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Abstract. Previous researchers made no attempt to consider a non-linear function and
deterioration of inventory with time to explain the Stock Dependent Demand (S.D.D.) and
sensitivity analysis for the model. In this paper, an attempt has been made by us to consider
a general form of non-linear function with deterioration of inventory to explain the Stock De-
pendent Demand effect. In addition, a sensitivity analysis has also been presented to assess
efficiently the effect of variation of various parameter on optimal cost and beginning stocks
with and without shortages. Inventory models with shortages and without shortages have been
developed to determine the optimal number of orders to be placed and the optimal lot sizes for
different periods, A numerical example has also been illustrated to demonstrate the use of the
model.

1. Introduction

It is a common experiénce that for certain items like consumables, the quantity displayed in the
sales counters will have a motivational effect on the customers, markets and also while designing
special sales counters. In such cases, the demand which is usually assumed to be an exogenous
variable, depends on the stock on display and thus becomes an endogeneous variable. The demand
pattern can be described as a function of the stock on hand, which is known as the Inventory Level
Dependent (ILD) demand. Baker and Urban [1] and Datta and Pal [2] are some relevant references
on this concept and several such models have also appeared in literature. Gupta and Vrat [4] have
developed a simple EOQ model with demand dependent on the lot size, which may be called the
Lot Size Dependent (L.S.D.) demand. This falls under the category of Stock Dependent Demand
(SDD).

In the usual approach to handle SDD, the early researchers have used profit maximization as
the criterion and determined the EOQ. Due to SDD, there will be additional sales, which results
in an unplanned gains, and we call this, the gains due to the SDD, Prasad [7] has shown that hy
_subtracting the gain due to SDD from the total cost, profit maximization and cost minimization
vield the same result. Su et al ([9], [10]) have presented their study on an inventory model under
inflation for Stock Dependent consumption rate and exponential decay along with an experimental
declining demand. An inventory model with damagable and fuzzy inventory items for SDD under
limited storage facility has been attempted by Mandal et. al. ([5], [6])-

Periodic review inventory problems with ILD demand have been discussed in less detail than
the single period models. Gerchak and Wang [3] have examined a periodic review inventory model
under ILD demand. The demand in each period is described as deterministic function of the
starting inventory level, multiplied by a random variable. Their approach is however limited to the
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case of static stochastic demand in each period in which, time dependent costs are not considered.
Their salient aspect is that of establishing the optimality of the (s,S) policy with SDD in a finite
horizon environment.

Very recently, a periodic review inventory model with variable stock dependent demand has
been attempted by Reddy and Sarma [8]. They have used a linear function to explain the Stock
Dependent Demand (S.D.D.). Models with and without shortage have been developed to determine
the optimal number of orders to be placed and optimal lot-sizes for defferent periods.

Reddy and Sarma [8] made no attempt to consider a non-linear function and deterioration
of inventory with time to explain the Stock Dependent Demand (S.D.D.) and sensitivity anslysis
for the model. They examined only a prototype situation by considering a linear function without
deterioration for the model. No attempt was made to deal with these complexities of the model
whereas it is a common belief that such complexities bring the model to realistic situations of the
organization.

In this paper, an attempt has been made by us to consider a general form of non linear function
with detrioration inventory to explain the Stock Dependent Demand (S.D.D.) effect. In addition,
a sensitivity analysis has also been presented to efficiently assess the effect of variation of various
parameter an optimal cost beginning stocks with and without shortages. Inventory models with
shortages and without shortages have been developed to determine the optimal number of orders
to be placed and the optimal lot sizes for different periods. A numerical example has also been
illustrated to demonstrate the use of the model. The computer has been used for the analysis of
this model.

2. Problem Environment and Notations

In this paper, we discuss the problem of inventory planning over a finite horizon during which there
is a committed demand of known size. This demand gets realloted over time, depending on the
stock on display. The problem is to determine the number of orders to be placed during the horizon
and their sizes so as to minimize the sum of holding and ordering costs over that horizon.

One simple way of describing the SDD is to use non linear model

Di=a+)Y Bi@l —0:Qi; i=1,2,m, j=1,2,n; for 0<t<u
7

=a—0;Q; foru<t<T;

where o denotes the normal demand (without the effect of stock display), 3;; denotes additive
effects of stock display on demand and 6; denotes deteriorating rates and @Q; is lot size for ith
interval. All 3;;’s are positive. The SDD effect will be valid only for a short period immediately
after the receipt of the lot and will be called temporary SDD.

The new aspect studied in this paper is that the SDD factors f;;'s change from period to
period, possibly due to changes during habit of customers. As a result of this, there will be a fast
depletion of stock immediately at the beginning of the period. On hand stock will then have two
slopes as seen in Figure 1. At a point when the lot arrives the buyer may not be motivated by the
stock on display, in which case 8;; and 6; will be zero and that particular period would not carry
the SDD effect.

The following notations are used throughout the study of the problem :

a : normal demand rate during the horizon
Bi1 : linear SDD factor applicable for the it* period
Bij : non-linear SDD factor applicable for the ith period, j > 2

6; : deterioration rate for the i period
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Q; : lot size for the it" period
S; : beginning stock for the i*" period applicable in case of backlog
T; : length of the i** period and equals to H/m

u : duration for which the SDD will be in effect in each period, expressed as a fraction of H
such that u < Tj, for all ¢

7 : unit cost of backlog

h : unit holding cost per unit time

p : unit selling price

c : unit purchase cost
m : number of orders to be placed during H

H : fixed and known length of the planning horizon

It is assumed that the lead time is negligible and the replenishment is infinite so that the
quantity ordered would arrive in a single consignment with no significant lead time.

3. The Lot Size Model without Shortage

In this section, we discuss a lot size model without shortages and derive the optimal ordering policy
and in section-4 the case of shortages is discussed.
The demand function is given by

Dt=a+ZﬂijQ:-—0iQ,-; i=1,2,--m, j=1,2,---n; for0<t<u
J

=a-—-0;Qi; foru<t<T;

The 3;; represents the additive effect of stock display on demand in the 7** period and Q; represents
negative effects of stock display on demand in the ith period B;; > 1 implies on extreme level of
motivational effect loading to a short of instatantaneous withdrawl of stock, which usually does not
happen. It is reasonable to have 0 < 3;; < 1 for all i. As all period are of equal length, it is enough
to work out total involved in one period and sum it over all the m periods. Here, we examine the
problem for n = 2 and then for ith period, we have

1— (Bir — 6)u} £ /{1 - B — 8;)u)? — 2ot
_ {1- (B Ju} \/;ﬁ ud1 yu} m _p(say) i=1,2,3,m W
i2

The stock on hand at time u will be

Qi

Qi = Q{1 — (B — 0:)u} — Bio — QFu— au (2)
Now the average inventory held during (0,u) is given by
it ~i U u
Ay = (—Q—;gL = 3lA{2- (B — 8:)u} — BiauP? — o

And the average inventory held during (u, H/m) is

Ay [.— - u] Q_ 5 [-’}z " u] (P{1 = (6 — 6:)u} — BiouP? — o]
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Substituting the value of @; from (1), the holding cost during the i** period becomes

h(Ayi + Ay) = [UPt 2 {Pi — B Piu + 6; P — BipuP? — ﬂ'ﬂ}] (3)

where h is the umt cost of holding inventory per unit time. The total cost of holding over the m
periods will be Z h(Aj1;+ A) and hence the average cost per unit time is Z h( A +A2,)/H Had
there been no SDD the sales during (0, u) would be only ue, but it is u{n + Qi(Bir — 6:) + Bi2Q?}
due to the effect of SDD. So the difference of [{5:2Q; + fi2 — 6;} Qiu] units is extra sales that can be
attributed to the motivational effect, which fetches a profit at the rate of (p — ¢) per unit, where p

is the unit selling price and c is unit purchase price. So the gain due to SDD during the it* period
will

Azi = {(p — ©)Qiu(B:2Qi + B — 6;)}
The average gain over the horizon, then becomes

m

> {(p - )Quu(BioQi + Bir — )}/ H

i=1

Assuming that the ordering cost per order is A, the net cost over the m periods during horizons is
given by

m
K(m,H) =mA+ Y {h(An + Az) — As;}/H
i=1
After substituting the values of A};, As; and Ajs; in this cost function, we can easily get

m

ahu " uhP; h
K(m) =mA — S ~+ =Y {P. -4 i Piu — BipuP}
(m) =m 2m+:1 SH +2miil{ Biru + 0; Piu — BiuP?}
=l §m: Pi(BaPi + iy — 8
S i (BiaPi + B — 6;) (4)

i=1

The optimum value of m is that value which minimizes I (m) with regard to m.

Consider the following results.
Proposition 1. Define l; = P, — fju + 6;uP; — BipuP? and n; = uPy(BuP; + B — #;). Let
Vi(m) = (mlpmy1 — £ 4;) and Va(m) = (mam4s — 5 7:). Then the optimum value of m given by
m* satisfies the double inequality

m*'(m* —1) < R<m'(m* +1)

where

= [umhP, + hHVi(m) — 2m(p — c)Va(m))/2mH (5)
Proof. Define AK(m) = {K(m+1) — K(m)}. In view of (4), we obtain

AK(m) = A+ [umhP; + hRHV (m) — 2m(p — ¢)Va(m )|/2mH (6)

Requiring AK(m) > 0 and simplifying leads to m(m + 1) > R for any m and the right
hand side of the inequality by a similar argmnents it follows that m*(m* — 1) < R which means

that K(m*) < K(m* - 1) for some m = m*. These two conditions in combination establish the
proposition.
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Proposition 2. m”* is less sensitive to P, and v and hence it is enough to test for the condition

ot uhF; oo
m*(m* — 1) < 5H <m*(m* +1) _ (7)
Proof. Since the values of i and ;2 in the range [0,1] and u is a fraction of the period, it follows
that I; is very small. So Vi(m) = 0 and Va(m) = 0 which leads to R= %‘? and the inequality (7)
follows.

This result has a bearing on the applicability of the model. The number of orders, according
to (7) is essentially a function of P and h which is also true for the classical EOQ model. The
presence of P; comes into scene only while adjusting the lot size to accomodate the SDD effect.

Further, the direct use of (5) and (6) requires the specification of P; for these m orders. As

long as P; is generated by a function like P; = iP, the inequality (5) can be applied to locate m*.
For different values of m, there will be different vectors of Gi1 and S;z values. But in practice the
stockiest may not have a prior knowledge of either the number of orders or B and (i values. So
it appears reasonable to determine m* for the relaxed problems in which 3;; = 0 and B2 = 0; ¥i.
Then the m* values of B and fFiz may be given as further inputs to the problem and the EOQ
values can be determined. The working of this model is illustrated below.
Tllustration 1. Consider the following parameters. H = 10 months, a = 300 units per month,
A = $75 per order, h = 1.5 per unit per month, p = $70 per unit, ¢ = $40 per unit. Let the
stock dependency holds good for a short duration of 2% of the horizon in every cycle. It means
u = (0.02)H = 0.2 which means nearly 6 days in every cycle. Once the value of m is optimality
determined. The length of each cycle would be same as H/m. So within the duration of H/m we
get the SDD effect for only six days. Here deterioration rate is 12 i.e., #; = 12 and equals for all
cycle,

For the problem, we get m* = 5 and we have to input 5 values of f;; and fBip's. For a selected
vectors 3 for i and Bio for iz values the corresponding vector Q of lot sizes the gain due to the
SDD and net cost are obtained as follows

(a) Bin — vector = {0.1,0.2,0.3,0.4,0.5}
Bin — vector = {0.01,0.02,0.03,0.04,0.05}
with this we get,

O = {1488,583,579,574,570}, Gain = $273, Net cost = $810
(b) B — vector = {0.1,0.2,0.3,0.2,0.1}

Bia — vector = {0.01,0.02,0.03,0.02,0.01}
with this we get,

@ = {1488,583,579,583,1488}, Gain = $409, Net cost = §796

In the following section, we discuss the case of shortages.
4. The Lot Size Model with Shortages Backlogged

In this case, the decision variable is the order level (beginning stock) for the ith period denoted by
S;. Suppose shortages are admitted and backlogged in all periods except the last period. Define T}
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as the time at which shortages start in the i period, for i = 1,2, (m — 1). Each of the (m — 1)
periods has a length of T'= H/m time units. The situation is shown in figure - 2
With this environment, it follows that the beginning stock for the i** periods is

Si=u (a+,6,-15i =8, +ﬁi233) +a(Ti—u); Vi=1,2, (m—1)

_ {1 —u(Ba = 6;) — uBinSi}

T; (8)
o
Also S'i =S; {1 =3 ll,(ﬁ,'l = 91)} = 11131'2512 — ¥l )
Now the average inventory held during (0.u) is given by /31; = Si *,_)S"" are the average inven-

(T.-w)S;
2

tory held during (u,T;) is Bo; = . Substituting the values of T}, S; and S; from above, we

get

au? S-u2(,6'1 —0;)  BipulS? S?
h ) ) — h O o . i3 i) i f s B
(ﬂlz + 321) {Szu B 2 2 = 20
Shortages occur during the interval (T;, H/m) at the rate of o per unit time. So the shortage
cost becomes
aH ki
T 7 — S,'{l —u(fi1 — 91')} —uf2S;| [2a (9)
and the gain due to the SDD is (p — ¢)Siu(B:2S; + Bi1 — ;).
In the last period, shortages are not allowed and hence the sum of holding and shortage costs
minus the gain due to the SDD for this period becomes

uSy, — —

A au? B ’UQSm(/Bml ~ Om) _ ﬂm2S,2nu2 + %
2 2 2 2a

Hence, the total cost over all the m - periods including the cost of ordering is given hy

2 2 2 2a

m -4 m2(R.. P 3.,Q2, 2 G2
K(m,S;) = mA + Zh{s,u _ow Sw(Ba—6i)  BaSiwt | S }

=1

g

S

au? ll?Sm(ﬁml —0m) _ ﬂm?s;_;uz

2 2 2

+h {Smu - +

+ Y w5 - Sl = ulB - 09}~ u(as?] /20
=1

m

m

+(p— )Y Su(BiaSi + B — 6;) (10)

i=1
We have to determine the optimal values of m and S;, Vi such that K(m,S;) is minimized.
Since S; is continuos, its optimal value is found, for a given m by equating the first derivative of
K(m, S;) to zero and solving for S; which gives

2B%5uS? — S2Bi2{2u(Bir + 6:) + 0:u® + u + 2} + Si{20uBi

_au’(Bi - 6;)

+(Bi — 6:)*u? — au?Bip + 1} + |ou 5

—oufu+ (Ba+6;)+1} =0 (11)

From this equation we obtain the values of Sf, Vi =1,2,--- (m — 1).
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The last order satisfies the relation

—
L {1 —u(Bn =0} £ {1 —u(Bn - 6:))2 - JaHupy,
St = (12)
2Biou

The quantity of shortages that arises in the it period will be Z; = a(H/m — T;) so that the
lot size actually required for the i*" period is Q; = (S; + Z;). Substituting these values in the cost
function given in (10) gives the optimal cost for a given m. The optimal m has to be found by
discrete optimization but the cost function becomes quiet complicated whereas it is easy to carry
out a direct search with a computer programme. We consider the following illustration.

Illustration - 2

Let A = 1200 and 7 = 25 and rest parameters be same as these of illustration 1. From equations
(10), (11) and (12) the following results are obtained

(a) Bi — vector ={0,0,0,0,0},
Bi» — vector = {0,0,0,0,0}, which means no SDD effect
Then § = {192,192,192,192,192}. Minimum cost = $15B.

(b) fBi1 — vector = {0.5,0.4,0.3,0.2,0.1},

@-2 — vector = {0.003, 0.002, 0.001, 0.001, 0.001}, which means decreasing trend. Then
S = {157, 171, 190, 180, 171}. Minimum cost = $981.

From the above results it follows that when B;; and (i are constant (i.e. zero) which means
no SDD effect then S is constant. If 3i1, Bi2 decrease then S increases and thereafter it decreases
also. It has also been observed that due to the SDD effect total cost is subjected to decrease.

5. Sensitivity Analysis

Versatility of any model depends on the variational effect of one parameter on the others. In this
way, resulting variational effect is weather compatible to the system or not is altogether a concern
of post optimality of the model. In addition, how for a model is sensible and valid, these kind of
analysis are carried out under the “Sensitivity of the model”. Here, graphical model is being used
to present this analysis.
Here, four types of sensitivity analysis have been presented
(i) The effect of 3;; on §;
Figure 3(i) shows that when 3; increases it decreases S;. Here, negative and imperfect corre-
lation between 3;; and S;, is being observed.
(ii) The effect of 3i» on S;
It is evident from the Figure 3(ii) that when 3;» increases it results in decrease in S;. The
correlation between 3; and S;, is found to be negative and imperfect.
(iii) The effect of 3;; on the optimal cost
It is shown from the Figure 3(iii) that increase effect in 3;; amounts to decrease in optimal
cost of the model thereby leading to again a negative and imperfect correlation.
(iv) The effect of S; on the optimal cost
A positive and imperfect correlation between S; and optimal cost observed from the Figure
3(iv). This shows that whenever S; increases then optimal cost is also subject to increase.
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6. Conclusion

A periodic review inventory model with deterioration and non - linear stock dependent demand
has been presented. Inventory models with shortages and without shortages have been developed
to determine the optimal number of orders to be placed and optimal lot size for different periods,
Two interesting proportions, alongwith sensitivity analysis, have also been presented to add new
value to the paper.

In future programme, a concept of quality control is being used by defininng the production function
with mixed effect of different components of production. Now-a-days, quality control is a powerful
productivity technique.
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Abstract. The degree of approximation of a function belonging to Lip o (0 < a < 1) class
by almost Norlund summability means and almost generalized Norlund summability means was
determined by Qureshi. In this paper a more general result than those of Qureshi has been
obtained so that his result come out as particular cases.

1. Introduction

Let f(t) be periodic with period 27 and Lebesgue integrable in [—7, 7]. The Fourier series of f(t)
is given by

f(t) ~ %ao + nio:l(an cosnt + by, sinnt) (1.1)
A function f € Lipa if
| flz+t)—flz)] < C(t]%) (1.2)

where 0 < a < 1, C being +ve constant.

The degree of approximation of a function f : R — R by a trigonometric polynomial ¢, is
defined as ([5])

[ tn = f lloo= sup{| tn(z) — f(z) |: € R} (1.3)

According to Lorentz [1] a bounded sequence {S,} is said to be almost convergent to a limit
S, if

1 m-+n
k=m

uniformly with respect to m.
Let T' = (a, ) be an infinite triangular matrix satisfying the Silverman-Téeplitz [4] condition
of regularity, i.e.

n
Zamk — 1, asn — o0
k=0

ang =0, for k >n

! Keywords and phrases : Degree of approximation, Nérlund summability.
2 AMS Subject Classification : 41A25, 42A24.
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n
Z | Qn, k |§ M
k=0
where M is a finite constant.
[e's) k [e's)
Let Z u, be an infinite series such that s; = Z Uuy. A series Z uy, with the sequence of

n=0 v=0 n=0
partial sums {5, } is said to be almost matrix summable to S provided

n
tom = D AngSkm — S (1.4)
k=0

as n — oo uniformly with respect to m. Here

1 k+m

= —— , 1.
Sk = 577 2 8 (1.5)

and (an k) is an infinite regular triangular matrix such that the elements a, ; is non-negative, and
non-decreasing with k so that for every n

n
Z ap =1
k=0

Seven important particular cases of matrix means are

1
i C 1 h [ —
(i) (C,1) means, when ay I

1
(n—k+1)logn

(ii) Harmonic means, when a, ; =

(iii) (H,p) means, when apj = Hg;é log?(k + 1)

logP~!(n +1)

P _ n
(iv) Nérlund means, when a, j, = %k, where P,, = Z P,
n k=0

n—k+46d—1
d—1
n+0
)
P

(vi) Riesz mean (N,py,), when a, ) = o
n

(v) (C,d) means, when a, j =

Pnfk:q

n
k .
R, provided R, = Zpkqn_k

k=0

(vii) Generalized Norlund Mean (N, p, q) when ay, ; =

Let us verify the regularilty condition of almost matrix summability method

n Ak k+m [e%)
tom = ];) p : ) S, = kgocn,ksk,m

where
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a k+m
k”’kl 1, k<n

C%k'_ + v=m
0 , k>n

Now
o n
() D 1 Cup | =D anp=1
k=0 k=0

(ii) Cpi = ank — 0 as n — oo for every fixed k.
o]
(iii) > | Cop|=1
k=0
Thus S, — S = Skm — 5, as n — oco. Consequently, t,,,, — S, as n — 0o. So almost matrix

summability method is regular.
We shall use the following notations

o(t) = f(z+1) + f(z — 1) — 2f(x)

1 & sin(2m + k + 1)L sin(k + 1)1
Kpm(t) = — n 2 2 1.6
m(®) 271_];)& ok (k+ l)siHQ% (16)

2. Known Theorems

Qureshi [3] proved the following
Theorem A. The degree of approximation of a periodic function f with period 27 and belonging
to the Lip a, 0 < a < 1 by almost Norlund means of its Fourier series is given by

max | f(t) — Tnp(t) |= O {L}

0<a<2m n<

where the sequence {p,} is non-negative and non-increasing such that

" P, _ P,
an ]i :O{_]
=0 + n

Qureshi [2] generalized the above result for (N, py,@,) summability means in the following
form:
Theorem B. If f(z) is a periodic function and belongs to the class Lip o for 0 < a < 1 and if the
sequence {pn}, {qn} are P, = po+p1 +p2- -+ pn —+00asn — 00, Qn=qo+q+ G+ qn,

R(y)

(67

R, = pogn + p1gn_1 + - + pngo — o0 as n — oo such that is non decreasing then

1
7o =0| ]
3. Main Theorem
In this paper a more general result than Qureshi [2,3] has been established in the following form:

Theorem. Let 7' = (ay ) be an infinite regular triangular matrix having (a, ) as non-negative,
non-decreasing with k£ > n such that

n amk N 1
];){k+1}_0{n+1],Vn>o
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If f(x) is 2w-periodic function belonging to the class Lip o then degree of approximation by almost
n k+m

matrix means ty m, = Z ka:—kl Z S, of Forier series (1.1) is given

1
O[m},0<a<1

0 [log(n + 1)7re] =1
(n+1

| tnm(z) — f(2) [|=

For the proof of our theorem following lemmas are required.

Lemma (3.1). Let K, ,(t) be given by (1.6), then

Kpm(t) =0 1), for0 <t <
m(t) = O(n+1), for 0= ¢ < ——

Proof. We have

1 & sin(2m + k + 1)3 sin(k + 1)3
Kpm(t = 5 n
[ Knm(®) | 2 [an (k+1)sin?$

2

k=0
n 1
| sin?(k +1)5 |
<
- Z nkk+1)|sm2%\
& k+1)2\sm21|
<

Z fink (k+1) |sin®1

= —Zank k—i—l)

M=o
n+1]
™

1
= —(n+1
27r(n )

n
2]
k=0

= O(n+1)

Lemma (3.2). Let K, ,(t) be given by (1.6), then
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Proof. Here
1| &angsin@m +k+1)3sin(k +1)3
Kn’m(t) = 2_2” k 1 -gl 2
U et (k+1)sin 5
< Z Sln2m+k‘—|—1)1( <E)
= 22 k+1 2 sin% t
n Uk
< =) —
= 2
20° Tk +1
M - 1
= il (as Z Ink [ } , where M is a positive constant)
2(n + 1)t? k1l n +
s
(n+1)t2

4. Proof of the Main Theorem

It is well known that the fifth partial sum of the Fourier series (1.1) at ¢ = x, is given by

Sy(z) — :i/¢ smv—l— dt
27 sm2
0
then
1 T smv—l—
Spom() — — —/ dt
(@) — @) = {2”0¢ il }
17 k4] sin(o + 1)t
= 5/ ott { ;,La——s% &
0
_ i/gz)(t) 1 Sln(2m—|—k‘+ )%sin(k‘—l—l)%dt
21 E+1 sin? §
0
Also

sin(2m + k +1)3 sin(k + 1)3

l;)an,k {Sk,m(x) - f(x)} = / {Zan,k (k‘ n 1) sm2 % } dt

k=0

T o

(4.1)

= L+
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Now

1

n+1

n = / S(t) K ()t

0

1

n+1 1

< ¢(t)2—(n +1)dt, by Lemma (3.1)

) T

Since
flz+t)— f(z)=C(|t|¥) ie. f € Lipa

We have

@) | = [fl@+t)+ f(z—1)—2f(z)|
= [ fla+t) = flz)+ fle—1) - f(2) |
= [{fl@+t) - f@)} +{f(z—1) = f(2)} |
o) | < [ fle+t)=Fflz) |+ ] flz—1t)— f(z) ]
= C|t*|+C |t
= 20|t]"

= O(t]?)

Thus ¢ € Lip a. Hence

m a+1 (4.2)
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Also

L= [ oK.

1

n+

[

i .
2

m} (t)dt [by Lemma (3.2)]

Il
|H\=a

3
T
=

} /7rt_220(| £%) (as é € Lip a)

n+1

Ly
2 [n+1

1 a—1
,n.a—l (—n+1)

— MCTF{ 1 ] a—1 a-1
n+1

logm — log (%ﬂ)

MCr« N MCr
< m+1)(1-a) (1-a)(n+1)®
a MCrmlogm(n+1)

(n+1)

MCr“ L+ MCrw

l1-a)(n+1) (1-—a)(n+1)>
I, <
MCmlogm(n+1)
(n+1)

MCr“ N MCr 1
l1-a) (1-a) (n+1)~

MCrlog(n+ 1)m
(n+1)

Equations (4.1) - (4.3) now lead to

17
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C 41 1
m+MCTr< 1 — & ) (n+1)a,0<a<1
tnm(z) = f(z) =
{ C MC7T10g(TL—|—1)7T:| _1
2m(n + 1) (n+1) T
[ mo 41 1
7r(a+1)+MC7T< -« ) (n+ 1)
< L
[ C 1 log(n+ 1)7
(o ) ()]
[ el 41 1
m(a+1) +MCOm l-«a (n+ 1)
< L
(Q—I—MC’w) <log(n+1)7rc>}
L\ 27 n+1

dead

0 {log(n + 1)770}

n+1

This completes the proof of main theorem.

@

(IT)

5. Particular Cases

DPn—k

n
where P, = Zpk,O < a <1 then the result of Qureshi [2] (Theorem A)
n k=0
becomes the particular case of our theorem.

If ap =

If a1, = p";%k%, 0 < a < 1, then our result reduces to Theorem B of Qureshi [3].

n

Acknowledgement

The authors are grateful to Prof. L.M. Tripathi, Ex-Head, Department of Maths., B.H.U., Varanasi,
for suggesting the problem and to Prof. B. Rai, Head, Department of Mathematics, University of
Allahabad, who has taken the pain to see the manuscript of this paper.

References

Lorentz, G.G. : A contribution to the theory of divergent series, Acta Mathematica, 80 (1948) 167-190.

Qureshi, K : On the degree of approzimation of a function belonging to Lip «, Indian J. Pure Appl.
Math., 13 (1982) 898-903.

Qureshi, K : On the degree of approximation of a periodic function f by almost Norlund means,
Tamkang J. Math., 12 (1) (1981) 35-38.

Téeplitz, O : Uberallgemeine linear Mittelbildunger, P.MLF., 22 (1913) 113-119.

Zygmund, A. : Trigonometric series, 2"® Rev. Ed. Vol. 1, Cambridge Univ. Press, Cambridge, (1959)
119.



The Aligarh Bull. of Maths.
Volume 24, Nos. 1-2, 2005

A NOTE ON THE FINITE TAYLOR SERIES APPLIED
IN LAGUERRE POLYNOMIALS!?

J. Lépez-Bonilla and A. Lucas-Bravo

Seccion de Estudios de Posgrado e Investigacion
Escuela Superior de Ingenieria Mecdnica y Eléctrica
Instituto Politécnico Nacional
Edif. Z., Acc. 3-3er Piso, Col. Lindavista, C.P. 07738 México, D.F.
e-mail : lopezbj@hotmail.com
reslbravobravo@yahoo.com.mx

(Received January 25, 2005)
Abstract. The finite Taylor series with the reminder term is applied to Laguerre polynomials,

showing thus the relationship between the Talman’s identity and the fractional derivative for
such polynomials.

The finite Taylor series around the origin is given by the expansion [3]

2 n—1
f(@) = 0) + FOO + fOO) 5 o fO O gy ), m=1200 (1)
with the remainder term
L e e =
M) = gy 0/<:c O L (E)de = T— 1) () @

where we have employed the notation for the derivation of Riemann-Liouville [2,4]. If we take f(x)
as the associated Laguerre polynomials [1], m > n

m m-—n
fla) = L") =) (1) , mn =12, (3)
=0 m=r r!
then
f(n)(x) = (—1)an,n($), f(p)(o) =0, p=0,1,---,n—-1 (4)

Therefore, equations (1) - (4) imply the relation
ar
dx—"
However, Talman [5] obtained the identity

Limn(z) = (=1)"L;,"(x) (5)

L) = (- () ©

! Keywords and phrases : Laguerre polynomials, finite Taylor series.
2 AMS Subject Classification : 33C45, 26A33.
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then (5) leads to the Abramowitz-Stegun [1] expression for the fractional derivation of Laguerre
polynomials

L [ 0 (e = P ) g

(n—1) / m!

or, in the inverse order, if we accept the result of Abramowitz-Stegun then (5) gives us the Talman’s
identity.
We know the property

dN
dmN'L?«(év) = (—l)NLgJ_r%(m), N=0,12-- (8)

then from (5) we learn that (8) is also valid for N = —1,-2,---.
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Abstract. A series solution for boundary layer fiow of viscous incompressible fluid over a
stretching plate has been tried to obtain velocity field. In the process of restricting the coeffi-
cients of the series, it has been found that the series solution reduces to the similarity solution
obtained by Ahmad et al. in 1990. Further, the influence of stretching factor on velocity field
and velocity components has been seen graphically. Finally, level surface for velocity component
u has been shown for different stretching factor.

1. Introduction

The flow past a stretching plate is of great importance in many industrial applications such as
polymer industry to draw plastic films and artificial fibres. In the process of drawing artificial
fibres, the polymer solution emerges from an orifice up to a plateau value at which it remains
constant. The moving fibres.produces a boundary layer in the medium surrounding the fibres,
which is of a technical importance in that it governs the rate at which the fibre is cooled and
this in turn affects the final properties of the yarn. Crane (3] investigated boundary layer flow
past a stretching plate whose velocity is proportional to the distance from the slit. Carragher [2]
reconsidered the problem of Crane [3] to study heat transfer and calculated the Nusselt number for
the entire range of Prandt]l number.

Several authors like Crane [3], Siddappa and Abel [5], Ahmad, Siddappa and Patel (1], solved
the problem in different context but none of them obtained series solution. In the present paper,
we found series solution of boundary layer flow of viscous incompressible fluid past a stretching
plate. The convergence of the solution has also been analysed thoroughly.

2. Formulation of the problem

Asumming z-axis along the moving plate and y-axis perpendicular to the direction of the motion
of the moving plate, the equation governing the boundary layer flow of viscous incompressible fluid
are given by

— Fv— = Qfg (1)
Yoz ”ay_”ayZ
ou Ov
7ty =" @)

The relevant boundary conditions are

y=0,u=mz, v=0

Keywords and phrases : Viscous incompressible fluid, stretching factor.
AMS Subject Classification : 76D, 76D10.
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y—oo,u=0 v=—c,¢c>0, uy=0 (3)
Rescaling the problem into dimensionless form using the following variables

R R
Y = h' U = %, " L= h’ v = v
We thus have the following problem together with boundary conditions

@. + @ - 32_11 (4)
Yoz v@y T oy?
ou Ov
9z g = 0 (5)

y=0,u=mz, v=0

y—ooo,u=0v=—c c>0, u =0 (6)

Let the similarity solution be of the form u = mz f’(y). Putting the solution in equation (5),
we have v = —mf(y) where f(0) = 0 without loss of generality. Substituting the values of u and v
in the equation (4), we have

7 ) = £ W) i) = = ") 7

The boundary conditions reduce to

Yy — 00, fl=07 f:_% (8)

We try a formal series solution of the equation (7) in the form ([4])

oo
f@) = 2 +7Y biate™ (9)
=1

This series is sometimes called a Dirichlet or Picard series. This form satisfies f’(c0) = 0 and
: o Y 3 . .
gives the condition f(oc) = —. There are two arbitrary constants v and a in the equation (9) to
be determined to satisfy two conditions at y = (. Now we calculate the following

o0
f'y) = —*)_ibia’e™™
i=1
o . .
() =7 i*biate™
=1

e <]
(y) = —7*Y Pbiale™ W

i=1
On substituting the series for f(y), f'(v), f"(y) and f”(y) in (7), we have

oo oo [i-1

Y 21— i)bia’e™ +m Y |3 k(2k — i)bkbiska’e ™| =0 (10)

i=1 =2 Lli=1
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The indicial equation is obtained by equating to zero the coefficient of lowest degree term, i.e., for
i = 1 we have bja — bya = 0, which is an identity, since ‘a’ is to be determined by the boundary
conditions. So we may choose | b; |= 1 without loss of generality.

For i = 2,3,4, -, we have

E(2k - D)bpbig, §=2,3,¢ . 11
z—l)z kbi-ky ©=2,3 (11)

If | a |< 1 and we show that | b; |< 1, i = 2,3,--- then series converges absolutely for v > 0. Now
for the requirement that | b; | < 1 imposes certain condition on m in (7). We have already taken
| b |=1 so from (11) we have

b = %Zk(%—ﬂbf

== z(2-—2)b{ =0
m
by = Igblbz =0, and so on.

Thus b; =0, i =2,3,4, - and the equation (9) reduces to

) = L +b1a eap(—y) (12)

Now our problem is to estimate «y and a only. Applying boundary conditions at y = 0, we have

2t yba=0 (13)
m

—ybia =1 (14)

1
These two equations imply that a = - and vy = \/m. Hence, the velocity function
1
fy) = 7= - ezp(—v/my)) (15)
3. Discussion and Results

The equation f2(y) — f"(v)f(y) =

f"(y) is non-linear ordinary differential equation of order
three together with boundary conditions.

1
m
ion

Yy — o0, f,:()ﬂ f:_i
m

Thus we have to solve non-linear boundary value problem. We have find a series solution of this
problem. This series solution comes out to be same as the solution obtained by Ahmad et al. (1]

if visco-elasticity K* = 0. Ahmad et al. [1] chose the velocity function f(y) randomly but we have
considered Picard’s series

o0
= 2 + o3t
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as series solution to our problem. In the process of finding the coefficients of the series, we get

by =1, b =0,i >1, a = —— and v = /m where m is stretching factor of the plate and the

1
velocity function becomes f(y) = —m(l — exp(—v/my)).

Now we see the behaviour of this function for the different values of stretching factor m with
the help of the Figure 1. In this Figure we see that as the plate stretches more the value of velocity
function decreses, hence perpendicular component of velocity v is given by

v=—vm(l - exp (—v/my))

and its behaviour for the different values of stretching values factor m can be seen from
Figure 2, where we see that the stretching factor increases, the velocity component decreases

absolutely as we move away the stretching plate. It is supposed by the boundary condition 3 — oo,
c

c
fel wo=| o
The velocity component u has been calculated through series solution and it comes out to
be u = mz exp(—+/my) which is same as obtained by Ahmad et al. (1] by randomly choosing
f(y). The variation of this velocity component for different values of stretching parameter has been
depicted in Figure 3. We see that as stretching factor increases, the velocity increases. This fact
of increasing of u with m agrees with physical nature of the problem.

The level surface for the velocity component can be viewed in Figures 4 and 5.
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f(y)

Figure -1 Velocity function for different
values of stretching factor
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Figure-3 Velocity component u different
stretching factor at x = 0.1
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Abstract. For any matrix B = (by,,(i)), the Fg-convergence was introduced by Steiglitz. In
this paper, we have established some inequalities by using a class of Fi-conservative matrices
analogously to the inequalities studied by Cakan et. al. and Das.

1. Introduction

Let A = (ank) (n,k =1,2,...) be an infinite matrix of real numbers and x = (x) be a real number
sequence. We write Az = ((Ax)y,) if Ap(z) = (X ankzi) converges for each n. Let E and F be
any two non-empty sequence spaces. If x € E implies that Az € Y, then we say that the matrix A
maps E into F. By (E, F) we denote the class of matrices A which maps F into F. If E and F are
equipped with the limits E'—lim and F —lim, respectively, A € (E, F') and F —lim Az = p(E—lim z)
for all x € E, then we write A € (E, F),.

Let /o, and ¢ be the Banach spaces of bounded and convergent sequences with the usual
supremum norm. Let o be a one-to-one mapping from N into itself and T be an operator on £,
defined by T'z = x4 ;). A continuous linear functional ¢ on {« is said to be an invariant mean or
a o-mean if and only if

(i) ¢(x) > 0 when the sequence x = (z) has z > 0 for all k,

(ii) ¢(e) =1, where e = (1, 1, 1,...),

(iii) ¢(z) = ¢(Tx) for all z € lo.

Throughout this paper we consider the mapping o having no finite orbits, that is o?(k) # k for
all positive integers k > 0 and p > 1, where oP (k) is pth iterate of o at k. In the case o(k) = k+1, a
o-mean often called a Banach limit and V, is the set of almost convergent sequences f, introduced
by Lorentz, [9]. It can be shown [11] that

Vo = {x € m : lim, tp,(x) = s uniformly in n, s =0 —limz}

where

Tn+ T2y +---+ TPz
tpn(z) = = T;Jrl =, ten(@) =0

We say that a bounded sequence z = () is o-convergent if and only if z € V,. We denote by
Z the subset of V,, consisting of all sequences with o-limit zero. It is well-known [11] that = € £
if and only if (Tx —x) € Z and V, = Z & Re.

Let B be a sequence of infinite matrices B* = (b, (i)). For a given sequence = = (x,) we
write B! (z) = men(i)xn if it exits for each m and i > 0. We also write Bz for (B!, (x))$ A
n

i,m=0"

sequence x € lo, is said to be Fp-convergent [12] to a number s if

lirﬁn Bzr = lirgl men(i)xn =s

! Keywords and phrases : Fi-convergence, invariant means, core theorems and statistically convergence.
2 AMS Subject Classification : 40C05, 40J05, 46A45.
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uniformly in ¢ and in this case we write Fg — limx = s. By Fi and Fjyg, we denote the space
of all Fg-convergent and Fz-convergent to zero sequences, respectively. The space Fi depends on
choosing the sequence B = (B?) of infinite matrices. For example; if we define B = (I) for all i,
the unit matrix, then Fz = ¢. In the case by, (i) = 1/(m +1),(i < n < i+ m) and 0 otherwise,
Fp = f. If we define by, (i) by

1 .
. _ =0g(71), 0< 1<
b =4 T " o/(i), 0<j<m
0 , otherwise,

then Fg = V.
Throughout the paper we write

1Bl = sup) _ [bmn(i)] < o0

m,i o,
to mean that, there exits a constant N such that

> |bmn(i)] < N for all m, i

and the series

> bin (i)

n

convergence uniformly in ¢ for each m. In what follows we shall consider only the sequence B such
that ||B|| < oo.

In what follows a matrix A € (c, F) is said to be Fg-conservative and it is known [12] that A
is F-conservative if and only if

|A]| = sup) _ank| < oo,

"ok
1im2bmn(i)ank = o, uniformly in 4, for each k,
m n

liT}LnZmen(i)ank = o uniformly in 1.
k n

Note that in the case A is Fg-conservative, the number I'g =T'g(A) = a — Zak is defined and it
k

is said to be characteristic of A with respect to B. In the case B = (I), the number I'g is same as
the x, characteristic of A, (see [1, p. 46]).

Let K be a subset of N, the set of positive integers. Natural density § of K is defined by
0(K) =1 1 k<n:keK
(K) =lim_|{k < n: k€ K}

where the vertical bars indicate the number of elements in the enclosed set. The number sequence
x = () is said to be statistically convergent to the number [ if for every e, §{k : |z — 1| > e} =0
([7])- In this case, we write st-limz = I. We shall also write st and sty to denote the sets of
all statistically convergent sequences and statistically convergent to zero sequences. Fridy and
Orhan [8] have introduced the notions of the statistically boundedness, statistical-limit superior
(st-limsup) and inferior (st-liminf).
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Throughout this paper, we shall deal with the following sublinear functionals defined on f:

1 p
L(z) = limsupz, I(z) =liminfz, L*(z) = limsupsu ZmnH,
D n P+ 1i:0
V(z) = limsupsup tp,(z), W(z) = irelgL(m + 2), B(z) = st — limsupz,
p z
a(r) = st—liminfz.

The aim of this paper is to establish some inequalities analogously to the inequalities studied
in [2-4,6]. These inequalities generalize the inequalities studied in [5].

Firstly, we may list some lemmas that will be useful to our proofs.
Lemma 1.1. [6, Th.1(c)] Let A = (ank(i)) be conservative. Then, for some constant A > |x| and
for all x € £,

] A+ x
i 3 _ <2 X 1) -
1mnsup81l}p 4 (ank(i) — ag)zp < 5 (z) B)

if and only if
lim supsup2|ank(i) —ap| <A (1.1)
n 3 k

where y is the characteristic of A.
Lemma 1.2. [6, Lemma 1] Let A = (ank(7)) be conservative and A > 0. Then (1.1) holds if and

only if
. . L A+x
lim sup sup Z(ank(z) —ap)T < —=
n '3 L 2
and
lim sup su Z(a (1) —ar)” < A=X
. p ip a nk k > 2

Lemma 1.3. [6, Lemma 2] Let ||.A|| < oo and limsup ank(?) = 0. Then, there exists a y € o with
i

lly|| <1 such that

lim supsupZank(i)yk = lim supsqu\ank(iﬂ (1.2)
n 7 k n 7 k

2. The Main Results

Theorem 2.1 Let A be Fp-conservative. Then, for some constant A\ > |I'g| and for all z € £/,

_A-TIg
2

L(x)

A J;FB I(z) (2.1)

lim sup supz (Z bn (2)ank — Oék)l‘k <
m ) L n

if and only if
limsupz ‘ Z byn (1) ank — ak‘ <A (2.2)
m % oy

Proof. Firstly, let (2.1) holds. Define a matrix C = (¢;x(4)) by

e (i) = (D bnn (D)an, — ) (2.3)
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Then, the matrix C satisfies the conditions of Lemma 1.3. So, we have (1.2) for C. Hence, by (2.1),
we can write

lim sup sup Z lemk(i)] = limsupsup Z Cmk (1) Yk
A+ Tp A—TIp
< 5Ly - —5—l)
A+Tp X—-TIp
(5= + =57l
= A

which is the condition (2.2).
Conversely, let (2.2) holds and x € ¢. Then, for any given € > 0, we can write [(z) — ¢ <
xr < L(z) + ¢ whenever k > ko. Now, we can write

Y oemk(@zr =Y cmr(i)zr+ D cmr(i)Tme — Y kemn(i)an
K

k<ko k>ko k>ko
Hence, from the Lemma 1.2 and the fact that A is Fp-conservative, we get

A+Tp A—TIp

limrsupsgp;cmk(i)xk < 5 (L(z) +¢) — 5 (l(x) —¢)
(2.4)
A+T A-T
_ AF BL(:):)— Bl(a:)+)\€
2 2
Since ¢ is arbitrary, the proof is completed.
In the case 'y > 0 and A = I's, we have the following result.
Theorem 2.2. Let A be F-conservative and x € £o,. Then,
lim sup sup Z emk (1) < TpL(x)
if and only if
li%nsupz lemi(2)| =T (2.5)
vk

where ¢, (7) is defined by (2.3).
Also, note that when A € (c, F3)p, Theorem 2.2 is reduced to the Theorem 3.3 in [5].
Theorem 2.3. Let A be Fg-conservative. Then, for some constant A > |I'z| and for all z € /.,

A+T A+T
limsup sup Y _ e i)y, < + Bﬂ(m) + * Ba(—x) (2.6)
m i 7 2 2
if and only if (2.2) holds and
lim > |emk(i)| = 0 uniformly in i (2.7)

keE

for every E C N with 0(E) = 0; where ¢;,x(7) is defined by (2.3).
Proof. Let (2.6) holds. Then, since 3(x) < L(z) and a(—x) < —I(z), the necessity of the condition
(2.2) follows from Theorem 2.1.

To show the necessity of the condition (2.7), for any E C N with §(E) = 0, define a matrix

D = (dmk(2)) by

O
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Then, since A is Fg-conservative, we can write (1.2) for D. Now; for the same F, let us choose the
sequence (yg) as
_J 1, keFE
=Y0 , k¢E

Then, clearly y € sty and so, B(y) = a(y) = st —limy = 0. Hence, by the assumption and (1.2),
we get that

A+Tp
2

limnfup sup Z |[dmi ()] < B(y) +

' keE

which implies (2.7).

Conversely; suppose that (2.2) and (2.7) hold. For any = € {, let us define E; = {k : z, >
B(z)+e} and Ey = {k: zx < a(z) —e}. Then §(E1) = §(E2) =0, [8]. Hence the set E = E1 N E,
has also zero density and

alx) —e <z < B(x)+e (2.8)

whenever k ¢ E. Now; it can be written that

Z ka(l)a?k = Z ka(’l)a?k + Z ka('i)+«77k — Z ka(i)ixk
k

keE k¢E k¢E

Thus, since (2.7) implies that the first sum on the right hand-side is zero, by Lemma 1.2 and from
(2.8), we get

A+T3

tmsupsup Y e < LB () ) + 2B o) — )
m 7 k
_ 2 ZFBQ(;B) + A ;PBa(—x) + Ae

Since € is arbitrary, this completes the proof.
In the case I's > 0 and A = I'z, we have
Theorem 2.4. Let A be Fp-conservative and x € £o,. Then,

lim sSup sup Z ka(’t)l‘k < I‘Bﬂ(l‘)
m '3 L
if and only if (2.5) and (2.7) holds.
Also, we should note that when A € (st N {o, F), and B = (I), Theorem 2.4 is same as the
Theorem 3.5 in [5] and Theorem 2.1 in [4], respectively.
Theorem 2.5. Let A be Fg-conservative. Then, for some constant A > |I'z| and for all = € {4,

T T
limsupsup Y _ e i)y, < )\4_2 BV(LL‘) + )\4_2 BV(—a:) (2.9)
m 7 L
if and only if (2.2) holds and
hﬁlnz ‘ Z bmn (1) (@nk — A o(k) — Ok + aa(k))‘ = 0 uniformly in ¢ (2.10)
L n

where ¢, (7) is defined by (2.3).

Proof. Firstly, suppose that (2.9) holds. Then, since V(z) < L(z) and V(—z) < —I(x) for
all © € l, the necessity of (2.2) follows from Theorem 2.1. Define R = (rpx(i)) by rmi(i) =
(emk (i) = Cm,o(k) (7). Then, we have (1.2) for R.



32 Celal Cakan
Let us choose y such that yx = 0,k ¢ o(N). Hence, since (yx — Yo(r)) € Z, (2.9) implies that
Hmsup Y | [rm(i)] = Hmsup Y vk (i)Yo
mog mog

= limsup »_ cmk(8) Uk — Vo))
m k

A+Tp
2

A—Tg

5V ¥or) — ¥k

V(uk = Yor)) +
=0
which is (2.10).

Conversely, let the conditions (2.2) and (2.10) hold. By the same argument as in Theorem 23
of [11], one can easily see that for any x € /o

> mn(D)(@h = To) = Y rmk (i) To )
k k

where the matrices C and R are as above.
Hence, since (7 — Z,1)) € Z, (2.10) implies that C € (Z,Sp N {x). We also see from the
assumption that (2.1) holds. Thus, taking infimum over z € Z in (2.1) we get that

: : . A+Tg A-Tg
;gg(hmrsupsgp Ek cmk(z)(mk—l—zk)) < TL(;B—I—Z)— l(x+ 2)
A+T A=T
= 2EW() + 2 W ()

On the other hand, since Fg —limCz =0 for z € Z,

1 f 1. y > 1' . . f 1. .
oL ( 1m Sup Slz}P ; ik (4) (@ + Zk)) 2 limsup Sll}p ; cmk (1) g + inf ( im sup s%p ; cmk(z)zk)

= limsupsup Z emk (1) xg
Since W (x) = V(z) [10] for all « € ¢s, we conclude that (2.9) holds and the proof is completed.

When o(k) = k + 1, Theorem 2.5 gives the following result.
Theorem 2.6. Let A be Fg-conservative. Then, for some constant A > |I'z| and for all z € £,

A+T A+T
limsupsuchmk(i)mk§ zBL*(m)—I— +8

L*(—x
supsupy T8 ()

if and only if (2.2) holds and

111}1112 } Z binn (3) (Ank — Qnky1 — g + ak+1)‘ = 0 uniformly in 7
k

n

where ¢;(7) is defined by (2.3).
In the case 'y > 0 and A = I'g, we have
Theorem 2.7. Let A be Fg-conservative and = € £4,. Then,

lim sup sup Z ek (D) < TV (z)

if and only if (2.5) and (2.10) holds.
Finally, we should note that when A € (V;, Fg)p, Theorem 2.7 is same as the Theorem 3.4 in

[5].
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Abstract. Weak and strong duality results are established under pseudo-invexity for the sym-
metric dual multiobjective fractional programming problems without non-negativity constraints.
Self duality is discussed under additional conditions on the numerators and denominators of the
objective function. A few special cases that readily follows are also mentioned.

1. Introduction

The concept of symmetric duality in mathematical programming introduced by Dorn [5], has been
extensively pursued by several authors, notably Dantzing, Eisenberg and Cottle [4], Mond [10],
Chandra and Husain [2], Mond and Weir [11]. In [1], Chandra, Craven and Mond dealt with
symmetric dual fractional programming problems and proved weak and strong duality theorems.
Later, in multiobjective programming, Weir and Mond [13] studied symmetric and self duality. In
these works, the assumption of convexity /generalized convexity were used to obtain various duality
results. Hanson [8] identified the class of invex functions and established sufficiency of Kuhn-Tucker
type optimality conditions and duality results for nonlinear programs. Since then many duality
results which formerly required convexity have been re-examined for invexity. Recently, Jeyakumar
and Mond [9] incorporated V-invexity/generalized V-invexity applicable to vector functions as an
extension of the concept of invexity for a scalar function, and proved certain duality theorems for
nonlinear multiobjective programming problems.

In this paper, we apply pseudo-invexity to symmetric dual multiobjective fractional program-
ming problems without nonnegativity constraints of Weir’s [12] problems. A self duality theorem
under an additional requirement for the objective function is also proved.

2. Pre-requisites and Problems

Let ¢ : R"xR™ — R be twice differentiable. Then V¢ and V¢ denote gradient (column) vectors
of ¢, with respect to  and y respectively. Subsequently, V,,¢ and V,¢ denote respectively the
(m x m) and (n x m) matrices of second order partial derivatives.

Consider the following multiobjective programming problem :

(VP): Minimize (f!(z),---, fP(z))
Subject to

reX={zxeR"|g(x) =0}

We require the following definitions in our analysis.

! Keywords and phrases : Multiobjective programming, generalized convexity, symmetric duality.
2 AMS Subject Classification : 90C25, 90C29, 90C32.
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Definition 1 ([6]). A point z° € X is said to be an efficient solution of (VP) if

£z = fi(z),

for i =1,2,---,k implies f!(2°) = fi(x) for alli € {1,2,---,k}.
A point 2° € X is said to be properly efficient if it is efficient and if there exists a scalar M > 0
such that for each i € {1,2,---,k} and = € X satisfying fi(z) < f(2°), we have

fi(@%) — fi(=)
f(@) = fI ()

A

M

for some j such that f7(x) > f7(z9).

An efficient point that is not properly efficient is said to be improperly efficient. Thus 2° is
properly efficient means that for every scalar M > 0 (no matter how large) there is a point z € X
and an ¢ such that

fix) < f(2%)
and
Fi(2%) = fi(x) > M [f7(x) = £ ()]
for all j satisfying f/(x) > f7(z).

Definition 2 ([8]). A function ¢ : R — R is said to be invex with respect to 7 if there exists a
vector function n(z,u) € R™ such that for each z and u in R"

¢(x) — ¢(u) Z 0" (z,u)Ve(u)

The function ¢ is said to be pseudo-invex with respect to 7 if there exists a vector function
n(xz,u) € R™ such that for each x and u in R"

1" (2, u)Vo(u) 2 0 — ¢(x) Z d(u)

Throughout this exposition, we will adopt the following convention of order relations for vectors
in R*, if z,y € R*, then

2y >y iec{l,2,---,k}
xr2y<=uxz2y, andx #y

x>y<=xz; >y, i€{1,2,---,k}

We study the following pair of multiobjective symmetric dual fractional programming prob-
lems.

Primal Problem:

f(z,y) SH(z,y)

FP):  Minimi
(FP) P R y) T )

Subject to
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k
> p (W (@, y)Vyfi(z,y) — f1(x,y) Vyhi(z,))
i=1
k . . . . .
y' > W (W (2, y)Vyfi(@,y) - f(z,y)Vyhi (z,y))
i=1
w
Dual Problem:
o T fme)  Muw)
(FD): Maximize [hl(u,v)"”’hk(u,v)]
Subject to
k
S i (B 0) Vi £ (1,0) — ity 0) Vi (1,0)
i=1
k
WP i (0, 0) W fiut,0) — i, 0) Vi a1 0))
i=1
w

[IA

1AV

1\

A

>

0

37

where for i € {1,2,---,k}, f' : R® x R™ — R, and h' : R* x R™ — R, \ {0} are twice

differentiable functions throughout the feasible region.

These are the problems studied in [12] with the constraints x = 0 removed from (FP) and

v 2 0 removed from (FD). Our problems do not include the constraints Zui = 1 that appears in

3. Duality

For notational convenience, we rewrite the primal and dual problems as follows.

(EP): Minimize p = (pl,pg, e ,pk)
Subject to

fl(‘/vay) _pihi(fvay) = 07 (&S {1727 Ty k}
D N(Vyfi(x,y) — pP'Vyhi(2,y)) £ 0
=1

k
yT Y N (Vyfi(z,y) — p'Vyhi(x,y)) 2 0

i=1
A>0
(ED): Maximize g = (ql, g, qk)

Subject to

i=1
the problems of [12] as it is not needed for the duality results to hold. Also, see Remark 1.
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fi(uav)_qihi(uav) :Oa (S {1a2a"'7k} (5)
Z)\’(waz(u,v) —¢'Vzh'(u,v)) 20 (6)
k . . . .
ul Z A (Vaef(u,v) — ¢"'Vih' (u,v)) £ 0 (7)
i=1
A>0 (8)

Remark. The problems (EP) and (ED) serve as parametric equivalent of (FP) and (FD) respec-
tively. It is important to note that for the equivalence between (FP) and (EP), the variables
k k

and A\ are related by \* = u'h’(z,y). Therefore, Z pt =1 does not imply Z)\i = 1 in general.
i=1 =1

k k
Thus if the equality constraints Z pt =1 and Z)\i = 1 are included in the problems (FP) and
i=1 i=1
(EP) respectively, the two problems are not equivalent in general. It seems that this observation
went unnoticed in Weir [12] while writing parametric equivalent of the multiobjectiove fractional
programs. Moreover, since these equality constraints play a very important role in the study of
Wolfe type duality and not in the Mond-Weir type duality being studied here, this approach can
not be followed for Wolfe type duality multiobjective fractional programming.
The following duality theorems are established in terms of (EP) and (ED) as these are equally
applicable to (FP) and (FD). We shall use Z and W for the set of feasible solutions of (EP) and
(ED) respectively.

Theorem 1. (Weak Duality). Let (z,y,\,p) € Z and (u,v, A, q) € W. Assume that

(A1): AY(fH(,y) — PR () + - - AF(FRE(,y) — pPRF(., 7)) is pseudo-invex with respect to n with
n(z,u) +u = 0.

(A2): —X(fY(z,.) — ¢*hl(x,.)) — --- — (N*(fF(x,.) — ¢*Rh¥(z,.)) is pseudo-invex with respect to n
with n(v,y) +y = 0.

Then p # q.

Proof. The relation (6) together with n(z,u) + u = 0 implies

k
(2, w) +w)]" [ Y N (Vafi(u,v) = ¢'Vah'(u,v)) ] >0
i=1

or, using (7), we have

k
T (x,u) [ > N(Vefi(u,v) — ¢'Vahi(u,v)) ] >0

i=1

This, because of pseudo-invexity condition (A1), yields

k k
Z)\i(fi(a:,v) ¢'h(z,v)) 2 Z (f(u,v) — ¢"h(u,v))
i=1 i=1

In view of (5), the above inequality gives
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k

ZAZ(fZ(xv U) - qihz(xv U)) 2 0 (9)

i=1

From (2) and (3) together with n(v,y) +y = 0, we have
k . . . .
Z)‘Z(vyfl(xay) —plvyhl(x,y)) Z 0
Because of pseudo-invexity condition (A2), this implies
k . . . .
—Z)\Z(fl(x,v — p'hi(z,v) Z)\Z iz, y) — p'hi(z,y))

and from (1), we have

k
=) N (fi(2,v) - p'hi(z,0)) 2 0 (10)
=1
Adding (9) and (10), we have
k
D Nhi(@,0)(p' —¢') 20 (11)
=1

Now suppose p < ¢, i.e., p" < ¢", for some r and p* < ¢¢, for all 5 # 7.
Then, since h(z,v) > 0 and A > 0,

A'(p" = ¢q")h"(z,v) <0

and

Z A(p' — ¢)hi(z,v) £0
1=1
1#£T

Combining the above inequalities, we have

k
D X' — )i (z,v) <0
i=1
which contradicts (11). Hence p # q.
In the following theorems (ED) o0 and (EP) o respectively denote the problems (ED) and (EP)
when ) is fixed to be A%, and Zyo and Wyo denote their feasible regions.

Theorem 2. (Strong Duality). Let (2°,4° A% p°) be a weak efficient solution for (EP) and let
the invexity hypotheses of Theorem 1 be satisfied for (2°,4°, A%, p°) € Z and each (u,v,q) € Wo.
Assume that

k
(B1): Z)\Oi(vyyfi(xo, y°) — p%(V,,h' (20, y?)) is positive or negative definite
i=1
2): and the set —p , —-p AR —p is linearly
B d th Vyft =" (Vyht), (Vy 2 — p"%(V,h2 VyfF — po% (v, hk 1 1
independent.



40 T.R. Gulati, I. Husain and A. Ahmed

Then (2°,7°,p°) is a properly efficient solution of (ED)o.

Proof. Since (z%,4%, )\ p%) is a weak efficient solution of (EP), there exist « € R¥, 3 € RF,
v € R™, 6 € Rand v € R such that the following Fritz-John conditions [3] are satsified at (2°,y%):

al — B = NV, (y - 0y°) =0, i€ {1,2,---,k}

k k
Zﬁl(vwfl — p"(Vh') + Z)‘Oi(vymfi - pOivywhi)(’Y —0y°) =0
i=1 =1
D (B = 0N (VT = pMVyh) + Y A (Vi f' = pVy b (y = 0y°%) = 0
i=1 =1

(v— GyO)T(Vyfi — "V, A v =0 ie{1,2,--- k}
A =0
(a,7,0,v) 20

(a’ﬂ”}/?eﬂy) #O

Relation (16), because of A’ > 0 and v = 0, implies v = 0 and consequently (15) becomes

(v — 09T (V, fF — p"V,hi) = 0 ie{l,2, -k}
Multiplying (14) by (v — 0y") and using (19), we get

k
(y—0y")" Z)‘Oi(vyyfi - pOivyyhi) (y—0y°)=0
i=1

which because of Hypothesis (B1) gives
v—0y° =0
Therefore from (14), we have

k
D (B = 0N")(Vy fT = pVyh') =0

i=1
This, in view of the Hypothesis (B2), yields

B — oY =, ie{1,2,---,k} giving

B—0X° =0

(12)

(13)

(21)

If # = 0, then equations (20) and (21) yield v = 0 and 8 = 0 respectively. Therefore, equation
(12) implies a;; = 0, for each ¢ € {1,2,- -k}, i.e.,, « = 0. Thus («, 3,7, 6, u) = 0, which contradicts

(18). Hence 6 > 0.
Using (20), equation (13) yields

k
=1
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which along with (21) and 6 > 0 gives

k
D AV ff - VLR =0 (22)
i=1
Thus (20,9, p) is feasible for (ED)yo and the two objectives are equal to p°. Now similar to
the proof of Theorem 2 in [17] it can be shown that (x°,y°, p%) is properly efficient for (ED)yo.
A converse duality theorem can simply be stated as its proof would be analogous to that of
Theorem 2.
Theorem 3. (Converse Duality). Let (u%,v% A%, ¢%) be a weak efficient solution of (ED) and let
the invexity hypotheses of Theorem 1 be satisfied for (u°,v% \°,¢°) € W and each (x,,p) € Z)o.
Assume that

k

(C1): Z)\Oi(vmfi(uo, v0) — ¢V . h¥ (u®,0?)) is positive or negative definite and
i=1

(C2): the set {Vyf! — g™V hl), - (Vo f* — ¢®*V,h¥)} is linearly independent.

Then (u®,v°,¢°) is a properly efficient solution of (EP),o

4. Self Duality

Let z,y,u,v,€ R™ and

[y fwy) fF(a,y)
Lwy) = [h%x,y)’ Ry hk(x,w]

The problem (FD) can be written as
1 k
(FD):  Minimize —L(u,v) = [_f (u, ) f (u,v>]

Al(u,v)’ 7 RE(u,v)
Subject to
Z#’Z(_hz(uav)vwfi(uav)+fi(uvv)vﬂvhl(uvv)) é 0
i=1
TZ;J, —h* (u, )V fi(u,v) + F(u,v)Vihi(u,v)) = 0
p > 0

If f? is skew symmetric and A’ is symmetric for i = 1,2, - -, k, then

fi(ua U) = _fi(va u)a hz(uv U) = hi(va u)
and
foi(u,v) = —Vyfi(v, u), Vxhi(u, v) = Vyhi(v,u)

Therefore, the above problem becomes

o _[fy) e
(FD)l- Minimize L(U, U) - hl(u, 'U) T hk(’l), ’LL)

Subject to
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k
Y (B (0, u)Vy f (v, u) = f(v,u)Vyhi(v,u)) 0

i=1

k
uTZ,ui(hi(v,u)Vyfi(v,u)—fi(v,u)Vyhi(v,u)) = 0

i=1
uw > 0

This shows that (FD)! is formally identical to (FP), i.e., the objective and constraint functions
of (FP) and (FD)! are identical. Thus the problem (FP) is self dual. Also, the feasibility of (z,y, \)
for (FP) implies the feasibility of (y,z,\) for (FD) and vice-versa.

Theorem 4. Let f' be skew symmetric and A’ be symmetric for each i € {1,2,---,k}. Then
the problem (FP) is self dual. Also, if (FP) and (FD) are dual problems and (z°, %, \%) is a joint
properly efficient solution, then so is (y°, 2%, \%), and

L(z%,y°) = L(y°,2°) = 0
Proof. The above discussion shows that (FP) is self dual. Since (z°, %, \?) is properly efficient to
the problem (FP) and (FD), their objective functions are equal to L(z?,y").

From self duality, (z,y,\) is feasible for (FP) if and only if (y,z,\) is feasible for (FD).
Therefore (20,30, \Y) is properly efficient for (FP) implies proper efficiency of (3°, 2%, A\%) for (FD).
By similar arguments (y°,2°, A\?) is properly efficient for (FP). Also, the two objective functions
are equal to L(y°, 2°). Therefore

L(xoa yo):L(yOa $0): - L(xov yO)

by skew symmetry of f*(z,y) and symmetry of h(z,y). Hence
L(z%,y°) = L(y°,2%) = 0
5. Special cases

(i) If in (FP) and (FD), hi(z,y) = 1, i € {1,2,---,k}, we obtain multiobjective symmetric dual
problems of Weir and Mond [13], where duality theorems are proved under somewhat less general-
ized convexity hypotheses.

(ii) If in (FP) and (FD), k = 1, then we obtain a pair of scalar symmetric dual fractional programs
with the omission of non-nagativity constraints, studied by Chandra, Craven and Mond [1].
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Abstract. For any matrix sequence B = (b, (2)), Fp-convergence was introduced by Steiglitz.
In this paper, we have defined Fg-translativity and consistency and also characterized these
type of matrices.

1. Introduction, Definitions and Notations

Let T = (tnx) be an infinite matrix of real or complex numbers. A number sequence z = (xy) is

o0

called T-summable to [ if the series T),(x) = Ztnkxk = Ztnkxk convergence for all n € N, the set
k k=1

of positive integers and lim 7},(z) = [. For any two sequence spaces X and Y, we write T € (X,Y)

if Az € Y for each z € X. If X and Y are equipped with X — lim and ¥ — lim, 7" € (X,Y) and
Y —lim Az = X — limz for each € X, then we write T € (X,Y),¢g.

In the classical theory of summability, the matrix methods have an essential role. A well-known
example of matrix methods of summability is Cesdro method Cy = (¢,) defined by

, ifk<n
Cnk =

0 , otherwise

Also, there exists non-matrix methods of summability. The well-known example of these type of
methods is almost convergence which is originally defined by Banach limits. Lorentz [l] showed
that a sequence x = (z},) is almost convergent to [ if and only if

! Keywords and phrases : F-convergence, double sequences, dual matrix sequences.
2 AMS Subject Classification : 40C05, 40D05.
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1 n
hyanE ];xk_H: =1

uniformly in i. By f we denote the set of all almost convergent sequences.

The almost convergence may be generalized by using invariant means ([4]). Let o be a one-
to-one mapping from N into itself. An element ¢ € B;o, the conjugate space of the space of all
bounded sequences £, is called an invariant mean or a o-mean if and only if

(i) ¢(z) > 0 when the sequence z = (zy) has z; > 0 for all £,
(ii) ¢(e) =1, where e = (1,1,1,...),
(iii) ¢((z(x))) = ¢(z) for all z € m.
Let V, be the set of bounded sequences all of whose o-means are equal. It is shown that

Vo={xem: lizl)n tpn(x) = s uniformly in n, s =0 —limx}

where
tpn(x) = (J,‘n + Lo(n) +oo :Bap(n))/(p + 1)7 tfl,n(x) =0

Let B be a sequence of infinite matrices B! = (b, (7). For a given sequence x = () we
write B} (z) = men(i)mn if it exists for each m and ¢ > 0. We also write Bz for (B, (z))5

i,m=0"

n
A sequence x € {y is said to be Fg-convergent [5] to a number s if
1%1131‘ = liﬁLanmn(i)xn =35
n

uniformly in ¢ and in this case we write Fg — limx = s. By Fi and Fjyg, we denote the space
of all F-convergent and Fp-convergent to zero sequences, respectively. The space Fp depends on
choosing the sequence B = (B?) of infinite matrices. For example, if we define B* = (I) for all i,
the unit matrix, then Fi = ¢, the space of all convergent sequences. In the case

1
el 1<n<i+m

bn(i) =4 ™ T (1.1)

0 , otherwise

then Fp = f. If we define by, (7) by
1 o .
1 n=o0'(i), 0<j<m

bn(i) =4 ™ T (1.2)

0 , otherwise

then Fg =V,.
Throughout the paper we write

IB]| = sup b (i)] < 00

myi o
to mean that, there exists a constant IV such that

> |brn(@)] < N for all m,i
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and the series

> bmali)

n

converges uniformly in ¢ for each m. In what follows we shall consider only the sequence B such
that ||B|| < oo.
A matrix T is said to be translative [3, pp.21] if

Jim. ; (tnkxk — tupTr—1) =0

for every x € £, and it is known that T is translative if and only if

hm Z ltnk — tnkt1| =0

The translativity was extended to f-translativity in [2].
Convergence domain cr of a matrix T is the set of all T-summable sequences, i.e.,

cr ={z:Tzx €c}

The matrices T and U are said to be consistent [6, pp. 13] if lim Tz = lim Uz for all € cr N ¢y .
In this paper, we have introduced new type of translativity and consistency - F-translativity
and Fp-consistency and also characterized these type of matrices.

2. Fi-Translativity
Definition 2.1. A matrix T' = (t,x) is said to be Fp-translative if

117}}12 > b (1) (tnk®k — tok®r—1) =0
"

for x € 4

In the case B = (I), Fp-translativity is same as the translativity. If we choose B by (1.1), then
Fp-translativity reduces to the f-translativity. Also, when B is choosen as in (1.2), Fp-translativity
is said to be the o-translativity.

Now, we will characterize Fp-translative matrices. Firstly, we need a lemma.
Lemma 2.1. ([5]) T € (Y, Fop) if and only if

||| = supZ|tnk\ < 00
"ok
hmZ\men tnk] =0 uniformly in i
Theorem 2.1. Let ||T]| = sup2|tnk| < 00. Then, T is Fp-translative on {o if and only if

hmz ‘ Z bin (1) (Enk — tn,k+1)‘ =0 uniformly in i. (2.1)

Proof. Let T be Fp-translative and define a matrix C = (¢x(7)) by

emp (1 men tpr for all m,k,i € N

Now, for any = € £, we can write

K-1
> (i) (wp — 25—1) = D [emk(i) — Cmp41(9)] Tk + emi (DK
k=1
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Since ||B]| < oo, li}l{n ¢mi (1) = 0 uniformly in 7. So, we get

Y emn(@) (x5 = xp-1) = Y lemn(d) = empra ()] o (2.2)
k k
On the other hand, since T is Fp-translative, the matrix D = (dpyx(¢)) defined by
dmk(i) = (i) — cmpt1(2) for all m,k,i € N is in the class ({s, Fog). So, the necessity of
the condition (2.1) follows from Lemma 2.1.
Conversely, suppose that (2.1) holds. Then, we can write again (2.2) for any x € £. So, (2.1)
implies that

h,}}lz emk (1) (g — Tp—1) = 0
K

uniformly in i. Therefore, T is F-translative and the proof is completed.
3. Fp-Consistency

Definition 3.1. The set (Fg)r = {z : Tx € Fpg} is said to be Fp-convergence domain of the
matrix 7.

Note that in the case B = (1), (Fp)r = c.

One can expect a connection between Fg and (F)7. In the next theorem we investigate such
a connection for some special matrices T'. Firstly, we need to explain the concept of triangle matrix.
A matrix T is called triangle [6, pp. 7] if t,x = 0, k > n and ¢, # 0 for all n. If T is triangle,
then it has its reciprocal, say T~ = (¢ }).
Theorem 3.1. Let T be a triangle matrix. Then (Fg)r is isometrically isomorphic to Fp.
Proof. Let us define a mapping G from (Fp)r to F by

G:(FB)T — FB
r — Gx=Tz

Then, clearly G is linear and since T is triangle, G is one-to-one and onto. Also, ||Gz||p = || Tz|B
for all x € Fg, where

1Tl = 5up " | > bran (i)t

m,t k

Hence, G is an isometry and this completes the proof.
Definition 3.2. Let T and U be any two matrices. U is said to be Fg-stronger than 7T if and only
if (Fg)r C (F)y.
Theorem 3.2. Let T and U be triangle matrices. Then, U is Fp-stronger than T if and only if
UT'e (FB,FB).
Proof. Suppose that U is Fp-stronger than T and let x € Fg. Then, since (Fg)r C (Fp)vu,
T~z € (Fg)r C (Fg)y and so, UT 'z € Fg. Therefore, UT ! € (Fg, Fp).

Conversely, let UT~! € (Fg, Fg) and = € (Fg)7. Then, Tx € Fp and so

Uz = (UT YTz € Fp

Hence, z € (Fp)y and U is Fg-stronger than T
For the proof of next theorem we need a lemma which can be proved easily.
Lemma 3.1. T € (Fyp, Fp) if and only if ||T'||5 and

117512 b () tng, = 0

uniformly in 3.
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Theorem 3.3. Let T be triangle matrix such that Fg — lim7,,, = 0. Then, there is at least one
unbounded sequence for which Fp — lim Tz exists.
Proof. Since T is triangle, U = T~! exists and R = () = (1/t,x). Also, since

sup2|bmn(i)rkj|

myi

[Fdyo®

v

| (4) k5

[brn (4)|

[tnn
and limt,, =0, ||T||r; = co. Hence, by Lemma 3.1, there exists an « € Fyg for which Rz is not
bounded. But

T(Rz) =T(T 'x) =z € Fyp

which means that Rz € (Fg)r. This completes the proof.

Now, we will give the definition of F-consistency.

Definition 3.3. The matrices T and U are said to be Fg-consistent if Fg —limTz = Fg —limUx
whenever z € (Fp)r N (EFp)y.

Note that in the case B = (I), Fp-consistency reduces to the consistency. Also, when B is
choosen as in (1.1) and (1.2), Fp-consistency is reduced to be f-consistency and o-consistency,
respectively.

If U is Fp-stronger than 7" and Fi-consistent with 7', then we write U Cg, T
Theorem 3.4. Let T and U be two triangle matrices. Then, U Cp, T if and only if the matrix
UT !¢ (FB, FB)reg-

Proof. Let T' Cp, U. Since U is also F-stronger than T', by Theorem 3.2, UT~! € Fg. Also, by
the definition

Fg—lmUT 'z = Fg—limU(T ')
Fg—limT (T 'z)
= Fg—limzx

Therefore, UT ! € (F, FB)reg-
Conversely, suppose that UT ! is Fz-regular. Then, from Theorem 3.2, U is F-stronger than
T. Hence, (Fg)r C (FB)u. Now, if x € (Fg)r N (FB)u = (FB)r, then

Fg—limUz = Fg—limU(TT 'z)
= Fg—limUT }(Tx)
= Fp—1limTx
This means that U Cp, T and the proof is completed.
References
[1] Lorentz, G. G. : A contribution to the theory of divergent sequences, Acta Math., 80 (1948) 167-190.

[2] Orhan, C. and Sarigdl, M. A. : On F- Absolutely Translative Summability Methods, Indian J. Pure
and Appl. Math., 20 (1989) 893-898.

[3] Petersen, G. M. : Regular Matriz Transformations, McGraw-Hill Publ. Comp. Lim., London, (1966).

[4] Raimi, R. : Invariant means and invariant matriz methods of summability, Duke Math. J., 30 (1963)
81-94.

[5] Stieglitz, M. : Eine verallgenmeinerung des begriffs festconvergenz, Math. Japon., 18 (1973), 53-70.

[6] Wilansky, A. : Summability Through Functional Analysis, Elsevier Sci. Publ., New York, (1984).



The Aligarh Bull. of Maths.
Volume 24, Nos. 1-2, 2005

SYMMETRIC GAUSS LEGENDRE QUADRATURE FORMULAE
FOR COMPOSITE NUMERICAL INTEGRATION OVER A
TETRAHEDRAL REGION' -

H. T. Rathod*. B. Venkatesh™ and K. V. Nagaraja™

*Department of Mathematics, Central College Campus, Bangalore University,
Bangalore 560 001, India
E-mail: htrathod@yahoo.ccm

**Department of Mathematics, Amrita School of Engineering, Bangalore 560 035, India
E-mail: venkateshoxford1234@yahoo.com

E-mail: nagarajaitec123@yahoo.com

(Received April 28, 2005)

Abstract. In this paper we first present a Symmetric Gauss Legendre Quadrature method for

numerical integration of I = /f/ f(z,y, z)dzdydz, where f(z,y,z) is an analytic function

T

in z,y,z and T is the standard tetrahedral region: {(z,y,2) |0 < z,y,2, S L,z+y+2 < 1}
in the three space (z,y,z). We then use a transformation z = z(§,7,¢), y = y(&,m,¢) and
z = z(€,7, () to change the integral I into an equivalent integral

111
= . B(I,y, 2) .
__/1.;[-/1' f(I(ﬁyana y(éynv C)) "(Ev":()) 6({7 n—“—’g)dgdf)dg

over the standard 2-cube: {(¢,1,{) | =1 < £,1,{ < 1} in (€,7,¢) space. We then apply the
one-dimensional Gauss Legendre Quadrature rules in £, 7 and ¢ variables to arrive at an efficient
quadrature rule with new weight coefficients and new samplmg points. We then ptopose the
discretisation of a standard tetrahedral region T into p* tetrahedral regions T; (i = 1(1)p")
each of which has volume equal to 1/6p*) units. We have again shown that the use of affine
transformations over each T, and the use of linearity property of integrals leads to the result

1.."
I:/// f(z,y, z)dzdydz Z/// f(z,y, z)dzdyd:z
T =17 5
= ///f lu;.\ (u,p) Zm"‘)dz "l')dy’"’"dz )

o= ‘ )

- %/// H(X,Y, Z)dXdYdZ
Pl
"ﬂ

where H(X,Y,2) = Y f(='""(X,Y, 20 P(X,Y, Z) (X, Y, Z)), 2 =2 (X)Y, Z),
a=1

Yo = (XY, Z) and 2" = 2(*P)(X,Y, Z) refer to the affine transformations which map

I

Keywords and phrases : Finite Elem~nt Method, Composite Numerical Integration, Tetrahedral
Regions, Gauss Legendre Quadrature Rules, Triangular Prisms.
AMS Subject Classification : 65D30, 65D32, 65L60.



52 H. T. Rathod, B. Venkatesh and K. V. Nagaraja

each T in (z!"#) ylo] 2000y space into a standard tetrahedral region T in (X,Y, Z) space.
We can now apply Gauss Legendre quadrature formulae, which are derived earlier for evalua-

1
tion of the integral I to the integral 7/]‘[ H(X.Y,Z)dXdYdZ We observe that the above
P
g

procedure which clearly amounts to the composite numerical integration of T and it converges

to the exact value of the integral %f[f H(X,Y, Z)dXdYdZ, even for the lower arder Gauss
o

Legendre Quadrature rules. We have demonstrated this aspect by applying the above composite
integration method to some typical triple integrals.

1. Introduction

In recent years, we have been witnessing finite element method (FEM) gaining importance due to
the most obvious reason that it can provide solutions to many complicated problems that would
be intractable by other numerical techniques [14,27]. In FEM it may be possible to perform some
of the integrations analytically, particularly if constant or linear elements are nsed to discretise
the surface or boundary curve of the given region. However, with higher order elements or for
more complex distorted elements the integrals become too complicated for analytical integration
and the numerical integration is essential, among various integration schemes, Gauss Legendre
quadrature which can evaluate exactly the (2n — 1) order polynomial with n-Gaussian points
is most commonly used in view of the accuracy and efficiency of calculations [2]. The triangular
and tetrahedral elements are very widely used in finite element analysis. The versatility of these
clements can be further enhanced by improved numerical integration schemes.

Mathematically, the problem can be defined as the evaluation of the following integrals

11-L,
u=j / Bk, Ly, LyjdbsdLs (1)
0 0

where Ly, Lo, L3 are the well known area co-ordinates and

11-Ly1-L;—-L;
]]}':ff [ G(Ly, La, Ly, Ly)dLydLodL, (2)
000

where Ly, Lo, L3, Ly are the well known volume co-ordinates.

The basic problem of integrating an arbitrary function of two variables over the surface of
the triangle, were first given by Hammer, Marlowe and Stroud (11], and Hammer and Stroud
(10,12]. Cowper [7] provided a table of Ganssian quadrature formulae with symmetrically placed
integration points. Lyness and Jespersen [20] made an elaborate study of symmetric quadrature
rules by formulating the problem in polar coordinates. Lannoy [16] discussed the symmetric 4-point
integration formula, which is presented in [7]. Laurie [17] derived a 7-point integration rule and
discussed the numerical error in integrating some functions. Laursen and Gellert (18] gave a table
of symmetric integration formulae up to a precision of degree ten. Dunavant [8] presented some
extensions to the integration formulae given by Lyness and Jespersen [20] and also gave tables of
integration formulae with precisions of degree from eleven to twenty. Sylvester [26] derived some
numerical integration formulae for triangles as product of one-dimensional Newton Cotes rules of
closed type as well as open type. The precision of these integration formulae is limited to of degree
ten atmost for various reasons. Lether [19] and Hillion [13] derived the formulae for triangles as
product of one-dimensional Gauss Legendre and Gauss Jacobi quadrature rules. The precision of
these formulae is again up to degree seven. This is because of the zeros and weight coefficients of
Gauss Jacobi orthogonal polynomials with weight functions z, z2, 23 were available for polynomials
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1
of degree up to six only. Even today the zeros and weights for the integral fz’f(z)dz, r=1,2.3
0

are not available beyond a formula of order-eight as documented in Abramowicz and Stegun [1].
Reddy [24] and Reddy and Shippy [25] derived 3-point, 4-point, 6-point, 7-point rules of precision
3,4,6 and 7 respectively, which gave improved accuracy. Since the precision of all the formulae
derived by the authors is limited to a precision of degree ten and it is not likely that the techniques
can be extended much further to give a greater accuracy which may be demanded in future. Lague
and Baldur [15] proposed product formulae based only. on the roots and weight coefficients of Gauss
Legendre quadrature rules. By the proposed method of [15] this restriction is removed and one
can now obtain numerical integration of very high degree of precision as the derivation now rely
on standard Gauss Legendre Quadarature rules. However, Lague and Baldur [15] have not worked
out explicit weight coefficients and sampling points for application to integrals over a triangular
surface. Rathod et al [21,22,23] provided this information in a systematic manner in their recent
works. For tetrahedral regions, four volume coordinates Ly, Lo, L3, L4 are involved and we have to
compute numerically the integral stated in eqn.(2). Numerical integration formulae of with a degree
of precision d = 1,2, 3 are listed in Zienkiewicz [27] and these are based on reference [11]. Numerical
integration formulae of higher precision than cubic are not available in the current literature and
hence we propose here the derivation of higher order formulae for tetrahedral regions.

Integration formulae resulting from interval subdivision and repeated application of a low
order formula are called composite numerical integration formulae [3,4,6,9]. One of the ways to
reduce the error associated with low order integration formula in one-dimension is to subdivide
the interval of integration, say, [a, b] into smaller intervals and then to use the formula separately
on each subinterval. We adopt a strategy similar to the above which is normally used for the
treatment of line integrals over an arbitrary shaped curves for evaluation of triple integrals also.
We segment the given region into sub-regions and effect a transformation over each sub-region
into a standard region. The success of this strategy follows from the linearity property of triple
integrals. Repeated application of low order formula is usually preferred to the single application
of a high order formula, partly because of the simplicity of lower order formulae and partly because
of computational difficulties; one such difficulty is due to the errors introduced because of only a
fixed, usually small number of digits can be retained after each computer operation. In addition,
there exist many functions for which the magnitude of the derivative increases without bound
as the order of differentiation increases. Therefore a higher order formula may produce a larger
error than a lower order one. It is in view of this fact that the numerical integration formulae
employing more than eight points (for Newton Cotes rules) are almost never used. We feel that
these important details cannot be simply ignored, and they need to be addressed in great rigor.
Hence the derivation of algorithms for composite numerical integration formulae over dimensions
higher than one is important for practical applications and it should be used wherever necessary.
One of the purposes of this paper is to evolve a practical and workable algorithm for composite
numerical integration over tetrahedral regions by using the well known Gauss-Legendre Quadrature
rules.

2. Formulation of integrals over a tetrahedron

The finite element method for three-dimensional problems with tetrahedron element requires the
numerical integration of expressions containing product of shape functions and their global deriva-
tives over a standard tetrahedron T with coordinates (0,0,0), (1,0,0), (0,1,0) and (0,0,1) in the
natural coordinate space (z,y,2) say. Since either an affine or an iscparametric coordinate trans-
formation makes it possible to transform any tetrahedron (either a linear or curved) into global
coordinate system, say (X, Y, Z). We thus have to consider the numerical integration over a stan-
dard tetrahedron T. The numerical integration of an arbitrary function f, over the tetrahedron T
is given by
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I=/// f(x,y,z)da:dydz:/ldz l/‘Idyl_/.x_yf(ac,y.z)dz
T 0o 0 0

1 -z l-z-y
:/dy/dx / flz,y,2)dz @
0 0 0

It is now required to find the value of the integral by a quadrature formula

N

I= Z Cmf(l'm,yma zma) (4)

m=1
where ¢, are the weights z,, ym, zm associated with the sampling points and N is the number of
pivotal points related to the required precision.
The integral I of eqn. (3) can be transformed into an integral over the cube: {(u,v,w) | 0 <
u,v,w,< 1} by the substitution

z =uwvw,y = uw(l —w),z=u(l - (5)

Then the determinant of the Jacobian and the differential volume are

9z 9z Oz
Ju v dw
oz.y,2) _|oy ay o 2
O(u,v,w) T
9z 9z 0Oz
o w
and
dodydz = | 2292 | udvdw = w2 dudvdw (6)
O(u,v,w)

Then on using eqns. (5) and (6) in eqn. (3); we have

1 [l-z[l-z-y
I =b/ / { / f(z‘y,z)dz} dyjl dx

LO 0

= /ljjf(uvw, uv(l — w),u(1 - v)) x v*vdudvdw (7)
000

The integral I of eqn. (7) can be further transformed into an integral over the standard 2-cube:
{(€&,m,¢) | =1 < &,n,¢ < 1} by the substitution

(1+¢ (1+n) (1+9¢)

= 2 § V= 2 JWw = 2 (8)
Then clearly the determinant of the Jacobian and the differential volume are:
o(u,v,w) 1 o(u,v,w) 1
———— = — and dudvdw = ————>dfdnd( = -d€dnd 9
B(EmC) 8 3(E,7,0) e = geeende @

Now on using eqns. (8) and (9) in egn. (7), we have

1 [l-z[l-z-y .
I=0/ [/ I: / f(z,w,z)dz] dy] dz

0 0
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jflflf (119141040 (+00+90-0) @+gU-),
8
-1-1-1

2 \
x %(—l—i—n—)dﬁdndc (10)

Equation (10) represents an integral over the standard 2-cube: {(£,7,{) | -1 < &,7n,( < 1}
Efficient quadrature coefficients are readily available in the literature so that any desired accuracy
can be obtained [1].

From eqns. (4) and (10), we find that

fljjf 1+E(1+n)(1+() (1+A+mA -9 1+£)1—n)
’ 8 K 4

2 a A 9 1 (021
X(1+§Li1+7])dgdndcxzzz +&; )( +’?_1 )

i=] j=1k=1

(@) 1B s (7)
W wow,Y

1 +&)a+ 7?0 +¢7) a+eN+a0-6") @+690 -2)
xf 8 8 ’ 3 ’

N=(a+B+7)

= E Cmf(xmv Ym,y Zm,) (11)

m=1

where, it is obvious that

QPO ey, AHETDE )0+ GT)

64 B » 8

, ¢la) (5} (2] (a) (8)
1+¢ 1 ; 1 ;
i (A+&M1+n7"H1-( )andz _( +& )1 -n") (12)
8 ' 4

in which {}“',n] ,¢y”) are the sampling points and Wi{“)W;'ii}W,Eﬁ’ are the corresponding weight
coefficients of Gauss Legendre Quadrature rules of order a, 3 and v respectively. Though quadra-
ture tules of orders ie., @ # 3 # 7 can be used, for convenience we derive the formulae with
a =3 =~ = s (say). The weight coefficients ¢,, and corresponding sampling points .., ¥m, zm of
various orders ie., s = 2,3,4, etc can be now easily computed by formulae of eqn.(12) and the ap-
proximation to the integral I can be then computed by eqn.(11). We have listed here a C-Program

which generates ¢, Tm,%m,zm and then computes the integral I = /f/ flz,y,2)dzdydz for

T
some sample functions f(z,y,z). We have also given here a sample output of the C-Program for
n = 2 and 3.
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2.1. C-Program for generating Sampling points (X, Y., Z) and Weight coefficients (c,,)

#include<stdio.h>

#include<conio.h>
#include<math.h>

main()

{

int i,),k,n;

double xm. ym. zm, cm, a[20], w[20];

clrscr();

printf("Enter the value of n=");

scanf("%d". &n);

printf("Enter the values of alphas (a's)");

for(i=1;i<=n;i++)
scanf("%If", &ali]);

printf("Enter the values of weights (w's)");

for(i=1;i<=n;i++)

scanf("%If", &w[i]);
printf(" Xm

for(i=1:i<=n;i++)

{ for(j=lj<=nij++)
{ for(k=1;k<=nk++)
{

ym

zm cmn”);

xm = (I+ali])y*(1+a[jI)*(1+a[k])/8;
ym = ([+aliD*(1+alj])*(1-a[k])/8;
zm = (1+a[i])*(1-a[j])/4;
cm = pow( 1 +a[i],2)*(1+a[j])*wli]*w([j]*w([k]/64;
printf(" %0.151f %0.15lf %0.151f %0.151f\n",xm,ym,zm,cm);
1

0.035220810900864
0.035220810900864
0.131445855765802
0.035220810900864
0.131445855765802
0.131445855765802
0.490562612162344

0.001431498841332
0.011270166537926
0.006350832689629
0.011270166537926
0.088729833462074
0.050000000000000

0.009437387837656
0.131445855765802
0.035220810900864
0.131445855765802
0.035220810900864
0.490562612162344
0.131445855765802

0.166666666666667
0.044658198738520
0.044658198738520
0.622008467928146
0.622008467928146
0.166666666666667
0.166666666666667

n=3

0.011270166537926
0.001431498841332
0.006350832689629
0.088729833462074
0.011270166537926
0.050000000000000

0.100000000000000
0.100000000000000
0.100000000000000
0.012701665379258
0.012701665379258
0.012701665379258

getch();
}
2.2. Sample output for n =2 and 3
X Vi m Cm
n=2
0.009437387837656  0.035220810900864  0.166666666666667  0.001179673479707

0.001179673479707
0.004402601362608
0.004402601362608
0.016430731970725
0.016430731970725
0.061320326520293
0.061320326520293

0.000030681988197
0.000030681988197
0.000049091181116
0.000241558782106
0.000241558782106
0.000386494051369



0.006350832689629
0.050000000000000
0.028175416344815
0.011270166537926
0.088729833462074
0.050000000000000
0.088729833462074
0.698568501158667
0.393649167310371
0.050000000000000
0.393649167310371
0.221824583655185
0.006350832689629
0.050000000000000
0.028175416344815
0.050000000000000
0.393649167310371
0.221824583655185
0.028175416344815
0.221824583655185
0.125000000000000

0.050000000000000
0.006350832689629
0.028175416344815
0.088729833462074
0.011270166537926
0.050000000000000
0.698568501158667
0.088729833462074
0.393649167310371
0.393649167310371
0.050000000000000
0.221824583655185
0.050000000000000
0.006350832689629
0.028175416344815
0.393649167310371
0.050000000000000
0.221824583655185
0.221824583655185
0.028175416344815
0.125000000000000
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0.056350832689629
0.056350832689629
0.056350832689629
0.787298334620741
0.787298334620741
0.78729833462074 1
0.100000000000000
0.100000000000000
0.100000000000000
0.443649167310371
0.443649167310371
0.443649167310371
0.443649167310371
0.443649167310371
0.443649167310371
0.056350832689629
0.056350832689629
0.056350832689629
0.250000000000000
0.250000000000000
0.250000000000000

0.000217792616242
0.000217792616242
0.000348468 185988
0.001901788268649
0.001901788268649
0.003042861229838
0.014972747367084
0.014972747367084
0.023956395787334
0.013499628508586
0.013499628508586
0.021599405613738
0.000966235128423
0.000966235128423
0.001545976205477
0.007607153074595
0.007607153074595
0.012171444919352
0.006858710562414
0.006858710562414
0.010973936899863

57

#include<stdio.h>

#include<conio.h>
#include<math.h>

main()

{

int i,j,k,n;

2.3. C-Program for Evaluation of Triple Integrals of Examples 1, 2, 3 and 4

double x,y,z, c, a[20], w[20], X, Y, Z, 11,12, I3, 14, 15, 16, 17, I8, 19, 110, I11,
S1=0, §2=0,53=0, S4=0, $5=0, S6=0, S7=0, $8=0, $S9=0, S10=0, S11=0;

clrscr();

printf("Enter the value of n=");

scanf("%d", &n),

printf("Enter the values of sampling points (a's)");

for(i=1;i<=n;i++)
scanf("%lIf", &ali]);

printf("Enter the values of weight coefficients (w's)");

for(i=1;i<=n;i++)
scanf("%lIf", &wli]);
for(i=1:i<=n;i++)

{ for(j=I;j<=n;j++)

{  for(k=1;k<=n;k++){
x = (1+afi])*(1+aj))*(1+a[k])/8;
y = (I+ali])*(1+a[jD*(1-a[k])/8;

z = (1+a[iD*(1-a[j])/4;
¢ = pow(I+a[i],2)*(1+a[j])*w[i]*w[j]*w[k]/64;

Il = c*sqrt(x+y+2);
S1=S1+Il;
12 =c*1/sqrt(x+y+z);
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S2 = S2+12;

I3 = c*1/sqrt(pow(1-x-y,2)+pow(z,2));

S3 = S3+I13;

14 = c*sin(x+2*y+4%*z);

S4 = S4+14;

I5 = c*pow(1+x+y+2,-4);

S5 = S5+I5;

X = 10-5*x-2%z; Y=5+5*%y+2%z; 7=8%z,
16 = 200*c*pow(X,2)*Y;

S6 = S6+16;

17 = 200*c*pow(X,2)*pow(Y,2);

S7=S7+17;

18 == 200*c*pow(X,4)*pow(Y,4);

S8 = S8+I8;

19 = 200%*c*(pow(X,2)*Y/sqrt(X+Y+Z));

S9 = S9+19;

110 = 200*c*(pow(X,2)*pow(Y,2)/sqrt(X+Y+Z));
S10=S10+I10;

111 = 200*c*(pow(X,4)*pow(Y ,4)/sqrt(X+Y+Z));
SI11=S11+111;

1)

printf("I1 = %0.151f\n",S1);
printf("I12 = %0.151f\n",S2);
printf("13 = %0.151f\n",S3);

printf("14 = %0.151f\n",S4);

printf("15 = %0.151f\n".S5);
printf("16 %0.151f\n",S6);
printf("17 = %0.151f\n",S7);
printf("18 = %0.151f\n",S8);

printf("19 = %0.151f\n",S9);
printf("110 = %0.151f\n",S10);
printf("I11 = %0.151f\n",S11);
getch();

)

3. Composite integration rule over the standard
tetrahedron T, by a discretisation of T into P? tetrahedra

We can discretise the standard tetrahedron T : {(z,y,2) | 0 < z,y,2z, < 1,z +y+z < 1} in (z,y, 2)
space into p® orthogonal tetrahedra each of volume 1/6x (1/px1/px1/p). For example, by choosing
p = 2, we can discretise T into 23 = 8 tetrahedra each of volume 1/6 x (1/2 x 1/2 x 1/2); and
choosing p = 3, we can discretise T into 33 = 27 tetrahedra each of volume 1/6 x (1/3x1/3 x 1/3).
We have developed here a discretisation procedure which works for composite integration rule with
8,27,64,125,216,343 and 512 tetrahedra, i.e., we have described here a procedure in terms of
parameter p, and by choosing p = 2,3, ..., 8, the discretisation of T into smaller tetrahedra of equal
size upto 512 is generated. We consider here the discretisation of Tk,p {(z,y,2) | 0 £ z,9,2,<
%,z +y+4+2z <1}, for k =1,2,3,---,8. We have now for k = 1, Tl,,,, a tetrahedron of volume

1/6 x (1/p x 1/p x 1/p) which is shown in figure 1. We have for k = 2, T» p, a tetrahedron of volume
1/6 x (2/p x 2/p x 2/p) which can be further discretised into 23 = 8 tetrahedra of equal volume
1/6 x (1/p x 1/p x 1/p) and this is depicted in figure 2. We have for k = 3, Tgvp, a tetrahedron of
volume 1/6 x (3/p x 3/p x 3/p) which can be further discretised into 33 = 27 tetrahedra of equal
volume 1/6 x (1/px1/px1/p) and this is depicted in figure 3. We observe that the depiction of Tk‘p,
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for k = 4,5, -8 is really complicated. It is interesting to note that Ta’p c Tg,p, for a < 3, and o, 3
as integers. This implies that Tl‘,, C Tgyp C Tg,p C TW C - Tgvp. Further, we note that Tk,p =T,
for k = p. These properties can be used to our advantage. We also see that depicting Tk,p for k > p
become complicated with each increasing k value. We have T,,,p =T, and it can be discretised into

p? tetrahedra each of equal volume 1/6 x (1/p x 1/p x 1/p). Let us denote TP, a tetrahedron with
s}

ol
index of a having volume 1/6 x (1/p x 1/p x 1/p). Clearly, we have T = TP = ZT&”). We can

a=1
transform each of these tetrahedra T[i’” , into a unit orthogonal tetrahedron 7' by the use of well
known affine transformations:

J:(""’)(X, Y,Z) = x4, + (Ta, — Td,)X + (To, — Ta,)Y + (Tc, — z4,)7
yP(X,Y, Z) = Ya, + Wau — Ydo) X + Ubn = ¥d.)Y + (Ve — Yd.)Z

2OPN(X|Y, Z) = 24, + (2a0 — 24,)X + (26, = 2d,)Y + (2e, — 2a,) 2, (@ = 1,2, ) (13)

where (aq, b, Cas da) are the nodes spanning four vertices of the Tép), this information is listed for
Tém. (a=1,2,---,512), p=2,3,---,8 and this information is depicted in the Figure 9.

The discretisation of T}, (k = 2,3, - 8) consists of cubes, triangular prisms and orthogonal
tetrahedra. Hence, one has further discretise the triangular prisms and cubes into orthogonal
tetrahedra and each of these are to be of volume 1/6 x (1/p x 1/p x 1/p). The procedure adopted
to subdivide the triangular prisms and cubes can be found in Zienkiewicz [27], Chandrupatla and

Belegundu [5]. This is explained here:
4. Division of a cube into two triangular prisms

We consider here a cube spanned by nodes <. j. k, I, m, n, o, p >. Figure 10 is self explanatory.

5. Division of a triangular prism into three tetrahedra

We consid;r here a triangular prism spanned by vertices: <i, j, k, I, m, n >. Figure 11 is self explanatory.
From the Figures 10 and |1, it is clear that a cube can be subdivided into six tetrahedra of equal size. Let

the cube of Figure |1 be denoted by C and the resulting tetrahedra be denoted by 7, then C = i T,. These
=1

tetrahedra are spanned by four vertices. The following Table-I describes this spanning.

Table I. Division of a cube spanned by vertices < i, j, k, , m, n, 0, p > into 6 tetrahedra

Tetrahedra Local nodes spanning the tetrahedron
(T)

1 2 3 4
Ty i P i p
T, i J p m
T; J p m n
T, ] k ! 0
Ts i 0 p m
Ts i P [ 0
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On using the above discretisation procedure explained in Figures | to 8 and the method of subdivision
of triangular prisms and cubes as explained in Figure 10 and Figure 11, the affine transformations of eqn.
(13) and the linearity property of integrals, we obtain

I I=xl=x—y

I'= _[”f(X,y,z)dxdydz = I I jf(x,y, z)dzdydx = J.Hf(x, y, 2)dxdydz
T 00 0 i

3

Kl

I
M

1 T.;

Sy 8
n

]
[

L

We have tabulated

[[[ferx,v.2),y " (X,¥,2),2°7 (X,Y,2))

’
T=) Ti"
a=|

e If(x“’”", y(“””,z(""’))d x(d,p)dy (@.p) g, (@.p)

a(x((l,[’) , y(a,p) , Z(af.p) |

d(x,v,2)

he expressions for nodal vertices spanning T,,fm <aa,ba,0a,da>

= 1.2 87 in Table Il , which are valid for p=2,34,5,6,7 and 8.

Table IL. Nodal vertices spanning 7,," <a,,b,,c,,d,>. a=12,...

(p)
I.> <a,.b..¢..48, >

(p)
1,"" <a,b,,c,,d, >

()
I, <d..0,:8,5d, >

T7\7<2,3,1,4>

T,7<5,6,2,10>

T;,7<6,7,3,8>

7,9<10,6,2,3>

7:"<10,6,3,8>

T6"<3,4,10,2>

7,9<10,3,4,9>

757<9,10,3,8>

T,"<11,12,5,19>

T1\"<19,12,5,6>

T,"<19,12,6,20>

T,,”<12.13,6,20>

T:7'<20,13,6,7>

T1.7<20,13,7,15>

T\s"<13,14,7,15>

T167<6,10,19,5>

7,"<19,6,10,18>

T1s"<18,19,6,20>

T17<7,8,20,6> T2"<20,7,8,16> T5,7<16,20,7,15>
T»,"<17,18,20,6> T»"<17,18,6,9> 75" <18,6,9,10>
T»"<17,16,20,8> Ty"<17,8,6,9> T5"<17,6,20,8>

Ty P<21,22,11,32>

T»"<22,23,12,33>

T30 "'<23,24,13 34>

T3\7<24,25,14,26>

T$,"<32,22,11,12>

T13<32,22,12,33>

T3'<33,23,12,13>

T3s7<33,23,13,34>

Ty"'<34,24,13,14>

T+,\"'<34,24,14,26>

Ty7<12,19,32,11>

Ty"<32,12,19.31>

T"<31,32,12,33>

T4"<13,20,33,12>

T,7<33,13.20.35>

T43'<35,33,13,34>

T.,7'<14,15,34,13>

Tis"<34,14,15,27>

Ti6'<27,34,14,26>

T+7"'<30,31,33,12>

T57<30,31,12,18>

Ti”<31,12,18,19>

T5"'<30,35,33,20>

Ts5,7'<30,20,12.18>

T,"'<30,12,33,20>

T5;”<29,30,35,20>

T5.7<29,30,20,17>

Tss"'<30,20,17,18>

T567<29,28,35,16>

T5,7'<29,16,20,17>

T557'<29,20,35,16>

T5"'<28,35,34,13>

Te)"'<28,35,13,16>

T 7'<35,13,16,20>

T2"'<28,27,34,15>

Tes"'<28.15,13,16>

To"'<28,13,34,15>

T6s7'<36,37.21,50>

Teo"'<37,38.22.51>

T "'<38,39,23,52>

T6s<39,40,24.53>

Teo"'<40,41,25,42>

T207<50,37,21,22>

75,7<50,37,22,51>

T4,7'<51,38,22,23>

jdXdeZ (14)
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T5,7<51,38,23,52> T587<52,39,23,24> T557<52,39,24,53>
T267<53,40,24,25> T1,"'<53,40,25,42> T757<22,32,50,21>
T5"<50,22,32,49> Te0"'<49,50,22,51> Ty, "'<23,33,51,22>
Ty "<51,23,33,54> Ts;,"'<54,51,23,52> T5P<24,34,52,23>
Tes7'<52,24,34,55> Ts6?'<55,52,24,53> T4,7<25,26,53,24>
Tes'<53,25,26,43> Teo"'<43,53,25,42> To"'<48,49,51,22>
To"'<48,49,22,31> T5"'<49,22,31,32> Toy"'<48,54,51,33>
ToP<48,33,22,31> Tos"<48,22,51,33> To7'<47,48,54,33>
Ty, "'<47,48,33,30> Tos"'<48,33,30,31> Too"'<47,56,54,35>
TP ,00<47,35,33,30> T9,01<47,33,54,35> T9,0,<46,47,56,35>
TP,,<46,47,35,29> T%,04<47,35,29,30> T, 0s<46,45,56,28>

7 06<46,28,35,29>

TP ,17<46,35,56,28>

TP ,05<45,56,55,34>

T7,09<45,56,34,28>

T%,,0<56,34,28,35>

T7,,,<45,44,5527>

TP,,,<45,27,34,28>

T9,,5<45,34,55,27>

TP, ,4<44,55,53,24>

TP, s<44,55,24,27>

T9,,6<55,24,27,34>

TP, ,,<44,43,53,26>

TP, 4<44,26,24,27> TP, 19<44,24,53,26> T9,20<56,54,52,23>
7%,,,<56,54,23,35> T%,,,<54,23,35,33> TP,,,<56,55,52,34>
T%,,4<56,34,23,35> T 25<56,23,52,34> TP ,6<57,58,36,74>
19,,,<74,58,36,37> T ,3<74,58,37,75> T%)120<58,59,37,75>
T%,3,<75,59,37,38> T9,4,<75,59,38,76> 7%,,,<59,60,38,76>

T 3,<76,60,38,39>

T ,3,<76,60,39,77>

T 15<60,61,39,77>

T(p)l36<77,61 ,39,40>

T9,1,<77,61,40,78>

TP ,35<61,62,40,78>

T%,30<78,62,40,41>

T9,40<78,62,41,64>

T9,4,<62,63,41,64>

TP,4,<37,50,74,36> T9,4,<74,37,50,73> TP,,,<73,74,37,75>

145<38,51,,75,37> TP ,46<75,38,51,79> T9,,,<79,75,38,76>
T%9,,4<39,52,76,38> T9,49<76,39,52,80> T%,5,<80,76,39,77>
T%,5,<40,53,77,39> T®,5,<77,40,53,81> TP,5,<81,77,40,78>

TP 5i<41,42,78,40>

T7,55<78,41,42,65>

TP 5¢<65,78,41,64>

T9,5,<72,73,75,37>

T(m|53<72,73,37,49>

TP 150<73,37,49,50>

T9,66<72,79,75,51>

T9,61<72,51,37,49>

T9,6,<72,37,75,51>

T9,6:<71,72,79,51>

TP,64<71,72,51,48>

T7,65<72,51,48,49>

TP ,66<71,82,79,54>

TP,<71,54,51,48>

TP ,65<71,51,79,54>

T?,49<70,71,82,54>

T7,20<70,71,54 47>

T™,,,<71,54,47,48>

T9,,,<70,84,82,56>

T9,1:<70,56,54,47>

T9,,,<70,54,82,56>

TP,,5<69,70,84,56>

T 176<69,70,56,46>

T7,,,<70,56,46 47>

)175<69,68,84,45>

TP 119<69,45,56,46>

T7,50<69,56,84,45>

T,5,<82,79,76,38>

T ,5,<82,79,38,54>

T7,5:<79,38,54,51>

TP 5,<82,80,76,52>

T9145<82,52,38,54>

77 146<82,38,76,52>

TP,5,<84,82,80,52>

TP 155<84,82,52,56>

T9,49<82,52,56,54>

TP ,60<84,83,80,55>

T%,9,<84,55,52,56>

T7,0,<84,52,80,55>

TP,9,<68,84,83,55>

T ,04<68,84,55,45>

T7,05<84,55,45,56>

T?,06<68,67,83,44>

7-(’,)197<68,44,55.45>

TP ,05<68,55,83,44>

T%,09<83,80,77,39>

T%,00<83,80,39,55>

T%,0,<80,39,55,52>

T%,0,<83,81,77,53>

T7,0,<83,53,39,55>

77,0,<83,39,77,53>

T%,05<67,83,81,53>

T 506<67,83,53,44>

T9,4,<83,53,44,55>

T9,05<67,66,81,43>

TP 100<67,43,53,44>

79,,0<67,53,81,43>
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7%,,,<66.81,78,40> 7%,,,<66,81,40,43> [ 77,,:<81,40,43,53>
7%,,,<66,65,78,42> T%,,5<66,42,40,43> 7%,,6<66,40,78,42>
79,,,<85,86,57,105> 7%,,4<105,86,57,58> 77,,4<105,86,58,106>
7%,,0<86,87,58,106> 7 ,,,<106,87,58,59> 7%,,,<106,87.59,107>
77,,,<87.88,59,107> 7%,,,<107,88,59,60> | T7,,:<107.88,60,108>
77,,,<88.89.60,108> 77,,,<108.89,60.6 1> | T71,4<108,89,61,109>
7%,0<89.90,61,109> T%,5<109,90,61,62> 1 77,3,<109.90.62,110>
79,1,<90,91,62,110> T93::<110,91,62,63> 77,,,<110,91.63,93>
77,15<91,92,63,93> T7,44<58,74,105,57> 791,<105,58,74,104>
79,14<104,105,58,106> T%,44<59,75,106,58> 77,40<106,59,75,11 1>
79,,,<111,106,59,107> 77,,,<60,76,107,59> T%,43<107,60,76,1 12>
T%,,,<112,107,60,108> 1%,,5<61,77,108,60> 77,,6<108.61,77,113>
7,,,<113,108,61,109> 7%,,4<62.,78,109,61> T,40<109,62,78,1 14>
T%,0<114,109,62,110> T7,5,<63,64,110,62> 77,5,<110,63,64,94>
T7,5,<94,110,63,93> 7%7,5,<103,104,106,58> 7%55<103,104,58,73>
T%),56<104,58,73,74> T9,5,<103,111,106,75> T),45<103,75,58,73>
T%,50<103,58,106,75> T%9,60<102,103,111,75> T7,6,<102,103,75,72>
T%,,<103,75,72,73> T7,6,<102,115,111,79> T7,64<102,79,75,72>
T ,65<102,75,111,79> T%,46<101,102,115,79> T",6,<101,102,79,71>
T7,65<102,79,71,72> T7,<101,118,115,82> 77,,0<101,82,79,71>
77,,,<101,79,115,82> 77,,,<100,101,118,82> 7%11:<100,101,82,70>
7%,,,<101,82,70,71> T7,,5<100,120,118,84> T ,,6<100,84,82,70>
7%,,,<100,82,118,84> 7%,76<99,100,120,84> 7%,19<99,100,84,69>
T,4,<100,84,69,70> T%4,<99,98,120,68> 7%,4,<99,68,84,69>
7%,4,<99,84,120,68> TP,5,<115,111,107,59> TP,45<115,111,59,79>
TP,6<111,59,79,75> TP,55,<115,112,107,76> T7,55<115,76,59,79>
T7,4,<115,59,107,76> TP,00<118,115,112,76> 7%,4,<118,115,76,82>
T%,,,<115,76,82,79> T",0,<118,116,112,80> 7,,.<118,80,76,82>
T7,,5<118,76,112,80> T%,46<120,118,116,80> 7%,07<120,118,80,84>
T™,04<118,80,84,82> T7,500<120,119,116,83> T7300<120,83,80,84>
T%,,,<120,80,116,83> T7,12<98,120,119,83> T%7,13<98,120,83,68>
T%,,,<120,83,68,84> T7,,5<98,97,119,67> 7%,06<98,67,83,68>
79,,,<98,83,119,67> TP45<116,112,108,60> T730<116,112,60,80>
T%,,0<112,60,80,76> 7%%,,<116,113,108,77> 771,<116,77,60,80>
T%)3,:<116,60,108,77> T9,,<119,116,113,77> 773,5<119,116,77,83>
T%3,6<116,77,83,80> T73,<119,117,113 81> | T74315<119,81,77,83>
T9,,0<119,77,113,81> T9,0<97,119.117.81> | 775,<97.119,81,67>
77,,,<119,81,67,83> T7.,,<97.96,117.66> 774,,<97.66,81,67>
7T9.,5<97.81,117,66> T < 117,113,109,61> T7,,<117.113,61,81>
T ,5<113,61,81,77> T 50<117,114,109,78> T7530<117,78,61 81>
7®33|<1 17,61,[09,78> 7””33:,<96,l 17,114,78> 7‘”’333(96,] l7.78,66>
T93,,<117,78,66,81> 7%435<96,95,114,65> T74,6<96,65,78,66>
79,,,<96,78,114,65> T944<95,114,110,62> T74,4<95,114,62,65>
T7,,0<114,62,65,78> 77%,,,<95,94,110,64> 77,,,<95,64,62,65>
79,4,<95,62,110,64> T7.,:<121,122,85,144> T7,,5<144,122.85.86>
TP,,6<144,122,86,145> T7,,<122,123,86,145> TP4<145,123.86,87>
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T",9<145,123,87,146>

TP350<123,124,87,146>

T%:5,<146,124,87,88>

T9,5,<146,124,88,147>

TP,5,<124,125,88,147>

T9,54<147,125,88,89>

T%)355<147,125,89,148>

1%456<125,126,89,148>

T%,5,<148,126,89,90>

TP,54<148,126,90,149>

T%50<126,127,90,149>

T9,60<149,127,90,91>

TP6,<149,127,91,150>

TP,6,<127,128,91,150>

T%16:<150,128,91,92>

T946,<150,128,92,130>

T%s<128,129,92,130>

T%66<86,105,144,85>

TP, 1< 144,86,105,143>

TP 63<143,144,86,145>

T"169<87,106,145,86>

T%,,<145,87,106,151>

T75,,<151,145,87,146>

7%,,,<88,107,146,87>

T77,,,<146,88,107,152>

T9,,,<152,146,88,147>

79,,5<89,108,147,88>

TP4;6<147,89,108,153>

T9,,,<153,147,89,148>

7('7)378<90v 1 09, 1 48,89>

T%1,0<148,90,109,154>

TP 140<154,148,90,149>

T%4,<91,110,149,90>

T94,<149,91,110,155>

TP4:<155,149,91,150>

7%45,<92,93,150,91>

T%445<150,92,93,131>

TP 46<131,150,92,130>

TP41<142,143,145,86>

TP 55<142,143,86,104>

TP 39<143,86,104,105>

TM00<142,151,145,106>

T7,,<142,106,86,104>

T9,,<142,86,145,106>

TP301<141,142,151,106>

104<141,142,106,103>

T%,45<142,106,103,104>

T 396<141,156,151,111>

T9,4,<141,111,106,103>

T,05<141,106,151,111>

T9140<140,141,156,11 1>

TP ,00<140,141,111,102>

T9,0<141,111,102,103>

TP,1,<140,160,156,115>

T9,03<140,115,111,102>

T%,0:<140,111,156,115>

TP 405<139,140,160,115>

T9,06<139,140,115,101>

T7,,7<140,115,101,102>

T%,05<139,163,160,118>

)0<139,118,115,101>

T9,,0<139,115,160,118>

7%,,<138,139,163,118>

T9,1,<138,139,118,100>

T%,,,<139,118,100,101>

77,,,<138,165,163,120>

T7,,5<138,120,118,100>

T%,16<138,118,163,120>

77,,<137,138,165,120>

T9,15<137,138,120,99>

7%9,19<138,120,99,100>

TP 40<137,136,165,98>

T94,,<137,98,120,99>

)122<137,120,165,98>

TP ,11<156,151,146,87>

T9,,,<156,151,87,111>

TP ,,<151,87,111,106>

T9,4,6<156,152,146,107>

79 4,,<156,107,87,111>

TP ,25<156,87,146,107>

T9,4,0<160,156,152,107>

T 450<160,156,107,115>

T9,3,<156,107,115,111>

79 ,1,<160,157,152,112>

T9433<160,112,107,115>

T9,3,<160,107,152,112>

79 ,35<163,160,157,112>

TP ,36<163,160,112,118>

T9,37,<160,112,118,115>

TP ,35<163,161,157,116>

T%,30<163,116,112,118>

T ,4<163,112,157,116>

79,,<165,163,161,116>

T9,1,<165,163,116,120>

T9,13<163,116,120,118>

T7,14<165,164,161,119>

T%,,5<165,119,116,120>

TP ,,6<165,116,161,119>

T7,47<136,165,164,119>

T9,,5<136,165,119,98>

TP ,40<165,119,98,120>

TP ,50<136,135,164,97>

7",)45]< 136,97,119,98>

T9,5,<136,119,164,97>

T9,5:<157,152,147,88>

T9,54<157,152,88,112>

T ,55<152,88,112,107>

TP ,56<157,153,147,108>

79 ,5,<157,108,88,112>

79 ,53<157,88,147,108>

T ,50<161,157,153,108>

TP 460<161,157,108,116>

T%,46,<157,108,116,1 12>

TP ,62<161,158,153,113>

| TP ,:<161,113,108,116>

TP ,464<161,108,153,113>

TP ,65<164,161,158,113>

) 6<164,161,113,119>

T9,6:<161,113,119,116>

TP 463<164,162,158,117>

TP ,60<164,117,113,119>

TP 120<164,113,158,1 17>

7%,,,<135,164,162,117>

79,,,<135,164,117,97>

T%,1,<164,117,97,119>

7% ,1,<135,134,162,96>

T ,15<135,96,117,97>

TP 126<135,117,162,76>

77,17<158,153,148,89>

478<158,153,89,113>

79 ,79<153,89,113,108>

T? ,50<158,154,148,109>

79 ,5:<158,109,89,113>

T 5,<158,89,148,109>

T 5:<162,158,154,109>

T ,454<162,158,109,117>

TP 55<158,109,117,113>

TP 156<162,159,154,114>

63
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TP 457<162,114,109,117>

T 133<162,109,154,1 14>

T 150<134,162,159,1 14>

TP ,40<134,162,114,96>

T7,40,<162,114,96,117>

TP 9,<134,133.159.95>

T ,9:<134,95,114,96>

T?,4,<134,114,159,95>

T 195<159,154,149,90>

T 406<159,154,90,1 14>

T,9,<154,90,114,109>

T? ,05<159,155,149,110>

T ,409<159,110,90,1 14>

T%500<159,90,149,110>

T",,<133,159,155,110>

T750,<133,159,110,95>

T753<159,110,95,114>

T"40:<133,132,155,94>

T%50s<133,94,110,95>

TP506<133,110,155,94>

T"50,<132,155,150,91>

TP54<132,155,91,94>

T%500<155,91,94,110>

795,0<132.131,150,93>

775,,<132,93,91,94>

79,,<132,91,150,93>

5.1. Computation of (x(a,p) (X7 Y7 Z)’ y(a‘p) (Xv Y,Z)5 Z(a.p) (X, Ys Z))E
We shall illustrate the above computation.

We have from Table I, the first two entries are noted as 7,”<2,3,1,4> and 7,"<5,6,2,10>. from this we find
for a=1, a;=2 b\=3, c=1, d\= 4 and for =2, a,=5 b.=6, c,=2, dr= 10.

We have from eqn. (13), for a=land a=2

xUP(X,Y,Z)=x, + (x, — X)X +(x; = x)Y +(x, - x,)Z
YUPUX Y, Z) =y, + (3, = )X + (33 = y)Y + (3, — y,)Z
2K LY, Z) = 2, + (2, - 2)X + (25— 2)Y + (2, - 2,)Z i)
x*P(X,Y,2Z) = X9 + (X5 = x0) X + (x5 = x,0)Y +(x, — x9)Z
YEPUX Y, Z) =y + (s = 2i0)X + (¥e = 310)Y + (3, = ¥,0)Z

ZE(XLY,Z) = 200 + (25— 20) X + (26 = 2,0)Y + (2, = 2,0)Z (15b)
We have from Figures] and 9, the nodal coordinates are given by
x1=0, =0, zi=1, x;=1/p, y,=0, 2=(p-1)Ip, x3=0, ys=1/p, z3=(p-1)/p, x4=0, y4=0, ze=(p-1)/p,
x5=2/p, ys=0, zs=(p-2)Ip, xs=1/p, y&=1/p, 2e=(p-2)Ip, x16=1/p. y16=0, zi0=(p-2)/p (16)

Using‘the values of ((x;, y;, z:), i =1,2,3,4,5,6,10) from the above eqn.(16) into the eqn.(15). we find
(P(X.Y,2Z), Y KX, 20, 2 (XY, Z) = (X p, Y1 p, (p=1)] p+Z 1 p)
(*P(X,Y,2), y*P(X,Y,Z), 2> (XY, Z2)=(U/ p+ X I p, Y p, (p=2)/ p+Z1 p)

We can compute the remaining expressions for (x'*”(X,Y,Z), y*P(X,Y,2), 7*”(X.Y,Z)) from
the values 7,\” <a,.,b,,c,,d, > of Table IL.

We can further write the eqn. (14) as
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1
1= [[[f(x, y, D)dxdydz - [[[Hx,¥,2)dxdvdz -
T T
where
p3
H(X,)Y,Z)= Zf(x(a'p)(X,Y,Z),y(a'P)(X,Y,Z),Z(a’m(x,Y, 7)) i

a=1
We can now apply Gauss Legendre Quadrature rules on the integral of eqn. (17) in a manner similar to the

procedure which we have already developed for the integral I= J._”f(x’ Y, 2)dxdydz. Following
T

the method already developed in section 2, we have now on using the transformations

X (E.n.0) = (l+§)(|+8'7|)(1+§)'

1 1 1 -
Y(§,7],§’)=(+§)( +877)( &)
Z(f,ﬂ()=(l+§)(l_’}). ? (]9)

4

the integral in eqn. (17) can be written as:

1= [[[ £ x v, 2)dudyez =;}7jﬂﬂ<x,Y,z>dXdez
T T

TR T | 2
= L O Dy (x (0,00 ¥ (€00, Z(En,E Ndédndd
P’ 555 64

LA g A

. () V)
P s = k= 64 S
xH(X(giu),n;y),;iw),Y(gi(l),n;ﬂ), :V)),Z(f;i),ﬂ;”),;;”))
1 N =Auv
= _—_; Z CmH ('xm K .))m ’ Zm) (20)
p m=1
where, it is obvious that
Lo (1+§'(4))(1+77;//))(]+é“(v)) b - (]+§‘(/1))(1+T](,1Il)(1_ l:y))
m 8 ’ Sm 8 .
1+ &40 -1 1+ £+
o = SN =) e ST AT e o,
4 64 !

_ , (A) D) (v) . . A V) .
in which f, > 77/1 and 1], " are the sampling points and W, , W and w, " are the corresponding

weight coefficients of Gauss Legendre Quadrature rules of order A, HU and v respectively.
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6. Some numerical results
We consider some typical integrals with known exact values

Example 1. Let us consider the following multiple integrals which are generalised to three-dimensions from
Reddy and Shippy [18].
1-x l=x-y

.[ .[ dezdydx = 0.142857142857143

0
lj I-x l=x=¥% dZd_de
0

j — e = ().200000000000000
o o xty+z)

I-x -
f f [i-x-y7+ z1]2| dzdydx = 0.440686793509772
0 0

1I I-x-v
0
Example 2. We now consider the following multiple integrals from Stroud [6].
1 l-x l=x-y

s I _{ ISir;(x + 2y + 42) dzdydx = 0.131902326890182
0 0 0

l=x l=x-y

_[ _[ j(l +x+ y+2) " dadydx =0,020833333333333
0 0 [\]

Example 3. Let us consider the following multiple integrals of the type from Rathod and Govinda Rao
[20,21].

et = [[[xy*z7axdydz 22)

where v is the tetrahedron in (XY,Z) space with vertices spanning the points
<(5.5,0),(10,10,0).(8.7.8)(10,5.0)>.

On using the following transformations
X(x,y,2) = 10-5x -2z, Y(xy,2)= 5+5y+2z and Z(xy.2) = 8 (23)

we obtain,
m?r = [[[x “v?z"dxdyaz
1 l-x l=x-y
=200]' j J'(IO —5x-22)"x(5+5y+22)” x(82)" dzdydx (24)
0 [\] 0
We have evaluated the above integrals for @ =2, S =1, 1=0, a=2,=2,7=0
anda=4,=4,y=0;
That is:
L. = = ,”.[ X *YdXdYdZ - 15721.6666666667

2]

1, = 11127 = [[[X?Y*dXdYdZ = 109662.063492063
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I, = 110 = [[[X 'Y *dXdYdZ = 426917356.623377

Again from Rathod and Govinda Rao [20,21], we know that /= 47165/3, other integrals were computed in a
similar way.

Example 4. We now consider the following multiple integrals of the type

e X2 xaviz (25)

"vX +Y+Z

where v is the tetrahedron in (X, Y,Z) space with vertices spanning the points
<(5,5,0), (10,10,0), (8,7,8), (10,5,0)>.

On using the following transformations

X(x,y,2) = 10-5x - 2z, Y(x,5.2) = 5+5y +2z and Z(x,y,z) = 82 (26)
we obtain,
XEylg¥
i 25 = — . dXdYdZ
! J-'U"\/X +Y+Z
1 I-x l=x-y
=200_[ I (10 =5x-22)° x(5+5y+22) x (8z)7 dzdy dx Q27)
T3 3 J15 = 5x+5y +8z2

We have evaluated the above integrals for a‘—'2ﬂ= 1, 7|=0 5 a=2,,B=2,7 =0
and @=4,5=4,y=0;

2
1,=m > = [f —\/X_X—_)Y,__—Z— dXdYdZ = 3784.40065050825
v +Y +
Xy
I, =H*° = m_———m dXdYdZ =26253.2913203869
0
1, =m0 = ff =TT dXdYdZ = 100719764.240877
v +Y +

We have tabulated the numerical values for /,, /; and I; of example 1, /;and /s of Example 2, I¢, I7and
Is of Example 3 and I, Ijoand /;, of Example 4 in Tables 111, IV, V, VI using p tetrahedra.

Table III. Numerical results for triple integrals of example 1 by p *tetrahedra
(s = Order of the Gauss Legendre Quadrature Rule)

I-x l-x-y

1

Table IIL.a. Numerical results of the integral /| = I j I (x+ y + z)dzdydx
0
=0.

l42857142857l43

P e R D = B M s=10 N
I° | 0.143229714125788 | 0.142876998237370 0.142857148844769
2* | 0.142986333306611 | 0.142862658251572 0.142857145041424

3 | 0.142965538584325 | 0.142863220377014 0.142857145590853
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4} 0.142922446156457 0.142859706394522 | 0.142857143855917
51 0.142899262199752 0.142858392027656 0.142857143314528
6 0.142886196649808 0.142857827101946 0.142857143098771
7 | 0.142878266767799 | 10.142857551600299 0.142857142998018
8’ 0.142873139729535 0.142857403573646 0.142857142945423
1 1=x l-x-y ] ’
Table IILb. Numerical results of the integral /] = — e dzdydx
¢ : (! 5[ o Vix+y+z) d
=(0.200000000000000

s §=2 s=3 s=10 1
¥ 0.199386992349043 0.199906205971895 0.199999671201401
27 0.199241026733963 0.199887325131890 0.199999495304986
3 0.198958252517832 0.19982 1468796850 0.199999186203443
4* 0.199347097575701 0.199908184572988  «----vene 0.199999603567678
5 0.199568896696330 0.199946578930985 0.199999773068897
6’ 0.199697800427460 0.1999658844 10966 0.199999856139718
A 0.199777750629033 - 0.199976700748796 0.199999902 147048
g’ 0.199830290970380 | 0.199983271833001 0.199999929920004

1
Table IIl.c. Numerical results of the integral /, = J. I J. s—— dzdydx
00 0 \/(l—x—y) +2°)
= 0.440686793509772
P s=2 i s=3 s=10
i I? ~ 0.341460943607899 | 0.388804992651775 0.434744264957884
P2 0.386357012482133  0.413571892995317 0.437701227526085
3 0.403341281291200 0.422350980733451 0.43869323803004 1
4 0.412231045351412 0.426837703862253 0.439190435090996
SY | 0.4156655411 11467 0.427530640855218 ~ 0.437459034038562
N 6 1 0.420743013923419 0.430723416644657 0.439022470568174 |
7 - 0.423533940636202 0.432160820584684 0.439290122690003
8* 0.425409655391875 0.433002112325938 0.4392505496 14584
Table IV. Numerical results for triple integrals of example 2 by p’ tetrahedra
(s=Order of the Gauss Legendre Quadrature Rule)
I l=x l=x—y
Table IV.a. Numerical results of the integral I = J. J- _[sin(x + 2y +4z7)dzdydx
0 0 0
=0.131902326890181
] p'] ] 77 7 ] 5‘:2’ L s=3 [ rmernesnes I s=10
I’ 0.138743256211626 0.131621797773675 ] 0.131902326890182
L 2 l 0.133521591948574 0.131875727845063 l

0.131 902326890182
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0.131902326890182

' 3 ‘ 0.132720058922519 0.131902376388942 g
4 | 0.132440633665812 0.131898745261941 i 0.131902326890182
5° 0.132283108884401 0.131900613555048 L—O 131902326890182
76‘? 10.132184317762539  0.131 901418397937 ! 0.131902326890182
7 - 0.132118722772721 | 0.131901804558931 i 0.131902326890182
8’ 0.132073214662688 0.131902006718549 [ 0.131902326890182
1 od=x lov=y -4
Table IV.b. Numerical results of the integral [, = I j J.(l + x4+ yv+2) dzdydx
. 0 0 0
=0.020833333333333
p3 s=2 §s=3 e l s=10
‘ 1* | 0.020377437764784 0.020743528788017 0.020833333333227
{f 2‘ | 0.020561799291786 0.020820854 145169 ~ 0.020833333333333
bog? 0.020577277649771 0.020824735803197 0.020833333333333
4 0.020683 185046815 0.020830352628292 | =t | 0.020833333333333
5 0.020739197362938 0.020832112267115 ‘ 0.020833333333333
6" 0.020769806269391 0.020832754835295 ~ 0.020833333333333
7 0.020787897671607 | 0.020833027413633 0.020833333333333
g 0.020799350037637 E 0.020833157450061 0.020833333333333
Table V. Numerical results for triple integrals of example 3 by p’ tetrahedra
(s=Order of the Gauss Legendre Quadrature Rule)
Table V.a. Numerical results of the integral 1, = ” X *YdXdYdZ
-
= 15721.6666666667
p3 s=2 ) 5=3 ] eeemenes s=10
1’ 15738.5352366255 15721.6666666667 15721.6666666667
2 15709.3108741148 15721.6666666667 ~ 15721.6666666667
3 15716.9937327492 15721.6666666667 15721.6666666667
4 15719.5869815109 15721.6666666667 | ot 15721.6666666667
5 15720.6094910502 15721.6666666667 _ 15721.6666666667
i' 6‘ 15721.0771822542 . 15721.6666666667 15721.6666666667
1 7 15721.3158505603 15721.6666666667 15721.6666666667
8 15721.4479532800 15721.6666666667 | 15721.6666666667
Table V.b. Numerical results of the integral /, = ”J X *Y *dXdYdZ
T 3
=109662.063492064
P = =3 ] P e
N 7 109782.342392546 109661.3250000000 109662.063492064
2 109486.730817258 109661.8807942710 | _109662.063492064
3 109582.353046879 109662.0220101 100 { 109662.063492064




70 H. T. Rathod, B. Venkatesh and K. V. Nagaraja
B 43 ; 109621.236463647 | 109662.0497270370 109662.063492064
5 | 109638.489417517 109662.0577246220 109662.063492064
6° 109647.181966896 109662.0606747520 109662.063492064
7' 109652.02460063 1 109662.0619589760 109662.063492064
8 109654.9390693 14 109662.0625884320 109662.063492064
Table V.c. Numerical results of the integral /, = J-H X 'Y *dXdydz
T
=426917356.623377
p:‘ s=2 R T I s=10
1’ 421208013.057289 426894926.913376 426917356.623377
2} 424304996.607010 426887291.053021 426917356.623378
3 425491833.922775 426911450.270468 426917356.623378
4 426107368.567074 426915668.128109 | ---ovvveeee 426917356.623377
5 426415448.194040 426916734.721759 426917356.623377
6' 426582985.080820 426917084.458957 426917356.623378
7| 4266816744348 | 426917221.863028 | 426917356.623377
8 426743755.692673 426917283.441716 426917356.623377
Table VI. Numerical results for triple integrals of example 4 by p’ tetrahedra

(s=Order of the Gauss Legendre Quadrature Rule)

Table VL.a. Numerical results of the integral /, = ”J‘#—dXdeZ
PNX+Y+2Z
= 3784.40065050825

P s=2 = /A, RS- s=10
7 1? 3787.11163752022 3784.40458505688 3784.40065050824
2} 3782.34885810572 3784.40142999893 | 3784.40065050824
3 3783.68986441156 3784.40099024345 | 3784.40065050825
4 3784.10668512766 3784.40078755281 | ceeeeeeee 3784.40065050824
- 5z 3784.26242270326 |  3784.40071363160 3784.40065050824
| 6' | 3784.32744047531 3784.40065050824 3784.40065050824
L—‘T‘ ~3784.36506505365 | 3784.40065050825 3784.40065050824
8 3784.25685050810 3784.40065050824 3784.40065050824
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———dXd Ydz

VX +Y +2Z

=126253.2913203869

Table VI.b. Numerical results of the integral /,, = ”j
-

71

P §=2 s=3 | e s=10
h 26290.7450648522 26253.0558667813 26253.2913203870
2! 26222.9165354568 26253.2696660800 26253.2913203870
3 26240.5189255742 26253.2848853139 26253.2913203870
4 | 26247.1681605618 | 26253.2889074784 26253.2913203877
5 26249.9626602060 26253.2902371180 26253.2913203878
6’ 26252.7268502173 26253.2882826517 26253.2913203877
7 26252.8252451253 26253.2913102526 26253.2913203877
8* 26253.2462547696 26253.2813102826 26253.2913203877

Table VI.c. Numerical results of the integral [, = UJ' daxdydzZ

VX +Y+Z
= 100719764.240877

» §=2 s=3 | e s=10
1’ 99646992.1285863 100715869.605833 100719764.240876
2 100145968.535286 100714498.253884 100719764.240877
3¢ 100422630.233201 100718749.392030 100719764.240877
4} 100555645.245615 100719474.674832 | .eenennne 100719764.240877
5% 100619958.156401 100719657.282155 100719764.240877
6’ 100695885.209865 100719661.415262 100719764.240877
7 100708724.233851 100719763.348926 100719764.240877
8* 100714497.210564 100719764.132965 100719764.240877

6.1. C-Program for Evaluation of Triple Integrals of Examples 1, 2, 3 and 4 by a Division of

Standard Tetrahedron into 2° = 8 Tetrahedra

#include<stdio.h>

#include<conio.h>

#include<math.h>

void main()

{

inti, j, k, o, p, d;

double x, y, z, ¢, P, Q, R, S, a[20], w[20], I1, 12, I3, 14, 15, 16, 17, 18, I9, 110, 111,
S1=0, S$2=0, $3=0,54=0,55=0,56=0,S7=0,S8=0,59=0, S10=0,S11=0,
X[100], Y[100], Z[100], 1{100], m[100], n[100];

clrscr();

printf("Enter the value of o=");

scanf("%d",&o);

printf("Enter the value of p=");

scanf("%d",&p);
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printf("Enter the values of a's in order");
for(i=1;i<=0;i++)

scanf("%lf" ,&al[i]);

printf("Enter the values of w's in order");
for(i=1;i<=0;i++)

scanf(" %If",&w[i]);

for(i=1;i<=0;i++)

{ for(j=1;j<=0;j++)

{ for(k=1;k<=0;k++)

{

x = (I+a[i])*(1+a[j])*(1+a[k])/8;

y = (I+afiD)*(1+aj))*(1-a[k])/8;

z = (1+ali])*(1-a[j])/4;

¢ = pow(1+a[i],2)*(1+a[j])*w([i]*w[j]*w[k]/64;

1[1]=x/p; m[1]=y/p; n[1]=(p-1+z)/p;
12]=(1+x)/p;  m[2]=y/p; n(2]=(p-2+2z)/p;
1[3]=x/p; m(3]=(1+y)/p; n[3]=(p-2+z)/p;

[4]=(x+y+2)/p; m[4]=(1-x-z)/p; n[4]=(p-1-x-y)/p;
1[S]=(x+y)/p;  m[5]=(1-x)/p; n[5]=(p-2+z)/p;
1[6]=(1-x-y)/p; m[6]=x/p; n[6]=(p-1-z)/p;
1[7]=x/p; m(7]=y/p; n[7]=(p-2+y+z)/p;
1[8]=y/p; m[8]=(1-x-y)/p; n[8]=(p-2+z)/p;

for(d=1:d<=8;d++)

{

X[d]=10-5*1[d]-2*n[d];

Y [d]=5+5*m[d]+2*n[d];

Z[d]=8*n[d];

[1=c*sqrt(1[d]+m[d]+n[d])/8;

S1=S1+I1;

12=c*1/sqrt(I[d]+m[d]+n[d])/8;

S2=82+12;

[B=c*1/sqrt(pow(1-1{d]-m[d],2)+n[d]*n[d])/8;

S3=S3+I3;

[4=c*sin(1[d]+2*m[d]+4*n[d])/8;

S4=S4+14;

I5=c*pow(1+l[d]+m[d]+n[d].-4)/8;

S5=S5+I5;

16=200*c*(pow(X[d],2)*Y[d])/8;

S6=S6+16;

17=200*c*(pow(X[d],2)*pow(Y[d],2))/8;

S7=S7+17;

18=200*c*(pow(X[d],4)*pow(Y[d],4))/8;

S8=S8+I8;

19=200*c*(pow(X[d],2)*Y[d]/sqrt(X[d]+Y[d]+Z[d]))/8;

S9=S9+19;

[10=200*c*(pow(X[d],2)*pow(Y[d],2)/sqrt(X[d]+ Y [d]+Z[d]))/8;

S10=S10+110;

I11=200%*c*(pow(X[d].4)*pow(Y[d],4)/sqrt(X[d]+Y[d]+Z[d]))/8;

SL1=S11+I11;

HH

printf("I1 = %0.151f\n".S1);

printf("I2 = %0.151f\n",S2);
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printf("I3 = %0.151f\n",S3);
printf("I4 = %0.15if\n",S4);
printf("I5S = %0.15If\n",S5);
printf("I6 = %0.151f\n",S6);
printf("17 = %0.15f\n".S7);
printf("i18 = %0.15If\n",S8);
printf("I9 = %0.151f\n".S9);
printf("I10 = %0.151f\n",S10);
printf("I1] = %0.151f\n",S11);
getch();

}

Note: Similarly we can write the C-Program for evaluation of triple integrals by using 3°=27, 4=64,

5=

125, 6’=216, 7°=343 and 8°=512 tetrahedra.

7. Conclusions

In this paper, we have presented the composite numerical integration formulae, which can be derived by
decomposing the tetrahedron into four tetrahedra by joining the centroid to four vertices. We have further
shown that the standard tetrahedron can be discretised into 2%, 3.8 tetrahedra of equal volume. Over
each of these the symmetric Gauss Legendre quadrature rules developed in section 2 is applicable. These
formulae are tested for the accuracy and efficiency by applying them to eight non-polynomial and three
polyriomial functions.
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Fig. 1 Orthogonal tetrahedron 7",' . of volume 1/6x(1px1pxLip)
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Fig. 2 Orthogonal tetrahedron 7:1‘1,, of volume 2/6x(2/px2/px2ip)
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(1/p,0,(p-1)/

7(0,2/p.(p-2)/p)

14
(0.3/p.(p-3)ip)

X L1(3/p,0,{p-3)/p) 12 (2/p, 1/p.(p-3)/p) 13(1/p,2/p.(p-3)/p)

) 4

Fig. 3 Orthogonal tetrahedron 'f of volume 3/6x(3/px3/px3/p)

P
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2940.,0.(p-4)/p)
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¥

Fig. 4 Base triangle on z =(p-4)/p for an orthogonal tetrahedron 7:4 -
of volume 1/6x(4/px4/px4/p)
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Fig. 5 Base triangle on z =( p-5)/p for an orthogonal tetrahedron fs_ 5
of volume 1/6x(5/px5/px5/p)
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Fig. 6 Base triangle on z =( p-6)/p for an orthogonal tetrahedron 7:6_ ,
of volume 1/6x(6/px6/px6/p)
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Fig. 7 Base triangle on z =( p-7)/p for an orthogonal tetrahedron 7:7_ ,

of volume 1/6x(7/px7/pxTip)
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Fig. 8 Base triangle on z =( p-8)/p for an orthogonal tetrahedron 7:«_ ,
of volume 1/6x(8/px8/px8/p)
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(X, s Vb, %n, )

b,

Fig. 9 Affine transformation which transforms f; ) into a standard tetrahedron T

Fig. 11 Subdivision of a triangular prism into three tetrahedra
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Abstract. For a bounded set K of a metric space (X, d), an element ky € K is called a farthest
point to x € X if d(x, ko) = sup{d(x,k) : k € K} = §(x, K). The mapping F}, which associates
with each z € X the set Fy(z) = {ko € K : d(z, ko) = 6(x, K)} is called the farthest point map.
In this note, we discuss the existence and uniqueness of farthest points, the continuity of the
farthest point map and the convexity of the farthest distance function r; : X — IR defined by
r(z) = §(z, K) when the underlying spaces are metric and convex metric spaces.

Let K be a bounded subset of a metric space (X,d) and x € X. An element ky € K is called a
farthest point to z if d(x, ko) = sup{d(z,k) : k € K} = §(z, K). The number §(x, K) is called the
deviation of K from x. The mapping Fj, : X — 2F = the location of all subsets of K, defined
by Fi(x) = {ko € K : d(z,ko)},x € X is called the farthest point map. The set K is said to be
remotal if Fy(x) # ¢ for each z € X and is called uniquely remotal if Fi(x) is exactly singleton for
each z € X.

Farthest points have applications in the study of extremal structure of sets, characterization of
weakly compact convex sets, finding deviation of two sets and they are important building blocks
of convex sets which are extensively applied in programming (see e.g., [5], [9]). It is strange, rather
unfortunate that very little has been done in the theory of farthest points as compared to the
theory of nearest points. Moreover, for most of the literature which is available in the theory of
farthest points, the underlying spaces are Hilbert spaces and normed linear spaces (see e.g., [3], [9],
[11], [12] and the references therein). The development of farthest point theory in more general
spaces is a challenging one. Some attempts have been made in this direction in [1], [2] [4], [8] and
[10] and by few others. The present note is yet another step in this direction. Here, we discuss
the existence and uniqueness of farthest points, the continuity of the farthest point map, and the
convexity of the farthest function 7 : X — IR defined by r(x) = d(x, K) when the underlying
spaces are metric and convex metric spaces.

We begin with the following examples:

Example 1. Let X = IR? with the usual metric and

K={(z,y):a=—\1-y%-1<y<1}

Here Fr(p) = K, p=(0,0)
= {(-1,0)}, p=(z,0), >0
= {(Oa 1)7 (Oa _1)}a b= (1',0), <0

= {(0’ 1)}7 b= (Ovy)v y<0

! Keywords and phrases : Farthest point, remotal set, convex space.
2 AMS Subject Classification : 41A65, 46E40.
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= {(07_1)} p= (an)a y>0

z Y
= — ,— ,p=(x,9y), >0,y >0
{( \/x2+y2 \/x2+y2>} P ( y) Y

T Y
= — ,— ,p=(x,9y), >0,y <0
{( \/x2+y2 \/x2+y2>} P ( y) Y

= {(07_1)}a p= (mvy)a z<0,y>0

= {(071)}7 p= (a:,y), z <0,y <0

The set K is remotal but not uniquely remotal. However, each point of IR? \ T,

T ={(z,0) : z € IR,x < 0} has unique farthest point in K.
Example 2. Let X = IR? with the usual metric and K = {(z,0) : —1 < z < 0}. Here
Fy(p) = {(-1,0),(0,0)}, p = (-1/2,y), y € IR. It is easy to see that each point of
IR*\ {(~1/2,y) : y € IR} has unique farthest point in K. Thus K is remotal bot not uniquely
remotal.

One of the most interesting and hitherto unsolved problem (see [9]) in the theory of farthest
points is: If every point of a normed linear space X admits a unique farthest point in a given
bounded set K, then K must be a singleton? There are some partial affirmative answers to this
problem and there are many sepcial cases in which the answer is negative (see [9], [11], [12]). The
question is not solved in general, even in Hilbert spaces.

The following example shows that a uniquely remotal set in a metric space need not be a
singleton.

Example 3. Let X = IR\ {0} with usual metric and K = [-1,1] \ {0}. Then K is uniquely
remotal and is not a singleton.

Bosznay [4] has also shown that a uniquely remotal set in a linear metric space need not be a
singleton.

For a metric space (X,d) and a closed interval I = [0,1], a continuous mapping
W :X x X xI— X is said to be a convex structure on X if forall z,y € X, A e[

d(u, W(z,y,\)) < Ad(u,z) + (1 — A) d(u,y) (A)

for all u € X. The metric space (X, d) together with a convex structure is called a convex metric
space [14]. A convex metric space (X, d) is said to be an M-space [7] if for each pair z,y € X and
A € I, there exists exactly one point z € X such that z = W(z,y, A).

Every normed linear space is an M-space but converse is not true [7]. If (X,d) is a convex
metric space then for each two distinct points z,y € X and for every A,0 < A < 1, there exists at
least one point z € X such that z = W(x,y, \). For M-space a z is always unique (see [7]).

The following properties (see [14]) are direct consequences of inequality (A):

W(%Z/, 1) =, W(II?,Z/,O) =Y, d(W(x7ya)‘)ay) = )\d(ﬂf,y)

d(W(x7y7 )‘)7‘77) = (1 - )‘)d(xay)7 d(x7y) = d(xa W(xa Y, >‘)) + d(W(xa Y, >‘)7y)

If [z, y] denotes the line segment joining x and y, i.e.,
[z,y] ={2 € X :d(z,2) + d(2,y) = d(z,y)} = {W(z,y,A) : 0 < A< 1} and [z, y, -]

denotes the ray starting from x and passing through y, we have the following
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Theorem 1. Let K be a bounded subset of an M-space (X,d) and ko € Fi(xo) for zp € X then
ko € Fk(él?) for all z € [kﬁo,l‘o, —] \ [kﬁo,l‘o].
Proof. Let y € K be arbitrary. Consider

d(l‘, y) < d($a $0) + d($0a y)
< d(z, o) + d(xo, ko)

= d(a:, ko)

Therefore kg € Fg(z) for all x € [kg, z9, —] \ [ko, Zo]-

Theorem 2. Let K be a bounded subset of a convex metric space (X,d) and zp € X. Then
ko € Fy(xzo) if and only if kg is a farthest point to z¢ in [ko, y| for each y € K.

Proof. Let ky € Fi(xo) and 0 < A < 1. Consider

d(zo, W(ko,y,\)) < Xd(zg,ko)+ (1 =) d(zo,y)
< A d(xo, ko) + (1 - )\) d(xo, ko)

= d(a?o, k‘o)

This implies that kg is a farthest point for xg in [k, y| for each y € K. The converse implication is
obvious.

A bounded subset K of a convex metric space (X, d) is said to have property (SF) [6] if 29 € X
and ko € Fi(zo) imply ko € F(W (z0, ko, A)), 0 < A < 1.

The following result shows that sets satisfying property (SF) in a convex metric space are
singleton.
Theorem 3. A bounded subset K of a convex metric space (X, d) has property (SF) if and only
if K is a singleton.
Proof. Let K has property (SF), z9p € X and ky € Fi(zo) then ko € Fip(W(zo,ko,N)),
0 < A < 1. Suppose K is not a singleton and k1 € K, ky # ko then

d(W (zo, ko, N), k1) < d(W (o, ko, A), ko) for every A, 0 < A < 1.

Letting A — 0, we get d(ko, k1) < d(ko, ko) = 0. Therefore k1 = ko, a contradiction. Hence K is
a singleton.

The converse part is obvious.
Note: For locally convex Hausdorff spaces satisfying suitable conditions, Theorems 1-3 were proved
for continuous sublinear function f in [6].

Next, we shall discuss the continuity of the farthest point map. For this, we prove the following
lemmas:
Lemma 1. If K is bounded subset of a metric space (X,d) and is remotal with respect to a
subset T' of X then the mapping f : T' — IR defined by f(x) = d(z,y(z)), where y(z) € Fi(z) is
uniformly continuous on 7.

Proof. Let x and u be arbitrary points of 7. Without any loss of generality, we may assume that
d(z,y(x)) > d(u,y(u)). We have

0 < dz,y@) — d(u,y(u)

< d(x,u) + d(u, y(z)) — d(u, y(u))
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< d(z,u) +d(u, y(2)) — d(u, y(2)) as d(u,y(z)) < d(u, y(u))

= d(z,u)
Therefore | d(z,y(z)) — d(u,y(u)) | < d(z,u) ie. | f(z) — f(u) | < d(z,u) and hence f is

uniformly continuous.
Lemma 2. If K is a remotal set in a metric space (X,d) and (x,) is a sequence in X such that
(xn) — x then all the limit points of the sequence (y(zy)), y(zy) € Fi(z) are in Fj(x).
Proof. Suppose y is a limit point of (y(z,)). Since d(zn,y(zn)) > d(zn, k) for all k € K,
Lemma 1 implies that d(z,y) > d(z,k) for all k € K i.e. y € Fi(x).
Note 1. For linear metric spaces, Lemmas 1 and 2 were proved in [8].

Using Lemma 2, we obtain
Theorem 4. If K is a bounded subset of a metric space (X,d) and is uniquely remotal with
respect to a subset T of X then the farthest point map Fj : T — K is continuous.
Proof. Suppose (z,) is a sequence in T such that z, — x € T then by Lemma 2,
(Fio(zn)) — Fi().

Since a compact (nearly compact) subset of a metric space is bounded and also remotal [2],
we have
Corollary 1. ([1]) If K is a compact uniquely remotal subset of a metric space (X,d) then the
farthest point map is continuous.
Corollary 2. ([10]) If K is nearly compact uniquely remotal subset of a metric space (X, d) then
the farthest point map is continuous.
Note 2. For compact uniquely remotal subsets of linear metric spaces, Theorem 4 was proved
by Motzkin et al. ([8]) and for nearly compact uniquely remotal subsets of Banach spaces it was
proved by Blatter ([3]).

A real valued function f defined on a metric space (X, d) is said to be convex [13] if

d(2,y)
f(z) < d(x,y)f(w) +

for all z, y € x # y and z in the metric interval [z, y].
For convex metric spaces, (B) is equivalent to

d(z, z)
d(z,y)

f() (B)

fW(z,y,2) <A f(z)+ (1= A) fy)
The following theorem deals with the convexity of the farthest distance function.
Theorem 5. If K is a remotal subset in of a convex metric space (X, d) then the farthest distance
function ri : X — IR defined be ri(x) = §(z, K) is convex.
Proof. Consider

reW(z,y,A)] = sup { d(W(z,y,A\),k): ke K}

IN

sup { Ad(z,k)+ (1 —X) d(y,k): ke K}

IN

Asup { Ad(z,k): ke K} +(1—A) sup { Ad(y,k) : k€ K}

= Arp(e) + (1= A) re(y)
Hence 7}, is convex.
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Abstract. A common fixed point theorem for a sequence of set-valued mappings is proved
which generalizes earlier results due to Rhoades [11,12], Som and Mukherjee [13] and others.

1. Introduction

The existing literature of fixed point theory contains numerous results for single as well as set-
valued self mappings. But in many applications, a mapping describing certain situation need not
always be a self mapping. In an attempt to prove results for nonself mappings in metrically convex
complete metric spaces, Rhoades [11] gave sufficient conditions to ensure the existence of fixed
point by proving a fixed point theorem for certain generalized like contractions satisfying suitable
boundary conditions. The recent literature witnessed various extentions and generalizations of the
theorem of Rhoades [11], which includes Rhoades [12], Som and Mukherjee [13] and some others.
For the work of this kind, one can be referred to Iséki [6], Khan [9], Rhoades [12] and others.

On the other hand, Huang and Cho [5] and Dhage et al. [3] proved some fixed point theorems
for a sequence of set-valued mappings which generalize several results due to Itoh [7], Khan [9], Iséki
[6] and others. Motivated by [3] and [5], we extend the fixed point theorem of Rhoades [12] to a
sequence of set-valued mappings which in turn generalizes earlier results due to Rhoades [12], Som
and Mukherjee [13] and others.

2. Preliminaries

Let (X, d) be a metric space. Then following Nadler[10], we recall
(i) CB(X) = {A: A is nonempty closed and bounded subset of X},
(if) C(X) = {A: A is nonempty compact subset of X }.
(iii) For nonempty subsets A, B of X,

H(A, B) = max ({sup d(a,B) : a € A}, {sup d(A,b) : b € B}).
It is well known (cf. Kuratowski [8]) that C'B(X) is a metric space with the distance H which
is known as Hausdorff-Pompeiu metric on X.
The following definition and lemmas will be frequently used in the sequel.
Definition 2.1 [1] A metric space (X,d) is said to be metrically convex if for any z,y € X with
x # y there exists a point z € X, x # z # y such that

d(x, z) + d(z,y) = d(z,y)

! Keywords and phrases : Metrically convex metric spaces; Set-valued mappings; Fixed point.
2 AMS Subject Classification : 54H25, 47H10.
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Lemma 2.1 [4] Let K be a nonempty closed subset of a metrically convex metric space (X, d). If
x € K and y ¢ K then there exists a point z € §K (the boundary of K) such that

d(x, 2) + d(z,y) = d(z,y)

Lemma 2.2 [10] Let A, B € CB(X). Then for all € > 0 and a € A there exists b € B such that
d(a,b) < H(A,B)+e. If A,B € C(X), then one can choose b € B such that d(a,b) < H(A, B).

3. Main Result

Our main result runs as follows.
Theorem 3.1 Let (X, d) be a complete metrically convex metric space and K a nonempty closed
subset of X. Let {F,,}°2, : K — CB(X) satisfying:

(iv) z € 0K = F,(z) C K, (n € N) and
H(F;(z), Fj(y)) < h.maz{gd(z,y),d(z, Fi(z)),d(y, F;(y)),

=7 (d(z, Fj(y)) + d(y, Fi(x)))}, (3.1.1)
where i =2n —1, j =2n, (n € N), ¢ # j for all z,y € K with  # y, where 0 < h < —142“/5’
a>1+ %

Then there exists a point z € K such that z € Fj,(2).
Proof. Assume that o = h(1 + h). Firstly, we proceed to construct two sequences {z,} and {y,}
in the following way.

Let zg € 6K and z1 = y; € Fi(z¢). Using Lemma 2.2, one can choose y2 € Fy(x1) such that

d(y1,y2) < H(Fi(zo), Fa(1)) + a.

Suppose y2 € K. Then set y2 = x2. Otherwise, if yo ¢ K, then there exists a point xy € 0K such
that
d(x1,72) + d(z2,y2) = d(71,Y2).

Thus, repeating the foregoing arguments, one obtains two sequences {z,} and {y,} such that
(V) yn € Fp(zp-1),m € N,
Vi) yn € K =y, =zp0or y, ¢ K = x, € K and
d(Tp—1,Zn) + d(Tn, Yn) = d(Tn—1,Yn),
(vii) d(yn,yn+1) < H(Fp(Tn-1), Fot1(zn)) +a™

We denote

P={z;c{rp}:z; =y} and Q = {x; € {z,} : ; # ui}.

One can note that two consecutive terms cannot lie in Q.
Now, we distinguish the following three cases.

Case 1. If z,,, 2,11 € P, then

d(wna anrl) = d(yn7 ynJrl) < H(Fn(xnfl)y Fn+1($n)) +a"
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< h.max{éd(:vn_l,mn), d(xp—1, Fn(xn-1)),d(zn, Frnti(zyn)),
a7 (d(@n-1, Fug1(zn)) + d(zn, Fa(zn-1)))} + a”
< h.max{éd(wn_l,wn), d(Xp, Tn—1), d(Tn, Tnt1),
a7 (d(@n-1, Tp41) + d(@n, 22))} + "
< maz{h.d(xn,_1,z,) + a", %,
L(h.d(zn-1,2,) +a"(a+ h))}

< maz{h.d(xn_1,2,) + " hd(zp_1,2,) + %,

é(h.d(l‘nfl, zn) +a"(a+h))}

< hud(zp-1,2y) + maz{ Ly, Lh}an

n

< hd(zp, Tn1) + 1
Case 2. If z,, € P and z,41 € @, then

d($n7 anJrl) + d($n+la yn+1) = d($na yn+1)7

which in turn yields

d(Tn, Znt1) < d(@n, Ynt1) = d(Yn, Ynt1)-

Now, proceeding as in Case 1, we have

n

A(Tn, Tnt1) < hed(Tp, Tno1) + 25
Case 3. If z,, € Q and x,,4+1 € P then z,_1 € P. Proceeding as in Case 1, one gets

d(Zn, Tny1) = d(Tn, Yni1) < d(Tn, Yn) + d(Yn, Ynt1),

n

< d(@n, yn) + hd(@p—1,yn) + -
Since
d(«Tnfly xn) + d(xna yn) = d(xnfly yn),

therefore, one can write

d(wna $n+1) < d(xnfla yn) + h.d(xn,l, yn) + %7

n

d(zp, 2ni1) < (14 h).d(Tn—1,yn) + 2,

< h(l+h)d(xp—2,xn-1)+ (1+ h)oin:hl + 25 (from case 2).

Thus in all the cases, we have
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n

h'd(xnyxn—l) + loi—h or
d(wmxn—f—l) < B
ho(1+ B)d(@n—n, ) + LERLE"T | an

Now, on the lines of Itoh[7], it can be shown that {z,} is Cauchy, hence converges to a point
z. Then as noted in [4], there exists at least one subsequence {z,, } which is contained in P and
converges to some z € K. Now, using (3.1.1), one can write.
d(z, Fn(2)) < d(2,2n,) + d(@n,,, Fo(2))
< d(z’ xnk) + H(Fnk (évnk*l)a Fn(z))

< d(z’ ajnk) + h‘ma’l‘{%d(xnk—lv Z)v d($nk—17 Fnk (fnnk—l)),

d(z, F(2)), aJlrh (d(xnk—lv F(2)) + d(z, Fu, (xnk—l)))}
which on letting k — oo, reduces to

< h.maz{0,0,d(z, F,(z2)), Flhd(z, Fn(2))}

< max{h, (erLh}'d(Z’ Fu(2)),

yielding thereby z € F,,(z) which shows that z is a common fixed point of F;,. This completes the
proof.

Remark 3.1 By setting F,, = F ( for all n € N ) in Theorem 3.1, one deduces a result due to
Rhoades[12].

Remark 3.2 By setting F,, = F' ( for all n € N ) and restricting a = 2,a+ h = ¢ in Theorem 3.1,
one deduces a multi-valued analogue of the result contained in Rhoades[11].

Remark 3.3 By setting F; = S, F; = T and restricting a = 2,a + h = ¢ in Theorem 3.1, one de-
duces a result for a pair of multi-valued mappings which can be regarded as multi-valued analogue
of the theorem due to Som and Mukherjee[13].

The following theorem is naturally predictable.

Theorem 3.2 Let (X, d) be a complete metrically convex metric space and K a nonempty closed
subset of X. Let {F,}>2, : K — C(X) satisfying (3.1.1) and (iv).
Then there exist a point z € K such that z € F,(z).

4. An illustrative example

Since every single valued mapping can always be realized as a multi-valued mapping, therefore we
adapt the following example to demonstrate Theorem 3.1.

Example 4.1 Consider X = R equipped with natural distance and K = [0, 3]. Define F,, : K —
CB(X) by

(£}, if0<z <2 (2}, if0<z<2
Fi(z) = and Fj(z) =
{0}, if z € (2,3]u{0} {0}, if = € (2,3]U{0},
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where ¢ = 2n — 1 and j = 2n. Note that the boundary points ‘0’ and ‘3’ satisfy the required
condition of Theorem 3.1 as

0€dK = F;(0) ={0} C K, F;(0) ={0} C K,
3€dK = F;i(3) ={0} C K, F;(3) = {0} C K.
Moreover, for the verification of contraction condition (3.1.1), the following cases arise:
Case 1. If z,y € (0,2], then
H(F(z), Fj(y)) = d(Fi(z), Fj(y) = |5 + §| = g4z — y| = gl3z + 2 — |
= glz —y + 32| = g[2maz{|x — y|,3|z[}] = Fmaz{|z - y|, 3z}
= maz{z|z - yl, {lzl} < maz[z{zlz -y}, 5(3]2])]

< Lmax{Ltd(z,y),d(z, Fi(x)), d(y, F;(y)), Lot tdwli)

a-+

Case 2. If 0 <z <2andy e (2,3]U{0}, then
H(Fi(z), Fj(y)) = d(Fi(z), Fj(y)) = |5 = 0] = 5l2] = 3(3J2]) < 3(3])

< Lmaz{Ld(z,y),d(z, Fi(z)),d(y, Fj(y)), 2oLty @)y,

Case 3. If z,y € (2,3] U {0}, then

H(Fi(z), Fj(y)) = d(Fi(x), Fj(y)) = 0

< §maz{gd(x,y), d(z, Fy(x)), d(y, Fy(y)), W7Dy

Thus contraction condition (3.1.1) is satisfied for h = % which shows that all the conditions of
Theorem 3.1 are satisfied. Note that ‘0’ is the common fixed point of the sequence of maps {F,}.
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Abstract. An analysis of MHD free convective flow of a visco-elastic (Rivilin-Ericksen type)
dusty fluid through a porous medium induced by the motion of a semi-infinite flat plate moving
with velocity decreasing exponentially with time. The expressions for the velocity distribution
of the dusty fluid, dust particles and temperature distribution are obtained. The effects of
various parameteres like magnetic parameter (M), permeability parameter (K7), visco-elastic
parameter (8y) and Prandtl number (Pr) on the velocity distribution of the dusty fluid, dust
particles and temperature distribution are discussed with the help of tables and graphs.

1. Introduction

The problems of fluid mechanics involving fluid particle mixture arise in many processes of practical
importance. One of the earliest problem is that of the heat and mass transfer in the mist-flow region
of a boiler tube. The liquid rocket is another example, usually the oxidizer vaporizes much more
rapidly than the fuel spray and combustion occurs heterogeneously around each droplet. The length
of the combustion chamber and the stability of the flow of acoustic or shock waves are practically
two-phase flow problems. The study of the flow of dusty fluid which has gained attention recently
has wide applications in environmental science. One finds in the lliterature an amazing number of
derivations of equations for the flow of a fluid-particle mixture. The equations have been developed
by several authors for various special problem under various assumptions. A few derivations,
primarily for the fluid particle mixture, are listed here; Saffman [11], Marble [4] and Soo [15].

Using the formulation of Saffman [11], several authors gave exact solutions of various dusty fluid
problems. Michael and Norey [5], Rao [9], Verma and Mathur [15], Singh [12], Rukmangadachari
[10], Mitra studied the problem of circular cylinders under various conditions, Gupta [1] considered
the unsteady flow of a dusty gas in a channel whose cross section is an annular sector. Regarding
the plate problems Liu [2], Michael and Miller [6], Liu [3], Verma [17] studied the problems of
infinite flat plate under various conditions. Mitra [8] has studied the flow of a dusty gas through a
porous medium induced by the motion of a semi-infinite flat plate moving with velocity decreasing
exponentially with time. Singh and Gupta [14] have discussed MHD free convective flow of a
dusty fluid through a porous medium induced by the motion of semi-infinite flat plate moving with
velocity decreasing exponentially with time.

In the present paper we have considered the problem of Singh & Gupta [14] by introducing
visco-elastic (Rivlin-Ericksen type) dusty fluid under the same conditions taken by Singh and Gupta
[14].

! Keywords and phrases : MHD free convective flow, visco-elastic fluid, porous medium.
2 AMS Subject Classification : 76A10, T6WO05.
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2. Mathematical Formulation

We assume the dusty fluid to be confined in the space y > 0 and the flow is produced by the motion
of infinite flat plate moving with a velocity ve ~Xt in g-direction. Axis of z is taken along the plate
and axis of y be measured normal to it. Since the plate is semi-infinite, all the physical quantities
will be functions of y and ¢ only. According to Saffman [11], the equation of motion of the dusty
fluid and the dust particle along the z-axis are respectively given by

ou_ % Ko
ot 0y? p

(v —u) (1)

ov K

o = =) (2)
0T  Kr 0°T

R vpCp Oy? (3)

where v and v denote respectively the fluid and particle velocity, v is the kinematic coefficient of
viscosity of the fluid, Ky is the Stoke’s resistance coefficient, Ny is the number density of the dust
particles which is taken to be constant, p is the density of the fluid and m is the mass of a dust
particle. Kt is the thermal conductivity, C), is the specific heat at constant pressure.

Applying the magnetic field, porous medium and visco-elastic (Rivilin Ericksen type) dusty
fluid along the z-axis, then equation of motion (1) reduces to

ou 0 0%u KONO O'BO
= —u) — 0 4
5t Ut Bgga t (v~ u) +—|u+gs (4)
where
0=(T—-Tx)
The boundary conditions are
0= ve*Azt, v = ve Nt aty=20
(5)
0 — 0, u—0 at y — oo
Let us introduce the non-dimensional variables
* __ Y * __ E * _
y _('UT)]'/2’ U _'U, v = 9
t m
t* = — = — 0* = —
T’ T Ky’ v

Applying the non-dimensional variables in equations (2), (3) and (4) and omitting the stars,
we have

L N O [T Y ©)
% (u—v) (7)
% ;T[ 1 Bo— }820 (8)
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where ‘f’ is the mass-concentration of dust particles, M is the magnetic parameter, (; is the
volumetric expansion parameter, Gy is the visco-elastic parameter, P, is the Prandtl number, Ky
is the permeability parameter.

mNp mo B3

f s M = s 61 = g/BTa
p Kop
16} pvCy 1 vT
=2 P = = v
o= "T Ky Ki K
The boundary conditions (5) are reduced to
0= e_)‘Qt, v =e Nt aty=20
(9)
0 — 0, u— 0 at y — oo

Let us choose the solutions of (6), (7) and (8) respectively as

u= F(y)e X" (10)
v=Gy)e " (11)
6= H(y)e (12)

The boundary conditions (9) are transformed to
H=1, F=1 aty=20

H —0, F—0, at y — oo
By virtue of (10), (11) and (12), the equations (6), (7) and (8), respectively, transform to

d2—F1—)\2ﬂ)+F A2—f—M—i + fG =B H (14)
dyZ( ‘ K -
Gl-M)=F (15)
d*H

Eliminating G from (14) and (15), we get

d’F
d_y2 + n%F = —noH (17)
From the equation (16), we get
H=e¢ "™ (18)
By the boundary conditions (13), the solution of (17) is obtained as

n2

F=[e"Y+ 2 (e7"MY — 7MY (19)
From equations (15) we get
1 : : :
G [e™" Y 4 12 (e7'™MY — 7)) (20)

1= )2 m2 — n?
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From equation (10) we then get the velocity of dusty fluid

—q n9 _; i — A2t
_ ni1y e MY _ oMY e 21
e ) (1)
The real part of u is given by
u = [cos nlye*)‘zt + ———5(cosn1y — cos my)e”‘zt] (22)
m2 —n
1

Similarly, the real part of velocity of the dust particle is obtained as

1 n —
v= m[cos niye Nt + m2—_2n2(cos niy — cosmy)e >‘2t] (23)
1
And temperature distribution is given by
f = emimye— Nt (24)
The real part of 6 is given by
0 = cos mye Nt (25)

3. Results and Discussion

The velocity profiles for visco-elastic (Rivlin-Ericksen type) dusty fluid are tabulated in Tables 1
and 2 and plotted in Fig. 1 and 2 dotted Graph- 1 to 3 for ¢ = 1 and solid Graph 4 to 6 for t = 5.
The different values of all paraameters are given as follows:

For Fig. 1: A=0.5, f=0.2, 6, =5.0, K1 =10, Pr=07and v =1

M Bo t
For graph-1 0.1 2.0 1
For graph-2 0.2 2.0 1
For graph-3 0.1 1.0 1
For graph-4 0.1 1.0 5
For graph-5 0.2 2.0 5
For graph-6 0.2 1.0 5

For Fig. 2: A=05, f =02, 80=5.0, M =0.1, Bp=1.0 and v = 1

K, Pr t
For graph-1 10 0.2 1
For graph-2 5 0.2 1
For graph-3 10 0.7 1
For graph-4 10 0.7 )
For graph-5 ) 0.2 )

For graph-6 ) 0.7 )
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From the solid and dotted Graphs of Figs. 1 and 2 it is noticed that velocity of visco-elastic
(Rivlin-Ericksen type) dusty fluid increases with the increase in y and decreases with the increase
in t. It is also observed that this velocity increases with the increase in By and M but it decreases
with the increase in K7 and Pr for fixed values of y.

The valocity ‘v’ of dust particles behaves in a similar way as that of the dusty fluid. The
temperature profile is tabulated in Table 3 and plotted in Fig. 3 having solid Graph 3 and 4 for
t = 5 and dotted Graph 1 and 2 for ¢ = 1 and different values of Pr is taken for velocity distribution.

From the graph of Fig. 3, it is noticed that when Pr = 0.7, the temperature decreases with the
increase t till y = 5, after it temperature begins to increase and when Pr = 2.0, the temperature
decreases with the increase in t till y = 2.6 after it temperature begins to increase. It is also
observed that temperature decreases with the increase in Pr.
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Table 1 :

A =1- )25,

A

VELOCITY OF DUSTY FLUID FOR DIFFERENT VALUES OF M, Go&t

N f -
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APPENDIX

K

)\2

1—

Y

0.5

1.5

2.5

Graph-1
Graph-2
Graph-3
Graph-4
Graph-5

Graph-6

0.778801

0.778801

0.778801

0.286505

0.286505

0.286505

1.71791

1.741307

1.407462

0.517776

0.640591

0.523195

4.397183

4.536923

3.231706

1.188878

1.669041

1.218164

8.41773

8.897988

6.07088

2.233352

3.273387

2.326995

13.16412

14.40454

9.6

3.545915

5.299135

3.778556

17.87328

20.52115

13.56506

4.990306

7.54931

5.479164

Table 2

: VELOCITY OF DUSTY FLUID FOR DIFFERENT VALUES OF K, Pr&t

0.5

1.5

2.5

Graph-1
Graph-2
Graph-3
Graph-4
Graph-5

Graph-6

0.778801

0.778801

0.778801

0.286505

0.286505

0.286505

1.722951

1.746357

1.71791

0.631984

0.642449

0.640591

4.76476

4.61675

4.397183

1.617633

1.698407

1.669041

8.807778

9.294021

8.41773

3.09671

3.419079

3.273387

14.34782

15.62113

13.16412

4.842808

5.746693

5.299135

20.6145

23.3842

17.87328

6.575213

8.602568

7.54931




Table 3 : TEMPERATURE PROFILE FOR DIFFERENT VALUES OF Pr&t

MHD free convective flow of a visco-elastic ...

v 0 1 2 3 4 5 6
Graph-1 | 0.778801 | 0.740184 | 0.628164 | 0.453849 | 0.234526 | -0.00805 | -0.24984
Graph-2 | 0.778801 | 0.64644 | 0.294347 | -0.1578 | -0.5583 | -0.76572 | -0.71486
Graph-3 | 0.286505 | 0.272299 | 0.231089 | 0.166962 | 0.086277 | -0.00296 | -0.09191
Graph-4 | 0.286505 | 0.237812 | 0.108284 | -0.05805 | -0.20465 | -0.28169 | -0.26298
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Fig- 3 Temperature Profile for different values of
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