are twice
differentiable functions throughout the feasible region.

These are the problems studied in [12] with the constraints x � 0 removed from (FP) and

v � 0 removed from (FD). Our problems do not include the constraints

k∑

i=1

µi = 1 that appears in

the problems of [12] as it is not needed for the duality results to hold. Also, see Remark 1.

3. Duality

For notational convenience, we rewrite the primal and dual problems as follows.

(EP): Minimize p = (p1, p2, · · · , pk)

Subject to

f i(x, y)− pihi(x, y) = 0, i ∈ {1, 2, · · · , k} (1)

k∑

i=1

λi(∇yf
i(x, y)− pi∇yh

i(x, y)) � 0 (2)

yT
k∑

i=1

λi(∇yf
i(x, y)− pi∇yh

i(x, y)) � 0 (3)

λ > 0 (4)

(ED): Maximize q = (q1, q2, · · · , qk)

Subject to
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f i(u, v)− qihi(u, v) = 0, i ∈ {1, 2, · · · , k} (5)

k∑

i=1

λi(∇xf
i(u, v)− qi∇xh

i(u, v)) � 0 (6)

uT
k∑

i=1

λi(∇xf
i(u, v)− qi∇xh

i(u, v)) � 0 (7)

λ > 0 (8)

Remark. The problems (EP) and (ED) serve as parametric equivalent of (FP) and (FD) respec-
tively. It is important to note that for the equivalence between (FP) and (EP), the variables µ

and λ are related by λi = µihi(x, y). Therefore,
k∑

i=1

µi = 1 does not imply
k∑

i=1

λi = 1 in general.

Thus if the equality constraints

k∑

i=1

µi = 1 and

k∑

i=1

λi = 1 are included in the problems (FP) and

(EP) respectively, the two problems are not equivalent in general. It seems that this observation
went unnoticed in Weir [12] while writing parametric equivalent of the multiobjectiove fractional
programs. Moreover, since these equality constraints play a very important role in the study of
Wolfe type duality and not in the Mond-Weir type duality being studied here, this approach can
not be followed for Wolfe type duality multiobjective fractional programming.

The following duality theorems are established in terms of (EP) and (ED) as these are equally
applicable to (FP) and (FD). We shall use Z and W for the set of feasible solutions of (EP) and
(ED) respectively.

Theorem 1. (Weak Duality). Let (x, y, λ, p) ∈ Z and (u, v, λ, q) ∈W . Assume that

(A1): λ1(f1(., y)− p1h1(., y)) + · · ·+ λk(fk(., y)− pkhk(., y)) is pseudo-invex with respect to η with
η(x, u) + u � 0.

(A2): −λ1(f1(x, .) − q1h1(x, .)) − · · · − (λk(fk(x, .) − qkhk(x, .)) is pseudo-invex with respect to η

with η(v, y) + y � 0.

Then p �= q.

Proof. The relation (6) together with η(x, u) + u � 0 implies

[η(x, u) + u)]T
[

k∑

i=1

λi(∇xf
i(u, v)− qi∇xh

i(u, v))

]

� 0

or, using (7), we have

ηT (x, u)

[
k∑

i=1

λi(∇xf
i(u, v)− qi∇xh

i(u, v))

]

� 0

This, because of pseudo-invexity condition (A1), yields

k∑

i=1

λi(f i(x, v)− qihi(x, v)) �
k∑

i=1

λi(f i(u, v)− qihi(u, v))

In view of (5), the above inequality gives
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k∑

i=1

λi(f i(x, v)− qihi(x, v)) � 0 (9)

From (2) and (3) together with η(v, y) + y � 0, we have

−ηT (v, y)

[
k∑

i=1

λi(∇yf
i(x, y)− pi∇yh

i(x, y))

]

� 0

Because of pseudo-invexity condition (A2), this implies

−

k∑

i=1

λi(f i(x, v)− pihi(x, v)) � −

k∑

i=1

λi(f i(x, y)− pihi(x, y))

and from (1), we have

−
k∑

i=1

λi(f i(x, v)− pihi(x, v)) � 0 (10)

Adding (9) and (10), we have

k∑

i=1

λihi(x, v)(pi − qi) � 0 (11)

Now suppose p ≤ q, i.e., pr < qr, for some r and pi � qi, for all i �= r.

Then, since h(x, v) > 0 and λ > 0,

λr(pr − qr)hr(x, v) < 0

and

k∑

i = 1
i �= r

λi(pi − qi)hi(x, v) � 0

Combining the above inequalities, we have

k∑

i=1

λi(pi − qi)hi(x, v) < 0

which contradicts (11). Hence p �= q.

In the following theorems (ED)λ0 and (EP)λ0 respectively denote the problems (ED) and (EP)
when λ is fixed to be λ0, and Zλ0 and Wλ0 denote their feasible regions.

Theorem 2. (Strong Duality). Let (x0, y0, λ0, p0) be a weak efficient solution for (EP) and let
the invexity hypotheses of Theorem 1 be satisfied for (x0, y0, λ0, p0) ∈ Z and each (u, v, q) ∈ Wλ0 .
Assume that

(B1):
k∑

i=1

λ0i(∇yyf
i(x0, y0)− p0i(∇yyh

i(x0, y0)) is positive or negative definite

(B2): and the set
{
(∇yf

1 − p01(∇yh
1), (∇yf

2 − p02(∇yh
2), · · · , (∇yf

k − p0k(∇yh
k)
}

is linearly
independent.
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Then (x0, y0, p0) is a properly efficient solution of (ED)λ0.

Proof. Since (x0, y0, λ0, p0) is a weak efficient solution of (EP), there exist α ∈ Rk, β ∈ Rk,
γ ∈ Rm, θ ∈ R and ν ∈ R such that the following Fritz-John conditions [3] are satsified at (x0, y0):

αi − βihi − λ0i(∇yh
i)(γ − θy0) = 0, i ∈ {1, 2, · · · , k} (12)

k∑

i=1

βi(∇xf
i − p0i(∇xh

i) +
k∑

i=1

λ0i(∇yxf
i − p0i∇yxh

i)(γ − θy0) = 0 (13)

k∑

i=1

(βi − θλ0i)(∇yf
i − p0i∇yh

i) +

k∑

i=1

λ0i(∇yyf
i − p0i∇yyh

i)(γ − θy0) = 0 (14)

(γ − θy0)T (∇yf
i − p0i∇yh

i)− νi = 0 i ∈ {1, 2, · · · , k} (15)

νTλ0 = 0 (16)

(α, γ, θ, ν) � 0 (17)

(α, β, γ, θ, ν) �= 0 (18)

Relation (16), because of λ0 > 0 and ν � 0, implies ν = 0 and consequently (15) becomes

(γ − θy0)T (∇yf
i − p0i∇yh

i) = 0 i ∈ {1, 2, · · · , k} (19)

Multiplying (14) by (γ − θy0) and using (19), we get

(γ − θy0)T

[
k∑

i=1

λ0i(∇yyf
i − p0i∇yyh

i)

]

(γ − θy0) = 0

which because of Hypothesis (B1) gives

γ − θy0 = 0 (20)

Therefore from (14), we have

k∑

i=1

(βi − θλ0i)(∇yf
i − p0i∇yh

i) = 0

This, in view of the Hypothesis (B2), yields

βi − θλ0i = 0, i ∈ {1, 2, · · · , k} giving

β − θλ0 = 0 (21)

If θ = 0, then equations (20) and (21) yield γ = 0 and β = 0 respectively. Therefore, equation
(12) implies αi = 0, for each i ∈ {1, 2, · · · , k}, i.e., α = 0. Thus (α, β, γ, θ, µ) = 0, which contradicts
(18). Hence θ > 0.

Using (20), equation (13) yields

k∑

i=1

βi(∇xf
i − p0i∇xh

i) = 0
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which along with (21) and θ > 0 gives

k∑

i=1

λ0i(∇xf
i − p0i∇xh

i) = 0 (22)

Thus (x0, y0, p0) is feasible for (ED)λ0 and the two objectives are equal to p0. Now similar to
the proof of Theorem 2 in [17] it can be shown that (x0, y0, p0) is properly efficient for (ED)λ0 .

A converse duality theorem can simply be stated as its proof would be analogous to that of
Theorem 2.

Theorem 3. (Converse Duality). Let (u0, v0, λ0, q0) be a weak efficient solution of (ED) and let
the invexity hypotheses of Theorem 1 be satisfied for (u0, v0, λ0, q0) ∈ W and each (x, y, p) ∈ Zλ0 .
Assume that

(C1):

k∑

i=1

λ0i(∇xxf
i(u0, v0)− q0i∇xxh

i(u0, v0)) is positive or negative definite and

(C2): the set
{
∇xf

1 − q01∇xh
1), · · · , (∇xf

k − q0k∇xh
k)
}
is linearly independent.

Then (u0, v0, q0) is a properly efficient solution of (EP)λ0 .

4. Self Duality

Let x, y, u, v,∈ Rn and

L(x, y) =

[
f1(x, y)

h1(x, y)
,
f2(x, y)

h2(x, y)
, · · · ,

fk(x, y)

hk(x, y)

]

The problem (FD) can be written as

(FD): Minimize −L(u, v) =

[
−
f1(u, v)

h1(u, v)
, · · · ,−

fk(u, v)

hk(u, v)

]

Subject to

k∑

i=1

µi(−hi(u, v)∇xf
i(u, v) + f i(u, v)∇xh

i(u, v)) � 0

uT
k∑

i=1

µi(−hi(u, v)∇xf
i(u, v) + f i(u, v)∇xh

i(u, v)) � 0

µ > 0

If f i is skew symmetric and hi is symmetric for i = 1, 2, · · · , k, then

f i(u, v) = −f i(v, u), hi(u, v) = hi(v, u)

and

∇xf
i(u, v) = −∇yf

i(v, u), ∇xh
i(u, v) = ∇yh

i(v, u)

Therefore, the above problem becomes

(FD)1: Minimize L(u, v) =

[
f1(u, v)

h1(u, v)
, · · · ,

fk(v, u)

hk(v, u)

]

Subject to
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k∑

i=1

µi(hi(v, u)∇yf
i(v, u)− f i(v, u)∇yh

i(v, u)) � 0

uT
k∑

i=1

µi(hi(v, u)∇yf
i(v, u)− f i(v, u)∇yh

i(v, u)) � 0

µ > 0

This shows that (FD)1 is formally identical to (FP), i.e., the objective and constraint functions
of (FP) and (FD)1 are identical. Thus the problem (FP) is self dual. Also, the feasibility of (x, y, λ)
for (FP) implies the feasibility of (y, x, λ) for (FD) and vice-versa.
Theorem 4. Let f i be skew symmetric and hi be symmetric for each i ∈ {1, 2, · · · , k}. Then
the problem (FP) is self dual. Also, if (FP) and (FD) are dual problems and (x0, y0, λ0) is a joint
properly efficient solution, then so is (y0, x0, λ0), and

L(x0, y0) = L(y0, x0) = 0

Proof. The above discussion shows that (FP) is self dual. Since (x0, y0, λ0) is properly efficient to
the problem (FP) and (FD), their objective functions are equal to L(x0, y0).

From self duality, (x, y, λ) is feasible for (FP) if and only if (y, x, λ) is feasible for (FD).
Therefore (x0, y0, λ0) is properly efficient for (FP) implies proper efficiency of (y0, x0, λ0) for (FD).
By similar arguments (y0, x0, λ0) is properly efficient for (FP). Also, the two objective functions
are equal to L(y0, x0). Therefore

L(x0, y0)=L(y0, x0)=− L(x0, y0)

by skew symmetry of f i(x, y) and symmetry of hi(x, y). Hence

L(x0, y0) = L(y0, x0) = 0

5. Special cases

(i) If in (FP) and (FD), hi(x, y) = 1, i ∈ {1, 2, · · · , k}, we obtain multiobjective symmetric dual
problems of Weir and Mond [13], where duality theorems are proved under somewhat less general-
ized convexity hypotheses.

(ii) If in (FP) and (FD), k = 1, then we obtain a pair of scalar symmetric dual fractional programs
with the omission of non-nagativity constraints, studied by Chandra, Craven and Mond [1].
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Abstract. For any matrix sequence B = (bmn(i)), FB-convergence was introduced by Steiglitz.

In this paper, we have defined FB-translativity and consistency and also characterized these

type of matrices.

1. Introduction, Definitions and Notations

Let T = (tnk) be an infinite matrix of real or complex numbers. A number sequence x = (xk) is

called T -summable to l if the series Tn(x) =
∑

k

tnkxk =
∞∑

k=1

tnkxk convergence for all n ∈ NN , the set

of positive integers and limTn(x) = l. For any two sequence spaces X and Y , we write T ∈ (X, Y )
if Ax ∈ Y for each x ∈ X . If X and Y are equipped with X − lim and Y − lim, T ∈ (X,Y ) and
Y − limAx = X − limx for each x ∈ X , then we write T ∈ (X, Y )reg.

In the classical theory of summability, the matrix methods have an essential role. A well-known
example of matrix methods of summability is Cesáro method C1 = (cnk) defined by

cnk =






1

n
, if k ≤ n

0 , otherwise

Also, there exists non-matrix methods of summability. The well-known example of these type of
methods is almost convergence which is originally defined by Banach limits. Lorentz [l] showed
that a sequence x = (xk) is almost convergent to l if and only if

1 Keywords and phrases : FB-convergence, double sequences, dual matrix sequences.
2 AMS Subject Classification : 40C05, 40D05.
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lim
n

1

n

n∑

k=1

xk+i = l

uniformly in i. By f we denote the set of all almost convergent sequences.

The almost convergence may be generalized by using invariant means ([4]). Let σ be a one-
to-one mapping from NN into itself. An element φ ∈ �

′

∞, the conjugate space of the space of all
bounded sequences �∞, is called an invariant mean or a σ-mean if and only if

(i) φ(x) ≥ 0 when the sequence x = (xk) has xk ≥ 0 for all k,

(ii) φ(e) = 1, where e = (1, 1, 1, ...),

(iii) φ((xσ(k))) = φ(x) for all x ∈ m.

Let Vσ be the set of bounded sequences all of whose σ-means are equal. It is shown that

Vσ = {x ∈ m : lim
p
tpn(x) = s uniformly in n, s = σ − limx}

where

tpn(x) = (xn + xσ(n) + · · ·+ xσp(n))/(p+ 1), t−1,n(x) = 0

Let B be a sequence of infinite matrices Bi = (bmn(i)). For a given sequence x = (xn) we
write Bim(x) =

∑

n

bmn(i)xn if it exists for each m and i ≥ 0. We also write Bx for (B
i
m(x))

∞
i,m=0.

A sequence x ∈ �∞ is said to be FB-convergent [5] to a number s if

lim
m
Bx = lim

m

∑

n

bmn(i)xn = s

uniformly in i and in this case we write FB − limx = s. By FB and F0B, we denote the space
of all FB-convergent and FB-convergent to zero sequences, respectively. The space FB depends on
choosing the sequence B = (Bi) of infinite matrices. For example, if we define Bi = (I) for all i,
the unit matrix, then FB = c, the space of all convergent sequences. In the case

bmn(i) =






1

m+ 1
, i ≤ n ≤ i+m

0 , otherwise

(1.1)

then FB = f . If we define bmn(i) by

bmn(i) =






1

m+ 1
, n = σj(i), 0 ≤ j ≤ m

0 , otherwise

(1.2)

then FB = Vσ.

Throughout the paper we write

‖B‖ = sup
m,i

∑

n

|bmn(i)| <∞

to mean that, there exists a constant N such that

∑

n

|bmn(i)| ≤ N for all m, i
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and the series

∑

n

bmn(i)

converges uniformly in i for each m. In what follows we shall consider only the sequence B such
that ‖B‖ <∞.

A matrix T is said to be translative [3, pp.21] if

lim
n→∞

∑

k

(tnkxk − tnkxk−1) = 0

for every x ∈ �∞ and it is known that T is translative if and only if

lim
n→∞

∑

k

|tnk − tn,k+1| = 0

The translativity was extended to f -translativity in [2].
Convergence domain cT of a matrix T is the set of all T -summable sequences, i.e.,

cT = {x : Tx ∈ c}

The matrices T and U are said to be consistent [6, pp. 13] if limTx = limUx for all x ∈ cT ∩ cU .
In this paper, we have introduced new type of translativity and consistency - FB-translativity

and FB-consistency and also characterized these type of matrices.

2. FB-Translativity

Definition 2.1. A matrix T = (tnk) is said to be FB-translative if

lim
m

∑

n

∑

k

bmn(i) (tnkxk − tnkxk−1) = 0

for x ∈ �∞.
In the case B = (I), FB-translativity is same as the translativity. If we choose B by (1.1), then

FB-translativity reduces to the f -translativity. Also, when B is choosen as in (1.2), FB-translativity
is said to be the σ-translativity.

Now, we will characterize FB-translative matrices. Firstly, we need a lemma.
Lemma 2.1. ([5]) T ∈ (�∞, F0B) if and only if

||T || = sup
n

∑

k

|tnk| <∞

lim
m

∑

k

|
∑

n

bmn(i)tnk| = 0 uniformly in i

Theorem 2.1. Let ||T || = sup
n

∑

k

|tnk| <∞. Then, T is FB—translative on �∞ if and only if

lim
n

∑

k

∣∣∣
∑

n

bmn(i)(tnk − tn,k+1)
∣∣∣ = 0 uniformly in i. (2.1)

Proof. Let T be FB-translative and define a matrix C = (cmk(i)) by

cmk(i) =
∑

n

bmn(i)tnk for all m,k, i ∈ NN

Now, for any x ∈ �∞, we can write

K∑

k=1

cmk(i) (xk − xk−1) =
K−1∑

k=1

[cmk(i)− cm,k+1(i)]xk + cmK(i)xK
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Since ‖B‖ <∞, lim
K

cmK(i) = 0 uniformly in i. So, we get

∑

k

cmk(i) (xk − xk−1) =
∑

k

[cmk(i)− cm,k+1(i)]xk (2.2)

On the other hand, since T is FB-translative, the matrix D = (dmk(i)) defined by
dmk(i) = cmk(i) − cm,k+1(i) for all m,k, i ∈ NN is in the class (�∞, F0B). So, the necessity of
the condition (2.1) follows from Lemma 2.1.

Conversely, suppose that (2.1) holds. Then, we can write again (2.2) for any x ∈ �∞. So, (2.1)
implies that

lim
m

∑

k

cmk(i)(xk − xk−1) = 0

uniformly in i. Therefore, T is FB-translative and the proof is completed.

3. FB-Consistency

Definition 3.1. The set (FB)T = {x : Tx ∈ FB} is said to be FB-convergence domain of the
matrix T .

Note that in the case B = (I), (FB)T = c.

One can expect a connection between FB and (FB)T . In the next theorem we investigate such
a connection for some special matrices T . Firstly, we need to explain the concept of triangle matrix.
A matrix T is called triangle [6, pp. 7] if tnk = 0, k > n and tnn �= 0 for all n. If T is triangle,
then it has its reciprocal, say T−1 = (t−1nk ).

Theorem 3.1. Let T be a triangle matrix. Then (FB)T is isometrically isomorphic to FB.

Proof. Let us define a mapping G from (FB)T to FB by

G : (FB)T −→ FB

x −→ Gx = Tx

Then, clearly G is linear and since T is triangle, G is one-to-one and onto. Also, ‖Gx‖B = ‖Tx‖B
for all x ∈ FB, where

‖Tx‖B = sup
m,i

∑

k

∣∣∣
∑

n

bmn(i)tnkxk
∣∣∣

Hence, G is an isometry and this completes the proof.

Definition 3.2. Let T and U be any two matrices. U is said to be FB-stronger than T if and only
if (FB)T ⊂ (FB)U .

Theorem 3.2. Let T and U be triangle matrices. Then, U is FB-stronger than T if and only if
UT−1 ∈ (FB, FB).
Proof. Suppose that U is FB-stronger than T and let x ∈ FB. Then, since (FB)T ⊂ (FB)U ,
T−1x ∈ (FB)T ⊂ (FB)U and so, UT

−1x ∈ FB. Therefore, UT
−1 ∈ (FB, FB).

Conversely, let UT−1 ∈ (FB, FB) and x ∈ (FB)T . Then, Tx ∈ FB and so

Ux = (UT−1)Tx ∈ FB

Hence, x ∈ (FB)U and U is FB-stronger than T .
For the proof of next theorem we need a lemma which can be proved easily.

Lemma 3.1. T ∈ (F0B, FB) if and only if ‖T‖B and

lim
m

∑

n

bmn(i)tnk = 0

uniformly in i.
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Theorem 3.3. Let T be triangle matrix such that FB − limTnn = 0. Then, there is at least one
unbounded sequence for which FB − limTx exists.
Proof. Since T is triangle, U = T−1 exists and R = (rnk) = (1/tnk). Also, since

‖R‖FB = sup
m,i

∑

n

|bmn(i)rkj |

≥ |bmn(i)rkj |

=
|bmn(i)|

|tnn|

and lim tnn = 0, ‖T‖FB = ∞. Hence, by Lemma 3.1, there exists an x ∈ F0B for which Rx is not
bounded. But

T (Rx) = T (T−1x) = x ∈ F0B

which means that Rx ∈ (FB)T . This completes the proof.
Now, we will give the definition of FB-consistency.

Definition 3.3. The matrices T and U are said to be FB-consistent if FB − limTx = FB − limUx
whenever x ∈ (FB)T ∩ (FB)U .

Note that in the case B = (I), FB-consistency reduces to the consistency. Also, when B is
choosen as in (1.1) and (1.2), FB-consistency is reduced to be f -consistency and σ-consistency,
respectively.

If U is FB-stronger than T and FB-consistent with T , then we write U ⊂FB T .
Theorem 3.4. Let T and U be two triangle matrices. Then, U ⊂FB T if and only if the matrix
UT−1 ∈ (FB, FB)reg.
Proof. Let T ⊂FB U . Since U is also FB-stronger than T , by Theorem 3.2, UT

−1 ∈ FB. Also, by
the definition

FB − limUT
−1x = FB − limU(T

−1x)

= FB − limT (T
−1x)

= FB − limx

Therefore, UT−1 ∈ (FB, FB)reg.
Conversely, suppose that UT−1 is FB-regular. Then, from Theorem 3.2, U is FB-stronger than

T . Hence, (FB)T ⊂ (FB)U . Now, if x ∈ (FB)T ∩ (FB)U = (FB)T , then

FB − limUx = FB − limU(TT
−1x)

= FB − limUT
−1(Tx)

= FB − limTx

This means that U ⊂FB T and the proof is completed.
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Abstract. In this paper we first present a Symmetric Gauss Legendre Quadrature method for

numerical integration *, = I I I J@,y,2)dxd.gd,z. where /(c,y,z) is an analytic function

in r,y,zand ? is the standardTetrahedral region: {(c'y,z) I 0 < r,A,z,1 l,x *y + z < l}
in the three space (c,9,2). We then use a transformation z: c((,1'(), y = y((,a'() and

z : ,(€,rt,C) to change the integral I into an equiralent integral

, = j, j, j,/(,((, q, o, v(€,,,, o,, tc,,t, <Dffi/'-c)dcd,,,

over the standard 2-cube: {((,4,() I -l < (,r1,( S t} in (('l'O space. \&'e then applv the

one-dimensional Gauss Legendre Quadrature rules in (,4 and ( r'ariables to arrive at an efficient
quadrature rule s,ith new weight coefficients and new sa,mpling points. We then propose the

Jiscretisatign of a standard tetrahedral region ? into px tetrahedral regiorrs I (, : 1(1)p'r)

each of which has volume equal to 1/6p:l) units. We have again sho*'n that the use of affine

transforrnations over each I ar-rd the use of litrearity property of integrals leads to the result

, : I { I !@,s,2)dadyd.z = *t ! t t@,y,2)hrtydz

, zt,,,t')\dni,, r,) drl,.r,) 1ri,t.r,t

1,"

wherefl(X,y, 4:L71xt"'t)1X,Y,Z)yk"t,(x,Y,z)zt''r')1x,r, z)), st"'i - zi"'t'(x,Y,z),
n=l

O!.n 
d : y(*,t'\ (X,Y. Z) anrJ zt^'r't - zk',t') (X,Y, Z) refer to the afEne transformatious which map

Keywords and phrmes : Finite Elem^nt Method, Conrpcite Numerical Integration, Tetrahedral

Regions, Gauss Legendre Qrr,rdrature Rrrles, tiangular Prisnts.
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1,"

= LJJJil'""",'""''
L.),,,

= il {l 
H6'Y'z)dxdYdz
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each 4 in (r("rr, y('r,,'), ;1d,/,) ) space into a standard tetrahedral regioD T in (X,y,Z) Epace.
We can now applY Gauss Le.gendre quadrarure formutae, which are dern?d earlier f(}I erBlua-

tionoftheintesralltorheintes.al\[[[,U.r,rtordydz$eobserve rattheaboveP'J J J
procedue which clesrly amounts to the clmposir€ numericat integration of ? ancl ir converges

to ihe exact uatue of the inteoat 1 ' t r
- ,,J I I H(x,Y.ztdxdyd,z."ven ror the tower order Gauss

Legendre Quadrstur€ rules. We tuve Jemo*trated rhis aspect by applyirg the sbove conposite
integation method to some typical triple integrals.

1. Introduction

Itr receDt yeoIs, we have been witnessing finite element method (FEtr{) gaining importance due to
the most obvious reason that it can prcvide solutions to ttlany complicated prcblems that would
be intractable by other numerical techniques [l ,2Z]. In FE ,t it may be possible to perform some
of the integrations aDalltically, particularlv if constant or linear elements are lrsed to discretise
the surface or boundary cuNe of the given region. However, with higher orcler elements or for
more complex distorted clements the integrals become too complicated for anah,tical itrtegration
ald the numerical integratioD is esseltial, amolg various iDtegration schenres, Gauss Legendre
quadratue which can evaluate exactly the (2n l).h order polynomial with ,I-Gaussian points
is most commonly used ir view of the accuracv and effciency of calculations l2]. The triangular
and tetrahedral elements are very widely used in 6nite element aDalysis. The versatilit), of these
elements can be ftuther enhanced by improve_d numerical integratioD schemes.
I\,lathematically, the problem can be defined as the e\aluation of the following integrals

I t-rr
rt -- [ [ FlLt,L2,L dL2dLlJ.t00

wherc L\, L2, L3 are the well knowD area co-ordiDates and

(l)

G(h, L2, h, L4)dhd.L2dLl

where L1, L2, L3, La are the well known volume co-ordinates.
The basic problem of irtegrating aD arbitrar), function of t$o variables over the surface of

the tliaDgle, were first given by Hamrner. trlarlowe and Stroud ll1l, ancl HamDrer and Stroud
[10,12]. Cowper [7] prcvided a table of Gairssian quadratrre formulae with sl,mmetricallv placed
integration points. Lyness and Jespersen [20] made an elaborale studl. of symlnetric qtadrature
nrles by formulating the problem ilr polar coordiDates. LaDnoy [16] discusse(l the svnlnletric 4-point
integratioD formula, which is presented in [7]. Laurie {17] derjved a 7-poinr iDtegration rule and
discussed the numerical error in integrating sonre functions. LaurseD and Gellert I1g] gave a table
of symmetric iDtegratiol formrrlae up to a precision of degree ten. Drrnamnt [g] presentecl some
extensions to the intellration formulae given by Lyness aIrd Jespercen [20] ancl also gave tables o/
inte$ation forlnulae with precisio,s of degree from eieven to twenty. sylvester [26] rlerir,"d soore
numerical integration fornrulae for triangles as product of one-dimensioDal Newton cotes rrrles of
closed tl,pe as well as open type. The precision of these integration formulae is limited to of degree
ten atmost for various reasons. Lether [19] and Hillion [13] derived the formulae for triangles as
product of one-dimensional Gauss Legendre and Gauss Jacobi quadrature rules. The prccision of
these formulae is again up to degree seven. This is because of the zeros and weight coefficients of
Ga'ss Jacobi orthogonal potynomials with weight functions o, o2, 13 were available for polynomials

\2)

-L2I t-Ltr-LlM=III
000
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of degree up to six ooly. tjven today the zero6 and weights for the iotcgral I f l@a., , - t,Z,l
{

are not available beyond a formula of order-eight as documented in Abramowicz and Stegun [1].
Reddy J24l and Reddy aBd Shippy [25] derived i]-poiot, 4poirt, 6-point, 7-point rules of precision
3,4,6 and 7 respectively, which gave improved accuracy. Since the precision of all the formula€
derived by the authors is limited to a precbion of degree ten and it is not likely that the techniques
can be extended much further to give a greater accuracy which may be demanded itl future. Lague
and Baldur [15] propos€d product folmulae based ouly. on the ioots and weight coeficients of Gauss
Legendre quadrature rules. By the proposed method of [15] this restriction is lemoved and one
can now obtain nume cal integration of very high degree of precision as the derivation now lely
on standard Gauss Legendre Quadaratur:e rules. However, Lague and Baldur Il5] have not worked
out explicit weight coefncie[ts and sampling points for applicatioD to integrals over a triaDgulsr
surface. Rathod et al [21,22,23) provided this information in a systematic manner in their recent
works. For tetrahedral rcgioN, four volume coordinates ,1, ,2, ,3. tra are involved and $€ have to
compute numerically the integal stated in eqn.(2). Numerical integratioD fornrulae of with a degrce
of precision d = 1, 2, 3 are listed in Zienkiewicz [27] and these are based on reference I111. Numerical
inte$ation formulae of higher precision than cubic are trot available ir the current Iiterature atrd
hence we propose here the derivatioD of higher order formulae for tetrahedral regions.

Integration formulae rcsulting Fom inter l subdivision and rcpeated application of a low
order fornrula arc called composite numerical integrstion formrrlae [3,4,6,9]. One of the ways to
reduce the eror a^ssociated with low order integration formrrla in one-dimension is to subdivide
the interval of integration, say, [a, b] into smaller inteNals and then to use the formula s€parately
olt each subinterval. We adopt a strategy similar to the above which is normally used for the
treatment of line integrals over an arbitmry shaped curves for evaluation of triple integrals also.
We segment the given region into suLregions and efiect a transforination over each sub-regioD
into a standard region. The success of this stratery follows from the linearity property of triple
integrals. Repeated applic&tion of low order formrrla is usually preferred to the siEgle application
of a high order formula, partly because of the simplicity of lower order foroulae and partly because
of computational difficulties; one such difficrrlty is due to the errors introduced because oI only a
fixed, usualll snrall number of digits can be retained after each computer operatioD. IE additio[,
there exist maDy functions for which the magnitude of the deri\ative increases without bound
as the order of difierentiatiotr increases. Therefore a higher order formula nray produce a larger
error than a lower order one. It is in view of this fact that the numerical integration formulae
employiD€{ more thaD eight points (for Newton Cotes rules) are almost never used. We feel that
these important details canDot be simply igDored. and thel,Deed to be addressed in great rigor.
Hence the derivation of algorithrns for composite numerical integration fonDulae ove! dimensions
higher than one is iinportant for prActical applications and it shouid l)c used wherever necessarv.

One of tle purposes of this paper is to evolve a practical aDd workable algorithm for composite
nunlerical integratioD over tetrahedral regions by using the well knowu Gauss-Legendre Quadrature
rules.

2. Formulation of integrals over a tetrahedron

The finite element method for thrce-dimensional problems with tetrahedron eleme[t requircs the
numerical integration of expressioos containing product ofshape filnctions and their global deliva-
tives over a staDdard tetrahedron T with coordinates (0,0,0), (1,0,0), (0,1,0) and (0,0,1) in the
natural coordinate space (t,g,z) say. Si[ce elther an afine or aD iscparan]etric coordinate tranr-
formation makes it po€sible to transform any tetrahedron (either a Iinear or curved) into global
coordinate system, say (X,Y, Z). We thus have to consider the nume cal integration over a stan-
dard tetrahedron ?. The numerical iDtegration of an axbitrary fuDction /. over the tetrahedron 7
is given by
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I:[rf 
r-r r-x-!

,'ll ra,o,z)dadydz: l* l* I !e,s.z)dz
000

I l-c L-a-!

:l*l* | r@.s,2)dz (3)

000
lt is now required to find the value of the integral by a quadrature formula

r: I qnf (r^,a*,2^,j

t : uoulg : uo(L - u), z : u(L - u)

Then the determinant of the Jacobian and the differential volume are

l0r 0t 8rl
\fr, 6; a- 

I

o@,a,2) _l e" tu tul: _ur,O(".r',-):1fr 6n E l-
lu" oz u.llE d, frl

and

d.rdvdz = l##lo*uo-:u2a d.ud.udut

Then on using eqns. (5) and (6) in eqn. (3); we have

': il'l"l' i' ,o o'aa"faofa'

1-ll
: JJJtt""-,zu(l-u,),u(l- u))xu2ud.ud.ud.u (7)

000
The integral / ofeqn. (7) * be further transformed into an integral over the standard 2-cube:

i((,r,,O I -l < (,q,( S 1) bv the substitution

,_ (rt€).,._ (ltrr),,:g+e 
(8)222

Then clearly the determinant of the Jacobian and the differential volume are:

0=(y'",9: I ona dud,pd.ut :'#,:ylrrd.rtd( : ldlaraq (e)O(C,,1,C) 8 
.'--- ---'--- A(€, a.O 8*'-''-

Now on using eqns. (8) and (9) in eqn. (7), we have

(4)
m:l

where c- are the weights rm,Um,Zn associated with the sampling points and N is the number of
pivotal points relatbd to the required precision.
The integral f of eqn. (3) can be transformed into an integral over the cube: {(u,r.r,u.,) | 0 <
tr,o,ta,! 1) by the substitution

(5)

(6)

' 
: 
i ['l' l' 

- 

i-" o''' ",o"f 4o' I
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(10)

(1r )

q. _ (r + ci')Bl + qje)) .)w@)wt1) 
,

(r + {1"))(r + tld))(t - <1.'))
Y-= 8 

-

(12)

i i i..fr+etfr+?)(r+O (r n{Xl+4xl-O 11 +O(r-?),=lJlt'--- I ' 8
-1-1- I

"Qr$:Aaua<
Equation (10) represents atr integral over the statrdald 2-cube: {({,a,O | -t S €,n,( < t}
Emcietrt quadrature coemcieots are rcadily available in the literatue so that any desired accuracy

can be obtained [1].
From eqns. (a) and (10), we find that

, = ///rrr'*ert't'rt' 
*e r, (l +€)(l + r,)(l - O (1+€)(l-a),

8,_____7-)

,.1t3flt-Dat,* :i*E*_f+-,j,\ w@) p)wt1)

., Irr +el"'rrr+njd'11r +ql'') (r *ll"_.I]jrjp[:_cl')) (1 +{1"'){r-4jr)) I^rL , . 8 . .r 'l

= t c^l@^,u^,"^,)

wherc, it k obviou8 that

_ (r + {l"r)(r - nl')r
an<t 2.4 = 

-

in wtricl qj'l,aj'),q[1) are the sampling points and d)w\ntw\1) 
are the corresponding weight

coeftcients of Gauss Legendre Quadrature rules of order a, 1, alld 7 lespectively. Tlrough quadra-
ture rules of ordels ie., a f B I 1 can be u,sed, for convenience we derive the formulae with
d : B : "t = s (say). The s'eight coemcients c- and coresponding sampling poitrts ,-, r-, za of
various orde$ ie., s = 2,3,4, etc can be trow easily computed by formulae of e<1n.(12) and the aF
proldmatioD to the integml l can be then computed by eqn.(11). We have list€d herc a C-PrograEr

s/hich generates c,t, am,lhn,zn and then comput€ the irtegral , : | [ [ fi,9,z)d,xdydz lot
J lrJ

some sample functioru /(z,y,z). \Ve have also given here a sample output of the C-Program for
n=2and3.
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2.1. C-Ptograln fot generari,tg Sampung points (x* y -, L,\ and Weight coetfuients (c^\

#include<stdio.h>
#include<conio.h>
#include<math.h>
main0
{
int ij,k,n;
double xm. ym. zm, cm. at20l, w[20]:
clrsc();
printf("Enter the value oI n= ");
scanf("qod". &n);
printf("Enter the values otalphas (a's)");
for(i= I ;i<=n;i+.t)
scanf("%lf', &a[i]);
printf("Enter the values of weights (w's)");
for(i= I ;i<=n;i++)
scanf("70lf', &w[i]);
print(" xm ym zm cm\n" );
for(i= I ;i<=n;i++)

for(j=lj<=nj++)
for(i<= I lk<=n;k++)

xm = ( l+alil)8( l+aljl)*(l+a[k])/8;
ym = ( l+a[i])x( l+aUl)*( l-alkl)/8;
zm = ( l+alil)i'(l-a[i])/4;
e61 = pow( I +a[i],2)*( I +a[])*w[i]*wfil*w[k]/641
printf(" %0. I 5lf SaO. I 5lf Eo0. I 5lt 7o0. I 5lfln",xm,ym,zm,cm);
)))
gerch0;
l

2.2, So,nple outpbtfor =2a d3

0.009437387837656
0.03-52208 t 090086.1
0 035220810s00864
0. l 3 1445855765802
0.0352208 t0900864
0. r3 r445855765802
0.l3 t445855765802
o 490562612t62344

0.00 t43 1498841332
0.ol t2'10 t6653'7 926
0.006350832689629
o.ot t2'to 16653'1926
0.08872983346207 4
0.0s0m0000000000

C).Ot l?7 016653'7926
0.00 t431498841332
0.006350832689629
0.08872983346207,+
0.t\t t2't0t 6653'7926
0.050000000000000

0. I 000000m000000
0. I 00000000000000
0. I 00000000000000
0.0 r270 r665379258
0.0 t270t665379258
0.0 t270 t665179258

o.o0t t79673479701
0.mt t19673479'10't
0.m4402fi1362608
0.004402601362608
0 .o I (43013 t9',7 0',t25
0 .0 t 6430't3 t9'/ 0'725
0.o6t 320326520293
0.061 320126520293

0.000030681988 r97
0.000030681988 197

0.000049091t811l6
0.00024 rs58782106
0.000241558782 t06
0.00038649405 I 369

n=2
0.035220810m0864 0.t6666666666661
0.009437387837656 0.16666666r'666661
0. r 3 r445855?65802 0.044658 t98738520
0.035220810900864 0.044658t98738520
0. r 3 r445855765802 0.622ffi8461928146
0.035220810900864 0.62200846'7928146
0.4905626 12t62344 0. I 66666666666667
0. I 3 14,15855?65802 0.166666666666667

n=3



Symketric Gauss Legen,dre Quad,ratic Formul,ae .. 57

0.006350832689629
0.050000000000000
0.028175416344815
0.0t 1270166537926
0.088729833462074
0.050000000000000
0.08E729833462074
0.69856850r r58667
0.393649 r 673 r 037 I
0.0s0000000000000
0.393&916't3t03't I

0.221824583655t85
0.006350832689629
0.050000000000000
0.02817541634r'8t5
0.050000000000000
0.393649t673t031t
0.22 r 824583655 185

0.028t754163448t5
0.221824583655185
0.1 25000000000000

0.050000000000000
0.006350832689629
0.028r75416344815
0.088729833462074
0.0\270166531926
0.050000000000000
0.69856850r r58667
0.088729833462074
0.393649 l 673 I 037 I

0.393&9167310371
0.050000000000000
0.221824583655 r85
0.050000000000000
0.006350832689629
0.028r754163448r5
0.393&9t673t03'7 t

0.0s0000000000000
0.22 r8245836-s5 r 85
0.22182458365518s
0.0281754163448rs
0.125000000000000

0.056350832689629
0.056350832689629
0.056350832689629
0.787298334620't4t
0.787298334620'741
0.78'1298334620'141
0. I00000000(,00000
0. r00000000000000
0. r000000000000m
0.443@91673t037 t

0.443&9t6731037 t

0.443649t6731037 t

0.443@9t673t037 |
0.44364916731037 I

0.443649t673t037 t

0.0563-s0832689629
0.0-s6350832689629
0.056350832689629
0.250000000000000
0.250000000000000
0.250000000000000

0.ooo2t1't926t6242
0.000217792616242
0.000348468 I 85988
0.00r90r788268649
0.00r901788268649
0.00304286 l 229838
0.014972747367084
0.0t4972741361084
0.02395639578,1334
0.01 3499628508-s86
0.01 3499628508s86
0.02r599405613738
0.m,0966235128423
0.w0966235t28423
0.wt545976205477
0.007607 153074-s9-5

0.007607 r 53074595
0.0t2t714M9t9352
0.0068587r0562414
0.0068587 I0562414
0.0 r 0973936899863

2.j. C-Programfor Evaluation ofTriple Integrak ofExamples 1,2, 3 and 4

#include<stdio.h>
#i ncl udecconio.h>
#includecrnath.h>
main0
{

int ij,k,n;
double x, y,z,c,al20l, w[20], X, y,2,11,12,13,14,15,t6,17,I8.19.110. il 1.

Sl=0. S2=0,s3=0, S4=0, s5=0, 56=0, s7={, Sg=0, sg=o, sl0l=0, sl l=0;
clrscr0;
print("Enter the value of n= ");
scanf("7od". &n);
printf("Enter the values of sampling points (a's)");
for(i= I ;i<=n;i++)
scanf(" a/ol f ', &a[i] ) ;

printf("Enter the values of weight coefficients (w's)");
for(i= I ;i<=n;i++.)
scanf("Volf", &w[i]);

for(i= I ;i<=n;i++)
I for(i= l;J<=n j++)
( for(k= 1;k<=n;k++) {
1 = ( l+a[i])*( l+a[i])*( l+alkl)/8;
y = ( l+a[i])*( l+aUl)*( I -alkl)/8;
z = (l+alil)*( I -allDla;
g = pow( I +a[i],2)*( I +a[ ])*w[i]*w[]*w[k]/64;
Il = c*sqrt(x+y+z);
Sl=Sl+ll:
12 =.c* l/sqrt(x+y+z);
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52 = 52+12;
13 = c* l/sqrt(pow( l-x-y.2)+pow(2,2));
53 = 53+13;
14 = c*sin(x+2*y+4*z);
54 = S4+I4;
15 = c*pow( l+x+y+2,-4);
55 = 55+15:
X = l0-5'kx-2xz; Y=5+5*y+2*z; Z=8*z;
16 = 200*c*pow(X,2)*Y;
56 = 56+16;
17 = 200*c*pow(X,2)*pow(Y,2);
57 = 57+17;
I8 - 200*c*pow(X,4)*pow(Y,4);
S8 = 58+18;
19 = 200*c*(pow(X.2)*Y/sqrt(X+Y+Z));
59 = 59+19;
I I 0 = 200*c*(pow(X,2)" pow( Y,2)/sqrt(X+Y+Z)) ;

S l0 = S l0+l l0;
I I I = 200*c*(pow(X,4)*pow(Y,4)/sqrt(X+Y+Z)) ;

Sl I = Sl l+ll I;
)))
printf("ll = 7o0. l5ltur",Sl);
printf("I2 = %0. l5lfln",S2);
printf("I3 = 7o0. l5lfln",S3);
printf("I4 = 7o0. l5lfln",S4);
printf("15 = 7o0. I 51fln",S5);
printf("I6 = 7o0. I5lfln",S6);
printf("I7 = 7o0. l5lf\n".S7);
printf("I8 = 7o0. l5lf\n",S8);
printf("I9 = 7o0. l5lfln",S9);
printf("I l0 = 7o0. lSlfln",S I0);
printf("Il I = 7o0. l5lfln",Sl l);
getchO;

)

3, Cornposite integration rule over the standard
tetrahedron ?, by a discretisation of ? into P3 tetrahedra

We candiscretise the standard tetrahedron T: {(t,y,r) I 0 < a,A,z,3L,t*y* z < 1} in (*,Y,,)
space into p3 orthogonal tetrahedra each of volume 1l6x(llpxl/pxl/p). For example, by choosing

p:2, we can discretise ? into 23 : 8 tetrahedra each of volume 116 x (1/2 x l/2 x l/2); and

choosing p = 3, we can discretise ? into 33 : 27 tetrahedra each of volrrme l16x (ll3xl/3xll3).
We have clevelopefl here a discretisation procedure which works for composite integration nrle with

8,27,64,125,216,343 and 512 tetrahedra, i.e., we.have described here a procedure in terms of

paranreter p, and by choosing p = 2,3,...,8, the discretisation of ? into smaller tetrahedra of equal

sizeuptoSl2isgenerated. Weconsiderherethed'iscretisation of ia,r:{@,A,4lO<-x,g,z,<

i,r*o+z < lj, for &: 1,2,3,"',8. We have now for k: l, ?r,p, a tetrahedron of volume

l16x(llpxLlpxL/p) which is shown in figure l. \4re have 1or k = 2, ?2,p, a tetrahedron of volume

l1A x 1Z1p x 2lp x 2/p) which can be further discretised into 23 : 8 tetrahedra of equal volume

tlO " it/p x llp x l/p) and this is depicted in figure 2. We have for ,k : 3,'i3,p, a tetrahedron of

volume 116x (3lpx3fpx 3/p) which can be further discretisecl into 33 = 27 tetrahedra of equal

volume ll6x(llpxllpxl/p) ancl this is clepictecl in frgrue 3. We observe that the depiction of ?6,r,
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for trc : 4,5,. . .8 is really compiicated.^It is interesting to note that [ ,r,_C Tt.p, for n < O';na oii
as integers. This implies that fi,, C'i2,'p Ci3,, cfa,p C '7},p Further', we uote that 76,,,: f'
for l. : p. These properties can be usecl to our adrantage- We also see that depicting 7'6,r, for A > p

become c,rrnplicated with each increasiug ft value. We have Tp.p : T, and it cau be discretisecl into

p3 tetraheclra each of eclral voluuie 116x \llpxllpxllp). Let, trs clenot('CP). a tetrahedron rvith
PI

indexof nhavingvolume 116x(llpxlfpx 1/p). Clearly,wehave T:i'Y): try' Wecan

transform each of these tetrahed.u C') , ilto a unit orthogonal tetrahedrou 
" 

b;1;" use of well

knowrt affine transformations:

.{o,tl1x.y,Z): ra,, * (r",, _ ra,,)x + (16,, - a:a,,)y + (x:.,, - rd,,)z

,r(o'n)1x,Y, z) -- aa,, * (uo,, - yd.)x + (a0,, - gd,.)Y + (v.,, - va,,)Z

z@,d(x,y,Z): 
"a,, 

* ("o., - za,,)x + (26,, - za,,)y -l (".., - za,)2,(a: t,2,.. ,p3) (13)

where (o.,bo,c.,do) are the nodes spanning four vertices of the 19), this information is listed for

dt'.(.r :1,2'"',512). p:2,3, ,8 and this information is depicted in the Figure 9'

The cliscret.isation of 7,L.,,, (ft : 2,3, . . 8) consists of cubes, triangrtlar prisms and orthogonal

tetrahedra. Heuce, one has further discretise the triangular prisms and cttbes into orthogonal

tetrahedraancleachof thesearetobeof volume 116x(I/pxllltx 1/p). Theproceclureadoptr:d

to subdivide the triangular pnsrns and cubes can be founcl in Zienkiewicz [27]' Chandrupatla and

Belegundu [5]. This is explained here:

4. Division of a cube into two triangular prisms

We consider here a cube spanned by nodes < i. j. t, l, n4 n, o, p >. Figure I 0 is self explanatory.

5. Division of a triangular prism into three tetrahedra

Weconsiderhereatriangularprismspannedbyvertices: <i,j,k, l,nLn>. Figule llisself explanatory.
From the Figures l0 and I l, it is clear that a cube can be subdivided into six tetrahedra of equal size. [,et

the cube of Figure I I be denoted by C and the resulting tetrahedra be denoted by l. then C = I I, . These

tetrahedra are spanned by four vertices. The following Table-I describes this spanning. ':=l

TableI. Divisionol'acubespannedbyvertices<i,j,k,l,m,n,o,p> into 6 tetrahedra

Tetrahedra
(T,)

Local nodes spanning the tetrahedron

I 2 3 4
Tl I l I
Tt I p nl
Tl t) nl n
T4 I I I o
T. I o p nt
T(, I I o

59
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On using the above discretisation procedure explained in Figures I to 8 and the method of subdivision
of triangular prisms and cubes as explained in Figure l0 and Figure I I, the affine transformations of eqn.
( I 3) and the linearity property of integrals, we obtain

r = !!!f o,y,z)dxdydz = i'j ii, x,!,2)dzdydx = [!lf rr,y,z)dxdydz
I 00 0 o1

,=2,r,,
ol

= >, [l! t (7s@'nt , y@'n\ , z@'P) )d x@'n) 4y @'p\ dr@'pt
a=l Tr

=2!y,u,o,n,(X,Y,Z),yl,'P'(X,Y,Z),z,o.D(x,,,",iW),oro,o,,,o,

We have tabulated the expressions for nodal vertices spanning T),\ < ao,bo,co,do ),
d = 1,2,....-. 83 in Tuble II, which are valid for p =2,3,4,5,6,7 and g.

Table II. Nodal vertices spanning T)t'\ < ar,bo,co,do > . d = 1 ,2,...... 8l

Tlo) <ao,br,co,do) Tf,P) <ao,bo,c,,do T)"\ <ao,bo,c*do>
Ttt?)<2,3,1,4> T2\P)<5,6,2,10> 7.@)<6,7,3,8>
T4tP,<10,6,2,3> G@)< 10,6,3,8> T6tP)<3,4,10,2>
Tl\Pt<10,3,4,9> fs?'<9,10,3,8> Tr'P)<ll ,12,5,19>
Trc\Pt<19,12,5,6> Ti\Pt<19,12,6,2A> Ttr''< 2.13,6,20>
Tn@t<20,13,6,7> Tto@'<20,13.7,15> 7",r'"'( 3, 14,7, l5>
rr6u'<6, I 0, lg,5> ?i?(/)< 19,6, lo, I 8> T,r'''< 8, I 9,6,20>
Tl(\Pt<7,8,20,6> T2o\Pt<20,7,8,16> Tzt

(2)<
6,20.7,15>

722\?)<17 ,18,20,6> 721(,)47,19,6,9> r24@)<18,6,9,10>
T2s\P)<17,16,20,9> 726\P)<17 ,9,6,9> Tn\P'<17,6,20,9>
728\P)<21,22, 1,32> T2s\P)<22,23,12,33> T1s'?)<23,24 3,34>
f.t@'q24,25, 4,26> L2t!)<32,22,11,12> T^v)<32,22, 2,33>
T14tn)<33,23, 2,13> T$\P)<33,23,13,34> T^6'Pt134,24, 3,14>
T31t?)<34,24, 4,26> T\vt<12,19,32, l> Tz,t'?)<32,12, 9.31>
To;Pt<31,32 2.33> ru,0)< I3.20.33. 2> rr2!')<33. 13.20.35>
Tqtv'<35,33 3,34> 744\t')<14,15,34 3> Tort't<34,14.15,2'7>
T46v)<27,34 4,26> 747'r"<30,31,33, 2> A8'/"<30,31, 12, I8>
Tor@'<31,12, 8, t9> Isou'<30,35,33,20> Istpr<30,20. 12. lg>
Trz@)<30,12,33,20> Ts.v'<29,30,35,20> Tso'n'<29,30,20,1'l>
I5s(2)<30,20,17,19> Ts6\P)<29,29,35,16> Tsr,t',<29,16,20,17>
T\Lttt<29,20,35,16> r5eo)<29,35,34, l3> r6{)r2'j<29,3-5, I 3, l6>
7'6 r'2r<35, I 3, 16,20> 762\P)<28,27,34,15> T6j't')<29.1 -5. I 3, l6>
r61u"<29,I3.34,l5> fur,r,<36,37.2 I .-50> T$'t"<3J ,39.22.51>
T67tp)<38,39,23,52> Tor""<39,40,24,53> T$u')<40,41.25.42>
Ttowt<50,37,21,22> T7t@)<50,37,22,51> h2\P)<51,38.22,23>
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T73't'<51,38'23,52> 714@)<52,39,23,24> I?sot<52,39,24,53>

T76@'<53,40,24,25> Trr@)<53,40,25,42> TlBo\<22,32,50,21>

Ts@\<50,22,32,49> Tsoto)<49,50,22,51> Tat\P)<23,33,51,22>

Taz\P'<s1,23,33,54> T$t?)<54,51,23,52> T84v'<24,34,52,23>

TBs(/,t<52,24,34,55> Ts6\Pt<55,52,24,53> T81@)<25,26,53,24>

Tss@'<53,25,26,43> Tas\Pt<43,53,25,42> T @)<48,49,51,22>

Tgr@)<48,49,22,31> TsztPt<49,22,31,32> re3@)<49,54,51,33>

Tqo@t<48,33,22,31> Tss@<48,22,51,33> T%\t)<47,48,54,33>

TEttt"<47,48,3330> reEo)<49,33,30,31> Tw\P)<47,56,54,35>

7<pt w<47,35,33,30> fo'$(47,33,54,35> fo,rc2<46,47,56,35>

T'o)w<46,47,35,29> T<ttrc4<47,35,29,30> T\P) rc5<46,45,56,28>
'Io'to6<46,28,35,29> 7<r)w<46,35,56,28> /")r08<45,56,55,34>

t' t,*<45,563q,28> 73" ,u<56,34,28,35> fP) t<.45,44,55,2'l>

Tot trr<45,27,34,28> frt,B<45,34,55,27> fr),rn<44,55,53,24>

Tb)rrr<M,ss,24,27> Tat rru<55,24,27,34> T<r\ ur<44,43,53,26>

lo)M<44,26,24,27> f'?, t$<44,24,53,26> T'!) no<56,54,52'23>

7!)ot<56,54,23,35> Tv)n2<54,23,35,33> T\P) w<56,55,52,34>

T<rtn446,34,23,35> Tv)05<56,23,52,34> Tv'n6<51 ,58,36,74>

7e)o*74,58,36,37> To) 0s<74,58,37,75> To) ns<58J9,37,75>

7o'),.0<75;59,37,38> To) rr,<75,59,38,76> 7@),rr<59,60'38,76>

?(2)r11<76,60,39,39> Tv)l]o<76,60,39 ,77> T\t') ns<ffi,61,39,77>

Tv) no<77 ,61 ,39,40> 'l@ w<77,61,40,78> 7v)n*61,62,40,78>

Tot Be<78,62,40,41> T@,40<78,62,41,&> 7a',.'t<62,63,41,&>

To) vt<37,50,74,36> Ta) v,f74,37,50,73> Tv),4o<73,74,37,75>

T<ilrot<38,51,,75,37> To) w<75,38,51,79> T@',o.'<79,75,38,76>

T@va<39,52,76,38> 7{o"nn<76,39,52,80> To\r*<80,76,39,77>

Tv)rl<40,53,77,39> lot 15247,40,53,81> Tb\ rrr<81,7'1,40,78>

T@t $4<41,42,78,4A> T'P)15s<78,41,42,65> 'lv)so<65,78,41,64>

Tv)st<72,73,'15,37> Iot$t<7213,37,49> 7/.Pt$s<73,37,49,50>

T@t ,*<72,'19 ,7 5,51> 'lot 
rcr<72,51,3'7 ,49> 7@'tur<'12,37 ,15,51>

Ta'rct<71,72,79,51> Tot ,*<71,72,51 ,48> T@'rut<'t2,51,48,49>

Tat ruu<1 I ,82,79,54> To) ,ur<1 1,54,51 ,48> t''t ,or<7 I ,5 I ,79 ,54>

TlP'rcs<70,71,82,54> Tot no<7Q,7 1,54,47> t'') rr,<71,54,47,48>

T\Ptn2<70,84,82,56> 7v)n<70,56,54,47> Tlt) n4<70,54,82,56>

Tvt ns<69,70,84,56> T@ n6<69,70.56,46> lP)nt<'l0,56,46,47>

7a)rru<69,68,84'45> To),rn<69,45,56,46> 73),ru<69,56,84,45>

7b\m<82,79,76,38> To)n2<82,79,38,54> 12)rE1<79,39,54,5 I >

r{r,r<a2,s0,76,52> 7v'rs5<82,52,38'54> t'n\ rru<82,38,76,52>

7alr87<34,82,80,52> TlP)$B<84,82,52'56> 7vtr8s<82,52,56'54>

/')reo<84,83,80,55> Tatr,<84,55,52,56> ?d2)rq2<84,52,80,55>

?v)r$<68,84,83,55> 70,)reo<6g,94,55,45> 73)rqj<84,55,45,56>

To) rnu<68,61,83,44> Totw<68,44,55,45> 7(,'re8<68,55,83,44>

ro),r<83,80,77,39> 7o)r*<83,80,39,55> 7vr2or<90,39,55,52>

7at2m<83,81,77,53> 7'{2)203<83,53,39,55> r?)204<83,39,17,53>

70)205<67,83,81 ,53> T*<01,$,53,44> ln)207<83,53,44,55>

To)me<61 ,66,81,43> To)2!8<67,43,53,44> T@t2to<67,53,81,43>
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7v"2 | r<66,81 ,78,40> 2r2<66,81.40,43> zrr<8 1.40,43,53>
7e)*<66,65,78,42> To'215<66,42,40,13> TPtlu<66,40.78,42>
7'r'2r?<95,96,57, 105> zo)r,r< to5"goJzJs> ru<105"86*58J06>

220<86,87,58, 106> 12'22r< 106,87,58,59> T? ) 
222< I 06,81 .59, I 07>

ldP':zr<87.88,59, I 07> 224< 107,8 ,59,60> ,"::r< I07.88,60, I08>
Tirr?26<99.99.60, I 0g> ::7< 108.89,60,6 l> 228<108.89,61.109>
ro'?2e<gg,g0,6l , l0g> 230< 109,90,61,62> /"':r<I09.90.62,I l0>

212<90,91,62,1l0> fl'..,.< l 10,9 1 ,62,63> 2r]<I 10,9I.63,93>
To'21:<91,92,63,93> 7nP12$<58,74, 105,57> '2r?< 105,_58,74, 104>

?(P'238< 104 05,58,106> fl')2.e<59,75,106,59> 'zco<106,59,75,1 I l>
P"2a1<l I I 06,59,107> fp),x2<60,'16,107,59> Tv' 24j< I 07,60,'1 6, I 12>

To)244<112, 07,60,108> 7v!15<61,77, 108,60> /P):,r6< 109,6 1,77 ,l13>
TPtz1;,<l13, 08,6 I, t09> TV'uE<62,79,109,61> 24e<109,62,78,1l4>
7vr2.6<114, 09,62, I l0> T?)Tt<63.64.1 10.62> lrtrrrcl10,63,64,94>
7P)xr<94,1 0,63,93> 7v)254< 103, I 04, 106,59> 7@)25r< 103. 104,5g,73>
70,2s6<104,59,73,74> T@) 251<103,1 t l, 106,75> 2..8< 103,75,58,73>
T*'zss( 03,58,106,75> fu' ) 

26I)<102.103, I I 1,75> Tt' ) 

26 | < 102, I 03,7 5,7 2>
T''x,21 03;15.72.73> Totzet< 02,1t5,l l1,79> Tot264<102,79,75,72>
TVt..os1 02,75,111,79> T''zc,o4 01,1 02, 5,79> lptxt<lol ,102,79,7 l>
fl':or( 02.79.71.72> T'run< 01,1 r8.r 5.82> 2?o< l0 I ,82,79,7 l>
/0'zr11 01,79,u5,82> To'ztt1 00,101,1 18,82> 12'ur.<100. 101,82,70>
ftr,-ra 0 r ,82,70,7 l> Tntztsl 00,r20,r 18,84> 7^21276< I 00.84,82,70>
Tu"tnl 00,82, l r 8,84> fl"2?8<99, 100, I20,84> Tn;@,too,B4,6e>
T*'zro1 00,84,69,70> 70)28r<99,98, 120,68> f ')82<99,68,84,69>
7v'x.<99,84,120,68> Tr'rro< 15,I I,107,59> 7P'zas( 5, l l 1,59,79>
7v':ro( t 1,59,79,75> To'zstl 5,n2,t07,76> Tn'zst1 5,76,59,79>
?nr,:.s( t5,59,107,76> Tv'zso( 8,1 5,r 2,76> Totzstl 8,I r5,76,82>
T0'2,12.1 t5,76,82,79> To'rnr1 8,r 6,t 12,80> P'rrr< 8,80,76,82>
TP'zrs(- 18,76,I t2,80> T"'zge1 20,t 8.1 6.80> Vmr"r4 20,1 18,80,84>
Tatzusl 18,80.84.82> T"'2s91 20, l 9, r r6,83> /r,,..,r,< 20,83,80,84>
7'',u,< 20,80,t 16,83> 7er3o2<gg, I 20, I I g,g3> rcr<98, 120,83,68>
79'*< 20,83,68,84> To)y,s<gg,g7,llg,67> 306<98,67,83,68>
To'x,48,83,119,67> 7v,ror<l 16, I 12, I 09,60> 10e<l16,112,60,80>
7v'316( l 1 2,60,80,76> 7v\,,<l 16,1 13, 109,77> T?)3e1116,77,60,80>
7r,r,r< I I 6,60, I 09,77> T@yo,1ll9, I I 6, I 13.77> 'rrs<l I9,l 16,77,83>
T@)3161116,77,83,80> rz<l l9.l l7,ll3,gl> I''.j1s( I 19.8 1,77,83>

'Its(

r::(
9,77,t 13,81>

9"81"6?f 3,
.8tJt766,

sr<9
:::r(9

7,l19.ll7.8l> _i
7.96,t 17.66> 

i

lT lll l0q6lr I

7'!') 32697.1 I 9,8 1,67>

7,1."<97.66sl^5?>
I 70\2.<97.81,117,66>

I 7v).un<l 13.61,81.77>

i-Pr;ArZ6TJorJs>

116<It7,II3. 109.6l>

"r<t 
t7J MJ09,78>

3rr<95, I l7,l l4Jg>

rzr<l17. ll3,6l,8l>

",Ktn?8rt.8lt
rrr<96,1 17,78,66>

Tv'taq<l17,78,66,81> Tv')r.s<96,95, I I 4,65> \6<96,65,79,66>
T'o)1R7<96,78,114,65> 7'2'138<95, I l 4,l 1 0,62> fl\.r<95,1 t4,62,65>
fl).oo( I 14,62,65,78> ru'11r<95,94,1 t0,64> Totu2<95,@,62,65>
7v'u€95,62,110,64> 7v, ut<12 l.l 22.g5. I 44> r.rs<144, 122,85.86>
r/'u6<144,122,96,145> w<122,t23,86,145> 34s<145,123.86,87>
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To'vs( 45 23,87 46> 70).L,o1 23, 24,87,t46> 7v'.,s11 46, 24,87,88>

1@'..sz1 46, 24,88, 47> Torrrr< 24, 25,88, 47> 7*'rro< 47 25,88,89>

T'"tr< 47 25,89 48> 70'rru< 25 26,89, 48> f,rrr. 48, 26,89,90>

P'rse( 48 26,90, 49> 7v'rsq( 26, 27,90, 49> 70'r*< 49. 27,90,91>

f'ru,. 49 27,91 50> f'rur< 27, 28,91 50> f',ur' 50, 28,9t,92>

Tr,r*. 50, 28,92, 30> 7vt.r,s1 28, 29,92, l0> 7u'166<86,105,144,85>

T,,xr< 44,86,r05 3> 'I*'rura 43, 44,86, 45> 7o)rcq<87, 10,j, I 45,86>

To'vo( 45,87,106, l> Tr,rrr. 5l 45,87 46> ?v)rrz<88, I 07, I 46,8'l >

Tvtvtl 46,88,107 52> Trrrro. 52, 46,88, 47> 70)375<89, 108, 147,88>

fv)ve1 47,89,108, 53> T't r< 53, 47,89, 48> 7{2 
)rzr<90,109, 148,89>

/v'ttg1 48,90,109, 54> 7-'rro< 54,148,90, 49> 7o)3sr<91, I 10, 149,90>

Tv'..yt21 49,91,1r0, 55> 7v're:( 55,149,9 r 50> 7o\s4<92,93,150,91>

7a)rss( 50,92,93,13 r> 7v'rro( 3l,150,92 30> T*'rr< 42,143,t45,86>
7r,rr*a 42, 43,86,1M> 7'':,*n' | 43,86, I 04 05> l''rno( 42.t5t 45, 06>

?v'rsr( 42, 06.86, I 04> 7a)vz( t42,86,145, 06> l'',r,a 41,t42, 5 t,106>

T@trroa 4l 42.1 06,1 03> 7a':rs( 42,106, 03. I 04> f"roua 41,156, 51, l>
Tr,rr< 4t I I,106,103> 7r,rnr. 41,106, 5l,l I t> 1*'r*a 40,1 4 1 56, l>
T''*n< 40, 4T 1.102> Tv'*r< t4t I 02,103> Tatoul 40, l 60, 56, 5>

Tv',.t,t1 40, 15, I,102> 7t'ooo< t40, I 56,1 l 5> To'qs1 39, I 40 60, 5>

To'o*< 39 40, 5,101> 7*'*< r40, 5 01,102> P'*r< 39 63 60, 8>

7a'*n< 39, 18, 5,101> T@)nto(. 39 5, 60,1 l8> f@to,11 38, 39, 63, 8>

fv'ctz(. 38 39. 8,100> 7@0,81 39, 8, 00,1 0 1> 7vtqv1 38, 65. 63 20>

Tv'qts(. 38, 20, 8,100> T@)orul 38, 8, 63, I 20> 70'orr< 37 38, 65 20>

7vtars( 37,138,120,99> 70tnrr< 38 20 )9,100> T''czol 37 36 65,98>

rrt. 37,98,t20,99> /v',,z1 37 20, I 65,98> 7P'ox1 56, 5l 46,8't>

T@'o,o< 56, 5 1,87, 1 I '7dP)czs1 5 1,87,1 I I,106> T@t,ae( 56, 52, 46,107>

To'ot< 56, 07,87,I I 'lo'*r< 56,87,146,107> 70)42s<160, 56, 52, 07>
Tv'qtol r60, 56,107,1 5> 7a'orr< 56, 0't 15,I l> 7@tq12<160, 57 52, 2>
'Ig'qrl1 60, 12 107 I 5> Tv'clcl 60 o7 52,1 2> 79)o.r<163, 60. 57 2>

Iv)qtol 63, 60,1 l2,t 8> Tvtottl 60 2 r8,r 5> z@lrrctol, 6l 57 6>

Ta'orn< 63 16,fiz,1 8> Tvtuo( 63, 2 57, r 6> Tv)aat<l.65 63 61, 6>

TQtnorl 65 63, 6.t20> 7v'*t< 63 rt6 20,1 8> Tn'otql 65 64 61, 9>

Tv'qcsl 65 t9 6,120> Tot*u< 65,r 16, 6l. r 9> 7v'*r1 36, 65 64 9>

Tv'ua1 36, 65, 9,98> To'*r< 65, 9,98,120> /,'rso1 36, 35 &,9'1>
To)qy( 36,97,r 19,98> Tv'.r,z( 36 9,t64,9't> 'l@'orr< 57 52 47,88>

7v)osq1 57 52,88,r r2> To'qss< 52,88,1 12,107> Tv'qso(. 57 53 47,108>

T@torr< 57 08,88,t l2> 7v'on1 57,88,147,108> T*'otn< 6l 57 53, I 08>

Tvto*< 6t 57 108,1 t6> 7't*r< 5?, r 08, l 6,l 2> Tv'qoz(. 6l , t-58, 53, 3>

Tr'*r< 6l l3 108,1 t6> To'*< 6t 08 53, l 3> Tv'^s< @, 6l 58, 3>

Tv'w1 64, 6t lI3,l l9> 70tour< 6l 3 19, r 6> 7*t*r< 64, 62, 58, 7>

T@qosl 64, l7,t l3,l I9> T@'tno( 64, 3 58, r 7> T0'qtt( 35 64, 62, 7>

Totonl 35 64,11'7,97> Tv'ctt1 64, 7,9'7,ttg> T') oro< 35 34, 6296>
79tns( 35,96,n7,97> 7v)qtal 35 7.162.76> Tv'on1 58 53 48,89>

Tvt.azgl 58,153,89,1 l3> Ta)qts( 53,89,1 13.108> 7?)om( 58 54 48,109>

Tv'qet1 58,r09,89,113> To'orr< 58,89,148, r09> l').e:( 62 58, 54, I 09>

7P'asol 62,t58,109,1 l7> Tv'qs( 58,109,1 t7,t l3> 'latol,y( 62 59 54,1 l4>
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T*'qatl 62,lL4,t09,lL7> 488<162,109,154,1 l4> f''q,r,4 34 62, 59.1 t4>
T?'.t)o1 34,162,114,96> TV'.rt1 62,il4,96,|l7> 7v)qr,z( -14 11 59.9-5>
T@'$t1 34,95,n4,96> Tat.so( 34,1 14,159,95> 7n''..t.ls( 59. 54, 49,90>
T@tqso1 59,154,90,1 14> T'tc91( 54,90.1l4 09> Totaggl 59 5{ 49,1 l0>
Tv'oss1 59,1 10.90.1 l4> 7-'soo( 59,90,t49 0> Tn'nr1 JJ 59 55.1 l0>
Tttror< 33,t59,1 10,95> 7-'sor( 59,r r0,95, 4> T''srr( JJ 32 55.94>
7f'sos( 33,94,110,95> 7v'soo( 33,1 10,155,94> f"ur< 32 5-s 50,91>
T*'soel 32,1ss,9t,94> 'Irtr*< 55.91,94,I t0> 7v'sro( 't') 3l 50.93>
T''vt1 32,93,91,94> 7v'srtl 32,9 I , 150,93>

5.1. Computation of 7x@'D 1X,Y,4, y@'t',\ (X,Y,A, z'oD 1X,Y,41,
We shall illustrate the above computation.

we have from Table II, the first two entries are nored asTrot<2,3,1,4> and,T2b)<5,6,2,10>. tiom this we find
for c=I, ap2.l1p), c1=1, /1= 4 and for o=2, az=5.b.-6, c2=2, /2= lQ.

We have from eqn. ( l3), for o= I and c=2

x(t'P) (x,Y,z) = xq * (x, - xo)x + (x, - x)y + (x, - x)Z
y(t'P)(X,Y,Z)= )a * (y, - yo)X + (y, - l)y + (y, - y)Z

,o'0)(X,Y,Z)= Z+*(zr- zn)X +(zt- zo)y +(2,- z)Z (l5a)

*rz'o\ 1x ,Y,z) = Jro * (;r, - r,o )x + (xu - xrc)Y + (x, - x,)Z

,rz'n\ (X,y,Z)= )ro * (y, - ),r)X + (lo- ),oX + (1,, - y,)Z

,tz'nt(x,Y,z) = Zro * (zr- zro)X +(zo- zrc)Y *(zz- zrc)z (l5b)

We have from Figuresl and 9, the nodal coordinates are given by

rr=0, yr=0, Zpl, x2=l/p, yr=Q, 72=(p-l)lp, xr=Q, yr=llp, 1.=(p-l)lp, xa4, yo=e,7a=Qt-l)lp,

x5=Ap, yt=Q, 7t=1p-2)/p, x6=llp, yu=llp, Xu=Qr-2)lp, x1s=l/p, y16=0, 7,u=1p-2)lp ( l6)

Usingthevaluesof((x,, ti,zi\, i=1,2,3,4,5.6. I0)fromtheaboveeqn.(16)intotheeqn.(15).wefind

(x(t' P' (x,y,Z), ru' r't (x,y,z), zu. ot (x,y,z)) = (x I p, y I p, ( p - l) | p + Z t p)

1xQ'ot1X,Y,Z), ytz't)1y,y,Z), zQ'p\(x,y,z))=(ll p+ x I p,y / p, (p-2)t p+Z I p)

We can compure the remaining expressions for (x@'') (X,Y,Z), y("'p) (X,Y,Z), z@'n) 1X,Y,Z)) from

the values T)o' a ao,bo,co,do ) of Table II.

We can further write the eqn. (14) as

64
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( t7)r = !![ro,y,ildxdydz =+ [![na,Y,z)dxdYdz
where

p'

H(X,y,Z)=171x<"'ot (X,Y,Z),y("'p) (X,y,Z),Z@''t (X,Y,Z)) trsl

We can now apply Gauss Legendre Quadrature rules on the integral of eqn. (17) in a manner similar to the

procedure which we have already developed for the integra, I = JJJff x,)',2)d'xd'y'dz' Following
T

the method already developed in section 2, we have now on using the transformations

x (6,4.( )_ (l + 6xl l4xl + (),

y (6,ry,( )- (l + 6)(l + a)(l - () 
.

8

z (t .rt , ( )
( l9)

the integral in eqn. ( l7) can be written as:

, = ffl f (x, y,7)dxdydz = # !$ H (x ,Y ,z)dxdYdz

= I 'f '1 '1(l + f )-'(l + ?) H (x (6,ry.().y(g,n.(l.z(6,tt,()rd(etr7d(-Vl,l,l, 64 r'\n\5'

= I S$i(t +g:")'(t+q',t')).,,,1
p, a ?-_, a --ffiw(,r\ w' ! ) 

w'o' 
I

x H (x (€!^, ,q,,0, ,(;" ),v (€l^t ,q'l' ,Sl"'),2(€i^t ,rt,at ,(l'') ))

t N =)uvr $-
- ? ./,t,rH(x,,,rY,,,,2',,,) (20)

P 7;
where. it is obvious that

.. (l + 61',Xt + q',r' ){t + (;"),, _ g:IU:,?'L!_!t
r,n=- 

s -Yu,---- g

_ (t+q:^')(1 -q',"\ _(t +€l^')'11+ry',t"\
z-=-andc,,= * 

'*:n'*','t*'o''' 
12 l)

in which 6l^' , 4'," ord rlo'\ urc the sampling points and w!1\ , wlf'\ anct w'0" urc the corresponding

weight coefficients of Gauss Legendre Quadrature rules of order )" , 1t And 7 respecti vely.
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6. Some numerical results

We consider some typical integrals with known exact values

Example l. t€t us consider thc following multiple integrals which are generalised to three-dimensions from
Reddy and Shippy [8].

I l-r t-r-y
,, = [ I ! rlr* l* Oardydx =ot428y14285143

000
I,. r r-r-Y 

dzdvdxt.=ll | ,-- 

- 

= 0.200000000000000
d ; ,i r/(x+Y+z)
l. I r l-r-\. r-l

,,= I j J lrt---))'+ z'1, dz<lvdx = o.uoosotgtso()t'iz
000

Dxample 2. We now consider the following multiple integrals frcm Stroud [6].
I t-r !-r-)

, 
" 

= ! I lSii1x+2y + 4z)dzdydx =s.131ss2326sesys2
000
I I-r l- L-)

,, = J I Jtt*r* y + z)-1 dzdydx=0.0208333333333i1

Example 3. [,et us consider the following multiple integrals of the type from Rathod and Govinda Rao

[20,2t}.

r.B.t _ 
lllx"y 

p z, axaraz

where v is the tetrahedron in (X,Y,Z) space with vcrtices spanning

<(5.5.0),( 10. r 0,0).(8.7.8x 10.5.0)>.

On using the following transformalions
X(r,y,z) = lLsx -22, Y(r,y,u) = 5r5,y +22 and \xld = 8z

we obtain.

".i.y _ 
lfix"vtz,axaraz

I I_r l-\-r

=2001 J !<to -sr-zz)" x(5+5y +22)r x(82)t dzdybe
000

we have evaluated the above integrals for a=2,0=1,?1=O;a=2,8=2,y=O
anda=4,f=4,y=0;
That is:

I u = II I 1,,.u = !l[, x, r axav az = $.t2t.666666666.1

1., = url...o = ll[x,v.axavaz =$e662.0634e2n3

(22)

(he points

(23t

124\
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Ie= Iill'a'o = IJ[, 
oYodxdYdz 

=426er7356.623377

Again from Rathod and Govinda Rao [20,21 ], we know that /e = 4? 165/3, other integrals were computed in a

similar way.

Example 4. We now consider the following multiple integrals of the type

rrra.f.v =figdxdYdzu JJrv JX +Y +Z
where v is the tetrahedronin (X,Y,Z) space with vertices spanning the points

<(5,s,0), (10,10,0), (8,7,8), (10,s,0)>.

On using the following transformations
i(x,y,z) = l0-5x- 27, Y(x,y,d - 5+5y +22 md Z(x,y,d = 8z

we obtain.

rrro.p,t = ffi gdxdYdz
v rrrvJX+y+Z

67

(2s)

(26)

^^^ '.' '-r' 
r-'-t (10 - 5x - 2z)o x(5 + 5y + 2z)f x (82)/

=AN J J J
dzdy dx (27)

s= l0
0.t42857 148844769

0.142857 145041424

0.142857 145590853

000 Jts: s, + sy+ 8,

We have evaluared the above integrals for d=Z 0-LY=0 | d=2. p=/7 =Q

and d=4,f =4,y=0',

I,) = III,''''o = I$"# dxdYdz =3784.40065050825

1,, = III l,',o = ltl L dxdYdz =26253.2e1320386eJJJ,Jy+y+Z

r,, = ril,1.0.0 = !fi,# dxdYdz =too7te764.24o8i't

Wehavetabutatedthenumericalvaluesfor/1,/2and/rof example l,/aandlsof Example2, Io, Itand

/s of Example 3 and Iq, /ro and /r r of Example 4 in Tables III, IV, V, Vl using p' tetrahedra.

rabreIII'",H'8:;:ff v,'i:'3:ll'f"[Ttr:t*::Hf l]vTrtetrahedra

TableIII.a. Numericalresultsoftheintegral/, = i 
'j ' 

i'JG. 
y..) dzdyclx

= 0.14285'7142857143

0.t42876998237370
0.142862658251572
0.t42863220377014

0.t432291 14125788

0.14298633330661 I

0.t42965538584325
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4r
5l

0.t42922446156457
0.t42899262199752
0.142886196649808

0.142859706394522
0.t428583920276s6
0.t42857827 t0t946

0.142857 t43855917
0.t42857 t43314528
0.142857 t4309877 I

0.t42857 t42998018
0.142857 142945423

Table III.b. Numericat results of the integral ,, ='! i J +- dz.dydx

=.1,.[rrfu#;;J* "
s=10 

=-_l

l

0.t99386992349043 0.r99906205971895
0.199241026 0.199887325r31890't 

0.t9982t4687968503

4
0.t989s82525t7832
0.199347W7s7570t 0.t99908184s72988 0.199999603567678

0. r 99946578930985

0. r99965884410966
0.t99999773068897

_ _0.r999998s6139718 l

q.19999e902t47048 
i

0. l 99568896696330

0.199697800427460
0.t99777750629033 0.t999767W748796
0. 1 99830290970380 0. I 9998327 I 83300 I

0.34t460943607899 1 0.3888049926st1.75
0.3863570 1 2482 1 33 o.+ t :sz t aq2gg53t.7

0.4207430t39234t9 0.4307234t6644657
0.423533940636202 0.432t60820584684
0.42s40965539t875 0.4330021t2325938

0.19999967 t20t40t
0.t9999949s304986
0.t99999t86203443

0. r 999999299200041

0.434744264957884

0.43770122752608s

0.43869323803004 I

0.439 I 90435090996

0.437459034038s62 |

--.-=-+-_-

0.4390224'10568t74 
i

0.4392901226900f,3

0.439250549614584

.r= l0
13t902326890182

I l_r l_r_).

TableIIl.c.Numericalresultsoftheintegral,,=[!J+dzdydx
o o 6 \i(l-x-y)'+z')

= 0.440686793509772

p3

l3

21
.l
-t 0.40334128t29t20r]. 0.422350s80733451
41 0At2231M53st4t2 0.4268377038622s3

0.4t5665541 I I 1467 0.427530640855218

6r--_
7'

s,

Table IV. Numerical resufts for triple integrals of exampre 2 by pr tetrahedra
(s=Order of the Gauss Legendre euadrature Rulej 

'

Table IV.a. Numerical results of the integral /. =

=

s=2

0.t387432562t 1626

s=3

0.13t62t797773675

v + 47.p7.jyfl.y+2

rl8l

I

t-

0.142?i78266767799 | 0.t42857551600299
0.t4287313g72gs35 | O:+ZtSt +olstluo

I I-r l-(-r

J I Jsin( r

0.r31902326890

0.t33521591948574 o.t3t8-15727845063 0.r31902326890182
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3l

41

53

0.132720058922519

0.1 324406336658 1 2

0.t32283 10888440 I

0.r31902376388942

0.r3t898745261941

0.1319006i35s5048

I 0.r3r902326890182

r 0.t31902326890182

I 0.131902326890182

| 0.131902326890182
i

0. r3 r902326890182t,
i 0.13r902326890182

.s= l0

0.020833333333227

0.020833333333333

0.020833333333333

0.02083 3333 33 3333

oozos333x333333

0.020833333 33 3 333

i o.ozosrr:3333333

;=lo ---l

t572t.6666666667

) clXdYdZ

0.1321843t7762539

o.t32ll8'1221'12721

0.1320732t4662688

s=2

o.02037't437164784

23

3i
4l 0.020683r85046815

0.020561799291786

0.0205'11277649'771

0.020'139197362938

0.02076980626939 I

p1 | s=2

lr I r sz:s.srsn66255

0.r3r9014r8397937

0.t31901804558931

0.13r902006718549

0.020830352628292

1 0.020832r12267lr5
I

.s=3

t5'121.6666666667

r09661 .32-s0000000 I

10966r.88079427 l0 i

I l-r l-i-r' 4

Table IV.b. Numerical results of the integral /. = J J Jf 
t *.r +'\' + :.) tti.dt'cl.t

-ll0l)

= 0.020833333333333

53

6l

gl
71 0.020'78'789761t607

0.0207993-s0037637 0.020833 I 5745006 I

Table V. Numerical results for triple integrals of example 3 by p:t tetrahedra
(s=Order of the Gauss Legendre Quadrature Rule)

Table v.a. Numerical results of the integral ," = Jff X 2YdXdYdZ

= t{tzt.ooeoeoooot

m48 t5721.6666666667

33 | rsu t6.9937327492 t5121.6666666667

t572t.66666666674r i rsit9.s8698l5l09
' 5l--I Ls:noso%gtoso2 t5'72t.6666666667

tsi21.0771822542 1572t.6666666667

t5721.666666666'1I 572 l .3 I 58505603

t572t.44795328N ts12t.6666666667

Table V.b. Numerical results of the integral 1, = lll*',
= 109662.063492064

s=2 .s=3

ll
21

109182.342392546

i 09486.7308 I 7258

t09662.063492064

_)oe9q!$4e20y_
109662.063492064

0.0207435287880r 7

0.020820854145169

0.020824735803 197

0.02083 3333 333 333

t572t.6666666667

t512t.6666666667

33 r os58235Xr+08?9 - l0%OZ.OZ:O rOirOOl

15'721.666(t66666'1 l
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t1

53

0962t.236463647

09638.4894175t7

t09662.M97n0370

109662.0577246220

t09662.0634920@

109662.0634920f4
63 09647.r8r966896 t09662.W6747520 t09662.063492064
71 09652.02460063t r 09662.06 I 9589760 109662.0634920@ja' 09654.9390693t4 t09662.06258U320 109662.0634920@

Table V.c. Numerical resultsof the integral r_ = IIi X o y o dxdydz

=olrtrrru.urt,

Table vI. Numerical results for triple integrats of example 4 by pr tetrahedra
(s=Order of the Gauss Legendre euadrature Rule)

s=10

3784.40065050824

| 3784.4006s050824

3784.40065050824

3784.40065050824

3784.40065050824

42t2080t3.057289

424304996.607010

426894926.913376

42688729t.053021

426ets668.t281cF. 
i

4269t6734.7217s9 
I

4269t7356.623377

426917356.623377

426917356.623377

426917356.623377

4269t7356.623378
3r | +zs+ercti.s2ms 4269t7356.623378

426t07368.5670'?4

426415448.t94040

426917084.458957

_ l?96_8_lg7-14304ry__
426743755.692673

42-6217?2t 63!28

426917283.M1716

Table VI.a. Numericalresults of the integral t, = [ff#-=.aXaVaZ
.40065050825

3784.40099024345

3784.4007875528 I

3784.4007t363t(0

3784.40065050824

l" | 3787.n163752022

21 [ rzsz.r+ass8 t0572

.3r I rzal.ossso++rr.so

4r I na+.t0668s t2766

5r I ygq.zozq2z7o326

6r i nt+sztuuls3t

3784.40458505688

3184.40t42999893

3784.36506J05365

3784.2568s0508 t0

3784.40065050325

3784.400650s0824

pt s=2 ,l=3 I s=10
l'
21

4269ll450.270468

5l

6' 426582985.080820 4269t7356.623318

7t
g3

,3 12 s=3

I 3784.4m650sOR?s

7t
--g3

3784.400650-s0824

3784.40065050824
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Table VI.b. Numerical results ofthe integral r,,, = [[[ -=!!"=-AXaVaZ
'i'Jx +Y +Z

v av !
TableVI.c. Numericalresultsof theintegral ,,, = JJ.| l;# 

dXdYdZ

= l0O719'164.240877

= 26253.2913203869

p s=2 s=3 s= l0

lr
21

26290.7450648522

26222.9t65354568

26253.05586678 I 3

26253.2696660800

26253.29t3203870

26253.2913203870
-3J 26240.5189255742 26253.2848853 r 39 26253.2913203870

43

53

26247.t68t605618

26249.9626602060

26253.2889074784

26253.290237 t t80

26253.29t3203877

26253.29t3203878

63 26252.7268502t'73 26253.2882826517 26253.29t3203877

71

gl
26252.82524s1253

26253.2462547696

26253.29t3t02526

26253.2813102826

26253.29t3203877

26253.2913203877

t00't 197(A.240876
100't t97&.244877
1007 19764.240811-

tl4{)2764249317
to07 t97(4.240877

9q)21.4.240n1_
t007t97&.240877

r 0014-s968.53-5286

t00122630.233201

r 007 r 4498.253884

t00'7 t8'741).392030

r 00555645.2456 r 5

t007 1966t.4t5262

too7 t94't4.674832
r 007 I 9657.282 r 55

I 007 r 5s69.605833

100708724.23385r r r00719763.348926
t007 t9764.t32965 to07 t9'1@.240871too7 t4497.2t0564

6.1. C-Programfor Evaluation of Triple Integrals of Examples 1,2,3 and 4 by a Division of
Standard Tetrahedron into 23 =STetrahedra

#include<stdio.h>
#includecconio.h>
#include<math.h>
void main0
{

int i, j, k, o, p. d;
double x, y,z,c,P, Q, R, S, a[20], w[20],Il,12,13,14,15,16.17,I8,I9,ll0,Ill,

s l=0, S2=0, 53=0,54=0,55=0,56={,57=0,58=0,59=0, S I 0=0,S I I =0,
xt 1001, Y[ I 001, zt 100], l[ 100], m[ 100], n[ I CI];

clrscr0;
printf("Enter the value of o= ");
scanf("o/od",&o);
printf("Enter the value of p= ";'
scanf(" o/od",&p);

1006 I 9958. I -5640 I
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printf("Enter the values of a's in order");
for(i= I ;i<=o;i++)
scanf("Tolf ',&aliI);
printf("Enter the values of w's in order")i
for(i= I ;i<=o;i++)
scanf("7olf',&w[i]);
for(i= I ;i<=o;i++)
{for(=lja=615';
{ for(k= l;k<=o;k++)
{

I = ( I +a[i])*( I +a[l])*( l+alkl)/8;
y = ( l+a[i])*( l+a[])*( I -alkl)/8;
2 = (l+a[i])*(l -abDla;
s = pow( l+a[i],2)*( I +a[])*w[i]*w[j]*w[k]/64;

lI I ]=7p' m[ I ]=y/p; n[ I ]=(p- t+z)/p;
l[2]=( l+x)/p; m[2]=y/p; nl2)=1p-2ar110,
l[3]=7p' m[3]=( l+y)/p; n[3]=(p-2+z)/p;
l[4]=(x+y+z)/p; mt4l=( l -x-z)lp; n[4]=(p- l -x-y)/p;
l[5]=(x+y)/p; m[5]=(l-x)/p; n[5]=(p-2+z)/p;
l[6]=( l -x-y)/p; m[6]=x/p' n[6]=(p- | -z)/p;
l[7]=x/p' mlll=ylp' nl7l=(p-2+y+z)lp;
l[8]=y/p; m[8]=( I -x-y)/p; n[8]=(p-2+z)/p;

for(d= l;d<-8;d++)
(

Xldl= | 0-5*l [d]-2*n[d];
YIdl=JaJ*616]+2*n[d];
Z[d]=$*nJ61'
I I =c*sqrt(lId]+mldl+ntdl)/8;
S l=S l+Il;
12<* I /sqrt(l [dl+mld]+nldl)/8;
S2=S2+I2:
I3--c* l/sqrt(pow( I -lId]-m[d],2)+nldl*nldl)/8;
S3=S3+I3;
I4=c*si n(l [d]+2* m[d]+4*nId])/8;
S4=S4+I4;
15=c*pow( I +l Id]+mldl+nldl.4)/81
S5=S5+15:
16=200*c*(pow(Xldl,2)*Yldl)/8;
S6=56+16;
17=200*c*(pow(Xldl,2)*pow(Yldl,2))/8;
S7=S7+I7;
18=200*c*(pow(Xldl,4)*pow(Yldl,a))/8;
S8=S8+18;
19=200*c*(pow(X[d],2) * Y[d]/sqrt(Xldl+yldl+Ztdl))t8;
S9=S9+19;
I I 0=200*c*(pow(XId],2)tpow(Y[d],2)/sqrt(Xtdl+ytdl+Ztdl))/8;
Sl0=SlGrll0;
I I l=200*c*(pow(X[d],4)*pow(YId],a)Aqrt(Xtdl+ytdl+Ztdl))/8;
Sl l=S I l+Il l;
)l)l
printf("I I = 7o0. l5lfln".S l);
printf("12 = 7o0. l5lfln",S2);
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prinrf("13 = 7o0. I 5lAn,',S3);
printf("14 = 7o0. I 5lf\n,,,S4);
printf("15 = 7o0. I 5lf\n',.S5);
printf("16 = 7o0. l5lf\n".56);
printf("17 = 7c0. l 5ll\n".S7);
printf("i8 = 7o0. l 5lf\n",S8);
printf("19 = o/o0. l-5lAn,'.S9);
printf("1l0 = 7o0. I5lf\n,,,SI0);
printf("1 I | = 7o0. l5l^n",S I I );
getch0;

I

Note: Similarly we can write rlr. 
9.I.ro-g_r1, for evaruation of tripre integrals by using 3i=27, 43=6r.5r= I 25, 61 =2 I 6, 73=343 and gr=-i I 2 tetrahedra_

7. Conclusions

In this paper. we have presented the composite numerical integration formulae, which can be derived b1'decomposing the tetrahedron.into four tetrahedra by joining the LntroiJ to inu, ,.rti..s. we have furthershown that the standard tetrahedron can be discreti..,r in,o"zt.-lr,....srrlirutlo.o of equal volume. overeach of these the symmetric causs Legendre quadrature rules developea in section 2 is applicable. Theseformulae are resred for rhe accura.y urd efi.i.ncy by apprying rh"; ; .i;;; non-p6rynomial and threepolynomial functions.
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( l/p.0.(p- l)/p) 2
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3 (0.l/p.(p-l )/p)

Fig. I Orthogonal tetrahedron 7'.,, of vol]ume ll6x(llpxypxup)

Fig.2 Orthogonal tetrahedron 7,.,, ot aolnme y6x(Ypx2lpxYp)

(
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,-3yp)
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Fig.3 Orthogonal tetrahedron 7., oI yolnme 3l6x(3tpx3/px3/p)

25 (o,ttp,(p- )/p)

(up,o.@-a\tp) 3t (O,2tp,(p-4)tp)

(3/p,0,(p4)/p) 32

'4lp,O,(p-4)/pt Blp.l I p.(p-4)l p) l2/p,2tp.@9t (ttp.3tp.(p-4)tpt

Fig.4 Base triangle on z=(p-4)tp tot an orlhogonal tetrahedron f0.,,

oI t oltme ll 6x(41 px$pxUp)
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j?

Gap
= tY '!,,

?!ltt' 6 f;'jl l, .,;ss5
Fig. 5 Bas€ triangle o t z =( p-s)lp lor an orthogonal tetrahedron f5 
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(3'E0,GOb) 72

l4bPt!'6Yp) -B
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6I
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e (0PIFOh)

\ 68 o.vD.tD5yD)

Fig. 6 Base triangle on z =( p-6\lp tor at orthogonal tetrahedron T6./,

ot rol$t N ll6x(6lPx6lq\gP)
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96 (1,3/p,(p-7)/p)
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Fig. 7 Base triangle on z=( p-7)lp lor an orthogonal tetrahedron f, 
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ol volt., e ll6x(7lpxi lpxT lp)
z

(up,o,G'E/p) 138 136 (t,1./p,ip-8)/p)

Crp,0,(p,Erp) 1 39 I 3J (1,2/p,fu.8/p)

G/F,0,(p 8t/r) 140 134 o,3lp,G-D/r)

(a/p,0,(p-Q/p) la1
133 (D,4tp,@-E ti)

(5/p,0,G,q./p) I a?
t32 Q,5/p,(p-Etp)

l3l (0.6/p.G-O/p)

Fig. 8 Base triangle on z =( p-8)/p for an or(hogonal tetrahedron Is 
/,

of volume l/6x(E/p x8/p x 8/p )

"6
,L.

.!,
o

! 'o-

e.&

t21
6

6'
t9

86 a7 38 89 90.-r ,1_\

=]iy

vp

b
g



Symrnetric Gauss Legendre Quo.d.'rtLtic Forn;uLae ...

( x ,,, , -v ,,,, , 2,,,,)

(.r,,,, v ,,,,2,,,)
__________=7

'{x,,,,,1',,,,,2,,,,) 
d,,

Fig.9 Affine transformation which transforms fj"' into a standard tetrahedron T

Fig. l0 Subdivision of a cube into two triangular prisms
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Fig. 1l Subdivision of a triangular prism into three tetrahedra
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Abstract. For a bounded set K of a metric space (X, d), an element k0 ∈ K is called a farthest

point to x ∈ X if d(x, k0) = sup{d(x, k) : k ∈ K} ≡ δ(x,K). The mapping Fk which associates

with each x ∈ X the set Fk(x) = {k0 ∈ K : d(x, k0) = δ(x,K)} is called the farthest point map.

In this note, we discuss the existence and uniqueness of farthest points, the continuity of the

farthest point map and the convexity of the farthest distance function rk : X −→ IR defined by

rk(x) = δ(x,K) when the underlying spaces are metric and convex metric spaces.

Let K be a bounded subset of a metric space (X, d) and x ∈ X . An element k0 ∈ K is called a
farthest point to x if d(x, k0) = sup{d(x, k) : k ∈ K} ≡ δ(x,K). The number δ(x,K) is called the
deviation of K from x. The mapping Fk : X −→ 2k ≡ the location of all subsets of K, defined
by Fk(x) = {k0 ∈ K : d(x, k0)}, x ∈ X is called the farthest point map. The set K is said to be
remotal if Fk(x) �= φ for each x ∈ X and is called uniquely remotal if Fk(x) is exactly singleton for
each x ∈ X.

Farthest points have applications in the study of extremal structure of sets, characterization of
weakly compact convex sets, finding deviation of two sets and they are important building blocks
of convex sets which are extensively applied in programming (see e.g., [5], [9]). It is strange, rather
unfortunate that very little has been done in the theory of farthest points as compared to the
theory of nearest points. Moreover, for most of the literature which is available in the theory of
farthest points, the underlying spaces are Hilbert spaces and normed linear spaces (see e.g., [3], [9],
[11], [12] and the references therein). The development of farthest point theory in more general
spaces is a challenging one. Some attempts have been made in this direction in [1], [2] [4], [8] and
[10] and by few others. The present note is yet another step in this direction. Here, we discuss
the existence and uniqueness of farthest points, the continuity of the farthest point map, and the
convexity of the farthest function rk : X −→ IR defined by rk(x) = δ(x,K) when the underlying
spaces are metric and convex metric spaces.

We begin with the following examples:
Example 1. Let X = IR2 with the usual metric and

K = {(x, y) : x = −
√
1− y2,−1 ≤ y ≤ 1}

Here Fk(p) = K, p = (0, 0)

= {(−1, 0)}, p = (x, 0), x > 0

= {(0, 1), (0,−1)}, p = (x, 0), x < 0

= {(0, 1)}, p = (0, y), y < 0

1 Keywords and phrases : Farthest point, remotal set, convex space.
2 AMS Subject Classification : 41A65, 46E40.
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= {(0,−1)} p = (0, y), y > 0

=

{(

−
x

√
x2 + y2

,−
y

√
x2 + y2

)}

, p = (x, y), x > 0, y > 0

=

{(

−
x

√
x2 + y2

,−
y

√
x2 + y2

)}

, p = (x, y), x > 0, y < 0

= {(0,−1)}, p = (x, y), x < 0, y > 0

= {(0, 1)}, p = (x, y), x < 0, y < 0

The set K is remotal but not uniquely remotal. However, each point of IR2 \ T ,
T = {(x, 0) : x ∈ IR, x ≤ 0} has unique farthest point in K.

Example 2. Let X = IR2 with the usual metric and K = {(x, 0) : −1 ≤ x ≤ 0}. Here
Fk(p) = {(−1, 0), (0, 0)}, p = (−1/2, y), y ∈ IR. It is easy to see that each point of
IR2 \ {(−1/2, y) : y ∈ IR} has unique farthest point in K. Thus K is remotal bot not uniquely
remotal.

One of the most interesting and hitherto unsolved problem (see [9]) in the theory of farthest
points is: If every point of a normed linear space X admits a unique farthest point in a given
bounded set K, then K must be a singleton? There are some partial affirmative answers to this
problem and there are many sepcial cases in which the answer is negative (see [9], [11], [12]). The
question is not solved in general, even in Hilbert spaces.

The following example shows that a uniquely remotal set in a metric space need not be a
singleton.

Example 3. Let X = IR \ {0} with usual metric and K = [−1, 1] \ {0}. Then K is uniquely
remotal and is not a singleton.

Bosznay [4] has also shown that a uniquely remotal set in a linear metric space need not be a
singleton.

For a metric space (X, d) and a closed interval I = [0, 1], a continuous mapping
W : X ×X × I −→ X is said to be a convex structure on X if for all x, y ∈ X, λ ∈ I

d(u,W (x, y, λ)) ≤ λ d(u, x) + (1− λ) d(u, y) (A)

for all u ∈ X. The metric space (X, d) together with a convex structure is called a convex metric
space [14]. A convex metric space (X, d) is said to be an M -space [7] if for each pair x, y ∈ X and
λ ∈ I, there exists exactly one point z ∈ X such that z =W (x, y, λ).

Every normed linear space is an M -space but converse is not true [7]. If (X, d) is a convex
metric space then for each two distinct points x, y ∈ X and for every λ, 0 < λ < 1, there exists at
least one point z ∈ X such that z =W (x, y, λ). For M -space a z is always unique (see [7]).

The following properties (see [14]) are direct consequences of inequality (A):

W (x, y, 1) = x, W (x, y, 0) = y, d(W (x, y, λ), y) = λd(x, y)

d(W (x, y, λ), x) = (1− λ)d(x, y), d(x, y) = d(x,W (x, y, λ)) + d(W (x, y, λ), y)

If [x, y] denotes the line segment joining x and y, i.e.,

[x, y] = {z ∈ X : d(x, z) + d(z, y) = d(x, y)} = {W (x, y, λ) : 0 ≤ λ ≤ 1} and [x, y,−]

denotes the ray starting from x and passing through y, we have the following
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Theorem 1. Let K be a bounded subset of an M -space (X, d) and k0 ∈ Fk(x0) for x0 ∈ X then
k0 ∈ Fk(x) for all x ∈ [k0, x0,−] \ [k0, x0].

Proof. Let y ∈ K be arbitrary. Consider

d(x, y) ≤ d(x, x0) + d(x0, y)

≤ d(x, x0) + d(x0, k0)

= d(x, k0)

Therefore k0 ∈ FK(x) for all x ∈ [k0, x0,−] \ [k0, x0].

Theorem 2. Let K be a bounded subset of a convex metric space (X, d) and x0 ∈ X. Then
k0 ∈ Fk(x0) if and only if k0 is a farthest point to x0 in [k0, y] for each y ∈ K.

Proof. Let k0 ∈ Fk(x0) and 0 ≤ λ ≤ 1. Consider

d(x0,W (k0, y, λ)) ≤ λ d(x0, k0) + (1− λ) d(x0, y)

≤ λ d(x0, k0) + (1− λ) d(x0, k0)

= d(x0, k0)

This implies that k0 is a farthest point for x0 in [k0, y] for each y ∈ K. The converse implication is
obvious.

A bounded subset K of a convex metric space (X, d) is said to have property (SF) [6] if x0 ∈ X
and k0 ∈ Fk(x0) imply k0 ∈ Fk(W (x0, k0, λ)), 0 < λ < 1.

The following result shows that sets satisfying property (SF) in a convex metric space are
singleton.

Theorem 3. A bounded subset K of a convex metric space (X, d) has property (SF) if and only
if K is a singleton.

Proof. Let K has property (SF), x0 ∈ X and k0 ∈ Fk(x0) then k0 ∈ Fk(W (x0, k0, λ)),
0 < λ < 1. Suppose K is not a singleton and k1 ∈ K, k1 �= k0 then

d(W (x0, k0, λ), k1) ≤ d(W (x0, k0, λ), k0) for every λ, 0 < λ < 1.

Letting λ −→ 0, we get d(k0, k1) ≤ d(k0, k0) = 0. Therefore k1 = k0, a contradiction. Hence K is
a singleton.

The converse part is obvious.

Note: For locally convex Hausdorff spaces satisfying suitable conditions, Theorems 1-3 were proved
for continuous sublinear function f in [6].

Next, we shall discuss the continuity of the farthest point map. For this, we prove the following
lemmas:

Lemma 1. If K is bounded subset of a metric space (X, d) and is remotal with respect to a
subset T of X then the mapping f : T −→ IR defined by f(x) = d(x, y(x)), where y(x) ∈ Fk(x) is
uniformly continuous on T .

Proof. Let x and u be arbitrary points of T . Without any loss of generality, we may assume that
d(x, y(x)) ≥ d(u, y(u)). We have

0 ≤ d(x, y(x))− d(u, y(u)

≤ d(x, u) + d(u, y(x))− d(u, y(u))
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≤ d(x, u) + d(u, y(x))− d(u, y(x)) as d(u, y(x)) ≤ d(u, y(u))

= d(x, u)

Therefore | d(x, y(x)) − d(u, y(u)) | ≤ d(x, u) i.e. | f (x) − f (u) | ≤ d(x, u) and hence f is
uniformly continuous.
Lemma 2. If K is a remotal set in a metric space (X, d) and 〈xn〉 is a sequence in X such that
〈xn〉 −→ x then all the limit points of the sequence 〈y(xn)〉, y(xn) ∈ Fk(x) are in Fk(x).
Proof. Suppose y is a limit point of 〈y(xn)〉. Since d(xn, y(xn)) ≥ d(xn, k) for all k ∈ K,
Lemma 1 implies that d(x, y) ≥ d(x, k) for all k ∈ K i.e. y ∈ Fk(x).
Note 1. For linear metric spaces, Lemmas 1 and 2 were proved in [8].

Using Lemma 2, we obtain
Theorem 4. If K is a bounded subset of a metric space (X, d) and is uniquely remotal with
respect to a subset T of X then the farthest point map Fk : T −→ K is continuous.
Proof. Suppose 〈xn〉 is a sequence in T such that xn −→ x ∈ T then by Lemma 2,
〈Fk(xn)〉 −→ Fk(x).

Since a compact (nearly compact) subset of a metric space is bounded and also remotal [2],
we have
Corollary 1. ([1]) If K is a compact uniquely remotal subset of a metric space (X, d) then the
farthest point map is continuous.
Corollary 2. ([10]) If K is nearly compact uniquely remotal subset of a metric space (X, d) then
the farthest point map is continuous.
Note 2. For compact uniquely remotal subsets of linear metric spaces, Theorem 4 was proved
by Motzkin et al. ([8]) and for nearly compact uniquely remotal subsets of Banach spaces it was
proved by Blatter ([3]).

A real valued function f defined on a metric space (X, d) is said to be convex [13] if

f(z) ≤
d(z, y)

d(x, y)
f(x) +

d(x, z)

d(x, y)
f(y) (B)

for all x, y ∈ x �= y and z in the metric interval [x, y].
For convex metric spaces, (B) is equivalent to

f(W (x, y, λ)) ≤ λ f(x) + (1− λ) f(y)

The following theorem deals with the convexity of the farthest distance function.
Theorem 5. If K is a remotal subset in of a convex metric space (X, d) then the farthest distance
function rk : X −→ IR defined be rk(x) = δ(x,K) is convex.
Proof. Consider

rk[W (x, y, λ)] = sup { d(W (x, y, λ), k) : k ∈ K}

≤ sup { λ d(x, k) + (1− λ) d(y, k) : k ∈ K}

≤ λ sup { λ d(x, k) : k ∈ K}+ (1− λ) sup { λ d(y, k) : k ∈ K}

= λ rk(x) + (1− λ) rk(y)

Hence rk is convex.
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Abstract. A common fixed point theorem for a sequence of set-valued mappings is proved

which generalizes earlier results due to Rhoades [11,12], Som and Mukherjee [13] and others.

1. Introduction

The existing literature of fixed point theory contains numerous results for single as well as set-
valued self mappings. But in many applications, a mapping describing certain situation need not
always be a self mapping. In an attempt to prove results for nonself mappings in metrically convex
complete metric spaces, Rhoades [11] gave sufficient conditions to ensure the existence of fixed
point by proving a fixed point theorem for certain generalized like contractions satisfying suitable
boundary conditions. The recent literature witnessed various extentions and generalizations of the
theorem of Rhoades [11], which includes Rhoades [12], Som and Mukherjee [13] and some others.
For the work of this kind, one can be referred to Iséki [6], Khan [9], Rhoades [12] and others.

On the other hand, Huang and Cho [5] and Dhage et al. [3] proved some fixed point theorems
for a sequence of set-valued mappings which generalize several results due to Itoh [7], Khan [9], Iséki
[6] and others. Motivated by [3] and [5], we extend the fixed point theorem of Rhoades [12] to a
sequence of set-valued mappings which in turn generalizes earlier results due to Rhoades [12], Som
and Mukherjee [13] and others.

2. Preliminaries

Let (X, d) be a metric space. Then following Nadler[10], we recall

(i) CB(X) = {A : A is nonempty closed and bounded subset of X},

(ii) C(X) = {A : A is nonempty compact subset of X}.

(iii) For nonempty subsets A,B of X,

H(A,B) = max ({sup d(a,B) : a ∈ A}, {sup d(A, b) : b ∈ B}).

It is well known (cf. Kuratowski [8]) that CB(X) is a metric space with the distance H which
is known as Hausdorff-Pompeiu metric on X.

The following definition and lemmas will be frequently used in the sequel.

Definition 2.1 [1] A metric space (X, d) is said to be metrically convex if for any x, y ∈ X with
x �= y there exists a point z ∈ X, x �= z �= y such that

d(x, z) + d(z, y) = d(x, y)

1 Keywords and phrases : Metrically convex metric spaces; Set-valued mappings; Fixed point.
2 AMS Subject Classification : 54H25, 47H10.
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Lemma 2.1 [4] Let K be a nonempty closed subset of a metrically convex metric space (X, d). If
x ∈ K and y /∈ K then there exists a point z ∈ δK (the boundary of K) such that

d(x, z) + d(z, y) = d(x, y)

Lemma 2.2 [10] Let A,B ∈ CB(X). Then for all ε > 0 and a ∈ A there exists b ∈ B such that
d(a, b) ≤ H(A,B) + ε. If A,B ∈ C(X), then one can choose b ∈ B such that d(a, b) ≤ H(A,B).

3. Main Result

Our main result runs as follows.
Theorem 3.1 Let (X, d) be a complete metrically convex metric space and K a nonempty closed
subset of X. Let {Fn}

∞
n=1 : K → CB(X) satisfying:

(iv) x ∈ δK ⇒ Fn(x) ⊆ K, (n ∈ N) and

H(Fi(x), Fj(y)) ≤ h.max{ 1
a
d(x, y), d(x, Fi(x)), d(y, Fj(y)),

1
a+h(d(x, Fj(y)) + d(y, Fi(x)))}, (3.1.1)

where i = 2n − 1, j = 2n, (n ∈ N), i �= j for all x, y ∈ K with x �= y, where 0 < h < −1+
√
5

2 ,

a ≥ 1 + 2h2

1+h .

Then there exists a point z ∈ K such that z ∈ Fn(z).
Proof. Assume that α = h(1 + h). Firstly, we proceed to construct two sequences {xn} and {yn}
in the following way.

Let x0 ∈ δK and x1 = y1 ∈ F1(x0). Using Lemma 2.2, one can choose y2 ∈ F2(x1) such that

d(y1, y2) ≤ H(F1(x0), F2(x1)) + α.

Suppose y2 ∈ K. Then set y2 = x2. Otherwise, if y2 /∈ K, then there exists a point x2 ∈ δK such
that

d(x1, x2) + d(x2, y2) = d(x1, y2).

Thus, repeating the foregoing arguments, one obtains two sequences {xn} and {yn} such that

(v) yn ∈ Fn(xn−1), n ∈ N,

(vi) yn ∈ K ⇒ yn = xn or yn /∈ K ⇒ xn ∈ δK and

d(xn−1, xn) + d(xn, yn) = d(xn−1, yn),

(vii) d(yn, yn+1) ≤ H(Fn(xn−1), Fn+1(xn)) + αn.

We denote

P = {xi ∈ {xn} : xi = yi} and Q = {xi ∈ {xn} : xi �= yi}.

One can note that two consecutive terms cannot lie in Q.
Now, we distinguish the following three cases.

Case 1. If xn, xn+1 ∈ P, then

d(xn, xn+1) = d(yn, yn+1) ≤ H(Fn(xn−1), Fn+1(xn)) + αn
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≤ h.max{ 1
a
d(xn−1, xn), d(xn−1, Fn(xn−1)), d(xn, Fn+1(xn)),

1
a+h(d(xn−1, Fn+1(xn)) + d(xn, Fn(xn−1)))}+ αn

≤ h.max{1
a
d(xn−1, xn), d(xn, xn−1), d(xn, xn+1),

1
a+h(d(xn−1, xn+1) + d(xn, xn))}+ αn

≤ max{h.d(xn−1, xn) + αn, α
n

1−h ,

1
a
(h.d(xn−1, xn) + αn(a+ h))}

≤ max{h.d(xn−1, xn) + αn, h.d(xn−1, xn) + αn

1−h ,

1
a
(h.d(xn−1, xn) + αn(a+ h))}

≤ h.d(xn−1, xn) +max{ 1
1−h ,

a+h
a
}αn

≤ h.d(xn, xn−1) + αn

1−h .

Case 2. If xn ∈ P and xn+1 ∈ Q, then

d(xn, xn+1) + d(xn+1, yn+1) = d(xn, yn+1),

which in turn yields

d(xn, xn+1) ≤ d(xn, yn+1) = d(yn, yn+1).

Now, proceeding as in Case 1, we have

d(xn, xn+1) ≤ h.d(xn, xn−1) + αn

1−h .

Case 3. If xn ∈ Q and xn+1 ∈ P then xn−1 ∈ P. Proceeding as in Case 1, one gets

d(xn, xn+1) = d(xn, yn+1) ≤ d(xn, yn) + d(yn, yn+1),

≤ d(xn, yn) + h.d(xn−1, yn) + αn

1−h .
Since

d(xn−1, xn) + d(xn, yn) = d(xn−1, yn),

therefore, one can write

d(xn, xn+1) ≤ d(xn−1, yn) + h.d(xn−1, yn) + αn

1−h ,

d(xn, xn+1) ≤ (1 + h).d(xn−1, yn) + αn

1−h ,

≤ h(1 + h).d(xn−2, xn−1) + (1 + h).α
n−1

1−h + αn

1−h (from case 2).

Thus in all the cases, we have
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d(xn, xn+1) ≤






h.d(xn, xn−1) + αn

1−h or

h.(1 + h)d(xn−2, xn−1) + (1+h).αn−1

1−h + αn

1−h .

Now, on the lines of Itoh[7], it can be shown that {xn} is Cauchy, hence converges to a point
z. Then as noted in [4], there exists at least one subsequence {xnk} which is contained in P and
converges to some z ∈ K. Now, using (3.1.1), one can write.

d(z, Fn(z)) ≤ d(z, xnk) + d(xnk , Fn(z))

≤ d(z, xnk) + H(Fnk(xnk−1), Fn(z))

≤ d(z, xnk) + h.max{1
a
d(xnk−1, z), d(xnk−1, Fnk(xnk−1)),

d(z, Fn(z)), 1
a+h(d(xnk−1, Fn(z)) + d(z, Fnk(xnk−1)))}

which on letting k →∞, reduces to

≤ h.max{0, 0, d(z, Fn(z)), 1
a+hd(z, Fn(z))}

≤ max{h, h
a+h}.d(z, Fn(z)),

yielding thereby z ∈ Fn(z) which shows that z is a common fixed point of Fn. This completes the
proof.

Remark 3.1 By setting Fn = F ( for all n ∈ N ) in Theorem 3.1, one deduces a result due to
Rhoades[12].

Remark 3.2 By setting Fn = F ( for all n ∈ N ) and restricting a = 2, a+h = q in Theorem 3.1,
one deduces a multi-valued analogue of the result contained in Rhoades[11].

Remark 3.3 By setting Fi = S, Fj = T and restricting a = 2, a+ h = q in Theorem 3.1, one de-
duces a result for a pair of multi-valued mappings which can be regarded as multi-valued analogue
of the theorem due to Som and Mukherjee[13].

The following theorem is naturally predictable.

Theorem 3.2 Let (X, d) be a complete metrically convex metric space and K a nonempty closed
subset of X. Let {Fn}

∞
n=1 : K → C(X) satisfying (3.1.1) and (iv).

Then there exist a point z ∈ K such that z ∈ Fn(z).

4. An illustrative example

Since every single valued mapping can always be realized as a multi-valued mapping, therefore we
adapt the following example to demonstrate Theorem 3.1.

Example 4.1 Consider X = R equipped with natural distance and K = [0, 3]. Define Fn : K →
CB(X) by

Fi(x) =






{−x2 }, if 0 < x ≤ 2

{0}, if x ∈ (2, 3] ∪ {0}
and Fj(x) =






{−x8 }, if 0 < x ≤ 2

{0}, if x ∈ (2, 3] ∪ {0},
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where i = 2n − 1 and j = 2n. Note that the boundary points ‘0’ and ‘3’ satisfy the required
condition of Theorem 3.1 as

0 ∈ δK ⇒ Fi(0) = {0} ⊂ K,Fj(0) = {0} ⊂ K,

3 ∈ δK ⇒ Fi(3) = {0} ⊂ K,Fj(3) = {0} ⊂ K.

Moreover, for the verification of contraction condition (3.1.1), the following cases arise:

Case 1. If x, y ∈ (0, 2], then

H(Fi(x), Fj(y)) = d(Fi(x), Fj(y)) = |−x2 + y
8 | = 1

8 |4x− y| = 1
8 |3x + x− y|

= 1
8 |x− y + 3x| = 1

8 [2max{|x− y|, 3|x|}] = 1
4max{|x− y|, 3|x|}

= max{14 |x− y|, 34 |x|} ≤ max[ 12{
1
2 |x− y|}, 12(32 |x|)]

≤ 1
2 .max{

1
a
d(x, y), d(x, Fi(x)), d(y, Fj(y)),

d(x,Fj(y))+d(y,Fi(x))
a+h }.

Case 2. If 0 < x ≤ 2 and y ∈ (2, 3] ∪ {0}, then

H(Fi(x), Fj(y)) = d(Fi(x), Fj(y)) = |−x2 − 0| = 1
2 |x| = 1

3(32 |x|) <
1
2( 32 |x|)

< 1
2 .max{

1
a
d(x, y), d(x, Fi(x)), d(y, Fj(y)),

d(x,Fj(y))+d(y,Fi(x))
a+h }.

Case 3. If x, y ∈ (2, 3] ∪ {0}, then

H(Fi(x), Fj(y)) = d(Fi(x), Fj(y)) = 0

≤ 1
2 .max{

1
a
d(x, y), d(x, Fi(x)), d(y, Fj(y)),

d(x,Fj(y))+d(y,Fi(x))
a+h }.

Thus contraction condition (3.1.1) is satisfied for h = 1
2 which shows that all the conditions of

Theorem 3.1 are satisfied. Note that ‘0’ is the common fixed point of the sequence of maps {Fn}.
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Abstract. An analysis of MHD free convective flow of a visco-elastic (Rivilin-Ericksen type)

dusty fluid through a porous medium induced by the motion of a semi-infinite flat plate moving

with velocity decreasing exponentially with time. The expressions for the velocity distribution

of the dusty fluid, dust particles and temperature distribution are obtained. The effects of

various parameteres like magnetic parameter (M), permeability parameter (K1), visco-elastic

parameter (β0) and Prandtl number (P r) on the velocity distribution of the dusty fluid, dust

particles and temperature distribution are discussed with the help of tables and graphs.

1. Introduction

The problems of fluid mechanics involving fluid particle mixture arise in many processes of practical
importance. One of the earliest problem is that of the heat and mass transfer in the mist-flow region
of a boiler tube. The liquid rocket is another example, usually the oxidizer vaporizes much more
rapidly than the fuel spray and combustion occurs heterogeneously around each droplet. The length
of the combustion chamber and the stability of the flow of acoustic or shock waves are practically
two-phase flow problems. The study of the flow of dusty fluid which has gained attention recently
has wide applications in environmental science. One finds in the lliterature an amazing number of
derivations of equations for the flow of a fluid-particle mixture. The equations have been developed
by several authors for various special problem under various assumptions. A few derivations,
primarily for the fluid particle mixture, are listed here; Saffman [11], Marble [4] and Soo [15].

Using the formulation of Saffman [11], several authors gave exact solutions of various dusty fluid
problems. Michael and Norey [5], Rao [9], Verma and Mathur [15], Singh [12], Rukmangadachari
[10], Mitra studied the problem of circular cylinders under various conditions, Gupta [1] considered
the unsteady flow of a dusty gas in a channel whose cross section is an annular sector. Regarding
the plate problems Liu [2], Michael and Miller [6], Liu [3], Verma [17] studied the problems of
infinite flat plate under various conditions. Mitra [8] has studied the flow of a dusty gas through a
porous medium induced by the motion of a semi-infinite flat plate moving with velocity decreasing
exponentially with time. Singh and Gupta [14] have discussed MHD free convective flow of a
dusty fluid through a porous medium induced by the motion of semi-infinite flat plate moving with
velocity decreasing exponentially with time.

In the present paper we have considered the problem of Singh & Gupta [14] by introducing
visco-elastic (Rivlin-Ericksen type) dusty fluid under the same conditions taken by Singh and Gupta
[14].

1 Keywords and phrases : MHD free convective flow, visco-elastic fluid, porous medium.
2 AMS Subject Classification : 76A10, 76W05.



94 Devendra Kumar and R.K. Shrivastava

2. Mathematical Formulation

We assume the dusty fluid to be confined in the space y > 0 and the flow is produced by the motion
of infinite flat plate moving with a velocity ve−λ

2t in x-direction. Axis of x is taken along the plate
and axis of y be measured normal to it. Since the plate is semi-infinite, all the physical quantities
will be functions of y and t only. According to Saffman [11], the equation of motion of the dusty
fluid and the dust particle along the x-axis are respectively given by

∂u

∂t
= v

∂2u

∂y2
+

K0N0

ρ
(v − u) (1)

∂v

∂t
=

K0

m
(u− v) (2)

∂T

∂t
= v

KT

ρCp

∂2T

∂y2
(3)

where u and v denote respectively the fluid and particle velocity, v is the kinematic coefficient of
viscosity of the fluid, K0 is the Stoke’s resistance coefficient, N0 is the number density of the dust
particles which is taken to be constant, ρ is the density of the fluid and m is the mass of a dust
particle. KT is the thermal conductivity, Cp is the specific heat at constant pressure.

Applying the magnetic field, porous medium and visco-elastic (Rivilin Ericksen type) dusty
fluid along the x-axis, then equation of motion (1) reduces to

∂u

∂t
= (v + β

∂

∂t
)
∂2u

∂y2
+

K0N0

ρ
(v − u)−

[
σB2

0

ρ
+

v

K

]

u+ gβθ (4)

where

θ = (T − T∞)

The boundary conditions are

θ = ve−λ
2t, v = ve−λ

2t at y = 0

θ → 0, u → 0 at y →∞

(5)

Let us introduce the non-dimensional variables

y∗ =
y

(vτ)1/2
, u∗ =

u

v
, v∗ =

v

v
,

t∗ =
t

τ
, τ =

m

K0

, θ∗ =
θ

v

Applying the non-dimensional variables in equations (2), (3) and (4) and omitting the stars,
we have

∂u

∂t
=

[
1 + β0

∂

∂t

]
∂2u

∂y2
+ f(v − u)−

[
M +

1

K1

]
u+ β1θ (6)

∂v

∂t
= (u− v) (7)

∂θ

∂t
=

v

Pr

[
1 + β0

∂

∂t

]
∂2θ

∂y2
(8)
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where ‘f ’ is the mass-concentration of dust particles, M is the magnetic parameter, β1 is the
volumetric expansion parameter, β0 is the visco-elastic parameter, Pr is the Prandtl number, K1

is the permeability parameter.

f =
mN0

ρ
, M =

mσB2
2

K0ρ
, β1 = gβτ,

β0 =
β

τv
, Pr =

ρvCp

KT
,

1

K1

=
vτ

K

The boundary conditions (5) are reduced to

θ = e−λ
2t, v = e−λ

2t at y = 0

θ → 0, u → 0 at y →∞

(9)

Let us choose the solutions of (6), (7) and (8) respectively as

u = F (y)e−λ
2t (10)

v = G(y)e−λ
2t (11)

θ = H(y)e−λ
2t (12)

The boundary conditions (9) are transformed to

H = 1, F = 1 at y = 0

H → 0, F → 0, at y →∞

(13)

By virtue of (10), (11) and (12), the equations (6), (7) and (8), respectively, transform to

d2F

dy2
(1− λ2β0) + F

[
λ2 − f −M −

1

K1

]
+ fG = −β1H (14)

G(1− λ2) = F (15)

d2H

dy2
+m2H = 0 (16)

Eliminating G from (14) and (15), we get

d2F

dy2
+ n21F = −n2H (17)

From the equation (16), we get

H = e−imy (18)

By the boundary conditions (13), the solution of (17) is obtained as

F = [e−in1y +
n2

m2 − n2
1

(e−in1y − e−imy)] (19)

From equations (15) we get

G =
1

1− λ2
[e−in1y +

n2

m2 − n2
1

(e−in1y − e−imy)] (20)
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From equation (10) we then get the velocity of dusty fluid

u = [e−in1y +
n2

m2 − n2
1

(e−in1y − e−imy)]e−λ
2t (21)

The real part of u is given by

u = [cosn1ye−λ
2t +

n2

m2 − n2
1

(cosn1y − cosmy)e−λ
2t] (22)

Similarly, the real part of velocity of the dust particle is obtained as

v =
1

(1− λ2)
[cosn1ye−λ

2t +
n2

m2 − n2
1

(cosn1y − cosmy)e−λ
2t] (23)

And temperature distribution is given by

θ = e−imye−λ
2t (24)

The real part of θ is given by

θ = cosmye−λ
2t (25)

3. Results and Discussion

The velocity profiles for visco-elastic (Rivlin-Ericksen type) dusty fluid are tabulated in Tables 1
and 2 and plotted in Fig. 1 and 2 dotted Graph- 1 to 3 for t = 1 and solid Graph 4 to 6 for t = 5.
The different values of all paraameters are given as follows:

For Fig. 1 : λ = 0.5, f = 0.2, β1 = 5.0, K1 = 10, P r = 0.7 and v = 1

M β0 t

For graph-1 0.1 2.0 1

For graph-2 0.2 2.0 1

For graph-3 0.1 1.0 1

For graph-4 0.1 1.0 5

For graph-5 0.2 2.0 5

For graph-6 0.2 1.0 5

For Fig. 2 : λ = 0.5, f = 0.2, β0 = 5.0, M = 0.1, β0 = 1.0 and v = 1

K1 Pr t

For graph-1 10 0.2 1

For graph-2 5 0.2 1

For graph-3 10 0.7 1

For graph-4 10 0.7 5

For graph-5 5 0.2 5

For graph-6 5 0.7 5
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From the solid and dotted Graphs of Figs. 1 and 2 it is noticed that velocity of visco-elastic
(Rivlin-Ericksen type) dusty fluid increases with the increase in y and decreases with the increase
in t. It is also observed that this velocity increases with the increase in β0 and M but it decreases
with the increase in K1 and P r for fixed values of y.

The valocity ‘v’ of dust particles behaves in a similar way as that of the dusty fluid. The
temperature profile is tabulated in Table 3 and plotted in Fig. 3 having solid Graph 3 and 4 for
t = 5 and dotted Graph 1 and 2 for t = 1 and different values of P r is taken for velocity distribution.

From the graph of Fig. 3, it is noticed that when P r = 0.7, the temperature decreases with the
increase t till y = 5, after it temperature begins to increase and when P r = 2.0, the temperature
decreases with the increase in t till y = 2.6 after it temperature begins to increase. It is also
observed that temperature decreases with the increase in P r.
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APPENDIX

A1 = 1− λ2β0 n1 =

[
A2

A1

] 1
2

n2 =
β1

A1
,

A2 = λ2 − f −M −
1

K
+

f

1− λ2
m =

[
λ2P r

v(1− λ2β0)

] 1
2

Table 1 : VELOCITY OF DUSTY FLUID FOR DIFFERENT VALUES OF M, β0&t

y 0 0.5 1 1.5 2 2.5

Graph-1 0.778801 1.71791 4.397183 8.41773 13.16412 17.87328

Graph-2 0.778801 1.741307 4.536923 8.897988 14.40454 20.52115

Graph-3 0.778801 1.407462 3.231706 6.07088 9.6 13.56506

Graph-4 0.286505 0.517776 1.188878 2.233352 3.545915 4.990306

Graph-5 0.286505 0.640591 1.669041 3.273387 5.299135 7.54931

Graph-6 0.286505 0.523195 1.218164 2.326995 3.778556 5.479164

Table 2 : VELOCITY OF DUSTY FLUID FOR DIFFERENT VALUES OF K1, P r&t

y 0 0.5 1 1.5 2 2.5

Graph-1 0.778801 1.722951 4.76476 8.807778 14.34782 20.6145

Graph-2 0.778801 1.746357 4.61675 9.294021 15.62113 23.3842

Graph-3 0.778801 1.71791 4.397183 8.41773 13.16412 17.87328

Graph-4 0.286505 0.631984 1.617633 3.09671 4.842808 6.575213

Graph-5 0.286505 0.642449 1.698407 3.419079 5.746693 8.602568

Graph-6 0.286505 0.640591 1.669041 3.273387 5.299135 7.54931
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Table 3 : TEMPERATURE PROFILE FOR DIFFERENT VALUES OF P r&t

y 0 1 2 3 4 5 6

Graph-1 0.778801 0.740184 0.628164 0.453849 0.234526 -0.00805 -0.24984

Graph-2 0.778801 0.64644 0.294347 -0.1578 -0.5583 -0.76572 -0.71486

Graph-3 0.286505 0.272299 0.231089 0.166962 0.086277 -0.00296 -0.09191

Graph-4 0.286505 0.237812 0.108284 -0.05805 -0.20465 -0.28169 -0.26298
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